1 //===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <functional> 19 #include <libelf.h> 20 #include <list> 21 #include <memory> 22 #include <mutex> 23 #include <shared_mutex> 24 #include <unordered_map> 25 #include <vector> 26 27 #include "interop_hsa.h" 28 #include "impl_runtime.h" 29 30 #include "internal.h" 31 #include "rt.h" 32 33 #include "get_elf_mach_gfx_name.h" 34 #include "omptargetplugin.h" 35 #include "print_tracing.h" 36 37 #include "llvm/Frontend/OpenMP/OMPConstants.h" 38 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 39 40 // hostrpc interface, FIXME: consider moving to its own include these are 41 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 42 // linked as --whole-archive to override the weak symbols that are used to 43 // implement a fallback for toolchains that do not yet have a hostrpc library. 44 extern "C" { 45 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 46 uint32_t device_id); 47 hsa_status_t hostrpc_init(); 48 hsa_status_t hostrpc_terminate(); 49 50 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 51 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 52 return HSA_STATUS_SUCCESS; 53 } 54 __attribute__((weak)) unsigned long 55 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 56 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 57 "missing\n", 58 device_id); 59 return 0; 60 } 61 } 62 63 // Heuristic parameters used for kernel launch 64 // Number of teams per CU to allow scheduling flexibility 65 static const unsigned DefaultTeamsPerCU = 4; 66 67 int print_kernel_trace; 68 69 #ifdef OMPTARGET_DEBUG 70 #define check(msg, status) \ 71 if (status != HSA_STATUS_SUCCESS) { \ 72 DP(#msg " failed\n"); \ 73 } else { \ 74 DP(#msg " succeeded\n"); \ 75 } 76 #else 77 #define check(msg, status) \ 78 {} 79 #endif 80 81 #include "elf_common.h" 82 83 namespace hsa { 84 template <typename C> hsa_status_t iterate_agents(C cb) { 85 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 86 C *unwrapped = static_cast<C *>(data); 87 return (*unwrapped)(agent); 88 }; 89 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 90 } 91 92 template <typename C> 93 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { 94 auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { 95 C *unwrapped = static_cast<C *>(data); 96 return (*unwrapped)(MemoryPool); 97 }; 98 99 return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb)); 100 } 101 102 } // namespace hsa 103 104 /// Keep entries table per device 105 struct FuncOrGblEntryTy { 106 __tgt_target_table Table; 107 std::vector<__tgt_offload_entry> Entries; 108 }; 109 110 struct KernelArgPool { 111 private: 112 static pthread_mutex_t mutex; 113 114 public: 115 uint32_t kernarg_segment_size; 116 void *kernarg_region = nullptr; 117 std::queue<int> free_kernarg_segments; 118 119 uint32_t kernarg_size_including_implicit() { 120 return kernarg_segment_size + sizeof(impl_implicit_args_t); 121 } 122 123 ~KernelArgPool() { 124 if (kernarg_region) { 125 auto r = hsa_amd_memory_pool_free(kernarg_region); 126 if (r != HSA_STATUS_SUCCESS) { 127 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 128 } 129 } 130 } 131 132 // Can't really copy or move a mutex 133 KernelArgPool() = default; 134 KernelArgPool(const KernelArgPool &) = delete; 135 KernelArgPool(KernelArgPool &&) = delete; 136 137 KernelArgPool(uint32_t kernarg_segment_size, 138 hsa_amd_memory_pool_t &memory_pool) 139 : kernarg_segment_size(kernarg_segment_size) { 140 141 // impl uses one pool per kernel for all gpus, with a fixed upper size 142 // preserving that exact scheme here, including the queue<int> 143 144 hsa_status_t err = hsa_amd_memory_pool_allocate( 145 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 146 &kernarg_region); 147 148 if (err != HSA_STATUS_SUCCESS) { 149 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 150 kernarg_region = nullptr; // paranoid 151 return; 152 } 153 154 err = core::allow_access_to_all_gpu_agents(kernarg_region); 155 if (err != HSA_STATUS_SUCCESS) { 156 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 157 get_error_string(err)); 158 auto r = hsa_amd_memory_pool_free(kernarg_region); 159 if (r != HSA_STATUS_SUCCESS) { 160 // if free failed, can't do anything more to resolve it 161 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 162 } 163 kernarg_region = nullptr; 164 return; 165 } 166 167 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 168 free_kernarg_segments.push(i); 169 } 170 } 171 172 void *allocate(uint64_t arg_num) { 173 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 174 lock l(&mutex); 175 void *res = nullptr; 176 if (!free_kernarg_segments.empty()) { 177 178 int free_idx = free_kernarg_segments.front(); 179 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 180 (free_idx * kernarg_size_including_implicit())); 181 assert(free_idx == pointer_to_index(res)); 182 free_kernarg_segments.pop(); 183 } 184 return res; 185 } 186 187 void deallocate(void *ptr) { 188 lock l(&mutex); 189 int idx = pointer_to_index(ptr); 190 free_kernarg_segments.push(idx); 191 } 192 193 private: 194 int pointer_to_index(void *ptr) { 195 ptrdiff_t bytes = 196 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 197 assert(bytes >= 0); 198 assert(bytes % kernarg_size_including_implicit() == 0); 199 return bytes / kernarg_size_including_implicit(); 200 } 201 struct lock { 202 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 203 ~lock() { pthread_mutex_unlock(m); } 204 pthread_mutex_t *m; 205 }; 206 }; 207 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 208 209 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 210 KernelArgPoolMap; 211 212 /// Use a single entity to encode a kernel and a set of flags 213 struct KernelTy { 214 llvm::omp::OMPTgtExecModeFlags ExecutionMode; 215 int16_t ConstWGSize; 216 int32_t device_id; 217 void *CallStackAddr = nullptr; 218 const char *Name; 219 220 KernelTy(llvm::omp::OMPTgtExecModeFlags _ExecutionMode, int16_t _ConstWGSize, 221 int32_t _device_id, void *_CallStackAddr, const char *_Name, 222 uint32_t _kernarg_segment_size, 223 hsa_amd_memory_pool_t &KernArgMemoryPool) 224 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 225 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 226 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 227 228 std::string N(_Name); 229 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 230 KernelArgPoolMap.insert( 231 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 232 _kernarg_segment_size, KernArgMemoryPool)))); 233 } 234 } 235 }; 236 237 /// List that contains all the kernels. 238 /// FIXME: we may need this to be per device and per library. 239 std::list<KernelTy> KernelsList; 240 241 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 242 243 hsa_status_t err = 244 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 245 hsa_device_type_t device_type; 246 // get_info fails iff HSA runtime not yet initialized 247 hsa_status_t err = 248 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 249 250 if (err != HSA_STATUS_SUCCESS) { 251 if (print_kernel_trace > 0) 252 DP("rtl.cpp: err %s\n", get_error_string(err)); 253 254 return err; 255 } 256 257 CB(device_type, agent); 258 return HSA_STATUS_SUCCESS; 259 }); 260 261 // iterate_agents fails iff HSA runtime not yet initialized 262 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 263 DP("rtl.cpp: err %s\n", get_error_string(err)); 264 } 265 266 return err; 267 } 268 269 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 270 void *data) { 271 if (status != HSA_STATUS_SUCCESS) { 272 const char *status_string; 273 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 274 status_string = "unavailable"; 275 } 276 DP("[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, __LINE__, source, 277 status, status_string); 278 abort(); 279 } 280 } 281 282 namespace core { 283 namespace { 284 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 285 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 286 } 287 288 uint16_t create_header() { 289 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 290 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 291 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 292 return header; 293 } 294 295 hsa_status_t isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { 296 bool AllocAllowed = false; 297 hsa_status_t Err = hsa_amd_memory_pool_get_info( 298 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 299 &AllocAllowed); 300 if (Err != HSA_STATUS_SUCCESS) { 301 DP("Alloc allowed in memory pool check failed: %s\n", 302 get_error_string(Err)); 303 return Err; 304 } 305 306 size_t Size = 0; 307 Err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, 308 &Size); 309 if (Err != HSA_STATUS_SUCCESS) { 310 DP("Get memory pool size failed: %s\n", get_error_string(Err)); 311 return Err; 312 } 313 314 return (AllocAllowed && Size > 0) ? HSA_STATUS_SUCCESS : HSA_STATUS_ERROR; 315 } 316 317 hsa_status_t addMemoryPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 318 std::vector<hsa_amd_memory_pool_t> *Result = 319 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 320 321 hsa_status_t err; 322 if ((err = isValidMemoryPool(MemoryPool)) != HSA_STATUS_SUCCESS) { 323 return err; 324 } 325 326 Result->push_back(MemoryPool); 327 return HSA_STATUS_SUCCESS; 328 } 329 330 } // namespace 331 } // namespace core 332 333 struct EnvironmentVariables { 334 int NumTeams; 335 int TeamLimit; 336 int TeamThreadLimit; 337 int MaxTeamsDefault; 338 }; 339 340 template <uint32_t wavesize> 341 static constexpr const llvm::omp::GV &getGridValue() { 342 return llvm::omp::getAMDGPUGridValues<wavesize>(); 343 } 344 345 struct HSALifetime { 346 // Wrapper around HSA used to ensure it is constructed before other types 347 // and destructed after, which means said other types can use raii for 348 // cleanup without risking running outside of the lifetime of HSA 349 const hsa_status_t S; 350 351 bool success() { return S == HSA_STATUS_SUCCESS; } 352 HSALifetime() : S(hsa_init()) {} 353 354 ~HSALifetime() { 355 if (S == HSA_STATUS_SUCCESS) { 356 hsa_status_t Err = hsa_shut_down(); 357 if (Err != HSA_STATUS_SUCCESS) { 358 // Can't call into HSA to get a string from the integer 359 DP("Shutting down HSA failed: %d\n", Err); 360 } 361 } 362 } 363 }; 364 365 /// Class containing all the device information 366 class RTLDeviceInfoTy { 367 HSALifetime HSA; // First field => constructed first and destructed last 368 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 369 370 struct QueueDeleter { 371 void operator()(hsa_queue_t *Q) { 372 if (Q) { 373 hsa_status_t Err = hsa_queue_destroy(Q); 374 if (Err != HSA_STATUS_SUCCESS) { 375 DP("Error destroying hsa queue: %s\n", get_error_string(Err)); 376 } 377 } 378 } 379 }; 380 381 public: 382 bool ConstructionSucceeded = false; 383 384 // load binary populates symbol tables and mutates various global state 385 // run uses those symbol tables 386 std::shared_timed_mutex load_run_lock; 387 388 int NumberOfDevices = 0; 389 390 // GPU devices 391 std::vector<hsa_agent_t> HSAAgents; 392 std::vector<std::unique_ptr<hsa_queue_t, QueueDeleter>> 393 HSAQueues; // one per gpu 394 395 // CPUs 396 std::vector<hsa_agent_t> CPUAgents; 397 398 // Device properties 399 std::vector<int> ComputeUnits; 400 std::vector<int> GroupsPerDevice; 401 std::vector<int> ThreadsPerGroup; 402 std::vector<int> WarpSize; 403 std::vector<std::string> GPUName; 404 405 // OpenMP properties 406 std::vector<int> NumTeams; 407 std::vector<int> NumThreads; 408 409 // OpenMP Environment properties 410 EnvironmentVariables Env; 411 412 // OpenMP Requires Flags 413 int64_t RequiresFlags; 414 415 // Resource pools 416 SignalPoolT FreeSignalPool; 417 418 bool hostcall_required = false; 419 420 std::vector<hsa_executable_t> HSAExecutables; 421 422 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 423 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 424 425 hsa_amd_memory_pool_t KernArgPool; 426 427 // fine grained memory pool for host allocations 428 hsa_amd_memory_pool_t HostFineGrainedMemoryPool; 429 430 // fine and coarse-grained memory pools per offloading device 431 std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools; 432 std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools; 433 434 struct implFreePtrDeletor { 435 void operator()(void *p) { 436 core::Runtime::Memfree(p); // ignore failure to free 437 } 438 }; 439 440 // device_State shared across loaded binaries, error if inconsistent size 441 std::vector<std::pair<std::unique_ptr<void, implFreePtrDeletor>, uint64_t>> 442 deviceStateStore; 443 444 static const unsigned HardTeamLimit = 445 (1 << 16) - 1; // 64K needed to fit in uint16 446 static const int DefaultNumTeams = 128; 447 448 // These need to be per-device since different devices can have different 449 // wave sizes, but are currently the same number for each so that refactor 450 // can be postponed. 451 static_assert(getGridValue<32>().GV_Max_Teams == 452 getGridValue<64>().GV_Max_Teams, 453 ""); 454 static const int Max_Teams = getGridValue<64>().GV_Max_Teams; 455 456 static_assert(getGridValue<32>().GV_Max_WG_Size == 457 getGridValue<64>().GV_Max_WG_Size, 458 ""); 459 static const int Max_WG_Size = getGridValue<64>().GV_Max_WG_Size; 460 461 static_assert(getGridValue<32>().GV_Default_WG_Size == 462 getGridValue<64>().GV_Default_WG_Size, 463 ""); 464 static const int Default_WG_Size = getGridValue<64>().GV_Default_WG_Size; 465 466 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 467 size_t size, hsa_agent_t, 468 hsa_amd_memory_pool_t); 469 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 470 MemcpyFunc Func, int32_t deviceId) { 471 hsa_agent_t agent = HSAAgents[deviceId]; 472 hsa_signal_t s = FreeSignalPool.pop(); 473 if (s.handle == 0) { 474 return HSA_STATUS_ERROR; 475 } 476 hsa_status_t r = Func(s, dest, src, size, agent, HostFineGrainedMemoryPool); 477 FreeSignalPool.push(s); 478 return r; 479 } 480 481 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 482 size_t size, int32_t deviceId) { 483 return freesignalpool_memcpy(dest, src, size, impl_memcpy_d2h, deviceId); 484 } 485 486 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 487 size_t size, int32_t deviceId) { 488 return freesignalpool_memcpy(dest, src, size, impl_memcpy_h2d, deviceId); 489 } 490 491 // Record entry point associated with device 492 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 493 assert(device_id < (int32_t)FuncGblEntries.size() && 494 "Unexpected device id!"); 495 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 496 497 E.Entries.push_back(entry); 498 } 499 500 // Return true if the entry is associated with device 501 bool findOffloadEntry(int32_t device_id, void *addr) { 502 assert(device_id < (int32_t)FuncGblEntries.size() && 503 "Unexpected device id!"); 504 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 505 506 for (auto &it : E.Entries) { 507 if (it.addr == addr) 508 return true; 509 } 510 511 return false; 512 } 513 514 // Return the pointer to the target entries table 515 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 516 assert(device_id < (int32_t)FuncGblEntries.size() && 517 "Unexpected device id!"); 518 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 519 520 int32_t size = E.Entries.size(); 521 522 // Table is empty 523 if (!size) 524 return 0; 525 526 __tgt_offload_entry *begin = &E.Entries[0]; 527 __tgt_offload_entry *end = &E.Entries[size - 1]; 528 529 // Update table info according to the entries and return the pointer 530 E.Table.EntriesBegin = begin; 531 E.Table.EntriesEnd = ++end; 532 533 return &E.Table; 534 } 535 536 // Clear entries table for a device 537 void clearOffloadEntriesTable(int device_id) { 538 assert(device_id < (int32_t)FuncGblEntries.size() && 539 "Unexpected device id!"); 540 FuncGblEntries[device_id].emplace_back(); 541 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 542 // KernelArgPoolMap.clear(); 543 E.Entries.clear(); 544 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 545 } 546 547 hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, 548 int DeviceId) { 549 assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); 550 uint32_t GlobalFlags = 0; 551 hsa_status_t Err = hsa_amd_memory_pool_get_info( 552 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 553 554 if (Err != HSA_STATUS_SUCCESS) { 555 return Err; 556 } 557 558 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 559 DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; 560 } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { 561 DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; 562 } 563 564 return HSA_STATUS_SUCCESS; 565 } 566 567 hsa_status_t setupDevicePools(const std::vector<hsa_agent_t> &Agents) { 568 for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { 569 hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( 570 Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { 571 hsa_status_t ValidStatus = core::isValidMemoryPool(MemoryPool); 572 if (ValidStatus != HSA_STATUS_SUCCESS) { 573 DP("Alloc allowed in memory pool check failed: %s\n", 574 get_error_string(ValidStatus)); 575 return HSA_STATUS_SUCCESS; 576 } 577 return addDeviceMemoryPool(MemoryPool, DeviceId); 578 }); 579 580 if (Err != HSA_STATUS_SUCCESS) { 581 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 582 "Iterate all memory pools", get_error_string(Err)); 583 return Err; 584 } 585 } 586 return HSA_STATUS_SUCCESS; 587 } 588 589 hsa_status_t setupHostMemoryPools(std::vector<hsa_agent_t> &Agents) { 590 std::vector<hsa_amd_memory_pool_t> HostPools; 591 592 // collect all the "valid" pools for all the given agents. 593 for (const auto &Agent : Agents) { 594 hsa_status_t Err = hsa_amd_agent_iterate_memory_pools( 595 Agent, core::addMemoryPool, static_cast<void *>(&HostPools)); 596 if (Err != HSA_STATUS_SUCCESS) { 597 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 598 "Iterate all memory pools", get_error_string(Err)); 599 return Err; 600 } 601 } 602 603 // We need two fine-grained pools. 604 // 1. One with kernarg flag set for storing kernel arguments 605 // 2. Second for host allocations 606 bool FineGrainedMemoryPoolSet = false; 607 bool KernArgPoolSet = false; 608 for (const auto &MemoryPool : HostPools) { 609 hsa_status_t Err = HSA_STATUS_SUCCESS; 610 uint32_t GlobalFlags = 0; 611 Err = hsa_amd_memory_pool_get_info( 612 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 613 if (Err != HSA_STATUS_SUCCESS) { 614 DP("Get memory pool info failed: %s\n", get_error_string(Err)); 615 return Err; 616 } 617 618 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 619 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) { 620 KernArgPool = MemoryPool; 621 KernArgPoolSet = true; 622 } 623 HostFineGrainedMemoryPool = MemoryPool; 624 FineGrainedMemoryPoolSet = true; 625 } 626 } 627 628 if (FineGrainedMemoryPoolSet && KernArgPoolSet) 629 return HSA_STATUS_SUCCESS; 630 631 return HSA_STATUS_ERROR; 632 } 633 634 hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { 635 assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && 636 "Invalid device Id"); 637 return DeviceCoarseGrainedMemoryPools[DeviceId]; 638 } 639 640 hsa_amd_memory_pool_t getHostMemoryPool() { 641 return HostFineGrainedMemoryPool; 642 } 643 644 static int readEnvElseMinusOne(const char *Env) { 645 const char *envStr = getenv(Env); 646 int res = -1; 647 if (envStr) { 648 res = std::stoi(envStr); 649 DP("Parsed %s=%d\n", Env, res); 650 } 651 return res; 652 } 653 654 RTLDeviceInfoTy() { 655 DP("Start initializing " GETNAME(TARGET_NAME) "\n"); 656 657 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 658 // anytime. You do not need a debug library build. 659 // 0 => no tracing 660 // 1 => tracing dispatch only 661 // >1 => verbosity increase 662 663 if (!HSA.success()) { 664 DP("Error when initializing HSA in " GETNAME(TARGET_NAME) "\n"); 665 return; 666 } 667 668 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 669 print_kernel_trace = atoi(envStr); 670 else 671 print_kernel_trace = 0; 672 673 hsa_status_t err = core::atl_init_gpu_context(); 674 if (err != HSA_STATUS_SUCCESS) { 675 DP("Error when initializing " GETNAME(TARGET_NAME) "\n"); 676 return; 677 } 678 679 // Init hostcall soon after initializing hsa 680 hostrpc_init(); 681 682 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 683 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 684 CPUAgents.push_back(Agent); 685 } else { 686 HSAAgents.push_back(Agent); 687 } 688 }); 689 if (err != HSA_STATUS_SUCCESS) 690 return; 691 692 NumberOfDevices = (int)HSAAgents.size(); 693 694 if (NumberOfDevices == 0) { 695 DP("There are no devices supporting HSA.\n"); 696 return; 697 } else { 698 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 699 } 700 701 // Init the device info 702 HSAQueues.resize(NumberOfDevices); 703 FuncGblEntries.resize(NumberOfDevices); 704 ThreadsPerGroup.resize(NumberOfDevices); 705 ComputeUnits.resize(NumberOfDevices); 706 GPUName.resize(NumberOfDevices); 707 GroupsPerDevice.resize(NumberOfDevices); 708 WarpSize.resize(NumberOfDevices); 709 NumTeams.resize(NumberOfDevices); 710 NumThreads.resize(NumberOfDevices); 711 deviceStateStore.resize(NumberOfDevices); 712 KernelInfoTable.resize(NumberOfDevices); 713 SymbolInfoTable.resize(NumberOfDevices); 714 DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); 715 DeviceFineGrainedMemoryPools.resize(NumberOfDevices); 716 717 err = setupDevicePools(HSAAgents); 718 if (err != HSA_STATUS_SUCCESS) { 719 DP("Setup for Device Memory Pools failed\n"); 720 return; 721 } 722 723 err = setupHostMemoryPools(CPUAgents); 724 if (err != HSA_STATUS_SUCCESS) { 725 DP("Setup for Host Memory Pools failed\n"); 726 return; 727 } 728 729 for (int i = 0; i < NumberOfDevices; i++) { 730 uint32_t queue_size = 0; 731 { 732 hsa_status_t err = hsa_agent_get_info( 733 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 734 if (err != HSA_STATUS_SUCCESS) { 735 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 736 return; 737 } 738 enum { MaxQueueSize = 4096 }; 739 if (queue_size > MaxQueueSize) { 740 queue_size = MaxQueueSize; 741 } 742 } 743 744 { 745 hsa_queue_t *Q = nullptr; 746 hsa_status_t rc = 747 hsa_queue_create(HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, 748 callbackQueue, NULL, UINT32_MAX, UINT32_MAX, &Q); 749 if (rc != HSA_STATUS_SUCCESS) { 750 DP("Failed to create HSA queue %d\n", i); 751 return; 752 } 753 HSAQueues[i].reset(Q); 754 } 755 756 deviceStateStore[i] = {nullptr, 0}; 757 } 758 759 for (int i = 0; i < NumberOfDevices; i++) { 760 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 761 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 762 ComputeUnits[i] = 1; 763 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 764 GroupsPerDevice[i], ThreadsPerGroup[i]); 765 } 766 767 // Get environment variables regarding teams 768 Env.TeamLimit = readEnvElseMinusOne("OMP_TEAM_LIMIT"); 769 Env.NumTeams = readEnvElseMinusOne("OMP_NUM_TEAMS"); 770 Env.MaxTeamsDefault = readEnvElseMinusOne("OMP_MAX_TEAMS_DEFAULT"); 771 Env.TeamThreadLimit = readEnvElseMinusOne("OMP_TEAMS_THREAD_LIMIT"); 772 773 // Default state. 774 RequiresFlags = OMP_REQ_UNDEFINED; 775 776 ConstructionSucceeded = true; 777 } 778 779 ~RTLDeviceInfoTy() { 780 DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n"); 781 if (!HSA.success()) { 782 // Then none of these can have been set up and they can't be torn down 783 return; 784 } 785 // Run destructors on types that use HSA before 786 // impl_finalize removes access to it 787 deviceStateStore.clear(); 788 KernelArgPoolMap.clear(); 789 // Terminate hostrpc before finalizing hsa 790 hostrpc_terminate(); 791 792 hsa_status_t Err; 793 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 794 Err = hsa_executable_destroy(HSAExecutables[I]); 795 if (Err != HSA_STATUS_SUCCESS) { 796 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 797 "Destroying executable", get_error_string(Err)); 798 } 799 } 800 } 801 }; 802 803 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 804 805 // TODO: May need to drop the trailing to fields until deviceRTL is updated 806 struct omptarget_device_environmentTy { 807 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 808 // only useful for Debug build of deviceRTLs 809 int32_t num_devices; // gets number of active offload devices 810 int32_t device_num; // gets a value 0 to num_devices-1 811 }; 812 813 static RTLDeviceInfoTy DeviceInfo; 814 815 namespace { 816 817 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 818 __tgt_async_info *AsyncInfo) { 819 assert(AsyncInfo && "AsyncInfo is nullptr"); 820 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 821 // Return success if we are not copying back to host from target. 822 if (!HstPtr) 823 return OFFLOAD_SUCCESS; 824 hsa_status_t err; 825 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 826 (long long unsigned)(Elf64_Addr)TgtPtr, 827 (long long unsigned)(Elf64_Addr)HstPtr); 828 829 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 830 DeviceId); 831 832 if (err != HSA_STATUS_SUCCESS) { 833 DP("Error when copying data from device to host. Pointers: " 834 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 835 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 836 return OFFLOAD_FAIL; 837 } 838 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 839 (long long unsigned)(Elf64_Addr)TgtPtr, 840 (long long unsigned)(Elf64_Addr)HstPtr); 841 return OFFLOAD_SUCCESS; 842 } 843 844 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 845 __tgt_async_info *AsyncInfo) { 846 assert(AsyncInfo && "AsyncInfo is nullptr"); 847 hsa_status_t err; 848 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 849 // Return success if we are not doing host to target. 850 if (!HstPtr) 851 return OFFLOAD_SUCCESS; 852 853 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 854 (long long unsigned)(Elf64_Addr)HstPtr, 855 (long long unsigned)(Elf64_Addr)TgtPtr); 856 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 857 DeviceId); 858 if (err != HSA_STATUS_SUCCESS) { 859 DP("Error when copying data from host to device. Pointers: " 860 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 861 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 862 return OFFLOAD_FAIL; 863 } 864 return OFFLOAD_SUCCESS; 865 } 866 867 // Async. 868 // The implementation was written with cuda streams in mind. The semantics of 869 // that are to execute kernels on a queue in order of insertion. A synchronise 870 // call then makes writes visible between host and device. This means a series 871 // of N data_submit_async calls are expected to execute serially. HSA offers 872 // various options to run the data copies concurrently. This may require changes 873 // to libomptarget. 874 875 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 876 // there are no outstanding kernels that need to be synchronized. Any async call 877 // may be passed a Queue==0, at which point the cuda implementation will set it 878 // to non-null (see getStream). The cuda streams are per-device. Upstream may 879 // change this interface to explicitly initialize the AsyncInfo_pointer, but 880 // until then hsa lazily initializes it as well. 881 882 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 883 // set non-null while using async calls, return to null to indicate completion 884 assert(AsyncInfo); 885 if (!AsyncInfo->Queue) { 886 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 887 } 888 } 889 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 890 assert(AsyncInfo); 891 assert(AsyncInfo->Queue); 892 AsyncInfo->Queue = 0; 893 } 894 895 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 896 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 897 int32_t r = elf_check_machine(image, amdgcnMachineID); 898 if (!r) { 899 DP("Supported machine ID not found\n"); 900 } 901 return r; 902 } 903 904 uint32_t elf_e_flags(__tgt_device_image *image) { 905 char *img_begin = (char *)image->ImageStart; 906 size_t img_size = (char *)image->ImageEnd - img_begin; 907 908 Elf *e = elf_memory(img_begin, img_size); 909 if (!e) { 910 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 911 return 0; 912 } 913 914 Elf64_Ehdr *eh64 = elf64_getehdr(e); 915 916 if (!eh64) { 917 DP("Unable to get machine ID from ELF file!\n"); 918 elf_end(e); 919 return 0; 920 } 921 922 uint32_t Flags = eh64->e_flags; 923 924 elf_end(e); 925 DP("ELF Flags: 0x%x\n", Flags); 926 return Flags; 927 } 928 } // namespace 929 930 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 931 return elf_machine_id_is_amdgcn(image); 932 } 933 934 int __tgt_rtl_number_of_devices() { 935 // If the construction failed, no methods are safe to call 936 if (DeviceInfo.ConstructionSucceeded) { 937 return DeviceInfo.NumberOfDevices; 938 } else { 939 DP("AMDGPU plugin construction failed. Zero devices available\n"); 940 return 0; 941 } 942 } 943 944 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 945 DP("Init requires flags to %ld\n", RequiresFlags); 946 DeviceInfo.RequiresFlags = RequiresFlags; 947 return RequiresFlags; 948 } 949 950 namespace { 951 template <typename T> bool enforce_upper_bound(T *value, T upper) { 952 bool changed = *value > upper; 953 if (changed) { 954 *value = upper; 955 } 956 return changed; 957 } 958 } // namespace 959 960 int32_t __tgt_rtl_init_device(int device_id) { 961 hsa_status_t err; 962 963 // this is per device id init 964 DP("Initialize the device id: %d\n", device_id); 965 966 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 967 968 // Get number of Compute Unit 969 uint32_t compute_units = 0; 970 err = hsa_agent_get_info( 971 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 972 &compute_units); 973 if (err != HSA_STATUS_SUCCESS) { 974 DeviceInfo.ComputeUnits[device_id] = 1; 975 DP("Error getting compute units : settiing to 1\n"); 976 } else { 977 DeviceInfo.ComputeUnits[device_id] = compute_units; 978 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 979 } 980 981 char GetInfoName[64]; // 64 max size returned by get info 982 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 983 (void *)GetInfoName); 984 if (err) 985 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 986 else { 987 DeviceInfo.GPUName[device_id] = GetInfoName; 988 } 989 990 if (print_kernel_trace & STARTUP_DETAILS) 991 DP("Device#%-2d CU's: %2d %s\n", device_id, 992 DeviceInfo.ComputeUnits[device_id], 993 DeviceInfo.GPUName[device_id].c_str()); 994 995 // Query attributes to determine number of threads/block and blocks/grid. 996 uint16_t workgroup_max_dim[3]; 997 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 998 &workgroup_max_dim); 999 if (err != HSA_STATUS_SUCCESS) { 1000 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 1001 DP("Error getting grid dims: num groups : %d\n", 1002 RTLDeviceInfoTy::DefaultNumTeams); 1003 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 1004 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 1005 DP("Using %d ROCm blocks per grid\n", 1006 DeviceInfo.GroupsPerDevice[device_id]); 1007 } else { 1008 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 1009 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 1010 "at the hard limit\n", 1011 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 1012 } 1013 1014 // Get thread limit 1015 hsa_dim3_t grid_max_dim; 1016 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 1017 if (err == HSA_STATUS_SUCCESS) { 1018 DeviceInfo.ThreadsPerGroup[device_id] = 1019 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 1020 DeviceInfo.GroupsPerDevice[device_id]; 1021 1022 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 1023 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1024 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1025 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 1026 RTLDeviceInfoTy::Max_WG_Size)) { 1027 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1028 } else { 1029 DP("Using ROCm Queried thread limit: %d\n", 1030 DeviceInfo.ThreadsPerGroup[device_id]); 1031 } 1032 } else { 1033 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1034 DP("Error getting max block dimension, use default:%d \n", 1035 RTLDeviceInfoTy::Max_WG_Size); 1036 } 1037 1038 // Get wavefront size 1039 uint32_t wavefront_size = 0; 1040 err = 1041 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 1042 if (err == HSA_STATUS_SUCCESS) { 1043 DP("Queried wavefront size: %d\n", wavefront_size); 1044 DeviceInfo.WarpSize[device_id] = wavefront_size; 1045 } else { 1046 // TODO: Burn the wavefront size into the code object 1047 DP("Warning: Unknown wavefront size, assuming 64\n"); 1048 DeviceInfo.WarpSize[device_id] = 64; 1049 } 1050 1051 // Adjust teams to the env variables 1052 1053 if (DeviceInfo.Env.TeamLimit > 0 && 1054 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 1055 DeviceInfo.Env.TeamLimit))) { 1056 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 1057 DeviceInfo.Env.TeamLimit); 1058 } 1059 1060 // Set default number of teams 1061 if (DeviceInfo.Env.NumTeams > 0) { 1062 DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams; 1063 DP("Default number of teams set according to environment %d\n", 1064 DeviceInfo.Env.NumTeams); 1065 } else { 1066 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 1067 int TeamsPerCU = DefaultTeamsPerCU; 1068 if (TeamsPerCUEnvStr) { 1069 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 1070 } 1071 1072 DeviceInfo.NumTeams[device_id] = 1073 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 1074 DP("Default number of teams = %d * number of compute units %d\n", 1075 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 1076 } 1077 1078 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 1079 DeviceInfo.GroupsPerDevice[device_id])) { 1080 DP("Default number of teams exceeds device limit, capping at %d\n", 1081 DeviceInfo.GroupsPerDevice[device_id]); 1082 } 1083 1084 // Adjust threads to the env variables 1085 if (DeviceInfo.Env.TeamThreadLimit > 0 && 1086 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1087 DeviceInfo.Env.TeamThreadLimit))) { 1088 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 1089 DeviceInfo.Env.TeamThreadLimit); 1090 } 1091 1092 // Set default number of threads 1093 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 1094 DP("Default number of threads set according to library's default %d\n", 1095 RTLDeviceInfoTy::Default_WG_Size); 1096 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1097 DeviceInfo.ThreadsPerGroup[device_id])) { 1098 DP("Default number of threads exceeds device limit, capping at %d\n", 1099 DeviceInfo.ThreadsPerGroup[device_id]); 1100 } 1101 1102 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 1103 device_id, DeviceInfo.GroupsPerDevice[device_id], 1104 DeviceInfo.ThreadsPerGroup[device_id]); 1105 1106 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 1107 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 1108 DeviceInfo.GroupsPerDevice[device_id], 1109 DeviceInfo.GroupsPerDevice[device_id] * 1110 DeviceInfo.ThreadsPerGroup[device_id]); 1111 1112 return OFFLOAD_SUCCESS; 1113 } 1114 1115 namespace { 1116 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 1117 size_t N; 1118 int rc = elf_getshdrnum(elf, &N); 1119 if (rc != 0) { 1120 return nullptr; 1121 } 1122 1123 Elf64_Shdr *result = nullptr; 1124 for (size_t i = 0; i < N; i++) { 1125 Elf_Scn *scn = elf_getscn(elf, i); 1126 if (scn) { 1127 Elf64_Shdr *shdr = elf64_getshdr(scn); 1128 if (shdr) { 1129 if (shdr->sh_type == SHT_HASH) { 1130 if (result == nullptr) { 1131 result = shdr; 1132 } else { 1133 // multiple SHT_HASH sections not handled 1134 return nullptr; 1135 } 1136 } 1137 } 1138 } 1139 } 1140 return result; 1141 } 1142 1143 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1144 const char *symname) { 1145 1146 assert(section_hash); 1147 size_t section_symtab_index = section_hash->sh_link; 1148 Elf64_Shdr *section_symtab = 1149 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1150 size_t section_strtab_index = section_symtab->sh_link; 1151 1152 const Elf64_Sym *symtab = 1153 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1154 1155 const uint32_t *hashtab = 1156 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1157 1158 // Layout: 1159 // nbucket 1160 // nchain 1161 // bucket[nbucket] 1162 // chain[nchain] 1163 uint32_t nbucket = hashtab[0]; 1164 const uint32_t *bucket = &hashtab[2]; 1165 const uint32_t *chain = &hashtab[nbucket + 2]; 1166 1167 const size_t max = strlen(symname) + 1; 1168 const uint32_t hash = elf_hash(symname); 1169 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1170 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1171 if (strncmp(symname, n, max) == 0) { 1172 return &symtab[i]; 1173 } 1174 } 1175 1176 return nullptr; 1177 } 1178 1179 struct symbol_info { 1180 void *addr = nullptr; 1181 uint32_t size = UINT32_MAX; 1182 uint32_t sh_type = SHT_NULL; 1183 }; 1184 1185 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1186 symbol_info *res) { 1187 if (elf_kind(elf) != ELF_K_ELF) { 1188 return 1; 1189 } 1190 1191 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1192 if (!section_hash) { 1193 return 1; 1194 } 1195 1196 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1197 if (!sym) { 1198 return 1; 1199 } 1200 1201 if (sym->st_size > UINT32_MAX) { 1202 return 1; 1203 } 1204 1205 if (sym->st_shndx == SHN_UNDEF) { 1206 return 1; 1207 } 1208 1209 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1210 if (!section) { 1211 return 1; 1212 } 1213 1214 Elf64_Shdr *header = elf64_getshdr(section); 1215 if (!header) { 1216 return 1; 1217 } 1218 1219 res->addr = sym->st_value + base; 1220 res->size = static_cast<uint32_t>(sym->st_size); 1221 res->sh_type = header->sh_type; 1222 return 0; 1223 } 1224 1225 int get_symbol_info_without_loading(char *base, size_t img_size, 1226 const char *symname, symbol_info *res) { 1227 Elf *elf = elf_memory(base, img_size); 1228 if (elf) { 1229 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1230 elf_end(elf); 1231 return rc; 1232 } 1233 return 1; 1234 } 1235 1236 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1237 const char *symname, void **var_addr, 1238 uint32_t *var_size) { 1239 symbol_info si; 1240 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1241 if (rc == 0) { 1242 *var_addr = si.addr; 1243 *var_size = si.size; 1244 return HSA_STATUS_SUCCESS; 1245 } else { 1246 return HSA_STATUS_ERROR; 1247 } 1248 } 1249 1250 template <typename C> 1251 hsa_status_t module_register_from_memory_to_place( 1252 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1253 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1254 void *module_bytes, size_t module_size, int DeviceId, C cb, 1255 std::vector<hsa_executable_t> &HSAExecutables) { 1256 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1257 C *unwrapped = static_cast<C *>(cb_state); 1258 return (*unwrapped)(data, size); 1259 }; 1260 return core::RegisterModuleFromMemory( 1261 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1262 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1263 HSAExecutables); 1264 } 1265 } // namespace 1266 1267 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1268 uint64_t device_State_bytes = 0; 1269 { 1270 // If this is the deviceRTL, get the state variable size 1271 symbol_info size_si; 1272 int rc = get_symbol_info_without_loading( 1273 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1274 1275 if (rc == 0) { 1276 if (size_si.size != sizeof(uint64_t)) { 1277 DP("Found device_State_size variable with wrong size\n"); 1278 return 0; 1279 } 1280 1281 // Read number of bytes directly from the elf 1282 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1283 } 1284 } 1285 return device_State_bytes; 1286 } 1287 1288 static __tgt_target_table * 1289 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1290 1291 static __tgt_target_table * 1292 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1293 1294 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1295 __tgt_device_image *image) { 1296 DeviceInfo.load_run_lock.lock(); 1297 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1298 DeviceInfo.load_run_lock.unlock(); 1299 return res; 1300 } 1301 1302 struct device_environment { 1303 // initialise an omptarget_device_environmentTy in the deviceRTL 1304 // patches around differences in the deviceRTL between trunk, aomp, 1305 // rocmcc. Over time these differences will tend to zero and this class 1306 // simplified. 1307 // Symbol may be in .data or .bss, and may be missing fields: 1308 // - aomp has debug_level, num_devices, device_num 1309 // - trunk has debug_level 1310 // - under review in trunk is debug_level, device_num 1311 // - rocmcc matches aomp, patch to swap num_devices and device_num 1312 1313 // The symbol may also have been deadstripped because the device side 1314 // accessors were unused. 1315 1316 // If the symbol is in .data (aomp, rocm) it can be written directly. 1317 // If it is in .bss, we must wait for it to be allocated space on the 1318 // gpu (trunk) and initialize after loading. 1319 const char *sym() { return "omptarget_device_environment"; } 1320 1321 omptarget_device_environmentTy host_device_env; 1322 symbol_info si; 1323 bool valid = false; 1324 1325 __tgt_device_image *image; 1326 const size_t img_size; 1327 1328 device_environment(int device_id, int number_devices, 1329 __tgt_device_image *image, const size_t img_size) 1330 : image(image), img_size(img_size) { 1331 1332 host_device_env.num_devices = number_devices; 1333 host_device_env.device_num = device_id; 1334 host_device_env.debug_level = 0; 1335 #ifdef OMPTARGET_DEBUG 1336 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1337 host_device_env.debug_level = std::stoi(envStr); 1338 } 1339 #endif 1340 1341 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1342 img_size, sym(), &si); 1343 if (rc != 0) { 1344 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1345 return; 1346 } 1347 1348 if (si.size > sizeof(host_device_env)) { 1349 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1350 sizeof(host_device_env)); 1351 return; 1352 } 1353 1354 valid = true; 1355 } 1356 1357 bool in_image() { return si.sh_type != SHT_NOBITS; } 1358 1359 hsa_status_t before_loading(void *data, size_t size) { 1360 if (valid) { 1361 if (in_image()) { 1362 DP("Setting global device environment before load (%u bytes)\n", 1363 si.size); 1364 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1365 void *pos = (char *)data + offset; 1366 memcpy(pos, &host_device_env, si.size); 1367 } 1368 } 1369 return HSA_STATUS_SUCCESS; 1370 } 1371 1372 hsa_status_t after_loading() { 1373 if (valid) { 1374 if (!in_image()) { 1375 DP("Setting global device environment after load (%u bytes)\n", 1376 si.size); 1377 int device_id = host_device_env.device_num; 1378 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1379 void *state_ptr; 1380 uint32_t state_ptr_size; 1381 hsa_status_t err = interop_hsa_get_symbol_info( 1382 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1383 if (err != HSA_STATUS_SUCCESS) { 1384 DP("failed to find %s in loaded image\n", sym()); 1385 return err; 1386 } 1387 1388 if (state_ptr_size != si.size) { 1389 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1390 si.size); 1391 return HSA_STATUS_ERROR; 1392 } 1393 1394 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1395 state_ptr_size, device_id); 1396 } 1397 } 1398 return HSA_STATUS_SUCCESS; 1399 } 1400 }; 1401 1402 static hsa_status_t impl_calloc(void **ret_ptr, size_t size, int DeviceId) { 1403 uint64_t rounded = 4 * ((size + 3) / 4); 1404 void *ptr; 1405 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(DeviceId); 1406 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, rounded, 0, &ptr); 1407 if (err != HSA_STATUS_SUCCESS) { 1408 return err; 1409 } 1410 1411 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1412 if (rc != HSA_STATUS_SUCCESS) { 1413 DP("zero fill device_state failed with %u\n", rc); 1414 core::Runtime::Memfree(ptr); 1415 return HSA_STATUS_ERROR; 1416 } 1417 1418 *ret_ptr = ptr; 1419 return HSA_STATUS_SUCCESS; 1420 } 1421 1422 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1423 symbol_info si; 1424 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1425 return (rc == 0) && (si.addr != nullptr); 1426 } 1427 1428 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1429 __tgt_device_image *image) { 1430 // This function loads the device image onto gpu[device_id] and does other 1431 // per-image initialization work. Specifically: 1432 // 1433 // - Initialize an omptarget_device_environmentTy instance embedded in the 1434 // image at the symbol "omptarget_device_environment" 1435 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1436 // 1437 // - Allocate a large array per-gpu (could be moved to init_device) 1438 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1439 // - Allocate at least that many bytes of gpu memory 1440 // - Zero initialize it 1441 // - Write the pointer to the symbol omptarget_nvptx_device_State 1442 // 1443 // - Pulls some per-kernel information together from various sources and 1444 // records it in the KernelsList for quicker access later 1445 // 1446 // The initialization can be done before or after loading the image onto the 1447 // gpu. This function presently does a mixture. Using the hsa api to get/set 1448 // the information is simpler to implement, in exchange for more complicated 1449 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1450 // back from the gpu vs a hashtable lookup on the host. 1451 1452 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1453 1454 DeviceInfo.clearOffloadEntriesTable(device_id); 1455 1456 // We do not need to set the ELF version because the caller of this function 1457 // had to do that to decide the right runtime to use 1458 1459 if (!elf_machine_id_is_amdgcn(image)) { 1460 return NULL; 1461 } 1462 1463 { 1464 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1465 img_size); 1466 1467 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1468 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1469 hsa_status_t err = module_register_from_memory_to_place( 1470 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1471 [&](void *data, size_t size) { 1472 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1473 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1474 __ATOMIC_RELEASE); 1475 } 1476 return env.before_loading(data, size); 1477 }, 1478 DeviceInfo.HSAExecutables); 1479 1480 check("Module registering", err); 1481 if (err != HSA_STATUS_SUCCESS) { 1482 const char *DeviceName = DeviceInfo.GPUName[device_id].c_str(); 1483 const char *ElfName = get_elf_mach_gfx_name(elf_e_flags(image)); 1484 1485 if (strcmp(DeviceName, ElfName) != 0) { 1486 DP("Possible gpu arch mismatch: device:%s, image:%s please check" 1487 " compiler flag: -march=<gpu>\n", 1488 DeviceName, ElfName); 1489 } else { 1490 DP("Error loading image onto GPU: %s\n", get_error_string(err)); 1491 } 1492 1493 return NULL; 1494 } 1495 1496 err = env.after_loading(); 1497 if (err != HSA_STATUS_SUCCESS) { 1498 return NULL; 1499 } 1500 } 1501 1502 DP("AMDGPU module successfully loaded!\n"); 1503 1504 { 1505 // the device_State array is either large value in bss or a void* that 1506 // needs to be assigned to a pointer to an array of size device_state_bytes 1507 // If absent, it has been deadstripped and needs no setup. 1508 1509 void *state_ptr; 1510 uint32_t state_ptr_size; 1511 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1512 hsa_status_t err = interop_hsa_get_symbol_info( 1513 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1514 &state_ptr_size); 1515 1516 if (err != HSA_STATUS_SUCCESS) { 1517 DP("No device_state symbol found, skipping initialization\n"); 1518 } else { 1519 if (state_ptr_size < sizeof(void *)) { 1520 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1521 sizeof(void *)); 1522 return NULL; 1523 } 1524 1525 // if it's larger than a void*, assume it's a bss array and no further 1526 // initialization is required. Only try to set up a pointer for 1527 // sizeof(void*) 1528 if (state_ptr_size == sizeof(void *)) { 1529 uint64_t device_State_bytes = 1530 get_device_State_bytes((char *)image->ImageStart, img_size); 1531 if (device_State_bytes == 0) { 1532 DP("Can't initialize device_State, missing size information\n"); 1533 return NULL; 1534 } 1535 1536 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1537 if (dss.first.get() == nullptr) { 1538 assert(dss.second == 0); 1539 void *ptr = NULL; 1540 hsa_status_t err = impl_calloc(&ptr, device_State_bytes, device_id); 1541 if (err != HSA_STATUS_SUCCESS) { 1542 DP("Failed to allocate device_state array\n"); 1543 return NULL; 1544 } 1545 dss = { 1546 std::unique_ptr<void, RTLDeviceInfoTy::implFreePtrDeletor>{ptr}, 1547 device_State_bytes, 1548 }; 1549 } 1550 1551 void *ptr = dss.first.get(); 1552 if (device_State_bytes != dss.second) { 1553 DP("Inconsistent sizes of device_State unsupported\n"); 1554 return NULL; 1555 } 1556 1557 // write ptr to device memory so it can be used by later kernels 1558 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1559 sizeof(void *), device_id); 1560 if (err != HSA_STATUS_SUCCESS) { 1561 DP("memcpy install of state_ptr failed\n"); 1562 return NULL; 1563 } 1564 } 1565 } 1566 } 1567 1568 // Here, we take advantage of the data that is appended after img_end to get 1569 // the symbols' name we need to load. This data consist of the host entries 1570 // begin and end as well as the target name (see the offloading linker script 1571 // creation in clang compiler). 1572 1573 // Find the symbols in the module by name. The name can be obtain by 1574 // concatenating the host entry name with the target name 1575 1576 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1577 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1578 1579 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1580 1581 if (!e->addr) { 1582 // The host should have always something in the address to 1583 // uniquely identify the target region. 1584 DP("Analyzing host entry '<null>' (size = %lld)...\n", 1585 (unsigned long long)e->size); 1586 return NULL; 1587 } 1588 1589 if (e->size) { 1590 __tgt_offload_entry entry = *e; 1591 1592 void *varptr; 1593 uint32_t varsize; 1594 1595 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1596 hsa_status_t err = interop_hsa_get_symbol_info( 1597 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1598 1599 if (err != HSA_STATUS_SUCCESS) { 1600 // Inform the user what symbol prevented offloading 1601 DP("Loading global '%s' (Failed)\n", e->name); 1602 return NULL; 1603 } 1604 1605 if (varsize != e->size) { 1606 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1607 varsize, e->size); 1608 return NULL; 1609 } 1610 1611 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1612 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1613 entry.addr = (void *)varptr; 1614 1615 DeviceInfo.addOffloadEntry(device_id, entry); 1616 1617 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1618 e->flags & OMP_DECLARE_TARGET_LINK) { 1619 // If unified memory is present any target link variables 1620 // can access host addresses directly. There is no longer a 1621 // need for device copies. 1622 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1623 sizeof(void *), device_id); 1624 if (err != HSA_STATUS_SUCCESS) 1625 DP("Error when copying USM\n"); 1626 DP("Copy linked variable host address (" DPxMOD ")" 1627 "to device address (" DPxMOD ")\n", 1628 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1629 } 1630 1631 continue; 1632 } 1633 1634 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1635 1636 uint32_t kernarg_segment_size; 1637 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1638 hsa_status_t err = interop_hsa_get_kernel_info( 1639 KernelInfoMap, device_id, e->name, 1640 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1641 &kernarg_segment_size); 1642 1643 // each arg is a void * in this openmp implementation 1644 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1645 std::vector<size_t> arg_sizes(arg_num); 1646 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1647 it != arg_sizes.end(); it++) { 1648 *it = sizeof(void *); 1649 } 1650 1651 // default value GENERIC (in case symbol is missing from cubin file) 1652 llvm::omp::OMPTgtExecModeFlags ExecModeVal = 1653 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC; 1654 1655 // get flat group size if present, else Default_WG_Size 1656 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1657 1658 // get Kernel Descriptor if present. 1659 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1660 struct KernDescValType { 1661 uint16_t Version; 1662 uint16_t TSize; 1663 uint16_t WG_Size; 1664 }; 1665 struct KernDescValType KernDescVal; 1666 std::string KernDescNameStr(e->name); 1667 KernDescNameStr += "_kern_desc"; 1668 const char *KernDescName = KernDescNameStr.c_str(); 1669 1670 void *KernDescPtr; 1671 uint32_t KernDescSize; 1672 void *CallStackAddr = nullptr; 1673 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1674 KernDescName, &KernDescPtr, &KernDescSize); 1675 1676 if (err == HSA_STATUS_SUCCESS) { 1677 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1678 DP("Loading global computation properties '%s' - size mismatch (%u != " 1679 "%lu)\n", 1680 KernDescName, KernDescSize, sizeof(KernDescVal)); 1681 1682 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1683 1684 // Check structure size against recorded size. 1685 if ((size_t)KernDescSize != KernDescVal.TSize) 1686 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1687 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1688 1689 DP("After loading global for %s KernDesc \n", KernDescName); 1690 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1691 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1692 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1693 1694 if (KernDescVal.WG_Size == 0) { 1695 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1696 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1697 } 1698 WGSizeVal = KernDescVal.WG_Size; 1699 DP("WGSizeVal %d\n", WGSizeVal); 1700 check("Loading KernDesc computation property", err); 1701 } else { 1702 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1703 1704 // Flat group size 1705 std::string WGSizeNameStr(e->name); 1706 WGSizeNameStr += "_wg_size"; 1707 const char *WGSizeName = WGSizeNameStr.c_str(); 1708 1709 void *WGSizePtr; 1710 uint32_t WGSize; 1711 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1712 WGSizeName, &WGSizePtr, &WGSize); 1713 1714 if (err == HSA_STATUS_SUCCESS) { 1715 if ((size_t)WGSize != sizeof(int16_t)) { 1716 DP("Loading global computation properties '%s' - size mismatch (%u " 1717 "!= " 1718 "%lu)\n", 1719 WGSizeName, WGSize, sizeof(int16_t)); 1720 return NULL; 1721 } 1722 1723 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1724 1725 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1726 1727 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1728 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1729 DP("Error wrong WGSize value specified in HSA code object file: " 1730 "%d\n", 1731 WGSizeVal); 1732 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1733 } 1734 } else { 1735 DP("Warning: Loading WGSize '%s' - symbol not found, " 1736 "using default value %d\n", 1737 WGSizeName, WGSizeVal); 1738 } 1739 1740 check("Loading WGSize computation property", err); 1741 } 1742 1743 // Read execution mode from global in binary 1744 std::string ExecModeNameStr(e->name); 1745 ExecModeNameStr += "_exec_mode"; 1746 const char *ExecModeName = ExecModeNameStr.c_str(); 1747 1748 void *ExecModePtr; 1749 uint32_t varsize; 1750 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1751 ExecModeName, &ExecModePtr, &varsize); 1752 1753 if (err == HSA_STATUS_SUCCESS) { 1754 if ((size_t)varsize != sizeof(llvm::omp::OMPTgtExecModeFlags)) { 1755 DP("Loading global computation properties '%s' - size mismatch(%u != " 1756 "%lu)\n", 1757 ExecModeName, varsize, sizeof(llvm::omp::OMPTgtExecModeFlags)); 1758 return NULL; 1759 } 1760 1761 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1762 1763 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1764 ExecModeVal); 1765 1766 if (ExecModeVal < 0 || 1767 ExecModeVal > llvm::omp::OMP_TGT_EXEC_MODE_GENERIC_SPMD) { 1768 DP("Error wrong exec_mode value specified in HSA code object file: " 1769 "%d\n", 1770 ExecModeVal); 1771 return NULL; 1772 } 1773 } else { 1774 DP("Loading global exec_mode '%s' - symbol missing, using default " 1775 "value " 1776 "GENERIC (1)\n", 1777 ExecModeName); 1778 } 1779 check("Loading computation property", err); 1780 1781 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1782 CallStackAddr, e->name, kernarg_segment_size, 1783 DeviceInfo.KernArgPool)); 1784 __tgt_offload_entry entry = *e; 1785 entry.addr = (void *)&KernelsList.back(); 1786 DeviceInfo.addOffloadEntry(device_id, entry); 1787 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1788 } 1789 1790 return DeviceInfo.getOffloadEntriesTable(device_id); 1791 } 1792 1793 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1794 void *ptr = NULL; 1795 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1796 1797 if (kind != TARGET_ALLOC_DEFAULT) { 1798 REPORT("Invalid target data allocation kind or requested allocator not " 1799 "implemented yet\n"); 1800 return NULL; 1801 } 1802 1803 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(device_id); 1804 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, size, 0, &ptr); 1805 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1806 (long long unsigned)(Elf64_Addr)ptr); 1807 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1808 return ptr; 1809 } 1810 1811 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1812 int64_t size) { 1813 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1814 __tgt_async_info AsyncInfo; 1815 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1816 if (rc != OFFLOAD_SUCCESS) 1817 return OFFLOAD_FAIL; 1818 1819 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1820 } 1821 1822 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1823 int64_t size, __tgt_async_info *AsyncInfo) { 1824 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1825 if (AsyncInfo) { 1826 initAsyncInfo(AsyncInfo); 1827 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1828 } else { 1829 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1830 } 1831 } 1832 1833 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1834 int64_t size) { 1835 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1836 __tgt_async_info AsyncInfo; 1837 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1838 if (rc != OFFLOAD_SUCCESS) 1839 return OFFLOAD_FAIL; 1840 1841 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1842 } 1843 1844 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1845 void *tgt_ptr, int64_t size, 1846 __tgt_async_info *AsyncInfo) { 1847 assert(AsyncInfo && "AsyncInfo is nullptr"); 1848 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1849 initAsyncInfo(AsyncInfo); 1850 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1851 } 1852 1853 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1854 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1855 hsa_status_t err; 1856 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1857 err = core::Runtime::Memfree(tgt_ptr); 1858 if (err != HSA_STATUS_SUCCESS) { 1859 DP("Error when freeing CUDA memory\n"); 1860 return OFFLOAD_FAIL; 1861 } 1862 return OFFLOAD_SUCCESS; 1863 } 1864 1865 // Determine launch values for kernel. 1866 struct launchVals { 1867 int WorkgroupSize; 1868 int GridSize; 1869 }; 1870 launchVals getLaunchVals(int WarpSize, EnvironmentVariables Env, 1871 int ConstWGSize, 1872 llvm::omp::OMPTgtExecModeFlags ExecutionMode, 1873 int num_teams, int thread_limit, 1874 uint64_t loop_tripcount, int DeviceNumTeams) { 1875 1876 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1877 int num_groups = 0; 1878 1879 int Max_Teams = 1880 Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams; 1881 if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit) 1882 Max_Teams = RTLDeviceInfoTy::HardTeamLimit; 1883 1884 if (print_kernel_trace & STARTUP_DETAILS) { 1885 DP("RTLDeviceInfoTy::Max_Teams: %d\n", RTLDeviceInfoTy::Max_Teams); 1886 DP("Max_Teams: %d\n", Max_Teams); 1887 DP("RTLDeviceInfoTy::Warp_Size: %d\n", WarpSize); 1888 DP("RTLDeviceInfoTy::Max_WG_Size: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1889 DP("RTLDeviceInfoTy::Default_WG_Size: %d\n", 1890 RTLDeviceInfoTy::Default_WG_Size); 1891 DP("thread_limit: %d\n", thread_limit); 1892 DP("threadsPerGroup: %d\n", threadsPerGroup); 1893 DP("ConstWGSize: %d\n", ConstWGSize); 1894 } 1895 // check for thread_limit() clause 1896 if (thread_limit > 0) { 1897 threadsPerGroup = thread_limit; 1898 DP("Setting threads per block to requested %d\n", thread_limit); 1899 // Add master warp for GENERIC 1900 if (ExecutionMode == 1901 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) { 1902 threadsPerGroup += WarpSize; 1903 DP("Adding master wavefront: +%d threads\n", WarpSize); 1904 } 1905 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1906 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1907 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1908 } 1909 } 1910 // check flat_max_work_group_size attr here 1911 if (threadsPerGroup > ConstWGSize) { 1912 threadsPerGroup = ConstWGSize; 1913 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1914 threadsPerGroup); 1915 } 1916 if (print_kernel_trace & STARTUP_DETAILS) 1917 DP("threadsPerGroup: %d\n", threadsPerGroup); 1918 DP("Preparing %d threads\n", threadsPerGroup); 1919 1920 // Set default num_groups (teams) 1921 if (Env.TeamLimit > 0) 1922 num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit; 1923 else 1924 num_groups = Max_Teams; 1925 DP("Set default num of groups %d\n", num_groups); 1926 1927 if (print_kernel_trace & STARTUP_DETAILS) { 1928 DP("num_groups: %d\n", num_groups); 1929 DP("num_teams: %d\n", num_teams); 1930 } 1931 1932 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1933 // This reduction is typical for default case (no thread_limit clause). 1934 // or when user goes crazy with num_teams clause. 1935 // FIXME: We cant distinguish between a constant or variable thread limit. 1936 // So we only handle constant thread_limits. 1937 if (threadsPerGroup > 1938 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1939 // Should we round threadsPerGroup up to nearest WarpSize 1940 // here? 1941 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1942 1943 // check for num_teams() clause 1944 if (num_teams > 0) { 1945 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1946 } 1947 if (print_kernel_trace & STARTUP_DETAILS) { 1948 DP("num_groups: %d\n", num_groups); 1949 DP("Env.NumTeams %d\n", Env.NumTeams); 1950 DP("Env.TeamLimit %d\n", Env.TeamLimit); 1951 } 1952 1953 if (Env.NumTeams > 0) { 1954 num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups; 1955 DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams); 1956 } else if (Env.TeamLimit > 0) { 1957 num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups; 1958 DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit); 1959 } else { 1960 if (num_teams <= 0) { 1961 if (loop_tripcount > 0) { 1962 if (ExecutionMode == 1963 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_SPMD) { 1964 // round up to the nearest integer 1965 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1966 } else if (ExecutionMode == 1967 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) { 1968 num_groups = loop_tripcount; 1969 } else /* OMP_TGT_EXEC_MODE_GENERIC_SPMD */ { 1970 // This is a generic kernel that was transformed to use SPMD-mode 1971 // execution but uses Generic-mode semantics for scheduling. 1972 num_groups = loop_tripcount; 1973 } 1974 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1975 "threads per block %d\n", 1976 num_groups, loop_tripcount, threadsPerGroup); 1977 } 1978 } else { 1979 num_groups = num_teams; 1980 } 1981 if (num_groups > Max_Teams) { 1982 num_groups = Max_Teams; 1983 if (print_kernel_trace & STARTUP_DETAILS) 1984 DP("Limiting num_groups %d to Max_Teams %d \n", num_groups, Max_Teams); 1985 } 1986 if (num_groups > num_teams && num_teams > 0) { 1987 num_groups = num_teams; 1988 if (print_kernel_trace & STARTUP_DETAILS) 1989 DP("Limiting num_groups %d to clause num_teams %d \n", num_groups, 1990 num_teams); 1991 } 1992 } 1993 1994 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1995 if (num_teams > 0) { 1996 num_groups = num_teams; 1997 // Cap num_groups to EnvMaxTeamsDefault if set. 1998 if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault) 1999 num_groups = Env.MaxTeamsDefault; 2000 } 2001 if (print_kernel_trace & STARTUP_DETAILS) { 2002 DP("threadsPerGroup: %d\n", threadsPerGroup); 2003 DP("num_groups: %d\n", num_groups); 2004 DP("loop_tripcount: %ld\n", loop_tripcount); 2005 } 2006 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 2007 threadsPerGroup); 2008 2009 launchVals res; 2010 res.WorkgroupSize = threadsPerGroup; 2011 res.GridSize = threadsPerGroup * num_groups; 2012 return res; 2013 } 2014 2015 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 2016 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 2017 bool full = true; 2018 while (full) { 2019 full = 2020 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 2021 } 2022 return packet_id; 2023 } 2024 2025 static int32_t __tgt_rtl_run_target_team_region_locked( 2026 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2027 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2028 int32_t thread_limit, uint64_t loop_tripcount); 2029 2030 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 2031 void **tgt_args, 2032 ptrdiff_t *tgt_offsets, 2033 int32_t arg_num, int32_t num_teams, 2034 int32_t thread_limit, 2035 uint64_t loop_tripcount) { 2036 2037 DeviceInfo.load_run_lock.lock_shared(); 2038 int32_t res = __tgt_rtl_run_target_team_region_locked( 2039 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 2040 thread_limit, loop_tripcount); 2041 2042 DeviceInfo.load_run_lock.unlock_shared(); 2043 return res; 2044 } 2045 2046 int32_t __tgt_rtl_run_target_team_region_locked( 2047 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2048 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2049 int32_t thread_limit, uint64_t loop_tripcount) { 2050 // Set the context we are using 2051 // update thread limit content in gpu memory if un-initialized or specified 2052 // from host 2053 2054 DP("Run target team region thread_limit %d\n", thread_limit); 2055 2056 // All args are references. 2057 std::vector<void *> args(arg_num); 2058 std::vector<void *> ptrs(arg_num); 2059 2060 DP("Arg_num: %d\n", arg_num); 2061 for (int32_t i = 0; i < arg_num; ++i) { 2062 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 2063 args[i] = &ptrs[i]; 2064 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 2065 } 2066 2067 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 2068 2069 std::string kernel_name = std::string(KernelInfo->Name); 2070 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 2071 if (KernelInfoTable[device_id].find(kernel_name) == 2072 KernelInfoTable[device_id].end()) { 2073 DP("Kernel %s not found\n", kernel_name.c_str()); 2074 return OFFLOAD_FAIL; 2075 } 2076 2077 const atl_kernel_info_t KernelInfoEntry = 2078 KernelInfoTable[device_id][kernel_name]; 2079 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 2080 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 2081 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 2082 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 2083 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 2084 2085 assert(arg_num == (int)KernelInfoEntry.num_args); 2086 2087 /* 2088 * Set limit based on ThreadsPerGroup and GroupsPerDevice 2089 */ 2090 launchVals LV = 2091 getLaunchVals(DeviceInfo.WarpSize[device_id], DeviceInfo.Env, 2092 KernelInfo->ConstWGSize, KernelInfo->ExecutionMode, 2093 num_teams, // From run_region arg 2094 thread_limit, // From run_region arg 2095 loop_tripcount, // From run_region arg 2096 DeviceInfo.NumTeams[KernelInfo->device_id]); 2097 const int GridSize = LV.GridSize; 2098 const int WorkgroupSize = LV.WorkgroupSize; 2099 2100 if (print_kernel_trace >= LAUNCH) { 2101 int num_groups = GridSize / WorkgroupSize; 2102 // enum modes are SPMD, GENERIC, NONE 0,1,2 2103 // if doing rtl timing, print to stderr, unless stdout requested. 2104 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 2105 fprintf(traceToStdout ? stdout : stderr, 2106 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 2107 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 2108 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 2109 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 2110 arg_num, num_groups, WorkgroupSize, num_teams, thread_limit, 2111 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 2112 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 2113 } 2114 2115 // Run on the device. 2116 { 2117 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id].get(); 2118 if (!queue) { 2119 return OFFLOAD_FAIL; 2120 } 2121 uint64_t packet_id = acquire_available_packet_id(queue); 2122 2123 const uint32_t mask = queue->size - 1; // size is a power of 2 2124 hsa_kernel_dispatch_packet_t *packet = 2125 (hsa_kernel_dispatch_packet_t *)queue->base_address + 2126 (packet_id & mask); 2127 2128 // packet->header is written last 2129 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 2130 packet->workgroup_size_x = WorkgroupSize; 2131 packet->workgroup_size_y = 1; 2132 packet->workgroup_size_z = 1; 2133 packet->reserved0 = 0; 2134 packet->grid_size_x = GridSize; 2135 packet->grid_size_y = 1; 2136 packet->grid_size_z = 1; 2137 packet->private_segment_size = KernelInfoEntry.private_segment_size; 2138 packet->group_segment_size = KernelInfoEntry.group_segment_size; 2139 packet->kernel_object = KernelInfoEntry.kernel_object; 2140 packet->kernarg_address = 0; // use the block allocator 2141 packet->reserved2 = 0; // impl writes id_ here 2142 packet->completion_signal = {0}; // may want a pool of signals 2143 2144 KernelArgPool *ArgPool = nullptr; 2145 void *kernarg = nullptr; 2146 { 2147 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 2148 if (it != KernelArgPoolMap.end()) { 2149 ArgPool = (it->second).get(); 2150 } 2151 } 2152 if (!ArgPool) { 2153 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 2154 device_id); 2155 } 2156 { 2157 if (ArgPool) { 2158 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 2159 kernarg = ArgPool->allocate(arg_num); 2160 } 2161 if (!kernarg) { 2162 DP("Allocate kernarg failed\n"); 2163 return OFFLOAD_FAIL; 2164 } 2165 2166 // Copy explicit arguments 2167 for (int i = 0; i < arg_num; i++) { 2168 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 2169 } 2170 2171 // Initialize implicit arguments. TODO: Which of these can be dropped 2172 impl_implicit_args_t *impl_args = 2173 reinterpret_cast<impl_implicit_args_t *>( 2174 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 2175 memset(impl_args, 0, 2176 sizeof(impl_implicit_args_t)); // may not be necessary 2177 impl_args->offset_x = 0; 2178 impl_args->offset_y = 0; 2179 impl_args->offset_z = 0; 2180 2181 // assign a hostcall buffer for the selected Q 2182 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 2183 // hostrpc_assign_buffer is not thread safe, and this function is 2184 // under a multiple reader lock, not a writer lock. 2185 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 2186 pthread_mutex_lock(&hostcall_init_lock); 2187 impl_args->hostcall_ptr = hostrpc_assign_buffer( 2188 DeviceInfo.HSAAgents[device_id], queue, device_id); 2189 pthread_mutex_unlock(&hostcall_init_lock); 2190 if (!impl_args->hostcall_ptr) { 2191 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 2192 "error\n"); 2193 return OFFLOAD_FAIL; 2194 } 2195 } 2196 2197 packet->kernarg_address = kernarg; 2198 } 2199 2200 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 2201 if (s.handle == 0) { 2202 DP("Failed to get signal instance\n"); 2203 return OFFLOAD_FAIL; 2204 } 2205 packet->completion_signal = s; 2206 hsa_signal_store_relaxed(packet->completion_signal, 1); 2207 2208 // Publish the packet indicating it is ready to be processed 2209 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 2210 core::create_header(), packet->setup); 2211 2212 // Since the packet is already published, its contents must not be 2213 // accessed any more 2214 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 2215 2216 while (hsa_signal_wait_scacquire(s, HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 2217 HSA_WAIT_STATE_BLOCKED) != 0) 2218 ; 2219 2220 assert(ArgPool); 2221 ArgPool->deallocate(kernarg); 2222 DeviceInfo.FreeSignalPool.push(s); 2223 } 2224 2225 DP("Kernel completed\n"); 2226 return OFFLOAD_SUCCESS; 2227 } 2228 2229 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2230 void **tgt_args, ptrdiff_t *tgt_offsets, 2231 int32_t arg_num) { 2232 // use one team and one thread 2233 // fix thread num 2234 int32_t team_num = 1; 2235 int32_t thread_limit = 0; // use default 2236 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2237 tgt_offsets, arg_num, team_num, 2238 thread_limit, 0); 2239 } 2240 2241 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2242 void *tgt_entry_ptr, void **tgt_args, 2243 ptrdiff_t *tgt_offsets, 2244 int32_t arg_num, 2245 __tgt_async_info *AsyncInfo) { 2246 assert(AsyncInfo && "AsyncInfo is nullptr"); 2247 initAsyncInfo(AsyncInfo); 2248 2249 // use one team and one thread 2250 // fix thread num 2251 int32_t team_num = 1; 2252 int32_t thread_limit = 0; // use default 2253 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2254 tgt_offsets, arg_num, team_num, 2255 thread_limit, 0); 2256 } 2257 2258 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2259 assert(AsyncInfo && "AsyncInfo is nullptr"); 2260 2261 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2262 // is not ensured by devices.cpp for amdgcn 2263 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2264 if (AsyncInfo->Queue) { 2265 finiAsyncInfo(AsyncInfo); 2266 } 2267 return OFFLOAD_SUCCESS; 2268 } 2269 2270 namespace core { 2271 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 2272 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 2273 &DeviceInfo.HSAAgents[0], NULL, ptr); 2274 } 2275 2276 } // namespace core 2277