1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <unordered_map> 27 #include <vector> 28 29 // Header from ATMI interface 30 #include "atmi_interop_hsa.h" 31 #include "atmi_runtime.h" 32 33 #include "internal.h" 34 35 #include "internal.h" 36 37 #include "omptargetplugin.h" 38 39 // Get static gpu grid values from clang target-specific constants managed 40 // in the header file llvm/Frontend/OpenMP/OMPGridValues.h 41 // Copied verbatim to meet the requirement that libomptarget builds without 42 // a copy of llvm checked out nearby 43 namespace llvm { 44 namespace omp { 45 enum GVIDX { 46 /// The maximum number of workers in a kernel. 47 /// (THREAD_ABSOLUTE_LIMIT) - (GV_Warp_Size), might be issue for blockDim.z 48 GV_Threads, 49 /// The size reserved for data in a shared memory slot. 50 GV_Slot_Size, 51 /// The default value of maximum number of threads in a worker warp. 52 GV_Warp_Size, 53 /// Alternate warp size for some AMDGCN architectures. Same as GV_Warp_Size 54 /// for NVPTX. 55 GV_Warp_Size_32, 56 /// The number of bits required to represent the max number of threads in warp 57 GV_Warp_Size_Log2, 58 /// GV_Warp_Size * GV_Slot_Size, 59 GV_Warp_Slot_Size, 60 /// the maximum number of teams. 61 GV_Max_Teams, 62 /// Global Memory Alignment 63 GV_Mem_Align, 64 /// (~0u >> (GV_Warp_Size - GV_Warp_Size_Log2)) 65 GV_Warp_Size_Log2_Mask, 66 // An alternative to the heavy data sharing infrastructure that uses global 67 // memory is one that uses device __shared__ memory. The amount of such space 68 // (in bytes) reserved by the OpenMP runtime is noted here. 69 GV_SimpleBufferSize, 70 // The absolute maximum team size for a working group 71 GV_Max_WG_Size, 72 // The default maximum team size for a working group 73 GV_Default_WG_Size, 74 // This is GV_Max_WG_Size / GV_WarpSize. 32 for NVPTX and 16 for AMDGCN. 75 GV_Max_Warp_Number, 76 /// The slot size that should be reserved for a working warp. 77 /// (~0u >> (GV_Warp_Size - GV_Warp_Size_Log2)) 78 GV_Warp_Size_Log2_MaskL 79 }; 80 81 static constexpr unsigned AMDGPUGpuGridValues[] = { 82 448, // GV_Threads 83 256, // GV_Slot_Size 84 64, // GV_Warp_Size 85 32, // GV_Warp_Size_32 86 6, // GV_Warp_Size_Log2 87 64 * 256, // GV_Warp_Slot_Size 88 128, // GV_Max_Teams 89 256, // GV_Mem_Align 90 63, // GV_Warp_Size_Log2_Mask 91 896, // GV_SimpleBufferSize 92 1024, // GV_Max_WG_Size, 93 256, // GV_Defaut_WG_Size 94 1024 / 64, // GV_Max_WG_Size / GV_WarpSize 95 63 // GV_Warp_Size_Log2_MaskL 96 }; 97 } // namespace omp 98 } // namespace llvm 99 100 #ifndef TARGET_NAME 101 #define TARGET_NAME AMDHSA 102 #endif 103 104 int print_kernel_trace; 105 106 // Size of the target call stack struture 107 uint32_t TgtStackItemSize = 0; 108 109 #ifdef OMPTARGET_DEBUG 110 static int DebugLevel = 0; 111 112 #define GETNAME2(name) #name 113 #define GETNAME(name) GETNAME2(name) 114 #define DP(...) \ 115 do { \ 116 if (DebugLevel > 0) { \ 117 DEBUGP("Target " GETNAME(TARGET_NAME) " RTL", __VA_ARGS__); \ 118 } \ 119 } while (false) 120 #else // OMPTARGET_DEBUG 121 #define DP(...) \ 122 {} 123 #endif // OMPTARGET_DEBUG 124 125 #undef check // Drop definition from internal.h 126 #ifdef OMPTARGET_DEBUG 127 #define check(msg, status) \ 128 if (status != ATMI_STATUS_SUCCESS) { \ 129 /* fprintf(stderr, "[%s:%d] %s failed.\n", __FILE__, __LINE__, #msg);*/ \ 130 DP(#msg " failed\n"); \ 131 /*assert(0);*/ \ 132 } else { \ 133 /* fprintf(stderr, "[%s:%d] %s succeeded.\n", __FILE__, __LINE__, #msg); \ 134 */ \ 135 DP(#msg " succeeded\n"); \ 136 } 137 #else 138 #define check(msg, status) \ 139 {} 140 #endif 141 142 #include "../../common/elf_common.c" 143 144 static bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 145 const uint16_t amdgcnMachineID = 224; 146 int32_t r = elf_check_machine(image, amdgcnMachineID); 147 if (!r) { 148 DP("Supported machine ID not found\n"); 149 } 150 return r; 151 } 152 153 /// Keep entries table per device 154 struct FuncOrGblEntryTy { 155 __tgt_target_table Table; 156 std::vector<__tgt_offload_entry> Entries; 157 }; 158 159 enum ExecutionModeType { 160 SPMD, // constructors, destructors, 161 // combined constructs (`teams distribute parallel for [simd]`) 162 GENERIC, // everything else 163 NONE 164 }; 165 166 struct KernelArgPool { 167 private: 168 static pthread_mutex_t mutex; 169 170 public: 171 uint32_t kernarg_segment_size; 172 void *kernarg_region = nullptr; 173 std::queue<int> free_kernarg_segments; 174 175 uint32_t kernarg_size_including_implicit() { 176 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 177 } 178 179 ~KernelArgPool() { 180 if (kernarg_region) { 181 auto r = hsa_amd_memory_pool_free(kernarg_region); 182 assert(r == HSA_STATUS_SUCCESS); 183 ErrorCheck(Memory pool free, r); 184 } 185 } 186 187 // Can't really copy or move a mutex 188 KernelArgPool() = default; 189 KernelArgPool(const KernelArgPool &) = delete; 190 KernelArgPool(KernelArgPool &&) = delete; 191 192 KernelArgPool(uint32_t kernarg_segment_size) 193 : kernarg_segment_size(kernarg_segment_size) { 194 195 // atmi uses one pool per kernel for all gpus, with a fixed upper size 196 // preserving that exact scheme here, including the queue<int> 197 { 198 hsa_status_t err = hsa_amd_memory_pool_allocate( 199 atl_gpu_kernarg_pools[0], 200 kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 201 &kernarg_region); 202 ErrorCheck(Allocating memory for the executable-kernel, err); 203 core::allow_access_to_all_gpu_agents(kernarg_region); 204 205 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 206 free_kernarg_segments.push(i); 207 } 208 } 209 } 210 211 void *allocate(uint64_t arg_num) { 212 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 213 lock l(&mutex); 214 void *res = nullptr; 215 if (!free_kernarg_segments.empty()) { 216 217 int free_idx = free_kernarg_segments.front(); 218 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 219 (free_idx * kernarg_size_including_implicit())); 220 assert(free_idx == pointer_to_index(res)); 221 free_kernarg_segments.pop(); 222 } 223 return res; 224 } 225 226 void deallocate(void *ptr) { 227 lock l(&mutex); 228 int idx = pointer_to_index(ptr); 229 free_kernarg_segments.push(idx); 230 } 231 232 private: 233 int pointer_to_index(void *ptr) { 234 ptrdiff_t bytes = 235 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 236 assert(bytes >= 0); 237 assert(bytes % kernarg_size_including_implicit() == 0); 238 return bytes / kernarg_size_including_implicit(); 239 } 240 struct lock { 241 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 242 ~lock() { pthread_mutex_unlock(m); } 243 pthread_mutex_t *m; 244 }; 245 }; 246 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 247 248 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 249 KernelArgPoolMap; 250 251 /// Use a single entity to encode a kernel and a set of flags 252 struct KernelTy { 253 // execution mode of kernel 254 // 0 - SPMD mode (without master warp) 255 // 1 - Generic mode (with master warp) 256 int8_t ExecutionMode; 257 int16_t ConstWGSize; 258 int8_t MaxParLevel; 259 int32_t device_id; 260 void *CallStackAddr; 261 const char *Name; 262 263 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int8_t _MaxParLevel, 264 int32_t _device_id, void *_CallStackAddr, const char *_Name, 265 uint32_t _kernarg_segment_size) 266 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 267 MaxParLevel(_MaxParLevel), device_id(_device_id), 268 CallStackAddr(_CallStackAddr), Name(_Name) { 269 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 270 271 std::string N(_Name); 272 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 273 KernelArgPoolMap.insert( 274 std::make_pair(N, std::unique_ptr<KernelArgPool>( 275 new KernelArgPool(_kernarg_segment_size)))); 276 } 277 } 278 }; 279 280 /// List that contains all the kernels. 281 /// FIXME: we may need this to be per device and per library. 282 std::list<KernelTy> KernelsList; 283 284 // ATMI API to get gpu and gpu memory place 285 static atmi_place_t get_gpu_place(int device_id) { 286 return ATMI_PLACE_GPU(0, device_id); 287 } 288 static atmi_mem_place_t get_gpu_mem_place(int device_id) { 289 return ATMI_MEM_PLACE_GPU_MEM(0, device_id, 0); 290 } 291 292 static std::vector<hsa_agent_t> find_gpu_agents() { 293 std::vector<hsa_agent_t> res; 294 295 hsa_status_t err = hsa_iterate_agents( 296 [](hsa_agent_t agent, void *data) -> hsa_status_t { 297 std::vector<hsa_agent_t> *res = 298 static_cast<std::vector<hsa_agent_t> *>(data); 299 300 hsa_device_type_t device_type; 301 // get_info fails iff HSA runtime not yet initialized 302 hsa_status_t err = 303 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 304 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 305 printf("rtl.cpp: err %d\n", err); 306 assert(err == HSA_STATUS_SUCCESS); 307 308 if (device_type == HSA_DEVICE_TYPE_GPU) { 309 res->push_back(agent); 310 } 311 return HSA_STATUS_SUCCESS; 312 }, 313 &res); 314 315 // iterate_agents fails iff HSA runtime not yet initialized 316 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 317 printf("rtl.cpp: err %d\n", err); 318 assert(err == HSA_STATUS_SUCCESS); 319 return res; 320 } 321 322 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 323 void *data) { 324 if (status != HSA_STATUS_SUCCESS) { 325 const char *status_string; 326 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 327 status_string = "unavailable"; 328 } 329 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 330 __LINE__, source, status, status_string); 331 abort(); 332 } 333 } 334 335 namespace core { 336 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 337 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 338 } 339 340 uint16_t create_header(hsa_packet_type_t type, int barrier, 341 atmi_task_fence_scope_t acq_fence, 342 atmi_task_fence_scope_t rel_fence) { 343 uint16_t header = type << HSA_PACKET_HEADER_TYPE; 344 header |= barrier << HSA_PACKET_HEADER_BARRIER; 345 header |= (hsa_fence_scope_t) static_cast<int>( 346 acq_fence << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE); 347 header |= (hsa_fence_scope_t) static_cast<int>( 348 rel_fence << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE); 349 return header; 350 } 351 } // namespace core 352 353 /// Class containing all the device information 354 class RTLDeviceInfoTy { 355 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 356 357 public: 358 int NumberOfDevices; 359 360 // GPU devices 361 std::vector<hsa_agent_t> HSAAgents; 362 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 363 364 // Device properties 365 std::vector<int> ComputeUnits; 366 std::vector<int> GroupsPerDevice; 367 std::vector<int> ThreadsPerGroup; 368 std::vector<int> WarpSize; 369 370 // OpenMP properties 371 std::vector<int> NumTeams; 372 std::vector<int> NumThreads; 373 374 // OpenMP Environment properties 375 int EnvNumTeams; 376 int EnvTeamLimit; 377 int EnvMaxTeamsDefault; 378 379 // OpenMP Requires Flags 380 int64_t RequiresFlags; 381 382 // Resource pools 383 SignalPoolT FreeSignalPool; 384 385 static const int HardTeamLimit = 1 << 20; // 1 Meg 386 static const int DefaultNumTeams = 128; 387 static const int Max_Teams = 388 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 389 static const int Warp_Size = 390 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 391 static const int Max_WG_Size = 392 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 393 static const int Default_WG_Size = 394 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 395 396 // Record entry point associated with device 397 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 398 assert(device_id < (int32_t)FuncGblEntries.size() && 399 "Unexpected device id!"); 400 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 401 402 E.Entries.push_back(entry); 403 } 404 405 // Return true if the entry is associated with device 406 bool findOffloadEntry(int32_t device_id, void *addr) { 407 assert(device_id < (int32_t)FuncGblEntries.size() && 408 "Unexpected device id!"); 409 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 410 411 for (auto &it : E.Entries) { 412 if (it.addr == addr) 413 return true; 414 } 415 416 return false; 417 } 418 419 // Return the pointer to the target entries table 420 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 421 assert(device_id < (int32_t)FuncGblEntries.size() && 422 "Unexpected device id!"); 423 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 424 425 int32_t size = E.Entries.size(); 426 427 // Table is empty 428 if (!size) 429 return 0; 430 431 __tgt_offload_entry *begin = &E.Entries[0]; 432 __tgt_offload_entry *end = &E.Entries[size - 1]; 433 434 // Update table info according to the entries and return the pointer 435 E.Table.EntriesBegin = begin; 436 E.Table.EntriesEnd = ++end; 437 438 return &E.Table; 439 } 440 441 // Clear entries table for a device 442 void clearOffloadEntriesTable(int device_id) { 443 assert(device_id < (int32_t)FuncGblEntries.size() && 444 "Unexpected device id!"); 445 FuncGblEntries[device_id].emplace_back(); 446 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 447 // KernelArgPoolMap.clear(); 448 E.Entries.clear(); 449 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 450 } 451 452 RTLDeviceInfoTy() { 453 #ifdef OMPTARGET_DEBUG 454 if (char *envStr = getenv("LIBOMPTARGET_DEBUG")) 455 DebugLevel = std::stoi(envStr); 456 #endif // OMPTARGET_DEBUG 457 458 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 459 // anytime. You do not need a debug library build. 460 // 0 => no tracing 461 // 1 => tracing dispatch only 462 // >1 => verbosity increase 463 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 464 print_kernel_trace = atoi(envStr); 465 else 466 print_kernel_trace = 0; 467 468 DP("Start initializing HSA-ATMI\n"); 469 atmi_status_t err = atmi_init(); 470 if (err != ATMI_STATUS_SUCCESS) { 471 DP("Error when initializing HSA-ATMI\n"); 472 return; 473 } 474 475 HSAAgents = find_gpu_agents(); 476 NumberOfDevices = (int)HSAAgents.size(); 477 478 if (NumberOfDevices == 0) { 479 DP("There are no devices supporting HSA.\n"); 480 return; 481 } else { 482 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 483 } 484 485 // Init the device info 486 HSAQueues.resize(NumberOfDevices); 487 FuncGblEntries.resize(NumberOfDevices); 488 ThreadsPerGroup.resize(NumberOfDevices); 489 ComputeUnits.resize(NumberOfDevices); 490 GroupsPerDevice.resize(NumberOfDevices); 491 WarpSize.resize(NumberOfDevices); 492 NumTeams.resize(NumberOfDevices); 493 NumThreads.resize(NumberOfDevices); 494 495 for (int i = 0; i < NumberOfDevices; i++) { 496 uint32_t queue_size = 0; 497 { 498 hsa_status_t err; 499 err = hsa_agent_get_info(HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, 500 &queue_size); 501 ErrorCheck(Querying the agent maximum queue size, err); 502 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 503 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 504 } 505 } 506 507 hsa_status_t rc = hsa_queue_create( 508 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 509 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 510 if (rc != HSA_STATUS_SUCCESS) { 511 DP("Failed to create HSA queues\n"); 512 return; 513 } 514 } 515 516 for (int i = 0; i < NumberOfDevices; i++) { 517 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 518 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 519 ComputeUnits[i] = 1; 520 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 521 GroupsPerDevice[i], ThreadsPerGroup[i]); 522 } 523 524 // Get environment variables regarding teams 525 char *envStr = getenv("OMP_TEAM_LIMIT"); 526 if (envStr) { 527 // OMP_TEAM_LIMIT has been set 528 EnvTeamLimit = std::stoi(envStr); 529 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 530 } else { 531 EnvTeamLimit = -1; 532 } 533 envStr = getenv("OMP_NUM_TEAMS"); 534 if (envStr) { 535 // OMP_NUM_TEAMS has been set 536 EnvNumTeams = std::stoi(envStr); 537 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 538 } else { 539 EnvNumTeams = -1; 540 } 541 // Get environment variables regarding expMaxTeams 542 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 543 if (envStr) { 544 EnvMaxTeamsDefault = std::stoi(envStr); 545 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 546 } else { 547 EnvMaxTeamsDefault = -1; 548 } 549 550 // Default state. 551 RequiresFlags = OMP_REQ_UNDEFINED; 552 } 553 554 ~RTLDeviceInfoTy() { 555 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 556 KernelArgPoolMap.clear(); // calls hsa to free memory 557 atmi_finalize(); 558 } 559 }; 560 561 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 562 563 // TODO: May need to drop the trailing to fields until deviceRTL is updated 564 struct omptarget_device_environmentTy { 565 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 566 // only useful for Debug build of deviceRTLs 567 int32_t num_devices; // gets number of active offload devices 568 int32_t device_num; // gets a value 0 to num_devices-1 569 }; 570 571 static RTLDeviceInfoTy DeviceInfo; 572 573 namespace { 574 575 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 576 __tgt_async_info *AsyncInfoPtr) { 577 assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr"); 578 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 579 // Return success if we are not copying back to host from target. 580 if (!HstPtr) 581 return OFFLOAD_SUCCESS; 582 atmi_status_t err; 583 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 584 (long long unsigned)(Elf64_Addr)TgtPtr, 585 (long long unsigned)(Elf64_Addr)HstPtr); 586 err = atmi_memcpy(HstPtr, TgtPtr, (size_t)Size); 587 if (err != ATMI_STATUS_SUCCESS) { 588 DP("Error when copying data from device to host. Pointers: " 589 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 590 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 591 return OFFLOAD_FAIL; 592 } 593 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 594 (long long unsigned)(Elf64_Addr)TgtPtr, 595 (long long unsigned)(Elf64_Addr)HstPtr); 596 return OFFLOAD_SUCCESS; 597 } 598 599 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 600 __tgt_async_info *AsyncInfoPtr) { 601 assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr"); 602 atmi_status_t err; 603 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 604 // Return success if we are not doing host to target. 605 if (!HstPtr) 606 return OFFLOAD_SUCCESS; 607 608 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 609 (long long unsigned)(Elf64_Addr)HstPtr, 610 (long long unsigned)(Elf64_Addr)TgtPtr); 611 err = atmi_memcpy(TgtPtr, HstPtr, (size_t)Size); 612 if (err != ATMI_STATUS_SUCCESS) { 613 DP("Error when copying data from host to device. Pointers: " 614 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 615 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 616 return OFFLOAD_FAIL; 617 } 618 return OFFLOAD_SUCCESS; 619 } 620 621 // Async. 622 // The implementation was written with cuda streams in mind. The semantics of 623 // that are to execute kernels on a queue in order of insertion. A synchronise 624 // call then makes writes visible between host and device. This means a series 625 // of N data_submit_async calls are expected to execute serially. HSA offers 626 // various options to run the data copies concurrently. This may require changes 627 // to libomptarget. 628 629 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 630 // there are no outstanding kernels that need to be synchronized. Any async call 631 // may be passed a Queue==0, at which point the cuda implementation will set it 632 // to non-null (see getStream). The cuda streams are per-device. Upstream may 633 // change this interface to explicitly initialize the async_info_pointer, but 634 // until then hsa lazily initializes it as well. 635 636 void initAsyncInfoPtr(__tgt_async_info *async_info_ptr) { 637 // set non-null while using async calls, return to null to indicate completion 638 assert(async_info_ptr); 639 if (!async_info_ptr->Queue) { 640 async_info_ptr->Queue = reinterpret_cast<void *>(UINT64_MAX); 641 } 642 } 643 void finiAsyncInfoPtr(__tgt_async_info *async_info_ptr) { 644 assert(async_info_ptr); 645 assert(async_info_ptr->Queue); 646 async_info_ptr->Queue = 0; 647 } 648 } // namespace 649 650 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 651 return elf_machine_id_is_amdgcn(image); 652 } 653 654 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 655 656 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 657 DP("Init requires flags to %ld\n", RequiresFlags); 658 DeviceInfo.RequiresFlags = RequiresFlags; 659 return RequiresFlags; 660 } 661 662 int32_t __tgt_rtl_init_device(int device_id) { 663 hsa_status_t err; 664 665 // this is per device id init 666 DP("Initialize the device id: %d\n", device_id); 667 668 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 669 670 // Get number of Compute Unit 671 uint32_t compute_units = 0; 672 err = hsa_agent_get_info( 673 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 674 &compute_units); 675 if (err != HSA_STATUS_SUCCESS) { 676 DeviceInfo.ComputeUnits[device_id] = 1; 677 DP("Error getting compute units : settiing to 1\n"); 678 } else { 679 DeviceInfo.ComputeUnits[device_id] = compute_units; 680 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 681 } 682 if (print_kernel_trace > 1) 683 fprintf(stderr, "Device#%-2d CU's: %2d\n", device_id, 684 DeviceInfo.ComputeUnits[device_id]); 685 686 // Query attributes to determine number of threads/block and blocks/grid. 687 uint16_t workgroup_max_dim[3]; 688 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 689 &workgroup_max_dim); 690 if (err != HSA_STATUS_SUCCESS) { 691 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 692 DP("Error getting grid dims: num groups : %d\n", 693 RTLDeviceInfoTy::DefaultNumTeams); 694 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 695 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 696 DP("Using %d ROCm blocks per grid\n", 697 DeviceInfo.GroupsPerDevice[device_id]); 698 } else { 699 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 700 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 701 "at the hard limit\n", 702 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 703 } 704 705 // Get thread limit 706 hsa_dim3_t grid_max_dim; 707 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 708 if (err == HSA_STATUS_SUCCESS) { 709 DeviceInfo.ThreadsPerGroup[device_id] = 710 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 711 DeviceInfo.GroupsPerDevice[device_id]; 712 if ((DeviceInfo.ThreadsPerGroup[device_id] > 713 RTLDeviceInfoTy::Max_WG_Size) || 714 DeviceInfo.ThreadsPerGroup[device_id] == 0) { 715 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 716 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 717 } else { 718 DP("Using ROCm Queried thread limit: %d\n", 719 DeviceInfo.ThreadsPerGroup[device_id]); 720 } 721 } else { 722 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 723 DP("Error getting max block dimension, use default:%d \n", 724 RTLDeviceInfoTy::Max_WG_Size); 725 } 726 727 // Get wavefront size 728 uint32_t wavefront_size = 0; 729 err = 730 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 731 if (err == HSA_STATUS_SUCCESS) { 732 DP("Queried wavefront size: %d\n", wavefront_size); 733 DeviceInfo.WarpSize[device_id] = wavefront_size; 734 } else { 735 DP("Default wavefront size: %d\n", 736 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 737 DeviceInfo.WarpSize[device_id] = 738 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 739 } 740 741 // Adjust teams to the env variables 742 if (DeviceInfo.EnvTeamLimit > 0 && 743 DeviceInfo.GroupsPerDevice[device_id] > DeviceInfo.EnvTeamLimit) { 744 DeviceInfo.GroupsPerDevice[device_id] = DeviceInfo.EnvTeamLimit; 745 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 746 DeviceInfo.EnvTeamLimit); 747 } 748 749 // Set default number of teams 750 if (DeviceInfo.EnvNumTeams > 0) { 751 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 752 DP("Default number of teams set according to environment %d\n", 753 DeviceInfo.EnvNumTeams); 754 } else { 755 DeviceInfo.NumTeams[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 756 DP("Default number of teams set according to library's default %d\n", 757 RTLDeviceInfoTy::DefaultNumTeams); 758 } 759 760 if (DeviceInfo.NumTeams[device_id] > DeviceInfo.GroupsPerDevice[device_id]) { 761 DeviceInfo.NumTeams[device_id] = DeviceInfo.GroupsPerDevice[device_id]; 762 DP("Default number of teams exceeds device limit, capping at %d\n", 763 DeviceInfo.GroupsPerDevice[device_id]); 764 } 765 766 // Set default number of threads 767 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 768 DP("Default number of threads set according to library's default %d\n", 769 RTLDeviceInfoTy::Default_WG_Size); 770 if (DeviceInfo.NumThreads[device_id] > 771 DeviceInfo.ThreadsPerGroup[device_id]) { 772 DeviceInfo.NumTeams[device_id] = DeviceInfo.ThreadsPerGroup[device_id]; 773 DP("Default number of threads exceeds device limit, capping at %d\n", 774 DeviceInfo.ThreadsPerGroup[device_id]); 775 } 776 777 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 778 device_id, DeviceInfo.GroupsPerDevice[device_id], 779 DeviceInfo.ThreadsPerGroup[device_id]); 780 781 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 782 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 783 DeviceInfo.GroupsPerDevice[device_id], 784 DeviceInfo.GroupsPerDevice[device_id] * 785 DeviceInfo.ThreadsPerGroup[device_id]); 786 787 return OFFLOAD_SUCCESS; 788 } 789 790 namespace { 791 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 792 size_t N; 793 int rc = elf_getshdrnum(elf, &N); 794 if (rc != 0) { 795 return nullptr; 796 } 797 798 Elf64_Shdr *result = nullptr; 799 for (size_t i = 0; i < N; i++) { 800 Elf_Scn *scn = elf_getscn(elf, i); 801 if (scn) { 802 Elf64_Shdr *shdr = elf64_getshdr(scn); 803 if (shdr) { 804 if (shdr->sh_type == SHT_HASH) { 805 if (result == nullptr) { 806 result = shdr; 807 } else { 808 // multiple SHT_HASH sections not handled 809 return nullptr; 810 } 811 } 812 } 813 } 814 } 815 return result; 816 } 817 818 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 819 const char *symname) { 820 821 assert(section_hash); 822 size_t section_symtab_index = section_hash->sh_link; 823 Elf64_Shdr *section_symtab = 824 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 825 size_t section_strtab_index = section_symtab->sh_link; 826 827 const Elf64_Sym *symtab = 828 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 829 830 const uint32_t *hashtab = 831 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 832 833 // Layout: 834 // nbucket 835 // nchain 836 // bucket[nbucket] 837 // chain[nchain] 838 uint32_t nbucket = hashtab[0]; 839 const uint32_t *bucket = &hashtab[2]; 840 const uint32_t *chain = &hashtab[nbucket + 2]; 841 842 const size_t max = strlen(symname) + 1; 843 const uint32_t hash = elf_hash(symname); 844 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 845 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 846 if (strncmp(symname, n, max) == 0) { 847 return &symtab[i]; 848 } 849 } 850 851 return nullptr; 852 } 853 854 typedef struct { 855 void *addr = nullptr; 856 uint32_t size = UINT32_MAX; 857 } symbol_info; 858 859 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 860 symbol_info *res) { 861 if (elf_kind(elf) != ELF_K_ELF) { 862 return 1; 863 } 864 865 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 866 if (!section_hash) { 867 return 1; 868 } 869 870 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 871 if (!sym) { 872 return 1; 873 } 874 875 if (sym->st_size > UINT32_MAX) { 876 return 1; 877 } 878 879 res->size = static_cast<uint32_t>(sym->st_size); 880 res->addr = sym->st_value + base; 881 return 0; 882 } 883 884 int get_symbol_info_without_loading(char *base, size_t img_size, 885 const char *symname, symbol_info *res) { 886 Elf *elf = elf_memory(base, img_size); 887 if (elf) { 888 int rc = get_symbol_info_without_loading(elf, base, symname, res); 889 elf_end(elf); 890 return rc; 891 } 892 return 1; 893 } 894 895 atmi_status_t interop_get_symbol_info(char *base, size_t img_size, 896 const char *symname, void **var_addr, 897 uint32_t *var_size) { 898 symbol_info si; 899 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 900 if (rc == 0) { 901 *var_addr = si.addr; 902 *var_size = si.size; 903 return ATMI_STATUS_SUCCESS; 904 } else { 905 return ATMI_STATUS_ERROR; 906 } 907 } 908 909 template <typename C> 910 atmi_status_t module_register_from_memory_to_place(void *module_bytes, 911 size_t module_size, 912 atmi_place_t place, C cb) { 913 auto L = [](void *data, size_t size, void *cb_state) -> atmi_status_t { 914 C *unwrapped = static_cast<C *>(cb_state); 915 return (*unwrapped)(data, size); 916 }; 917 return atmi_module_register_from_memory_to_place( 918 module_bytes, module_size, place, L, static_cast<void *>(&cb)); 919 } 920 } // namespace 921 922 static __tgt_target_table * 923 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 924 925 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 926 __tgt_device_image *image) { 927 static pthread_mutex_t load_binary_mutex = PTHREAD_MUTEX_INITIALIZER; 928 pthread_mutex_lock(&load_binary_mutex); 929 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 930 pthread_mutex_unlock(&load_binary_mutex); 931 return res; 932 } 933 934 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 935 __tgt_device_image *image) { 936 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 937 938 DeviceInfo.clearOffloadEntriesTable(device_id); 939 940 // We do not need to set the ELF version because the caller of this function 941 // had to do that to decide the right runtime to use 942 943 if (!elf_machine_id_is_amdgcn(image)) { 944 return NULL; 945 } 946 947 omptarget_device_environmentTy host_device_env; 948 host_device_env.num_devices = DeviceInfo.NumberOfDevices; 949 host_device_env.device_num = device_id; 950 host_device_env.debug_level = 0; 951 #ifdef OMPTARGET_DEBUG 952 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 953 host_device_env.debug_level = std::stoi(envStr); 954 } 955 #endif 956 957 auto on_deserialized_data = [&](void *data, size_t size) -> atmi_status_t { 958 const char *device_env_Name = "omptarget_device_environment"; 959 symbol_info si; 960 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 961 img_size, device_env_Name, &si); 962 if (rc != 0) { 963 DP("Finding global device environment '%s' - symbol missing.\n", 964 device_env_Name); 965 // no need to return FAIL, consider this is a not a device debug build. 966 return ATMI_STATUS_SUCCESS; 967 } 968 if (si.size != sizeof(host_device_env)) { 969 return ATMI_STATUS_ERROR; 970 } 971 DP("Setting global device environment %lu bytes\n", si.size); 972 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 973 void *pos = (char *)data + offset; 974 memcpy(pos, &host_device_env, sizeof(host_device_env)); 975 return ATMI_STATUS_SUCCESS; 976 }; 977 978 atmi_status_t err; 979 { 980 err = module_register_from_memory_to_place( 981 (void *)image->ImageStart, img_size, get_gpu_place(device_id), 982 on_deserialized_data); 983 984 check("Module registering", err); 985 if (err != ATMI_STATUS_SUCCESS) { 986 char GPUName[64] = "--unknown gpu--"; 987 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 988 (void)hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 989 (void *)GPUName); 990 fprintf(stderr, 991 "Possible gpu arch mismatch: %s, please check" 992 " compiler: -march=<gpu> flag\n", 993 GPUName); 994 return NULL; 995 } 996 } 997 998 DP("ATMI module successfully loaded!\n"); 999 1000 // TODO: Check with Guansong to understand the below comment more thoroughly. 1001 // Here, we take advantage of the data that is appended after img_end to get 1002 // the symbols' name we need to load. This data consist of the host entries 1003 // begin and end as well as the target name (see the offloading linker script 1004 // creation in clang compiler). 1005 1006 // Find the symbols in the module by name. The name can be obtain by 1007 // concatenating the host entry name with the target name 1008 1009 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1010 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1011 1012 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1013 1014 if (!e->addr) { 1015 // The host should have always something in the address to 1016 // uniquely identify the target region. 1017 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1018 (unsigned long long)e->size); 1019 return NULL; 1020 } 1021 1022 if (e->size) { 1023 __tgt_offload_entry entry = *e; 1024 1025 void *varptr; 1026 uint32_t varsize; 1027 1028 err = atmi_interop_hsa_get_symbol_info(get_gpu_mem_place(device_id), 1029 e->name, &varptr, &varsize); 1030 1031 if (err != ATMI_STATUS_SUCCESS) { 1032 DP("Loading global '%s' (Failed)\n", e->name); 1033 // Inform the user what symbol prevented offloading 1034 fprintf(stderr, "Loading global '%s' (Failed)\n", e->name); 1035 return NULL; 1036 } 1037 1038 if (varsize != e->size) { 1039 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1040 varsize, e->size); 1041 return NULL; 1042 } 1043 1044 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1045 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1046 entry.addr = (void *)varptr; 1047 1048 DeviceInfo.addOffloadEntry(device_id, entry); 1049 1050 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1051 e->flags & OMP_DECLARE_TARGET_LINK) { 1052 // If unified memory is present any target link variables 1053 // can access host addresses directly. There is no longer a 1054 // need for device copies. 1055 err = atmi_memcpy(varptr, e->addr, sizeof(void *)); 1056 if (err != ATMI_STATUS_SUCCESS) 1057 DP("Error when copying USM\n"); 1058 DP("Copy linked variable host address (" DPxMOD ")" 1059 "to device address (" DPxMOD ")\n", 1060 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1061 } 1062 1063 continue; 1064 } 1065 1066 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1067 1068 atmi_mem_place_t place = get_gpu_mem_place(device_id); 1069 uint32_t kernarg_segment_size; 1070 err = atmi_interop_hsa_get_kernel_info( 1071 place, e->name, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1072 &kernarg_segment_size); 1073 1074 // each arg is a void * in this openmp implementation 1075 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1076 std::vector<size_t> arg_sizes(arg_num); 1077 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1078 it != arg_sizes.end(); it++) { 1079 *it = sizeof(void *); 1080 } 1081 1082 // default value GENERIC (in case symbol is missing from cubin file) 1083 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1084 1085 // get flat group size if present, else Default_WG_Size 1086 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1087 1088 // Max parallel level 1089 int16_t MaxParLevVal = 0; 1090 1091 // get Kernel Descriptor if present. 1092 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1093 struct KernDescValType { 1094 uint16_t Version; 1095 uint16_t TSize; 1096 uint16_t WG_Size; 1097 uint8_t Mode; 1098 uint8_t HostServices; 1099 uint8_t MaxParallelLevel; 1100 }; 1101 struct KernDescValType KernDescVal; 1102 std::string KernDescNameStr(e->name); 1103 KernDescNameStr += "_kern_desc"; 1104 const char *KernDescName = KernDescNameStr.c_str(); 1105 1106 void *KernDescPtr; 1107 uint32_t KernDescSize; 1108 void *CallStackAddr; 1109 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1110 KernDescName, &KernDescPtr, &KernDescSize); 1111 1112 if (err == ATMI_STATUS_SUCCESS) { 1113 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1114 DP("Loading global computation properties '%s' - size mismatch (%u != " 1115 "%lu)\n", 1116 KernDescName, KernDescSize, sizeof(KernDescVal)); 1117 1118 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1119 1120 // Check structure size against recorded size. 1121 if ((size_t)KernDescSize != KernDescVal.TSize) 1122 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1123 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1124 1125 DP("After loading global for %s KernDesc \n", KernDescName); 1126 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1127 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1128 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1129 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1130 DP("KernDesc: HostServices: %x\n", KernDescVal.HostServices); 1131 DP("KernDesc: MaxParallelLevel: %x\n", KernDescVal.MaxParallelLevel); 1132 1133 // gather location of callStack and size of struct 1134 MaxParLevVal = KernDescVal.MaxParallelLevel; 1135 if (MaxParLevVal > 0) { 1136 uint32_t varsize; 1137 const char *CsNam = "omptarget_nest_par_call_stack"; 1138 err = atmi_interop_hsa_get_symbol_info(place, CsNam, &CallStackAddr, 1139 &varsize); 1140 if (err != ATMI_STATUS_SUCCESS) { 1141 fprintf(stderr, "Addr of %s failed\n", CsNam); 1142 return NULL; 1143 } 1144 void *StructSizePtr; 1145 const char *SsNam = "omptarget_nest_par_call_struct_size"; 1146 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1147 SsNam, &StructSizePtr, &varsize); 1148 if ((err != ATMI_STATUS_SUCCESS) || 1149 (varsize != sizeof(TgtStackItemSize))) { 1150 fprintf(stderr, "Addr of %s failed\n", SsNam); 1151 return NULL; 1152 } 1153 memcpy(&TgtStackItemSize, StructSizePtr, sizeof(TgtStackItemSize)); 1154 DP("Size of our struct is %d\n", TgtStackItemSize); 1155 } 1156 1157 // Get ExecMode 1158 ExecModeVal = KernDescVal.Mode; 1159 DP("ExecModeVal %d\n", ExecModeVal); 1160 if (KernDescVal.WG_Size == 0) { 1161 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1162 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1163 } 1164 WGSizeVal = KernDescVal.WG_Size; 1165 DP("WGSizeVal %d\n", WGSizeVal); 1166 check("Loading KernDesc computation property", err); 1167 } else { 1168 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1169 1170 // Generic 1171 std::string ExecModeNameStr(e->name); 1172 ExecModeNameStr += "_exec_mode"; 1173 const char *ExecModeName = ExecModeNameStr.c_str(); 1174 1175 void *ExecModePtr; 1176 uint32_t varsize; 1177 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1178 ExecModeName, &ExecModePtr, &varsize); 1179 1180 if (err == ATMI_STATUS_SUCCESS) { 1181 if ((size_t)varsize != sizeof(int8_t)) { 1182 DP("Loading global computation properties '%s' - size mismatch(%u != " 1183 "%lu)\n", 1184 ExecModeName, varsize, sizeof(int8_t)); 1185 return NULL; 1186 } 1187 1188 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1189 1190 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1191 ExecModeVal); 1192 1193 if (ExecModeVal < 0 || ExecModeVal > 1) { 1194 DP("Error wrong exec_mode value specified in HSA code object file: " 1195 "%d\n", 1196 ExecModeVal); 1197 return NULL; 1198 } 1199 } else { 1200 DP("Loading global exec_mode '%s' - symbol missing, using default " 1201 "value " 1202 "GENERIC (1)\n", 1203 ExecModeName); 1204 } 1205 check("Loading computation property", err); 1206 1207 // Flat group size 1208 std::string WGSizeNameStr(e->name); 1209 WGSizeNameStr += "_wg_size"; 1210 const char *WGSizeName = WGSizeNameStr.c_str(); 1211 1212 void *WGSizePtr; 1213 uint32_t WGSize; 1214 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1215 WGSizeName, &WGSizePtr, &WGSize); 1216 1217 if (err == ATMI_STATUS_SUCCESS) { 1218 if ((size_t)WGSize != sizeof(int16_t)) { 1219 DP("Loading global computation properties '%s' - size mismatch (%u " 1220 "!= " 1221 "%lu)\n", 1222 WGSizeName, WGSize, sizeof(int16_t)); 1223 return NULL; 1224 } 1225 1226 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1227 1228 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1229 1230 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1231 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1232 DP("Error wrong WGSize value specified in HSA code object file: " 1233 "%d\n", 1234 WGSizeVal); 1235 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1236 } 1237 } else { 1238 DP("Warning: Loading WGSize '%s' - symbol not found, " 1239 "using default value %d\n", 1240 WGSizeName, WGSizeVal); 1241 } 1242 1243 check("Loading WGSize computation property", err); 1244 } 1245 1246 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, MaxParLevVal, 1247 device_id, CallStackAddr, e->name, 1248 kernarg_segment_size)); 1249 __tgt_offload_entry entry = *e; 1250 entry.addr = (void *)&KernelsList.back(); 1251 DeviceInfo.addOffloadEntry(device_id, entry); 1252 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1253 } 1254 1255 return DeviceInfo.getOffloadEntriesTable(device_id); 1256 } 1257 1258 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *) { 1259 void *ptr = NULL; 1260 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1261 atmi_status_t err = atmi_malloc(&ptr, size, get_gpu_mem_place(device_id)); 1262 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1263 (long long unsigned)(Elf64_Addr)ptr); 1264 ptr = (err == ATMI_STATUS_SUCCESS) ? ptr : NULL; 1265 return ptr; 1266 } 1267 1268 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1269 int64_t size) { 1270 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1271 __tgt_async_info async_info; 1272 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &async_info); 1273 if (rc != OFFLOAD_SUCCESS) 1274 return OFFLOAD_FAIL; 1275 1276 return __tgt_rtl_synchronize(device_id, &async_info); 1277 } 1278 1279 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1280 int64_t size, 1281 __tgt_async_info *async_info_ptr) { 1282 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1283 if (async_info_ptr) { 1284 initAsyncInfoPtr(async_info_ptr); 1285 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, async_info_ptr); 1286 } else { 1287 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1288 } 1289 } 1290 1291 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1292 int64_t size) { 1293 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1294 __tgt_async_info async_info; 1295 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &async_info); 1296 if (rc != OFFLOAD_SUCCESS) 1297 return OFFLOAD_FAIL; 1298 1299 return __tgt_rtl_synchronize(device_id, &async_info); 1300 } 1301 1302 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1303 void *tgt_ptr, int64_t size, 1304 __tgt_async_info *async_info_ptr) { 1305 assert(async_info_ptr && "async_info is nullptr"); 1306 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1307 initAsyncInfoPtr(async_info_ptr); 1308 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, async_info_ptr); 1309 } 1310 1311 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1312 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1313 atmi_status_t err; 1314 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1315 err = atmi_free(tgt_ptr); 1316 if (err != ATMI_STATUS_SUCCESS) { 1317 DP("Error when freeing CUDA memory\n"); 1318 return OFFLOAD_FAIL; 1319 } 1320 return OFFLOAD_SUCCESS; 1321 } 1322 1323 // Determine launch values for threadsPerGroup and num_groups. 1324 // Outputs: treadsPerGroup, num_groups 1325 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1326 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1327 // loop_tripcount. 1328 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1329 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1330 int num_teams, int thread_limit, uint64_t loop_tripcount) { 1331 1332 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1333 ? DeviceInfo.EnvMaxTeamsDefault 1334 : DeviceInfo.Max_Teams; 1335 if (Max_Teams > DeviceInfo.HardTeamLimit) 1336 Max_Teams = DeviceInfo.HardTeamLimit; 1337 1338 if (print_kernel_trace > 1) { 1339 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1340 RTLDeviceInfoTy::Max_Teams); 1341 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1342 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1343 RTLDeviceInfoTy::Warp_Size); 1344 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1345 RTLDeviceInfoTy::Max_WG_Size); 1346 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1347 RTLDeviceInfoTy::Default_WG_Size); 1348 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1349 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1350 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1351 } 1352 // check for thread_limit() clause 1353 if (thread_limit > 0) { 1354 threadsPerGroup = thread_limit; 1355 DP("Setting threads per block to requested %d\n", thread_limit); 1356 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1357 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1358 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1359 } 1360 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1361 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1362 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1363 } 1364 } 1365 // check flat_max_work_group_size attr here 1366 if (threadsPerGroup > ConstWGSize) { 1367 threadsPerGroup = ConstWGSize; 1368 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1369 threadsPerGroup); 1370 } 1371 if (print_kernel_trace > 1) 1372 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1373 DP("Preparing %d threads\n", threadsPerGroup); 1374 1375 // Set default num_groups (teams) 1376 if (DeviceInfo.EnvTeamLimit > 0) 1377 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1378 ? Max_Teams 1379 : DeviceInfo.EnvTeamLimit; 1380 else 1381 num_groups = Max_Teams; 1382 DP("Set default num of groups %d\n", num_groups); 1383 1384 if (print_kernel_trace > 1) { 1385 fprintf(stderr, "num_groups: %d\n", num_groups); 1386 fprintf(stderr, "num_teams: %d\n", num_teams); 1387 } 1388 1389 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1390 // This reduction is typical for default case (no thread_limit clause). 1391 // or when user goes crazy with num_teams clause. 1392 // FIXME: We cant distinguish between a constant or variable thread limit. 1393 // So we only handle constant thread_limits. 1394 if (threadsPerGroup > 1395 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1396 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1397 // here? 1398 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1399 1400 // check for num_teams() clause 1401 if (num_teams > 0) { 1402 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1403 } 1404 if (print_kernel_trace > 1) { 1405 fprintf(stderr, "num_groups: %d\n", num_groups); 1406 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1407 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1408 } 1409 1410 if (DeviceInfo.EnvNumTeams > 0) { 1411 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1412 : num_groups; 1413 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1414 } else if (DeviceInfo.EnvTeamLimit > 0) { 1415 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1416 ? DeviceInfo.EnvTeamLimit 1417 : num_groups; 1418 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1419 } else { 1420 if (num_teams <= 0) { 1421 if (loop_tripcount > 0) { 1422 if (ExecutionMode == SPMD) { 1423 // round up to the nearest integer 1424 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1425 } else { 1426 num_groups = loop_tripcount; 1427 } 1428 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1429 "threads per block %d\n", 1430 num_groups, loop_tripcount, threadsPerGroup); 1431 } 1432 } else { 1433 num_groups = num_teams; 1434 } 1435 if (num_groups > Max_Teams) { 1436 num_groups = Max_Teams; 1437 if (print_kernel_trace > 1) 1438 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1439 Max_Teams); 1440 } 1441 if (num_groups > num_teams && num_teams > 0) { 1442 num_groups = num_teams; 1443 if (print_kernel_trace > 1) 1444 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1445 num_groups, num_teams); 1446 } 1447 } 1448 1449 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1450 if (num_teams > 0) { 1451 num_groups = num_teams; 1452 // Cap num_groups to EnvMaxTeamsDefault if set. 1453 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1454 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1455 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1456 } 1457 if (print_kernel_trace > 1) { 1458 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1459 fprintf(stderr, "num_groups: %d\n", num_groups); 1460 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1461 } 1462 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1463 threadsPerGroup); 1464 } 1465 1466 static void *AllocateNestedParallelCallMemory(int MaxParLevel, int NumGroups, 1467 int ThreadsPerGroup, 1468 int device_id, 1469 void *CallStackAddr, int SPMD) { 1470 if (print_kernel_trace > 1) 1471 fprintf(stderr, "MaxParLevel %d SPMD %d NumGroups %d NumThrds %d\n", 1472 MaxParLevel, SPMD, NumGroups, ThreadsPerGroup); 1473 // Total memory needed is Teams * Threads * ParLevels 1474 size_t NestedMemSize = 1475 MaxParLevel * NumGroups * ThreadsPerGroup * TgtStackItemSize * 4; 1476 1477 if (print_kernel_trace > 1) 1478 fprintf(stderr, "NestedMemSize %ld \n", NestedMemSize); 1479 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1480 void *TgtPtr = NULL; 1481 atmi_status_t err = 1482 atmi_malloc(&TgtPtr, NestedMemSize, get_gpu_mem_place(device_id)); 1483 err = atmi_memcpy(CallStackAddr, &TgtPtr, sizeof(void *)); 1484 if (print_kernel_trace > 2) 1485 fprintf(stderr, "CallSck %lx TgtPtr %lx *TgtPtr %lx \n", 1486 (long)CallStackAddr, (long)&TgtPtr, (long)TgtPtr); 1487 if (err != ATMI_STATUS_SUCCESS) { 1488 fprintf(stderr, "Mem not wrtten to target, err %d\n", err); 1489 } 1490 return TgtPtr; // we need to free this after kernel. 1491 } 1492 1493 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1494 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1495 bool full = true; 1496 while (full) { 1497 full = 1498 packet_id >= (queue->size + hsa_queue_load_read_index_acquire(queue)); 1499 } 1500 return packet_id; 1501 } 1502 1503 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1504 void **tgt_args, 1505 ptrdiff_t *tgt_offsets, 1506 int32_t arg_num, int32_t num_teams, 1507 int32_t thread_limit, 1508 uint64_t loop_tripcount) { 1509 // Set the context we are using 1510 // update thread limit content in gpu memory if un-initialized or specified 1511 // from host 1512 1513 DP("Run target team region thread_limit %d\n", thread_limit); 1514 1515 // All args are references. 1516 std::vector<void *> args(arg_num); 1517 std::vector<void *> ptrs(arg_num); 1518 1519 DP("Arg_num: %d\n", arg_num); 1520 for (int32_t i = 0; i < arg_num; ++i) { 1521 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1522 args[i] = &ptrs[i]; 1523 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1524 } 1525 1526 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1527 1528 /* 1529 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1530 */ 1531 int num_groups = 0; 1532 1533 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1534 1535 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1536 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1537 DeviceInfo.EnvNumTeams, 1538 num_teams, // From run_region arg 1539 thread_limit, // From run_region arg 1540 loop_tripcount // From run_region arg 1541 ); 1542 1543 void *TgtCallStack = NULL; 1544 if (KernelInfo->MaxParLevel > 0) 1545 TgtCallStack = AllocateNestedParallelCallMemory( 1546 KernelInfo->MaxParLevel, num_groups, threadsPerGroup, 1547 KernelInfo->device_id, KernelInfo->CallStackAddr, 1548 KernelInfo->ExecutionMode); 1549 1550 if (print_kernel_trace > 0) 1551 // enum modes are SPMD, GENERIC, NONE 0,1,2 1552 fprintf(stderr, 1553 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1554 "reqd:(%4dX%4d) n:%s\n", 1555 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1556 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1557 KernelInfo->Name); 1558 1559 // Run on the device. 1560 { 1561 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1562 uint64_t packet_id = acquire_available_packet_id(queue); 1563 1564 const uint32_t mask = queue->size - 1; // size is a power of 2 1565 hsa_kernel_dispatch_packet_t *packet = 1566 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1567 (packet_id & mask); 1568 1569 // packet->header is written last 1570 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1571 packet->workgroup_size_x = threadsPerGroup; 1572 packet->workgroup_size_y = 1; 1573 packet->workgroup_size_z = 1; 1574 packet->reserved0 = 0; 1575 packet->grid_size_x = num_groups * threadsPerGroup; 1576 packet->grid_size_y = 1; 1577 packet->grid_size_z = 1; 1578 packet->private_segment_size = 0; 1579 packet->group_segment_size = 0; 1580 packet->kernel_object = 0; 1581 packet->kernarg_address = 0; // use the block allocator 1582 packet->reserved2 = 0; // atmi writes id_ here 1583 packet->completion_signal = {0}; // may want a pool of signals 1584 1585 std::string kernel_name = std::string(KernelInfo->Name); 1586 { 1587 assert(KernelInfoTable[device_id].find(kernel_name) != 1588 KernelInfoTable[device_id].end()); 1589 auto it = KernelInfoTable[device_id][kernel_name]; 1590 packet->kernel_object = it.kernel_object; 1591 packet->private_segment_size = it.private_segment_size; 1592 packet->group_segment_size = it.group_segment_size; 1593 assert(arg_num == (int)it.num_args); 1594 } 1595 1596 KernelArgPool *ArgPool = nullptr; 1597 { 1598 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1599 if (it != KernelArgPoolMap.end()) { 1600 ArgPool = (it->second).get(); 1601 } 1602 } 1603 if (!ArgPool) { 1604 fprintf(stderr, "Warning: No ArgPool for %s on device %d\n", 1605 KernelInfo->Name, device_id); 1606 } 1607 { 1608 void *kernarg = nullptr; 1609 if (ArgPool) { 1610 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1611 kernarg = ArgPool->allocate(arg_num); 1612 } 1613 if (!kernarg) { 1614 printf("Allocate kernarg failed\n"); 1615 exit(1); 1616 } 1617 1618 // Copy explicit arguments 1619 for (int i = 0; i < arg_num; i++) { 1620 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1621 } 1622 1623 // Initialize implicit arguments. ATMI seems to leave most fields 1624 // uninitialized 1625 atmi_implicit_args_t *impl_args = 1626 reinterpret_cast<atmi_implicit_args_t *>( 1627 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1628 memset(impl_args, 0, 1629 sizeof(atmi_implicit_args_t)); // may not be necessary 1630 impl_args->offset_x = 0; 1631 impl_args->offset_y = 0; 1632 impl_args->offset_z = 0; 1633 1634 packet->kernarg_address = kernarg; 1635 } 1636 1637 { 1638 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1639 if (s.handle == 0) { 1640 printf("Failed to get signal instance\n"); 1641 exit(1); 1642 } 1643 packet->completion_signal = s; 1644 hsa_signal_store_relaxed(packet->completion_signal, 1); 1645 } 1646 1647 core::packet_store_release( 1648 reinterpret_cast<uint32_t *>(packet), 1649 core::create_header(HSA_PACKET_TYPE_KERNEL_DISPATCH, 0, 1650 ATMI_FENCE_SCOPE_SYSTEM, ATMI_FENCE_SCOPE_SYSTEM), 1651 packet->setup); 1652 1653 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1654 1655 while (hsa_signal_wait_acquire(packet->completion_signal, 1656 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1657 HSA_WAIT_STATE_BLOCKED) != 0) 1658 ; 1659 1660 assert(ArgPool); 1661 ArgPool->deallocate(packet->kernarg_address); 1662 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 1663 } 1664 1665 DP("Kernel completed\n"); 1666 // Free call stack for nested 1667 if (TgtCallStack) 1668 atmi_free(TgtCallStack); 1669 1670 return OFFLOAD_SUCCESS; 1671 } 1672 1673 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 1674 void **tgt_args, ptrdiff_t *tgt_offsets, 1675 int32_t arg_num) { 1676 // use one team and one thread 1677 // fix thread num 1678 int32_t team_num = 1; 1679 int32_t thread_limit = 0; // use default 1680 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1681 tgt_offsets, arg_num, team_num, 1682 thread_limit, 0); 1683 } 1684 1685 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 1686 void *tgt_entry_ptr, void **tgt_args, 1687 ptrdiff_t *tgt_offsets, 1688 int32_t arg_num, 1689 __tgt_async_info *async_info_ptr) { 1690 assert(async_info_ptr && "async_info is nullptr"); 1691 initAsyncInfoPtr(async_info_ptr); 1692 1693 // use one team and one thread 1694 // fix thread num 1695 int32_t team_num = 1; 1696 int32_t thread_limit = 0; // use default 1697 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1698 tgt_offsets, arg_num, team_num, 1699 thread_limit, 0); 1700 } 1701 1702 int32_t __tgt_rtl_synchronize(int32_t device_id, 1703 __tgt_async_info *async_info_ptr) { 1704 assert(async_info_ptr && "async_info is nullptr"); 1705 1706 // Cuda asserts that async_info_ptr->Queue is non-null, but this invariant 1707 // is not ensured by devices.cpp for amdgcn 1708 // assert(async_info_ptr->Queue && "async_info_ptr->Queue is nullptr"); 1709 if (async_info_ptr->Queue) { 1710 finiAsyncInfoPtr(async_info_ptr); 1711 } 1712 return OFFLOAD_SUCCESS; 1713 } 1714