1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <mutex> 27 #include <shared_mutex> 28 #include <thread> 29 #include <unordered_map> 30 #include <vector> 31 32 // Header from ATMI interface 33 #include "atmi_interop_hsa.h" 34 #include "atmi_runtime.h" 35 36 #include "internal.h" 37 38 #include "Debug.h" 39 #include "get_elf_mach_gfx_name.h" 40 #include "omptargetplugin.h" 41 #include "print_tracing.h" 42 43 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 44 45 #ifndef TARGET_NAME 46 #define TARGET_NAME AMDHSA 47 #endif 48 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 49 50 // hostrpc interface, FIXME: consider moving to its own include these are 51 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 52 // linked as --whole-archive to override the weak symbols that are used to 53 // implement a fallback for toolchains that do not yet have a hostrpc library. 54 extern "C" { 55 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 56 uint32_t device_id); 57 hsa_status_t hostrpc_init(); 58 hsa_status_t hostrpc_terminate(); 59 60 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 61 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 62 return HSA_STATUS_SUCCESS; 63 } 64 __attribute__((weak)) unsigned long 65 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 66 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 67 "missing\n", 68 device_id); 69 return 0; 70 } 71 } 72 73 int print_kernel_trace; 74 75 #undef check // Drop definition from internal.h 76 #ifdef OMPTARGET_DEBUG 77 #define check(msg, status) \ 78 if (status != ATMI_STATUS_SUCCESS) { \ 79 /* fprintf(stderr, "[%s:%d] %s failed.\n", __FILE__, __LINE__, #msg);*/ \ 80 DP(#msg " failed\n"); \ 81 /*assert(0);*/ \ 82 } else { \ 83 /* fprintf(stderr, "[%s:%d] %s succeeded.\n", __FILE__, __LINE__, #msg); \ 84 */ \ 85 DP(#msg " succeeded\n"); \ 86 } 87 #else 88 #define check(msg, status) \ 89 {} 90 #endif 91 92 #include "elf_common.h" 93 94 /// Keep entries table per device 95 struct FuncOrGblEntryTy { 96 __tgt_target_table Table; 97 std::vector<__tgt_offload_entry> Entries; 98 }; 99 100 enum ExecutionModeType { 101 SPMD, // constructors, destructors, 102 // combined constructs (`teams distribute parallel for [simd]`) 103 GENERIC, // everything else 104 NONE 105 }; 106 107 struct KernelArgPool { 108 private: 109 static pthread_mutex_t mutex; 110 111 public: 112 uint32_t kernarg_segment_size; 113 void *kernarg_region = nullptr; 114 std::queue<int> free_kernarg_segments; 115 116 uint32_t kernarg_size_including_implicit() { 117 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 118 } 119 120 ~KernelArgPool() { 121 if (kernarg_region) { 122 auto r = hsa_amd_memory_pool_free(kernarg_region); 123 assert(r == HSA_STATUS_SUCCESS); 124 ErrorCheck(Memory pool free, r); 125 } 126 } 127 128 // Can't really copy or move a mutex 129 KernelArgPool() = default; 130 KernelArgPool(const KernelArgPool &) = delete; 131 KernelArgPool(KernelArgPool &&) = delete; 132 133 KernelArgPool(uint32_t kernarg_segment_size) 134 : kernarg_segment_size(kernarg_segment_size) { 135 136 // atmi uses one pool per kernel for all gpus, with a fixed upper size 137 // preserving that exact scheme here, including the queue<int> 138 { 139 hsa_status_t err = hsa_amd_memory_pool_allocate( 140 atl_gpu_kernarg_pools[0], 141 kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 142 &kernarg_region); 143 ErrorCheck(Allocating memory for the executable-kernel, err); 144 core::allow_access_to_all_gpu_agents(kernarg_region); 145 146 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 147 free_kernarg_segments.push(i); 148 } 149 } 150 } 151 152 void *allocate(uint64_t arg_num) { 153 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 154 lock l(&mutex); 155 void *res = nullptr; 156 if (!free_kernarg_segments.empty()) { 157 158 int free_idx = free_kernarg_segments.front(); 159 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 160 (free_idx * kernarg_size_including_implicit())); 161 assert(free_idx == pointer_to_index(res)); 162 free_kernarg_segments.pop(); 163 } 164 return res; 165 } 166 167 void deallocate(void *ptr) { 168 lock l(&mutex); 169 int idx = pointer_to_index(ptr); 170 free_kernarg_segments.push(idx); 171 } 172 173 private: 174 int pointer_to_index(void *ptr) { 175 ptrdiff_t bytes = 176 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 177 assert(bytes >= 0); 178 assert(bytes % kernarg_size_including_implicit() == 0); 179 return bytes / kernarg_size_including_implicit(); 180 } 181 struct lock { 182 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 183 ~lock() { pthread_mutex_unlock(m); } 184 pthread_mutex_t *m; 185 }; 186 }; 187 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 188 189 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 190 KernelArgPoolMap; 191 192 /// Use a single entity to encode a kernel and a set of flags 193 struct KernelTy { 194 // execution mode of kernel 195 // 0 - SPMD mode (without master warp) 196 // 1 - Generic mode (with master warp) 197 int8_t ExecutionMode; 198 int16_t ConstWGSize; 199 int32_t device_id; 200 void *CallStackAddr = nullptr; 201 const char *Name; 202 203 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 204 void *_CallStackAddr, const char *_Name, 205 uint32_t _kernarg_segment_size) 206 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 207 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 208 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 209 210 std::string N(_Name); 211 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 212 KernelArgPoolMap.insert( 213 std::make_pair(N, std::unique_ptr<KernelArgPool>( 214 new KernelArgPool(_kernarg_segment_size)))); 215 } 216 } 217 }; 218 219 /// List that contains all the kernels. 220 /// FIXME: we may need this to be per device and per library. 221 std::list<KernelTy> KernelsList; 222 223 // ATMI API to get gpu and gpu memory place 224 static atmi_place_t get_gpu_place(int device_id) { 225 return ATMI_PLACE_GPU(0, device_id); 226 } 227 static atmi_mem_place_t get_gpu_mem_place(int device_id) { 228 return ATMI_MEM_PLACE_GPU_MEM(0, device_id, 0); 229 } 230 231 static std::vector<hsa_agent_t> find_gpu_agents() { 232 std::vector<hsa_agent_t> res; 233 234 hsa_status_t err = hsa_iterate_agents( 235 [](hsa_agent_t agent, void *data) -> hsa_status_t { 236 std::vector<hsa_agent_t> *res = 237 static_cast<std::vector<hsa_agent_t> *>(data); 238 239 hsa_device_type_t device_type; 240 // get_info fails iff HSA runtime not yet initialized 241 hsa_status_t err = 242 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 243 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 244 printf("rtl.cpp: err %d\n", err); 245 assert(err == HSA_STATUS_SUCCESS); 246 247 if (device_type == HSA_DEVICE_TYPE_GPU) { 248 res->push_back(agent); 249 } 250 return HSA_STATUS_SUCCESS; 251 }, 252 &res); 253 254 // iterate_agents fails iff HSA runtime not yet initialized 255 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 256 printf("rtl.cpp: err %d\n", err); 257 assert(err == HSA_STATUS_SUCCESS); 258 return res; 259 } 260 261 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 262 void *data) { 263 if (status != HSA_STATUS_SUCCESS) { 264 const char *status_string; 265 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 266 status_string = "unavailable"; 267 } 268 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 269 __LINE__, source, status, status_string); 270 abort(); 271 } 272 } 273 274 namespace core { 275 namespace { 276 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 277 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 278 } 279 280 uint16_t create_header() { 281 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 282 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 283 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 284 return header; 285 } 286 } // namespace 287 } // namespace core 288 289 /// Class containing all the device information 290 class RTLDeviceInfoTy { 291 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 292 293 public: 294 // load binary populates symbol tables and mutates various global state 295 // run uses those symbol tables 296 std::shared_timed_mutex load_run_lock; 297 298 int NumberOfDevices; 299 300 // GPU devices 301 std::vector<hsa_agent_t> HSAAgents; 302 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 303 304 // Device properties 305 std::vector<int> ComputeUnits; 306 std::vector<int> GroupsPerDevice; 307 std::vector<int> ThreadsPerGroup; 308 std::vector<int> WarpSize; 309 std::vector<std::string> GPUName; 310 311 // OpenMP properties 312 std::vector<int> NumTeams; 313 std::vector<int> NumThreads; 314 315 // OpenMP Environment properties 316 int EnvNumTeams; 317 int EnvTeamLimit; 318 int EnvMaxTeamsDefault; 319 320 // OpenMP Requires Flags 321 int64_t RequiresFlags; 322 323 // Resource pools 324 SignalPoolT FreeSignalPool; 325 326 struct atmiFreePtrDeletor { 327 void operator()(void *p) { 328 atmi_free(p); // ignore failure to free 329 } 330 }; 331 332 // device_State shared across loaded binaries, error if inconsistent size 333 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 334 deviceStateStore; 335 336 static const unsigned HardTeamLimit = 337 (1 << 16) - 1; // 64K needed to fit in uint16 338 static const int DefaultNumTeams = 128; 339 static const int Max_Teams = 340 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 341 static const int Warp_Size = 342 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 343 static const int Max_WG_Size = 344 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 345 static const int Default_WG_Size = 346 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 347 348 using MemcpyFunc = atmi_status_t (*)(hsa_signal_t, void *, const void *, 349 size_t size, hsa_agent_t); 350 atmi_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 351 MemcpyFunc Func, int32_t deviceId) { 352 hsa_agent_t agent = HSAAgents[deviceId]; 353 hsa_signal_t s = FreeSignalPool.pop(); 354 if (s.handle == 0) { 355 return ATMI_STATUS_ERROR; 356 } 357 atmi_status_t r = Func(s, dest, src, size, agent); 358 FreeSignalPool.push(s); 359 return r; 360 } 361 362 atmi_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 363 size_t size, int32_t deviceId) { 364 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 365 } 366 367 atmi_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 368 size_t size, int32_t deviceId) { 369 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 370 } 371 372 // Record entry point associated with device 373 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 374 assert(device_id < (int32_t)FuncGblEntries.size() && 375 "Unexpected device id!"); 376 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 377 378 E.Entries.push_back(entry); 379 } 380 381 // Return true if the entry is associated with device 382 bool findOffloadEntry(int32_t device_id, void *addr) { 383 assert(device_id < (int32_t)FuncGblEntries.size() && 384 "Unexpected device id!"); 385 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 386 387 for (auto &it : E.Entries) { 388 if (it.addr == addr) 389 return true; 390 } 391 392 return false; 393 } 394 395 // Return the pointer to the target entries table 396 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 397 assert(device_id < (int32_t)FuncGblEntries.size() && 398 "Unexpected device id!"); 399 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 400 401 int32_t size = E.Entries.size(); 402 403 // Table is empty 404 if (!size) 405 return 0; 406 407 __tgt_offload_entry *begin = &E.Entries[0]; 408 __tgt_offload_entry *end = &E.Entries[size - 1]; 409 410 // Update table info according to the entries and return the pointer 411 E.Table.EntriesBegin = begin; 412 E.Table.EntriesEnd = ++end; 413 414 return &E.Table; 415 } 416 417 // Clear entries table for a device 418 void clearOffloadEntriesTable(int device_id) { 419 assert(device_id < (int32_t)FuncGblEntries.size() && 420 "Unexpected device id!"); 421 FuncGblEntries[device_id].emplace_back(); 422 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 423 // KernelArgPoolMap.clear(); 424 E.Entries.clear(); 425 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 426 } 427 428 RTLDeviceInfoTy() { 429 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 430 // anytime. You do not need a debug library build. 431 // 0 => no tracing 432 // 1 => tracing dispatch only 433 // >1 => verbosity increase 434 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 435 print_kernel_trace = atoi(envStr); 436 else 437 print_kernel_trace = 0; 438 439 DP("Start initializing HSA-ATMI\n"); 440 atmi_status_t err = atmi_init(); 441 if (err != ATMI_STATUS_SUCCESS) { 442 DP("Error when initializing HSA-ATMI\n"); 443 return; 444 } 445 // Init hostcall soon after initializing ATMI 446 hostrpc_init(); 447 448 HSAAgents = find_gpu_agents(); 449 NumberOfDevices = (int)HSAAgents.size(); 450 451 if (NumberOfDevices == 0) { 452 DP("There are no devices supporting HSA.\n"); 453 return; 454 } else { 455 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 456 } 457 458 // Init the device info 459 HSAQueues.resize(NumberOfDevices); 460 FuncGblEntries.resize(NumberOfDevices); 461 ThreadsPerGroup.resize(NumberOfDevices); 462 ComputeUnits.resize(NumberOfDevices); 463 GPUName.resize(NumberOfDevices); 464 GroupsPerDevice.resize(NumberOfDevices); 465 WarpSize.resize(NumberOfDevices); 466 NumTeams.resize(NumberOfDevices); 467 NumThreads.resize(NumberOfDevices); 468 deviceStateStore.resize(NumberOfDevices); 469 470 for (int i = 0; i < NumberOfDevices; i++) { 471 uint32_t queue_size = 0; 472 { 473 hsa_status_t err; 474 err = hsa_agent_get_info(HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, 475 &queue_size); 476 ErrorCheck(Querying the agent maximum queue size, err); 477 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 478 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 479 } 480 } 481 482 hsa_status_t rc = hsa_queue_create( 483 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 484 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 485 if (rc != HSA_STATUS_SUCCESS) { 486 DP("Failed to create HSA queues\n"); 487 return; 488 } 489 490 deviceStateStore[i] = {nullptr, 0}; 491 } 492 493 for (int i = 0; i < NumberOfDevices; i++) { 494 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 495 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 496 ComputeUnits[i] = 1; 497 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 498 GroupsPerDevice[i], ThreadsPerGroup[i]); 499 } 500 501 // Get environment variables regarding teams 502 char *envStr = getenv("OMP_TEAM_LIMIT"); 503 if (envStr) { 504 // OMP_TEAM_LIMIT has been set 505 EnvTeamLimit = std::stoi(envStr); 506 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 507 } else { 508 EnvTeamLimit = -1; 509 } 510 envStr = getenv("OMP_NUM_TEAMS"); 511 if (envStr) { 512 // OMP_NUM_TEAMS has been set 513 EnvNumTeams = std::stoi(envStr); 514 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 515 } else { 516 EnvNumTeams = -1; 517 } 518 // Get environment variables regarding expMaxTeams 519 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 520 if (envStr) { 521 EnvMaxTeamsDefault = std::stoi(envStr); 522 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 523 } else { 524 EnvMaxTeamsDefault = -1; 525 } 526 527 // Default state. 528 RequiresFlags = OMP_REQ_UNDEFINED; 529 } 530 531 ~RTLDeviceInfoTy() { 532 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 533 // Run destructors on types that use HSA before 534 // atmi_finalize removes access to it 535 deviceStateStore.clear(); 536 KernelArgPoolMap.clear(); 537 // Terminate hostrpc before finalizing ATMI 538 hostrpc_terminate(); 539 atmi_finalize(); 540 } 541 }; 542 543 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 544 545 // TODO: May need to drop the trailing to fields until deviceRTL is updated 546 struct omptarget_device_environmentTy { 547 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 548 // only useful for Debug build of deviceRTLs 549 int32_t num_devices; // gets number of active offload devices 550 int32_t device_num; // gets a value 0 to num_devices-1 551 }; 552 553 static RTLDeviceInfoTy DeviceInfo; 554 555 namespace { 556 557 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 558 __tgt_async_info *AsyncInfo) { 559 assert(AsyncInfo && "AsyncInfo is nullptr"); 560 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 561 // Return success if we are not copying back to host from target. 562 if (!HstPtr) 563 return OFFLOAD_SUCCESS; 564 atmi_status_t err; 565 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 566 (long long unsigned)(Elf64_Addr)TgtPtr, 567 (long long unsigned)(Elf64_Addr)HstPtr); 568 569 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 570 DeviceId); 571 572 if (err != ATMI_STATUS_SUCCESS) { 573 DP("Error when copying data from device to host. Pointers: " 574 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 575 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 576 return OFFLOAD_FAIL; 577 } 578 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 579 (long long unsigned)(Elf64_Addr)TgtPtr, 580 (long long unsigned)(Elf64_Addr)HstPtr); 581 return OFFLOAD_SUCCESS; 582 } 583 584 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 585 __tgt_async_info *AsyncInfo) { 586 assert(AsyncInfo && "AsyncInfo is nullptr"); 587 atmi_status_t err; 588 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 589 // Return success if we are not doing host to target. 590 if (!HstPtr) 591 return OFFLOAD_SUCCESS; 592 593 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 594 (long long unsigned)(Elf64_Addr)HstPtr, 595 (long long unsigned)(Elf64_Addr)TgtPtr); 596 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 597 DeviceId); 598 if (err != ATMI_STATUS_SUCCESS) { 599 DP("Error when copying data from host to device. Pointers: " 600 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 601 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 602 return OFFLOAD_FAIL; 603 } 604 return OFFLOAD_SUCCESS; 605 } 606 607 // Async. 608 // The implementation was written with cuda streams in mind. The semantics of 609 // that are to execute kernels on a queue in order of insertion. A synchronise 610 // call then makes writes visible between host and device. This means a series 611 // of N data_submit_async calls are expected to execute serially. HSA offers 612 // various options to run the data copies concurrently. This may require changes 613 // to libomptarget. 614 615 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 616 // there are no outstanding kernels that need to be synchronized. Any async call 617 // may be passed a Queue==0, at which point the cuda implementation will set it 618 // to non-null (see getStream). The cuda streams are per-device. Upstream may 619 // change this interface to explicitly initialize the AsyncInfo_pointer, but 620 // until then hsa lazily initializes it as well. 621 622 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 623 // set non-null while using async calls, return to null to indicate completion 624 assert(AsyncInfo); 625 if (!AsyncInfo->Queue) { 626 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 627 } 628 } 629 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 630 assert(AsyncInfo); 631 assert(AsyncInfo->Queue); 632 AsyncInfo->Queue = 0; 633 } 634 635 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 636 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 637 int32_t r = elf_check_machine(image, amdgcnMachineID); 638 if (!r) { 639 DP("Supported machine ID not found\n"); 640 } 641 return r; 642 } 643 644 uint32_t elf_e_flags(__tgt_device_image *image) { 645 char *img_begin = (char *)image->ImageStart; 646 size_t img_size = (char *)image->ImageEnd - img_begin; 647 648 Elf *e = elf_memory(img_begin, img_size); 649 if (!e) { 650 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 651 return 0; 652 } 653 654 Elf64_Ehdr *eh64 = elf64_getehdr(e); 655 656 if (!eh64) { 657 DP("Unable to get machine ID from ELF file!\n"); 658 elf_end(e); 659 return 0; 660 } 661 662 uint32_t Flags = eh64->e_flags; 663 664 elf_end(e); 665 DP("ELF Flags: 0x%x\n", Flags); 666 return Flags; 667 } 668 } // namespace 669 670 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 671 return elf_machine_id_is_amdgcn(image); 672 } 673 674 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 675 676 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 677 DP("Init requires flags to %ld\n", RequiresFlags); 678 DeviceInfo.RequiresFlags = RequiresFlags; 679 return RequiresFlags; 680 } 681 682 int32_t __tgt_rtl_init_device(int device_id) { 683 hsa_status_t err; 684 685 // this is per device id init 686 DP("Initialize the device id: %d\n", device_id); 687 688 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 689 690 // Get number of Compute Unit 691 uint32_t compute_units = 0; 692 err = hsa_agent_get_info( 693 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 694 &compute_units); 695 if (err != HSA_STATUS_SUCCESS) { 696 DeviceInfo.ComputeUnits[device_id] = 1; 697 DP("Error getting compute units : settiing to 1\n"); 698 } else { 699 DeviceInfo.ComputeUnits[device_id] = compute_units; 700 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 701 } 702 703 char GetInfoName[64]; // 64 max size returned by get info 704 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 705 (void *)GetInfoName); 706 if (err) 707 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 708 else { 709 DeviceInfo.GPUName[device_id] = GetInfoName; 710 } 711 712 if (print_kernel_trace & STARTUP_DETAILS) 713 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 714 DeviceInfo.ComputeUnits[device_id], 715 DeviceInfo.GPUName[device_id].c_str()); 716 717 // Query attributes to determine number of threads/block and blocks/grid. 718 uint16_t workgroup_max_dim[3]; 719 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 720 &workgroup_max_dim); 721 if (err != HSA_STATUS_SUCCESS) { 722 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 723 DP("Error getting grid dims: num groups : %d\n", 724 RTLDeviceInfoTy::DefaultNumTeams); 725 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 726 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 727 DP("Using %d ROCm blocks per grid\n", 728 DeviceInfo.GroupsPerDevice[device_id]); 729 } else { 730 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 731 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 732 "at the hard limit\n", 733 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 734 } 735 736 // Get thread limit 737 hsa_dim3_t grid_max_dim; 738 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 739 if (err == HSA_STATUS_SUCCESS) { 740 DeviceInfo.ThreadsPerGroup[device_id] = 741 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 742 DeviceInfo.GroupsPerDevice[device_id]; 743 if ((DeviceInfo.ThreadsPerGroup[device_id] > 744 RTLDeviceInfoTy::Max_WG_Size) || 745 DeviceInfo.ThreadsPerGroup[device_id] == 0) { 746 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 747 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 748 } else { 749 DP("Using ROCm Queried thread limit: %d\n", 750 DeviceInfo.ThreadsPerGroup[device_id]); 751 } 752 } else { 753 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 754 DP("Error getting max block dimension, use default:%d \n", 755 RTLDeviceInfoTy::Max_WG_Size); 756 } 757 758 // Get wavefront size 759 uint32_t wavefront_size = 0; 760 err = 761 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 762 if (err == HSA_STATUS_SUCCESS) { 763 DP("Queried wavefront size: %d\n", wavefront_size); 764 DeviceInfo.WarpSize[device_id] = wavefront_size; 765 } else { 766 DP("Default wavefront size: %d\n", 767 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 768 DeviceInfo.WarpSize[device_id] = 769 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 770 } 771 772 // Adjust teams to the env variables 773 if (DeviceInfo.EnvTeamLimit > 0 && 774 DeviceInfo.GroupsPerDevice[device_id] > DeviceInfo.EnvTeamLimit) { 775 DeviceInfo.GroupsPerDevice[device_id] = DeviceInfo.EnvTeamLimit; 776 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 777 DeviceInfo.EnvTeamLimit); 778 } 779 780 // Set default number of teams 781 if (DeviceInfo.EnvNumTeams > 0) { 782 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 783 DP("Default number of teams set according to environment %d\n", 784 DeviceInfo.EnvNumTeams); 785 } else { 786 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 787 int TeamsPerCU = 1; // default number of teams per CU is 1 788 if (TeamsPerCUEnvStr) { 789 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 790 } 791 792 DeviceInfo.NumTeams[device_id] = 793 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 794 DP("Default number of teams = %d * number of compute units %d\n", 795 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 796 } 797 798 if (DeviceInfo.NumTeams[device_id] > DeviceInfo.GroupsPerDevice[device_id]) { 799 DeviceInfo.NumTeams[device_id] = DeviceInfo.GroupsPerDevice[device_id]; 800 DP("Default number of teams exceeds device limit, capping at %d\n", 801 DeviceInfo.GroupsPerDevice[device_id]); 802 } 803 804 // Set default number of threads 805 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 806 DP("Default number of threads set according to library's default %d\n", 807 RTLDeviceInfoTy::Default_WG_Size); 808 if (DeviceInfo.NumThreads[device_id] > 809 DeviceInfo.ThreadsPerGroup[device_id]) { 810 DeviceInfo.NumTeams[device_id] = DeviceInfo.ThreadsPerGroup[device_id]; 811 DP("Default number of threads exceeds device limit, capping at %d\n", 812 DeviceInfo.ThreadsPerGroup[device_id]); 813 } 814 815 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 816 device_id, DeviceInfo.GroupsPerDevice[device_id], 817 DeviceInfo.ThreadsPerGroup[device_id]); 818 819 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 820 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 821 DeviceInfo.GroupsPerDevice[device_id], 822 DeviceInfo.GroupsPerDevice[device_id] * 823 DeviceInfo.ThreadsPerGroup[device_id]); 824 825 return OFFLOAD_SUCCESS; 826 } 827 828 namespace { 829 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 830 size_t N; 831 int rc = elf_getshdrnum(elf, &N); 832 if (rc != 0) { 833 return nullptr; 834 } 835 836 Elf64_Shdr *result = nullptr; 837 for (size_t i = 0; i < N; i++) { 838 Elf_Scn *scn = elf_getscn(elf, i); 839 if (scn) { 840 Elf64_Shdr *shdr = elf64_getshdr(scn); 841 if (shdr) { 842 if (shdr->sh_type == SHT_HASH) { 843 if (result == nullptr) { 844 result = shdr; 845 } else { 846 // multiple SHT_HASH sections not handled 847 return nullptr; 848 } 849 } 850 } 851 } 852 } 853 return result; 854 } 855 856 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 857 const char *symname) { 858 859 assert(section_hash); 860 size_t section_symtab_index = section_hash->sh_link; 861 Elf64_Shdr *section_symtab = 862 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 863 size_t section_strtab_index = section_symtab->sh_link; 864 865 const Elf64_Sym *symtab = 866 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 867 868 const uint32_t *hashtab = 869 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 870 871 // Layout: 872 // nbucket 873 // nchain 874 // bucket[nbucket] 875 // chain[nchain] 876 uint32_t nbucket = hashtab[0]; 877 const uint32_t *bucket = &hashtab[2]; 878 const uint32_t *chain = &hashtab[nbucket + 2]; 879 880 const size_t max = strlen(symname) + 1; 881 const uint32_t hash = elf_hash(symname); 882 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 883 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 884 if (strncmp(symname, n, max) == 0) { 885 return &symtab[i]; 886 } 887 } 888 889 return nullptr; 890 } 891 892 typedef struct { 893 void *addr = nullptr; 894 uint32_t size = UINT32_MAX; 895 uint32_t sh_type = SHT_NULL; 896 } symbol_info; 897 898 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 899 symbol_info *res) { 900 if (elf_kind(elf) != ELF_K_ELF) { 901 return 1; 902 } 903 904 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 905 if (!section_hash) { 906 return 1; 907 } 908 909 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 910 if (!sym) { 911 return 1; 912 } 913 914 if (sym->st_size > UINT32_MAX) { 915 return 1; 916 } 917 918 if (sym->st_shndx == SHN_UNDEF) { 919 return 1; 920 } 921 922 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 923 if (!section) { 924 return 1; 925 } 926 927 Elf64_Shdr *header = elf64_getshdr(section); 928 if (!header) { 929 return 1; 930 } 931 932 res->addr = sym->st_value + base; 933 res->size = static_cast<uint32_t>(sym->st_size); 934 res->sh_type = header->sh_type; 935 return 0; 936 } 937 938 int get_symbol_info_without_loading(char *base, size_t img_size, 939 const char *symname, symbol_info *res) { 940 Elf *elf = elf_memory(base, img_size); 941 if (elf) { 942 int rc = get_symbol_info_without_loading(elf, base, symname, res); 943 elf_end(elf); 944 return rc; 945 } 946 return 1; 947 } 948 949 atmi_status_t interop_get_symbol_info(char *base, size_t img_size, 950 const char *symname, void **var_addr, 951 uint32_t *var_size) { 952 symbol_info si; 953 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 954 if (rc == 0) { 955 *var_addr = si.addr; 956 *var_size = si.size; 957 return ATMI_STATUS_SUCCESS; 958 } else { 959 return ATMI_STATUS_ERROR; 960 } 961 } 962 963 template <typename C> 964 atmi_status_t module_register_from_memory_to_place(void *module_bytes, 965 size_t module_size, 966 atmi_place_t place, C cb) { 967 auto L = [](void *data, size_t size, void *cb_state) -> atmi_status_t { 968 C *unwrapped = static_cast<C *>(cb_state); 969 return (*unwrapped)(data, size); 970 }; 971 return atmi_module_register_from_memory_to_place( 972 module_bytes, module_size, place, L, static_cast<void *>(&cb)); 973 } 974 } // namespace 975 976 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 977 uint64_t device_State_bytes = 0; 978 { 979 // If this is the deviceRTL, get the state variable size 980 symbol_info size_si; 981 int rc = get_symbol_info_without_loading( 982 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 983 984 if (rc == 0) { 985 if (size_si.size != sizeof(uint64_t)) { 986 fprintf(stderr, 987 "Found device_State_size variable with wrong size, aborting\n"); 988 exit(1); 989 } 990 991 // Read number of bytes directly from the elf 992 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 993 } 994 } 995 return device_State_bytes; 996 } 997 998 static __tgt_target_table * 999 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1000 1001 static __tgt_target_table * 1002 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1003 1004 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1005 __tgt_device_image *image) { 1006 DeviceInfo.load_run_lock.lock(); 1007 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1008 DeviceInfo.load_run_lock.unlock(); 1009 return res; 1010 } 1011 1012 struct device_environment { 1013 // initialise an omptarget_device_environmentTy in the deviceRTL 1014 // patches around differences in the deviceRTL between trunk, aomp, 1015 // rocmcc. Over time these differences will tend to zero and this class 1016 // simplified. 1017 // Symbol may be in .data or .bss, and may be missing fields: 1018 // - aomp has debug_level, num_devices, device_num 1019 // - trunk has debug_level 1020 // - under review in trunk is debug_level, device_num 1021 // - rocmcc matches aomp, patch to swap num_devices and device_num 1022 1023 // The symbol may also have been deadstripped because the device side 1024 // accessors were unused. 1025 1026 // If the symbol is in .data (aomp, rocm) it can be written directly. 1027 // If it is in .bss, we must wait for it to be allocated space on the 1028 // gpu (trunk) and initialize after loading. 1029 const char *sym() { return "omptarget_device_environment"; } 1030 1031 omptarget_device_environmentTy host_device_env; 1032 symbol_info si; 1033 bool valid = false; 1034 1035 __tgt_device_image *image; 1036 const size_t img_size; 1037 1038 device_environment(int device_id, int number_devices, 1039 __tgt_device_image *image, const size_t img_size) 1040 : image(image), img_size(img_size) { 1041 1042 host_device_env.num_devices = number_devices; 1043 host_device_env.device_num = device_id; 1044 host_device_env.debug_level = 0; 1045 #ifdef OMPTARGET_DEBUG 1046 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1047 host_device_env.debug_level = std::stoi(envStr); 1048 } 1049 #endif 1050 1051 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1052 img_size, sym(), &si); 1053 if (rc != 0) { 1054 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1055 return; 1056 } 1057 1058 if (si.size > sizeof(host_device_env)) { 1059 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1060 sizeof(host_device_env)); 1061 return; 1062 } 1063 1064 valid = true; 1065 } 1066 1067 bool in_image() { return si.sh_type != SHT_NOBITS; } 1068 1069 atmi_status_t before_loading(void *data, size_t size) { 1070 if (valid) { 1071 if (in_image()) { 1072 DP("Setting global device environment before load (%u bytes)\n", 1073 si.size); 1074 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1075 void *pos = (char *)data + offset; 1076 memcpy(pos, &host_device_env, si.size); 1077 } 1078 } 1079 return ATMI_STATUS_SUCCESS; 1080 } 1081 1082 atmi_status_t after_loading() { 1083 if (valid) { 1084 if (!in_image()) { 1085 DP("Setting global device environment after load (%u bytes)\n", 1086 si.size); 1087 int device_id = host_device_env.device_num; 1088 1089 void *state_ptr; 1090 uint32_t state_ptr_size; 1091 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1092 get_gpu_mem_place(device_id), sym(), &state_ptr, &state_ptr_size); 1093 if (err != ATMI_STATUS_SUCCESS) { 1094 DP("failed to find %s in loaded image\n", sym()); 1095 return err; 1096 } 1097 1098 if (state_ptr_size != si.size) { 1099 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1100 si.size); 1101 return ATMI_STATUS_ERROR; 1102 } 1103 1104 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1105 state_ptr_size, device_id); 1106 } 1107 } 1108 return ATMI_STATUS_SUCCESS; 1109 } 1110 }; 1111 1112 static atmi_status_t atmi_calloc(void **ret_ptr, size_t size, 1113 atmi_mem_place_t place) { 1114 uint64_t rounded = 4 * ((size + 3) / 4); 1115 void *ptr; 1116 atmi_status_t err = atmi_malloc(&ptr, rounded, place); 1117 if (err != ATMI_STATUS_SUCCESS) { 1118 return err; 1119 } 1120 1121 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1122 if (rc != HSA_STATUS_SUCCESS) { 1123 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1124 atmi_free(ptr); 1125 return ATMI_STATUS_ERROR; 1126 } 1127 1128 *ret_ptr = ptr; 1129 return ATMI_STATUS_SUCCESS; 1130 } 1131 1132 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1133 __tgt_device_image *image) { 1134 // This function loads the device image onto gpu[device_id] and does other 1135 // per-image initialization work. Specifically: 1136 // 1137 // - Initialize an omptarget_device_environmentTy instance embedded in the 1138 // image at the symbol "omptarget_device_environment" 1139 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1140 // 1141 // - Allocate a large array per-gpu (could be moved to init_device) 1142 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1143 // - Allocate at least that many bytes of gpu memory 1144 // - Zero initialize it 1145 // - Write the pointer to the symbol omptarget_nvptx_device_State 1146 // 1147 // - Pulls some per-kernel information together from various sources and 1148 // records it in the KernelsList for quicker access later 1149 // 1150 // The initialization can be done before or after loading the image onto the 1151 // gpu. This function presently does a mixture. Using the hsa api to get/set 1152 // the information is simpler to implement, in exchange for more complicated 1153 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1154 // back from the gpu vs a hashtable lookup on the host. 1155 1156 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1157 1158 DeviceInfo.clearOffloadEntriesTable(device_id); 1159 1160 // We do not need to set the ELF version because the caller of this function 1161 // had to do that to decide the right runtime to use 1162 1163 if (!elf_machine_id_is_amdgcn(image)) { 1164 return NULL; 1165 } 1166 1167 { 1168 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1169 img_size); 1170 1171 atmi_status_t err = module_register_from_memory_to_place( 1172 (void *)image->ImageStart, img_size, get_gpu_place(device_id), 1173 [&](void *data, size_t size) { 1174 return env.before_loading(data, size); 1175 }); 1176 1177 check("Module registering", err); 1178 if (err != ATMI_STATUS_SUCCESS) { 1179 fprintf(stderr, 1180 "Possible gpu arch mismatch: device:%s, image:%s please check" 1181 " compiler flag: -march=<gpu>\n", 1182 DeviceInfo.GPUName[device_id].c_str(), 1183 get_elf_mach_gfx_name(elf_e_flags(image))); 1184 return NULL; 1185 } 1186 1187 err = env.after_loading(); 1188 if (err != ATMI_STATUS_SUCCESS) { 1189 return NULL; 1190 } 1191 } 1192 1193 DP("ATMI module successfully loaded!\n"); 1194 1195 { 1196 // the device_State array is either large value in bss or a void* that 1197 // needs to be assigned to a pointer to an array of size device_state_bytes 1198 // If absent, it has been deadstripped and needs no setup. 1199 1200 void *state_ptr; 1201 uint32_t state_ptr_size; 1202 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1203 get_gpu_mem_place(device_id), "omptarget_nvptx_device_State", 1204 &state_ptr, &state_ptr_size); 1205 1206 if (err != ATMI_STATUS_SUCCESS) { 1207 DP("No device_state symbol found, skipping initialization\n"); 1208 } else { 1209 if (state_ptr_size < sizeof(void *)) { 1210 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1211 sizeof(void *)); 1212 return NULL; 1213 } 1214 1215 // if it's larger than a void*, assume it's a bss array and no further 1216 // initialization is required. Only try to set up a pointer for 1217 // sizeof(void*) 1218 if (state_ptr_size == sizeof(void *)) { 1219 uint64_t device_State_bytes = 1220 get_device_State_bytes((char *)image->ImageStart, img_size); 1221 if (device_State_bytes == 0) { 1222 DP("Can't initialize device_State, missing size information\n"); 1223 return NULL; 1224 } 1225 1226 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1227 if (dss.first.get() == nullptr) { 1228 assert(dss.second == 0); 1229 void *ptr = NULL; 1230 atmi_status_t err = atmi_calloc(&ptr, device_State_bytes, 1231 get_gpu_mem_place(device_id)); 1232 if (err != ATMI_STATUS_SUCCESS) { 1233 DP("Failed to allocate device_state array\n"); 1234 return NULL; 1235 } 1236 dss = { 1237 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1238 device_State_bytes, 1239 }; 1240 } 1241 1242 void *ptr = dss.first.get(); 1243 if (device_State_bytes != dss.second) { 1244 DP("Inconsistent sizes of device_State unsupported\n"); 1245 return NULL; 1246 } 1247 1248 // write ptr to device memory so it can be used by later kernels 1249 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1250 sizeof(void *), device_id); 1251 if (err != ATMI_STATUS_SUCCESS) { 1252 DP("memcpy install of state_ptr failed\n"); 1253 return NULL; 1254 } 1255 } 1256 } 1257 } 1258 1259 // Here, we take advantage of the data that is appended after img_end to get 1260 // the symbols' name we need to load. This data consist of the host entries 1261 // begin and end as well as the target name (see the offloading linker script 1262 // creation in clang compiler). 1263 1264 // Find the symbols in the module by name. The name can be obtain by 1265 // concatenating the host entry name with the target name 1266 1267 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1268 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1269 1270 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1271 1272 if (!e->addr) { 1273 // The host should have always something in the address to 1274 // uniquely identify the target region. 1275 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1276 (unsigned long long)e->size); 1277 return NULL; 1278 } 1279 1280 if (e->size) { 1281 __tgt_offload_entry entry = *e; 1282 1283 void *varptr; 1284 uint32_t varsize; 1285 1286 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1287 get_gpu_mem_place(device_id), e->name, &varptr, &varsize); 1288 1289 if (err != ATMI_STATUS_SUCCESS) { 1290 // Inform the user what symbol prevented offloading 1291 DP("Loading global '%s' (Failed)\n", e->name); 1292 return NULL; 1293 } 1294 1295 if (varsize != e->size) { 1296 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1297 varsize, e->size); 1298 return NULL; 1299 } 1300 1301 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1302 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1303 entry.addr = (void *)varptr; 1304 1305 DeviceInfo.addOffloadEntry(device_id, entry); 1306 1307 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1308 e->flags & OMP_DECLARE_TARGET_LINK) { 1309 // If unified memory is present any target link variables 1310 // can access host addresses directly. There is no longer a 1311 // need for device copies. 1312 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1313 sizeof(void *), device_id); 1314 if (err != ATMI_STATUS_SUCCESS) 1315 DP("Error when copying USM\n"); 1316 DP("Copy linked variable host address (" DPxMOD ")" 1317 "to device address (" DPxMOD ")\n", 1318 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1319 } 1320 1321 continue; 1322 } 1323 1324 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1325 1326 atmi_mem_place_t place = get_gpu_mem_place(device_id); 1327 uint32_t kernarg_segment_size; 1328 atmi_status_t err = atmi_interop_hsa_get_kernel_info( 1329 place, e->name, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1330 &kernarg_segment_size); 1331 1332 // each arg is a void * in this openmp implementation 1333 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1334 std::vector<size_t> arg_sizes(arg_num); 1335 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1336 it != arg_sizes.end(); it++) { 1337 *it = sizeof(void *); 1338 } 1339 1340 // default value GENERIC (in case symbol is missing from cubin file) 1341 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1342 1343 // get flat group size if present, else Default_WG_Size 1344 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1345 1346 // get Kernel Descriptor if present. 1347 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1348 struct KernDescValType { 1349 uint16_t Version; 1350 uint16_t TSize; 1351 uint16_t WG_Size; 1352 uint8_t Mode; 1353 }; 1354 struct KernDescValType KernDescVal; 1355 std::string KernDescNameStr(e->name); 1356 KernDescNameStr += "_kern_desc"; 1357 const char *KernDescName = KernDescNameStr.c_str(); 1358 1359 void *KernDescPtr; 1360 uint32_t KernDescSize; 1361 void *CallStackAddr = nullptr; 1362 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1363 KernDescName, &KernDescPtr, &KernDescSize); 1364 1365 if (err == ATMI_STATUS_SUCCESS) { 1366 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1367 DP("Loading global computation properties '%s' - size mismatch (%u != " 1368 "%lu)\n", 1369 KernDescName, KernDescSize, sizeof(KernDescVal)); 1370 1371 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1372 1373 // Check structure size against recorded size. 1374 if ((size_t)KernDescSize != KernDescVal.TSize) 1375 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1376 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1377 1378 DP("After loading global for %s KernDesc \n", KernDescName); 1379 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1380 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1381 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1382 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1383 1384 // Get ExecMode 1385 ExecModeVal = KernDescVal.Mode; 1386 DP("ExecModeVal %d\n", ExecModeVal); 1387 if (KernDescVal.WG_Size == 0) { 1388 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1389 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1390 } 1391 WGSizeVal = KernDescVal.WG_Size; 1392 DP("WGSizeVal %d\n", WGSizeVal); 1393 check("Loading KernDesc computation property", err); 1394 } else { 1395 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1396 1397 // Generic 1398 std::string ExecModeNameStr(e->name); 1399 ExecModeNameStr += "_exec_mode"; 1400 const char *ExecModeName = ExecModeNameStr.c_str(); 1401 1402 void *ExecModePtr; 1403 uint32_t varsize; 1404 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1405 ExecModeName, &ExecModePtr, &varsize); 1406 1407 if (err == ATMI_STATUS_SUCCESS) { 1408 if ((size_t)varsize != sizeof(int8_t)) { 1409 DP("Loading global computation properties '%s' - size mismatch(%u != " 1410 "%lu)\n", 1411 ExecModeName, varsize, sizeof(int8_t)); 1412 return NULL; 1413 } 1414 1415 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1416 1417 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1418 ExecModeVal); 1419 1420 if (ExecModeVal < 0 || ExecModeVal > 1) { 1421 DP("Error wrong exec_mode value specified in HSA code object file: " 1422 "%d\n", 1423 ExecModeVal); 1424 return NULL; 1425 } 1426 } else { 1427 DP("Loading global exec_mode '%s' - symbol missing, using default " 1428 "value " 1429 "GENERIC (1)\n", 1430 ExecModeName); 1431 } 1432 check("Loading computation property", err); 1433 1434 // Flat group size 1435 std::string WGSizeNameStr(e->name); 1436 WGSizeNameStr += "_wg_size"; 1437 const char *WGSizeName = WGSizeNameStr.c_str(); 1438 1439 void *WGSizePtr; 1440 uint32_t WGSize; 1441 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1442 WGSizeName, &WGSizePtr, &WGSize); 1443 1444 if (err == ATMI_STATUS_SUCCESS) { 1445 if ((size_t)WGSize != sizeof(int16_t)) { 1446 DP("Loading global computation properties '%s' - size mismatch (%u " 1447 "!= " 1448 "%lu)\n", 1449 WGSizeName, WGSize, sizeof(int16_t)); 1450 return NULL; 1451 } 1452 1453 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1454 1455 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1456 1457 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1458 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1459 DP("Error wrong WGSize value specified in HSA code object file: " 1460 "%d\n", 1461 WGSizeVal); 1462 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1463 } 1464 } else { 1465 DP("Warning: Loading WGSize '%s' - symbol not found, " 1466 "using default value %d\n", 1467 WGSizeName, WGSizeVal); 1468 } 1469 1470 check("Loading WGSize computation property", err); 1471 } 1472 1473 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1474 CallStackAddr, e->name, 1475 kernarg_segment_size)); 1476 __tgt_offload_entry entry = *e; 1477 entry.addr = (void *)&KernelsList.back(); 1478 DeviceInfo.addOffloadEntry(device_id, entry); 1479 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1480 } 1481 1482 return DeviceInfo.getOffloadEntriesTable(device_id); 1483 } 1484 1485 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1486 void *ptr = NULL; 1487 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1488 1489 if (kind != TARGET_ALLOC_DEFAULT) { 1490 REPORT("Invalid target data allocation kind or requested allocator not " 1491 "implemented yet\n"); 1492 return NULL; 1493 } 1494 1495 atmi_status_t err = atmi_malloc(&ptr, size, get_gpu_mem_place(device_id)); 1496 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1497 (long long unsigned)(Elf64_Addr)ptr); 1498 ptr = (err == ATMI_STATUS_SUCCESS) ? ptr : NULL; 1499 return ptr; 1500 } 1501 1502 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1503 int64_t size) { 1504 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1505 __tgt_async_info AsyncInfo; 1506 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1507 if (rc != OFFLOAD_SUCCESS) 1508 return OFFLOAD_FAIL; 1509 1510 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1511 } 1512 1513 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1514 int64_t size, __tgt_async_info *AsyncInfo) { 1515 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1516 if (AsyncInfo) { 1517 initAsyncInfo(AsyncInfo); 1518 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1519 } else { 1520 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1521 } 1522 } 1523 1524 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1525 int64_t size) { 1526 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1527 __tgt_async_info AsyncInfo; 1528 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1529 if (rc != OFFLOAD_SUCCESS) 1530 return OFFLOAD_FAIL; 1531 1532 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1533 } 1534 1535 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1536 void *tgt_ptr, int64_t size, 1537 __tgt_async_info *AsyncInfo) { 1538 assert(AsyncInfo && "AsyncInfo is nullptr"); 1539 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1540 initAsyncInfo(AsyncInfo); 1541 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1542 } 1543 1544 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1545 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1546 atmi_status_t err; 1547 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1548 err = atmi_free(tgt_ptr); 1549 if (err != ATMI_STATUS_SUCCESS) { 1550 DP("Error when freeing CUDA memory\n"); 1551 return OFFLOAD_FAIL; 1552 } 1553 return OFFLOAD_SUCCESS; 1554 } 1555 1556 // Determine launch values for threadsPerGroup and num_groups. 1557 // Outputs: treadsPerGroup, num_groups 1558 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1559 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1560 // loop_tripcount. 1561 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1562 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1563 int num_teams, int thread_limit, uint64_t loop_tripcount, 1564 int32_t device_id) { 1565 1566 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1567 ? DeviceInfo.EnvMaxTeamsDefault 1568 : DeviceInfo.NumTeams[device_id]; 1569 if (Max_Teams > DeviceInfo.HardTeamLimit) 1570 Max_Teams = DeviceInfo.HardTeamLimit; 1571 1572 if (print_kernel_trace & STARTUP_DETAILS) { 1573 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1574 RTLDeviceInfoTy::Max_Teams); 1575 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1576 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1577 RTLDeviceInfoTy::Warp_Size); 1578 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1579 RTLDeviceInfoTy::Max_WG_Size); 1580 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1581 RTLDeviceInfoTy::Default_WG_Size); 1582 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1583 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1584 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1585 } 1586 // check for thread_limit() clause 1587 if (thread_limit > 0) { 1588 threadsPerGroup = thread_limit; 1589 DP("Setting threads per block to requested %d\n", thread_limit); 1590 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1591 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1592 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1593 } 1594 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1595 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1596 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1597 } 1598 } 1599 // check flat_max_work_group_size attr here 1600 if (threadsPerGroup > ConstWGSize) { 1601 threadsPerGroup = ConstWGSize; 1602 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1603 threadsPerGroup); 1604 } 1605 if (print_kernel_trace & STARTUP_DETAILS) 1606 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1607 DP("Preparing %d threads\n", threadsPerGroup); 1608 1609 // Set default num_groups (teams) 1610 if (DeviceInfo.EnvTeamLimit > 0) 1611 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1612 ? Max_Teams 1613 : DeviceInfo.EnvTeamLimit; 1614 else 1615 num_groups = Max_Teams; 1616 DP("Set default num of groups %d\n", num_groups); 1617 1618 if (print_kernel_trace & STARTUP_DETAILS) { 1619 fprintf(stderr, "num_groups: %d\n", num_groups); 1620 fprintf(stderr, "num_teams: %d\n", num_teams); 1621 } 1622 1623 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1624 // This reduction is typical for default case (no thread_limit clause). 1625 // or when user goes crazy with num_teams clause. 1626 // FIXME: We cant distinguish between a constant or variable thread limit. 1627 // So we only handle constant thread_limits. 1628 if (threadsPerGroup > 1629 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1630 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1631 // here? 1632 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1633 1634 // check for num_teams() clause 1635 if (num_teams > 0) { 1636 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1637 } 1638 if (print_kernel_trace & STARTUP_DETAILS) { 1639 fprintf(stderr, "num_groups: %d\n", num_groups); 1640 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1641 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1642 } 1643 1644 if (DeviceInfo.EnvNumTeams > 0) { 1645 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1646 : num_groups; 1647 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1648 } else if (DeviceInfo.EnvTeamLimit > 0) { 1649 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1650 ? DeviceInfo.EnvTeamLimit 1651 : num_groups; 1652 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1653 } else { 1654 if (num_teams <= 0) { 1655 if (loop_tripcount > 0) { 1656 if (ExecutionMode == SPMD) { 1657 // round up to the nearest integer 1658 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1659 } else { 1660 num_groups = loop_tripcount; 1661 } 1662 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1663 "threads per block %d\n", 1664 num_groups, loop_tripcount, threadsPerGroup); 1665 } 1666 } else { 1667 num_groups = num_teams; 1668 } 1669 if (num_groups > Max_Teams) { 1670 num_groups = Max_Teams; 1671 if (print_kernel_trace & STARTUP_DETAILS) 1672 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1673 Max_Teams); 1674 } 1675 if (num_groups > num_teams && num_teams > 0) { 1676 num_groups = num_teams; 1677 if (print_kernel_trace & STARTUP_DETAILS) 1678 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1679 num_groups, num_teams); 1680 } 1681 } 1682 1683 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1684 if (num_teams > 0) { 1685 num_groups = num_teams; 1686 // Cap num_groups to EnvMaxTeamsDefault if set. 1687 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1688 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1689 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1690 } 1691 if (print_kernel_trace & STARTUP_DETAILS) { 1692 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1693 fprintf(stderr, "num_groups: %d\n", num_groups); 1694 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1695 } 1696 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1697 threadsPerGroup); 1698 } 1699 1700 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1701 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1702 bool full = true; 1703 while (full) { 1704 full = 1705 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1706 } 1707 return packet_id; 1708 } 1709 1710 extern bool g_atmi_hostcall_required; // declared without header by atmi 1711 1712 static int32_t __tgt_rtl_run_target_team_region_locked( 1713 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1714 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1715 int32_t thread_limit, uint64_t loop_tripcount); 1716 1717 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1718 void **tgt_args, 1719 ptrdiff_t *tgt_offsets, 1720 int32_t arg_num, int32_t num_teams, 1721 int32_t thread_limit, 1722 uint64_t loop_tripcount) { 1723 1724 DeviceInfo.load_run_lock.lock_shared(); 1725 int32_t res = __tgt_rtl_run_target_team_region_locked( 1726 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1727 thread_limit, loop_tripcount); 1728 1729 DeviceInfo.load_run_lock.unlock_shared(); 1730 return res; 1731 } 1732 1733 int32_t __tgt_rtl_run_target_team_region_locked( 1734 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1735 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1736 int32_t thread_limit, uint64_t loop_tripcount) { 1737 // Set the context we are using 1738 // update thread limit content in gpu memory if un-initialized or specified 1739 // from host 1740 1741 DP("Run target team region thread_limit %d\n", thread_limit); 1742 1743 // All args are references. 1744 std::vector<void *> args(arg_num); 1745 std::vector<void *> ptrs(arg_num); 1746 1747 DP("Arg_num: %d\n", arg_num); 1748 for (int32_t i = 0; i < arg_num; ++i) { 1749 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1750 args[i] = &ptrs[i]; 1751 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1752 } 1753 1754 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1755 1756 std::string kernel_name = std::string(KernelInfo->Name); 1757 uint32_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count; 1758 1759 { 1760 assert(KernelInfoTable[device_id].find(kernel_name) != 1761 KernelInfoTable[device_id].end()); 1762 auto it = KernelInfoTable[device_id][kernel_name]; 1763 sgpr_count = it.sgpr_count; 1764 vgpr_count = it.vgpr_count; 1765 sgpr_spill_count = it.sgpr_spill_count; 1766 vgpr_spill_count = it.vgpr_spill_count; 1767 } 1768 1769 /* 1770 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1771 */ 1772 int num_groups = 0; 1773 1774 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1775 1776 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1777 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1778 DeviceInfo.EnvNumTeams, 1779 num_teams, // From run_region arg 1780 thread_limit, // From run_region arg 1781 loop_tripcount, // From run_region arg 1782 KernelInfo->device_id); 1783 1784 if (print_kernel_trace >= LAUNCH) { 1785 // enum modes are SPMD, GENERIC, NONE 0,1,2 1786 // if doing rtl timing, print to stderr, unless stdout requested. 1787 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1788 fprintf(traceToStdout ? stdout : stderr, 1789 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1790 "reqd:(%4dX%4d) sgpr_count:%u vgpr_count:%u sgpr_spill_count:%u " 1791 "vgpr_spill_count:%u tripcount:%lu n:%s\n", 1792 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1793 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1794 sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count, 1795 loop_tripcount, KernelInfo->Name); 1796 } 1797 1798 // Run on the device. 1799 { 1800 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1801 uint64_t packet_id = acquire_available_packet_id(queue); 1802 1803 const uint32_t mask = queue->size - 1; // size is a power of 2 1804 hsa_kernel_dispatch_packet_t *packet = 1805 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1806 (packet_id & mask); 1807 1808 // packet->header is written last 1809 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1810 packet->workgroup_size_x = threadsPerGroup; 1811 packet->workgroup_size_y = 1; 1812 packet->workgroup_size_z = 1; 1813 packet->reserved0 = 0; 1814 packet->grid_size_x = num_groups * threadsPerGroup; 1815 packet->grid_size_y = 1; 1816 packet->grid_size_z = 1; 1817 packet->private_segment_size = 0; 1818 packet->group_segment_size = 0; 1819 packet->kernel_object = 0; 1820 packet->kernarg_address = 0; // use the block allocator 1821 packet->reserved2 = 0; // atmi writes id_ here 1822 packet->completion_signal = {0}; // may want a pool of signals 1823 1824 { 1825 assert(KernelInfoTable[device_id].find(kernel_name) != 1826 KernelInfoTable[device_id].end()); 1827 auto it = KernelInfoTable[device_id][kernel_name]; 1828 packet->kernel_object = it.kernel_object; 1829 packet->private_segment_size = it.private_segment_size; 1830 packet->group_segment_size = it.group_segment_size; 1831 assert(arg_num == (int)it.num_args); 1832 } 1833 1834 KernelArgPool *ArgPool = nullptr; 1835 { 1836 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1837 if (it != KernelArgPoolMap.end()) { 1838 ArgPool = (it->second).get(); 1839 } 1840 } 1841 if (!ArgPool) { 1842 fprintf(stderr, "Warning: No ArgPool for %s on device %d\n", 1843 KernelInfo->Name, device_id); 1844 } 1845 { 1846 void *kernarg = nullptr; 1847 if (ArgPool) { 1848 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1849 kernarg = ArgPool->allocate(arg_num); 1850 } 1851 if (!kernarg) { 1852 printf("Allocate kernarg failed\n"); 1853 exit(1); 1854 } 1855 1856 // Copy explicit arguments 1857 for (int i = 0; i < arg_num; i++) { 1858 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1859 } 1860 1861 // Initialize implicit arguments. ATMI seems to leave most fields 1862 // uninitialized 1863 atmi_implicit_args_t *impl_args = 1864 reinterpret_cast<atmi_implicit_args_t *>( 1865 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1866 memset(impl_args, 0, 1867 sizeof(atmi_implicit_args_t)); // may not be necessary 1868 impl_args->offset_x = 0; 1869 impl_args->offset_y = 0; 1870 impl_args->offset_z = 0; 1871 1872 // assign a hostcall buffer for the selected Q 1873 if (g_atmi_hostcall_required) { 1874 // hostrpc_assign_buffer is not thread safe, and this function is 1875 // under a multiple reader lock, not a writer lock. 1876 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 1877 pthread_mutex_lock(&hostcall_init_lock); 1878 impl_args->hostcall_ptr = hostrpc_assign_buffer( 1879 DeviceInfo.HSAAgents[device_id], queue, device_id); 1880 pthread_mutex_unlock(&hostcall_init_lock); 1881 if (!impl_args->hostcall_ptr) { 1882 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 1883 "error\n"); 1884 return OFFLOAD_FAIL; 1885 } 1886 } 1887 1888 packet->kernarg_address = kernarg; 1889 } 1890 1891 { 1892 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1893 if (s.handle == 0) { 1894 printf("Failed to get signal instance\n"); 1895 exit(1); 1896 } 1897 packet->completion_signal = s; 1898 hsa_signal_store_relaxed(packet->completion_signal, 1); 1899 } 1900 1901 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 1902 core::create_header(), packet->setup); 1903 1904 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1905 1906 while (hsa_signal_wait_scacquire(packet->completion_signal, 1907 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1908 HSA_WAIT_STATE_BLOCKED) != 0) 1909 ; 1910 1911 assert(ArgPool); 1912 ArgPool->deallocate(packet->kernarg_address); 1913 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 1914 } 1915 1916 DP("Kernel completed\n"); 1917 return OFFLOAD_SUCCESS; 1918 } 1919 1920 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 1921 void **tgt_args, ptrdiff_t *tgt_offsets, 1922 int32_t arg_num) { 1923 // use one team and one thread 1924 // fix thread num 1925 int32_t team_num = 1; 1926 int32_t thread_limit = 0; // use default 1927 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1928 tgt_offsets, arg_num, team_num, 1929 thread_limit, 0); 1930 } 1931 1932 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 1933 void *tgt_entry_ptr, void **tgt_args, 1934 ptrdiff_t *tgt_offsets, 1935 int32_t arg_num, 1936 __tgt_async_info *AsyncInfo) { 1937 assert(AsyncInfo && "AsyncInfo is nullptr"); 1938 initAsyncInfo(AsyncInfo); 1939 1940 // use one team and one thread 1941 // fix thread num 1942 int32_t team_num = 1; 1943 int32_t thread_limit = 0; // use default 1944 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1945 tgt_offsets, arg_num, team_num, 1946 thread_limit, 0); 1947 } 1948 1949 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 1950 assert(AsyncInfo && "AsyncInfo is nullptr"); 1951 1952 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 1953 // is not ensured by devices.cpp for amdgcn 1954 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 1955 if (AsyncInfo->Queue) { 1956 finiAsyncInfo(AsyncInfo); 1957 } 1958 return OFFLOAD_SUCCESS; 1959 } 1960