1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <elf.h> 19 #include <fstream> 20 #include <functional> 21 #include <iostream> 22 #include <libelf.h> 23 #include <list> 24 #include <memory> 25 #include <mutex> 26 #include <shared_mutex> 27 #include <thread> 28 #include <unordered_map> 29 #include <vector> 30 31 // Header from ATMI interface 32 #include "atmi_interop_hsa.h" 33 #include "atmi_runtime.h" 34 35 #include "internal.h" 36 37 #include "Debug.h" 38 #include "get_elf_mach_gfx_name.h" 39 #include "machine.h" 40 #include "omptargetplugin.h" 41 #include "print_tracing.h" 42 43 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 44 45 #ifndef TARGET_NAME 46 #define TARGET_NAME AMDHSA 47 #endif 48 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 49 50 // hostrpc interface, FIXME: consider moving to its own include these are 51 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 52 // linked as --whole-archive to override the weak symbols that are used to 53 // implement a fallback for toolchains that do not yet have a hostrpc library. 54 extern "C" { 55 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 56 uint32_t device_id); 57 hsa_status_t hostrpc_init(); 58 hsa_status_t hostrpc_terminate(); 59 60 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 61 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 62 return HSA_STATUS_SUCCESS; 63 } 64 __attribute__((weak)) unsigned long 65 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 66 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 67 "missing\n", 68 device_id); 69 return 0; 70 } 71 } 72 73 // Heuristic parameters used for kernel launch 74 // Number of teams per CU to allow scheduling flexibility 75 static const unsigned DefaultTeamsPerCU = 4; 76 77 int print_kernel_trace; 78 79 #ifdef OMPTARGET_DEBUG 80 #define check(msg, status) \ 81 if (status != HSA_STATUS_SUCCESS) { \ 82 DP(#msg " failed\n"); \ 83 } else { \ 84 DP(#msg " succeeded\n"); \ 85 } 86 #else 87 #define check(msg, status) \ 88 {} 89 #endif 90 91 #include "elf_common.h" 92 93 namespace core { 94 hsa_status_t RegisterModuleFromMemory( 95 std::map<std::string, atl_kernel_info_t> &KernelInfo, 96 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, void *, size_t, 97 hsa_agent_t agent, 98 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 99 void *cb_state), 100 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables); 101 } 102 103 namespace hsa { 104 template <typename C> hsa_status_t iterate_agents(C cb) { 105 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 106 C *unwrapped = static_cast<C *>(data); 107 return (*unwrapped)(agent); 108 }; 109 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 110 } 111 112 template <typename C> 113 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { 114 auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { 115 C *unwrapped = static_cast<C *>(data); 116 return (*unwrapped)(MemoryPool); 117 }; 118 119 return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb)); 120 } 121 122 } // namespace hsa 123 124 /// Keep entries table per device 125 struct FuncOrGblEntryTy { 126 __tgt_target_table Table; 127 std::vector<__tgt_offload_entry> Entries; 128 }; 129 130 enum ExecutionModeType { 131 SPMD, // constructors, destructors, 132 // combined constructs (`teams distribute parallel for [simd]`) 133 GENERIC, // everything else 134 NONE 135 }; 136 137 struct KernelArgPool { 138 private: 139 static pthread_mutex_t mutex; 140 141 public: 142 uint32_t kernarg_segment_size; 143 void *kernarg_region = nullptr; 144 std::queue<int> free_kernarg_segments; 145 146 uint32_t kernarg_size_including_implicit() { 147 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 148 } 149 150 ~KernelArgPool() { 151 if (kernarg_region) { 152 auto r = hsa_amd_memory_pool_free(kernarg_region); 153 if (r != HSA_STATUS_SUCCESS) { 154 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 155 } 156 } 157 } 158 159 // Can't really copy or move a mutex 160 KernelArgPool() = default; 161 KernelArgPool(const KernelArgPool &) = delete; 162 KernelArgPool(KernelArgPool &&) = delete; 163 164 KernelArgPool(uint32_t kernarg_segment_size, 165 hsa_amd_memory_pool_t &memory_pool) 166 : kernarg_segment_size(kernarg_segment_size) { 167 168 // atmi uses one pool per kernel for all gpus, with a fixed upper size 169 // preserving that exact scheme here, including the queue<int> 170 171 hsa_status_t err = hsa_amd_memory_pool_allocate( 172 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 173 &kernarg_region); 174 175 if (err != HSA_STATUS_SUCCESS) { 176 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 177 kernarg_region = nullptr; // paranoid 178 return; 179 } 180 181 err = core::allow_access_to_all_gpu_agents(kernarg_region); 182 if (err != HSA_STATUS_SUCCESS) { 183 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 184 get_error_string(err)); 185 auto r = hsa_amd_memory_pool_free(kernarg_region); 186 if (r != HSA_STATUS_SUCCESS) { 187 // if free failed, can't do anything more to resolve it 188 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 189 } 190 kernarg_region = nullptr; 191 return; 192 } 193 194 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 195 free_kernarg_segments.push(i); 196 } 197 } 198 199 void *allocate(uint64_t arg_num) { 200 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 201 lock l(&mutex); 202 void *res = nullptr; 203 if (!free_kernarg_segments.empty()) { 204 205 int free_idx = free_kernarg_segments.front(); 206 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 207 (free_idx * kernarg_size_including_implicit())); 208 assert(free_idx == pointer_to_index(res)); 209 free_kernarg_segments.pop(); 210 } 211 return res; 212 } 213 214 void deallocate(void *ptr) { 215 lock l(&mutex); 216 int idx = pointer_to_index(ptr); 217 free_kernarg_segments.push(idx); 218 } 219 220 private: 221 int pointer_to_index(void *ptr) { 222 ptrdiff_t bytes = 223 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 224 assert(bytes >= 0); 225 assert(bytes % kernarg_size_including_implicit() == 0); 226 return bytes / kernarg_size_including_implicit(); 227 } 228 struct lock { 229 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 230 ~lock() { pthread_mutex_unlock(m); } 231 pthread_mutex_t *m; 232 }; 233 }; 234 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 235 236 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 237 KernelArgPoolMap; 238 239 /// Use a single entity to encode a kernel and a set of flags 240 struct KernelTy { 241 // execution mode of kernel 242 // 0 - SPMD mode (without master warp) 243 // 1 - Generic mode (with master warp) 244 int8_t ExecutionMode; 245 int16_t ConstWGSize; 246 int32_t device_id; 247 void *CallStackAddr = nullptr; 248 const char *Name; 249 250 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 251 void *_CallStackAddr, const char *_Name, 252 uint32_t _kernarg_segment_size, 253 hsa_amd_memory_pool_t &KernArgMemoryPool) 254 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 255 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 256 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 257 258 std::string N(_Name); 259 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 260 KernelArgPoolMap.insert( 261 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 262 _kernarg_segment_size, KernArgMemoryPool)))); 263 } 264 } 265 }; 266 267 /// List that contains all the kernels. 268 /// FIXME: we may need this to be per device and per library. 269 std::list<KernelTy> KernelsList; 270 271 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 272 273 hsa_status_t err = 274 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 275 hsa_device_type_t device_type; 276 // get_info fails iff HSA runtime not yet initialized 277 hsa_status_t err = 278 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 279 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 280 printf("rtl.cpp: err %d\n", err); 281 assert(err == HSA_STATUS_SUCCESS); 282 283 CB(device_type, agent); 284 return HSA_STATUS_SUCCESS; 285 }); 286 287 // iterate_agents fails iff HSA runtime not yet initialized 288 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 289 printf("rtl.cpp: err %d\n", err); 290 } 291 292 return err; 293 } 294 295 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 296 void *data) { 297 if (status != HSA_STATUS_SUCCESS) { 298 const char *status_string; 299 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 300 status_string = "unavailable"; 301 } 302 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 303 __LINE__, source, status, status_string); 304 abort(); 305 } 306 } 307 308 namespace core { 309 namespace { 310 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 311 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 312 } 313 314 uint16_t create_header() { 315 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 316 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 317 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 318 return header; 319 } 320 321 hsa_status_t addKernArgPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 322 std::vector<hsa_amd_memory_pool_t> *Result = 323 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 324 bool AllocAllowed = false; 325 hsa_status_t err = hsa_amd_memory_pool_get_info( 326 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 327 &AllocAllowed); 328 if (err != HSA_STATUS_SUCCESS) { 329 fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n", 330 get_error_string(err)); 331 return err; 332 } 333 334 if (!AllocAllowed) { 335 // nothing needs to be done here. 336 return HSA_STATUS_SUCCESS; 337 } 338 339 uint32_t GlobalFlags = 0; 340 err = hsa_amd_memory_pool_get_info( 341 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 342 if (err != HSA_STATUS_SUCCESS) { 343 fprintf(stderr, "Get memory pool info failed: %s\n", get_error_string(err)); 344 return err; 345 } 346 347 size_t size = 0; 348 err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, 349 &size); 350 if (err != HSA_STATUS_SUCCESS) { 351 fprintf(stderr, "Get memory pool size failed: %s\n", get_error_string(err)); 352 return err; 353 } 354 355 if ((GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) && 356 (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) && 357 size > 0) { 358 Result->push_back(MemoryPool); 359 } 360 361 return HSA_STATUS_SUCCESS; 362 } 363 364 std::pair<hsa_status_t, bool> 365 isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { 366 bool AllocAllowed = false; 367 hsa_status_t Err = hsa_amd_memory_pool_get_info( 368 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 369 &AllocAllowed); 370 if (Err != HSA_STATUS_SUCCESS) { 371 fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n", 372 get_error_string(Err)); 373 return {Err, false}; 374 } 375 376 return {HSA_STATUS_SUCCESS, AllocAllowed}; 377 } 378 379 template <typename AccumulatorFunc> 380 hsa_status_t collectMemoryPools(const std::vector<hsa_agent_t> &Agents, 381 AccumulatorFunc Func) { 382 for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { 383 hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( 384 Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { 385 hsa_status_t Err; 386 bool Valid = false; 387 std::tie(Err, Valid) = isValidMemoryPool(MemoryPool); 388 if (Err != HSA_STATUS_SUCCESS) { 389 return Err; 390 } 391 if (Valid) 392 Func(MemoryPool, DeviceId); 393 return HSA_STATUS_SUCCESS; 394 }); 395 396 if (Err != HSA_STATUS_SUCCESS) { 397 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 398 "Iterate all memory pools", get_error_string(Err)); 399 return Err; 400 } 401 } 402 403 return HSA_STATUS_SUCCESS; 404 } 405 406 std::pair<hsa_status_t, hsa_amd_memory_pool_t> 407 FindKernargPool(const std::vector<hsa_agent_t> &HSAAgents) { 408 std::vector<hsa_amd_memory_pool_t> KernArgPools; 409 for (const auto &Agent : HSAAgents) { 410 hsa_status_t err = HSA_STATUS_SUCCESS; 411 err = hsa_amd_agent_iterate_memory_pools( 412 Agent, addKernArgPool, static_cast<void *>(&KernArgPools)); 413 if (err != HSA_STATUS_SUCCESS) { 414 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 415 "Iterate all memory pools", get_error_string(err)); 416 return {err, hsa_amd_memory_pool_t{}}; 417 } 418 } 419 420 if (KernArgPools.empty()) { 421 fprintf(stderr, "Unable to find any valid kernarg pool\n"); 422 return {HSA_STATUS_ERROR, hsa_amd_memory_pool_t{}}; 423 } 424 425 return {HSA_STATUS_SUCCESS, KernArgPools[0]}; 426 } 427 428 } // namespace 429 } // namespace core 430 431 /// Class containing all the device information 432 class RTLDeviceInfoTy { 433 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 434 435 public: 436 // load binary populates symbol tables and mutates various global state 437 // run uses those symbol tables 438 std::shared_timed_mutex load_run_lock; 439 440 int NumberOfDevices; 441 442 // GPU devices 443 std::vector<hsa_agent_t> HSAAgents; 444 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 445 446 // CPUs 447 std::vector<hsa_agent_t> CPUAgents; 448 449 // Device properties 450 std::vector<int> ComputeUnits; 451 std::vector<int> GroupsPerDevice; 452 std::vector<int> ThreadsPerGroup; 453 std::vector<int> WarpSize; 454 std::vector<std::string> GPUName; 455 456 // OpenMP properties 457 std::vector<int> NumTeams; 458 std::vector<int> NumThreads; 459 460 // OpenMP Environment properties 461 int EnvNumTeams; 462 int EnvTeamLimit; 463 int EnvTeamThreadLimit; 464 int EnvMaxTeamsDefault; 465 466 // OpenMP Requires Flags 467 int64_t RequiresFlags; 468 469 // Resource pools 470 SignalPoolT FreeSignalPool; 471 472 bool hostcall_required = false; 473 474 std::vector<hsa_executable_t> HSAExecutables; 475 476 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 477 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 478 479 hsa_amd_memory_pool_t KernArgPool; 480 481 // fine grained memory pool for host allocations 482 hsa_amd_memory_pool_t HostFineGrainedMemoryPool; 483 484 // fine and coarse-grained memory pools per offloading device 485 std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools; 486 std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools; 487 488 struct atmiFreePtrDeletor { 489 void operator()(void *p) { 490 core::Runtime::Memfree(p); // ignore failure to free 491 } 492 }; 493 494 // device_State shared across loaded binaries, error if inconsistent size 495 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 496 deviceStateStore; 497 498 static const unsigned HardTeamLimit = 499 (1 << 16) - 1; // 64K needed to fit in uint16 500 static const int DefaultNumTeams = 128; 501 static const int Max_Teams = 502 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 503 static const int Warp_Size = 504 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 505 static const int Max_WG_Size = 506 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 507 static const int Default_WG_Size = 508 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 509 510 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 511 size_t size, hsa_agent_t); 512 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 513 MemcpyFunc Func, int32_t deviceId) { 514 hsa_agent_t agent = HSAAgents[deviceId]; 515 hsa_signal_t s = FreeSignalPool.pop(); 516 if (s.handle == 0) { 517 return HSA_STATUS_ERROR; 518 } 519 hsa_status_t r = Func(s, dest, src, size, agent); 520 FreeSignalPool.push(s); 521 return r; 522 } 523 524 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 525 size_t size, int32_t deviceId) { 526 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 527 } 528 529 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 530 size_t size, int32_t deviceId) { 531 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 532 } 533 534 // Record entry point associated with device 535 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 536 assert(device_id < (int32_t)FuncGblEntries.size() && 537 "Unexpected device id!"); 538 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 539 540 E.Entries.push_back(entry); 541 } 542 543 // Return true if the entry is associated with device 544 bool findOffloadEntry(int32_t device_id, void *addr) { 545 assert(device_id < (int32_t)FuncGblEntries.size() && 546 "Unexpected device id!"); 547 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 548 549 for (auto &it : E.Entries) { 550 if (it.addr == addr) 551 return true; 552 } 553 554 return false; 555 } 556 557 // Return the pointer to the target entries table 558 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 559 assert(device_id < (int32_t)FuncGblEntries.size() && 560 "Unexpected device id!"); 561 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 562 563 int32_t size = E.Entries.size(); 564 565 // Table is empty 566 if (!size) 567 return 0; 568 569 __tgt_offload_entry *begin = &E.Entries[0]; 570 __tgt_offload_entry *end = &E.Entries[size - 1]; 571 572 // Update table info according to the entries and return the pointer 573 E.Table.EntriesBegin = begin; 574 E.Table.EntriesEnd = ++end; 575 576 return &E.Table; 577 } 578 579 // Clear entries table for a device 580 void clearOffloadEntriesTable(int device_id) { 581 assert(device_id < (int32_t)FuncGblEntries.size() && 582 "Unexpected device id!"); 583 FuncGblEntries[device_id].emplace_back(); 584 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 585 // KernelArgPoolMap.clear(); 586 E.Entries.clear(); 587 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 588 } 589 590 hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, 591 int DeviceId) { 592 assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); 593 uint32_t GlobalFlags = 0; 594 hsa_status_t Err = hsa_amd_memory_pool_get_info( 595 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 596 597 if (Err != HSA_STATUS_SUCCESS) { 598 return Err; 599 } 600 601 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 602 DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; 603 } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { 604 DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; 605 } 606 607 return HSA_STATUS_SUCCESS; 608 } 609 610 hsa_status_t addHostMemoryPool(hsa_amd_memory_pool_t MemoryPool, 611 int DeviceId) { 612 uint32_t GlobalFlags = 0; 613 hsa_status_t Err = hsa_amd_memory_pool_get_info( 614 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 615 616 if (Err != HSA_STATUS_SUCCESS) { 617 return Err; 618 } 619 620 uint32_t Size; 621 Err = hsa_amd_memory_pool_get_info(MemoryPool, 622 HSA_AMD_MEMORY_POOL_INFO_SIZE, &Size); 623 if (Err != HSA_STATUS_SUCCESS) { 624 return Err; 625 } 626 627 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED && 628 Size > 0) { 629 HostFineGrainedMemoryPool = MemoryPool; 630 } 631 632 return HSA_STATUS_SUCCESS; 633 } 634 635 hsa_status_t setupMemoryPools() { 636 using namespace std::placeholders; 637 hsa_status_t Err; 638 Err = core::collectMemoryPools( 639 CPUAgents, std::bind(&RTLDeviceInfoTy::addHostMemoryPool, this, _1, _2)); 640 if (Err != HSA_STATUS_SUCCESS) { 641 fprintf(stderr, "HSA error in collecting memory pools for CPU: %s\n", 642 get_error_string(Err)); 643 return Err; 644 } 645 Err = core::collectMemoryPools( 646 HSAAgents, std::bind(&RTLDeviceInfoTy::addDeviceMemoryPool, this, _1, _2)); 647 if (Err != HSA_STATUS_SUCCESS) { 648 fprintf(stderr, 649 "HSA error in collecting memory pools for offload devices: %s\n", 650 get_error_string(Err)); 651 return Err; 652 } 653 return HSA_STATUS_SUCCESS; 654 } 655 656 hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { 657 assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && 658 "Invalid device Id"); 659 return DeviceCoarseGrainedMemoryPools[DeviceId]; 660 } 661 662 hsa_amd_memory_pool_t getHostMemoryPool() { 663 return HostFineGrainedMemoryPool; 664 } 665 666 RTLDeviceInfoTy() { 667 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 668 // anytime. You do not need a debug library build. 669 // 0 => no tracing 670 // 1 => tracing dispatch only 671 // >1 => verbosity increase 672 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 673 print_kernel_trace = atoi(envStr); 674 else 675 print_kernel_trace = 0; 676 677 DP("Start initializing HSA-ATMI\n"); 678 hsa_status_t err = core::atl_init_gpu_context(); 679 if (err != HSA_STATUS_SUCCESS) { 680 DP("Error when initializing HSA-ATMI\n"); 681 return; 682 } 683 684 // Init hostcall soon after initializing ATMI 685 hostrpc_init(); 686 687 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 688 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 689 CPUAgents.push_back(Agent); 690 } else { 691 HSAAgents.push_back(Agent); 692 } 693 }); 694 if (err != HSA_STATUS_SUCCESS) 695 return; 696 697 NumberOfDevices = (int)HSAAgents.size(); 698 699 if (NumberOfDevices == 0) { 700 DP("There are no devices supporting HSA.\n"); 701 return; 702 } else { 703 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 704 } 705 std::tie(err, KernArgPool) = core::FindKernargPool(CPUAgents); 706 if (err != HSA_STATUS_SUCCESS) { 707 DP("Error when reading memory pools\n"); 708 return; 709 } 710 711 // Init the device info 712 HSAQueues.resize(NumberOfDevices); 713 FuncGblEntries.resize(NumberOfDevices); 714 ThreadsPerGroup.resize(NumberOfDevices); 715 ComputeUnits.resize(NumberOfDevices); 716 GPUName.resize(NumberOfDevices); 717 GroupsPerDevice.resize(NumberOfDevices); 718 WarpSize.resize(NumberOfDevices); 719 NumTeams.resize(NumberOfDevices); 720 NumThreads.resize(NumberOfDevices); 721 deviceStateStore.resize(NumberOfDevices); 722 KernelInfoTable.resize(NumberOfDevices); 723 SymbolInfoTable.resize(NumberOfDevices); 724 DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); 725 DeviceFineGrainedMemoryPools.resize(NumberOfDevices); 726 727 err = setupMemoryPools(); 728 if (err != HSA_STATUS_SUCCESS) { 729 DP("Error when setting up memory pools"); 730 return; 731 } 732 733 for (int i = 0; i < NumberOfDevices; i++) { 734 HSAQueues[i] = nullptr; 735 } 736 737 for (int i = 0; i < NumberOfDevices; i++) { 738 uint32_t queue_size = 0; 739 { 740 hsa_status_t err = hsa_agent_get_info( 741 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 742 if (err != HSA_STATUS_SUCCESS) { 743 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 744 return; 745 } 746 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 747 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 748 } 749 } 750 751 hsa_status_t rc = hsa_queue_create( 752 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 753 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 754 if (rc != HSA_STATUS_SUCCESS) { 755 DP("Failed to create HSA queue %d\n", i); 756 return; 757 } 758 759 deviceStateStore[i] = {nullptr, 0}; 760 } 761 762 for (int i = 0; i < NumberOfDevices; i++) { 763 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 764 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 765 ComputeUnits[i] = 1; 766 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 767 GroupsPerDevice[i], ThreadsPerGroup[i]); 768 } 769 770 // Get environment variables regarding teams 771 char *envStr = getenv("OMP_TEAM_LIMIT"); 772 if (envStr) { 773 // OMP_TEAM_LIMIT has been set 774 EnvTeamLimit = std::stoi(envStr); 775 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 776 } else { 777 EnvTeamLimit = -1; 778 } 779 envStr = getenv("OMP_NUM_TEAMS"); 780 if (envStr) { 781 // OMP_NUM_TEAMS has been set 782 EnvNumTeams = std::stoi(envStr); 783 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 784 } else { 785 EnvNumTeams = -1; 786 } 787 // Get environment variables regarding expMaxTeams 788 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 789 if (envStr) { 790 EnvMaxTeamsDefault = std::stoi(envStr); 791 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 792 } else { 793 EnvMaxTeamsDefault = -1; 794 } 795 envStr = getenv("OMP_TEAMS_THREAD_LIMIT"); 796 if (envStr) { 797 EnvTeamThreadLimit = std::stoi(envStr); 798 DP("Parsed OMP_TEAMS_THREAD_LIMIT=%d\n", EnvTeamThreadLimit); 799 } else { 800 EnvTeamThreadLimit = -1; 801 } 802 803 // Default state. 804 RequiresFlags = OMP_REQ_UNDEFINED; 805 } 806 807 ~RTLDeviceInfoTy() { 808 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 809 // Run destructors on types that use HSA before 810 // atmi_finalize removes access to it 811 deviceStateStore.clear(); 812 KernelArgPoolMap.clear(); 813 // Terminate hostrpc before finalizing ATMI 814 hostrpc_terminate(); 815 816 hsa_status_t Err; 817 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 818 Err = hsa_executable_destroy(HSAExecutables[I]); 819 if (Err != HSA_STATUS_SUCCESS) { 820 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 821 "Destroying executable", get_error_string(Err)); 822 } 823 } 824 825 Err = hsa_shut_down(); 826 if (Err != HSA_STATUS_SUCCESS) { 827 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA", 828 get_error_string(Err)); 829 } 830 } 831 }; 832 833 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 834 835 // TODO: May need to drop the trailing to fields until deviceRTL is updated 836 struct omptarget_device_environmentTy { 837 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 838 // only useful for Debug build of deviceRTLs 839 int32_t num_devices; // gets number of active offload devices 840 int32_t device_num; // gets a value 0 to num_devices-1 841 }; 842 843 static RTLDeviceInfoTy DeviceInfo; 844 845 namespace { 846 847 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 848 __tgt_async_info *AsyncInfo) { 849 assert(AsyncInfo && "AsyncInfo is nullptr"); 850 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 851 // Return success if we are not copying back to host from target. 852 if (!HstPtr) 853 return OFFLOAD_SUCCESS; 854 hsa_status_t err; 855 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 856 (long long unsigned)(Elf64_Addr)TgtPtr, 857 (long long unsigned)(Elf64_Addr)HstPtr); 858 859 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 860 DeviceId); 861 862 if (err != HSA_STATUS_SUCCESS) { 863 DP("Error when copying data from device to host. Pointers: " 864 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 865 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 866 return OFFLOAD_FAIL; 867 } 868 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 869 (long long unsigned)(Elf64_Addr)TgtPtr, 870 (long long unsigned)(Elf64_Addr)HstPtr); 871 return OFFLOAD_SUCCESS; 872 } 873 874 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 875 __tgt_async_info *AsyncInfo) { 876 assert(AsyncInfo && "AsyncInfo is nullptr"); 877 hsa_status_t err; 878 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 879 // Return success if we are not doing host to target. 880 if (!HstPtr) 881 return OFFLOAD_SUCCESS; 882 883 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 884 (long long unsigned)(Elf64_Addr)HstPtr, 885 (long long unsigned)(Elf64_Addr)TgtPtr); 886 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 887 DeviceId); 888 if (err != HSA_STATUS_SUCCESS) { 889 DP("Error when copying data from host to device. Pointers: " 890 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 891 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 892 return OFFLOAD_FAIL; 893 } 894 return OFFLOAD_SUCCESS; 895 } 896 897 // Async. 898 // The implementation was written with cuda streams in mind. The semantics of 899 // that are to execute kernels on a queue in order of insertion. A synchronise 900 // call then makes writes visible between host and device. This means a series 901 // of N data_submit_async calls are expected to execute serially. HSA offers 902 // various options to run the data copies concurrently. This may require changes 903 // to libomptarget. 904 905 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 906 // there are no outstanding kernels that need to be synchronized. Any async call 907 // may be passed a Queue==0, at which point the cuda implementation will set it 908 // to non-null (see getStream). The cuda streams are per-device. Upstream may 909 // change this interface to explicitly initialize the AsyncInfo_pointer, but 910 // until then hsa lazily initializes it as well. 911 912 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 913 // set non-null while using async calls, return to null to indicate completion 914 assert(AsyncInfo); 915 if (!AsyncInfo->Queue) { 916 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 917 } 918 } 919 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 920 assert(AsyncInfo); 921 assert(AsyncInfo->Queue); 922 AsyncInfo->Queue = 0; 923 } 924 925 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 926 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 927 int32_t r = elf_check_machine(image, amdgcnMachineID); 928 if (!r) { 929 DP("Supported machine ID not found\n"); 930 } 931 return r; 932 } 933 934 uint32_t elf_e_flags(__tgt_device_image *image) { 935 char *img_begin = (char *)image->ImageStart; 936 size_t img_size = (char *)image->ImageEnd - img_begin; 937 938 Elf *e = elf_memory(img_begin, img_size); 939 if (!e) { 940 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 941 return 0; 942 } 943 944 Elf64_Ehdr *eh64 = elf64_getehdr(e); 945 946 if (!eh64) { 947 DP("Unable to get machine ID from ELF file!\n"); 948 elf_end(e); 949 return 0; 950 } 951 952 uint32_t Flags = eh64->e_flags; 953 954 elf_end(e); 955 DP("ELF Flags: 0x%x\n", Flags); 956 return Flags; 957 } 958 } // namespace 959 960 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 961 return elf_machine_id_is_amdgcn(image); 962 } 963 964 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 965 966 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 967 DP("Init requires flags to %ld\n", RequiresFlags); 968 DeviceInfo.RequiresFlags = RequiresFlags; 969 return RequiresFlags; 970 } 971 972 namespace { 973 template <typename T> bool enforce_upper_bound(T *value, T upper) { 974 bool changed = *value > upper; 975 if (changed) { 976 *value = upper; 977 } 978 return changed; 979 } 980 } // namespace 981 982 int32_t __tgt_rtl_init_device(int device_id) { 983 hsa_status_t err; 984 985 // this is per device id init 986 DP("Initialize the device id: %d\n", device_id); 987 988 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 989 990 // Get number of Compute Unit 991 uint32_t compute_units = 0; 992 err = hsa_agent_get_info( 993 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 994 &compute_units); 995 if (err != HSA_STATUS_SUCCESS) { 996 DeviceInfo.ComputeUnits[device_id] = 1; 997 DP("Error getting compute units : settiing to 1\n"); 998 } else { 999 DeviceInfo.ComputeUnits[device_id] = compute_units; 1000 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 1001 } 1002 1003 char GetInfoName[64]; // 64 max size returned by get info 1004 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 1005 (void *)GetInfoName); 1006 if (err) 1007 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 1008 else { 1009 DeviceInfo.GPUName[device_id] = GetInfoName; 1010 } 1011 1012 if (print_kernel_trace & STARTUP_DETAILS) 1013 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 1014 DeviceInfo.ComputeUnits[device_id], 1015 DeviceInfo.GPUName[device_id].c_str()); 1016 1017 // Query attributes to determine number of threads/block and blocks/grid. 1018 uint16_t workgroup_max_dim[3]; 1019 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 1020 &workgroup_max_dim); 1021 if (err != HSA_STATUS_SUCCESS) { 1022 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 1023 DP("Error getting grid dims: num groups : %d\n", 1024 RTLDeviceInfoTy::DefaultNumTeams); 1025 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 1026 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 1027 DP("Using %d ROCm blocks per grid\n", 1028 DeviceInfo.GroupsPerDevice[device_id]); 1029 } else { 1030 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 1031 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 1032 "at the hard limit\n", 1033 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 1034 } 1035 1036 // Get thread limit 1037 hsa_dim3_t grid_max_dim; 1038 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 1039 if (err == HSA_STATUS_SUCCESS) { 1040 DeviceInfo.ThreadsPerGroup[device_id] = 1041 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 1042 DeviceInfo.GroupsPerDevice[device_id]; 1043 1044 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 1045 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1046 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1047 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 1048 RTLDeviceInfoTy::Max_WG_Size)) { 1049 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1050 } else { 1051 DP("Using ROCm Queried thread limit: %d\n", 1052 DeviceInfo.ThreadsPerGroup[device_id]); 1053 } 1054 } else { 1055 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1056 DP("Error getting max block dimension, use default:%d \n", 1057 RTLDeviceInfoTy::Max_WG_Size); 1058 } 1059 1060 // Get wavefront size 1061 uint32_t wavefront_size = 0; 1062 err = 1063 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 1064 if (err == HSA_STATUS_SUCCESS) { 1065 DP("Queried wavefront size: %d\n", wavefront_size); 1066 DeviceInfo.WarpSize[device_id] = wavefront_size; 1067 } else { 1068 DP("Default wavefront size: %d\n", 1069 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 1070 DeviceInfo.WarpSize[device_id] = 1071 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 1072 } 1073 1074 // Adjust teams to the env variables 1075 1076 if (DeviceInfo.EnvTeamLimit > 0 && 1077 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 1078 DeviceInfo.EnvTeamLimit))) { 1079 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 1080 DeviceInfo.EnvTeamLimit); 1081 } 1082 1083 // Set default number of teams 1084 if (DeviceInfo.EnvNumTeams > 0) { 1085 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 1086 DP("Default number of teams set according to environment %d\n", 1087 DeviceInfo.EnvNumTeams); 1088 } else { 1089 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 1090 int TeamsPerCU = DefaultTeamsPerCU; 1091 if (TeamsPerCUEnvStr) { 1092 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 1093 } 1094 1095 DeviceInfo.NumTeams[device_id] = 1096 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 1097 DP("Default number of teams = %d * number of compute units %d\n", 1098 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 1099 } 1100 1101 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 1102 DeviceInfo.GroupsPerDevice[device_id])) { 1103 DP("Default number of teams exceeds device limit, capping at %d\n", 1104 DeviceInfo.GroupsPerDevice[device_id]); 1105 } 1106 1107 // Adjust threads to the env variables 1108 if (DeviceInfo.EnvTeamThreadLimit > 0 && 1109 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1110 DeviceInfo.EnvTeamThreadLimit))) { 1111 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 1112 DeviceInfo.EnvTeamThreadLimit); 1113 } 1114 1115 // Set default number of threads 1116 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 1117 DP("Default number of threads set according to library's default %d\n", 1118 RTLDeviceInfoTy::Default_WG_Size); 1119 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1120 DeviceInfo.ThreadsPerGroup[device_id])) { 1121 DP("Default number of threads exceeds device limit, capping at %d\n", 1122 DeviceInfo.ThreadsPerGroup[device_id]); 1123 } 1124 1125 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 1126 device_id, DeviceInfo.GroupsPerDevice[device_id], 1127 DeviceInfo.ThreadsPerGroup[device_id]); 1128 1129 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 1130 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 1131 DeviceInfo.GroupsPerDevice[device_id], 1132 DeviceInfo.GroupsPerDevice[device_id] * 1133 DeviceInfo.ThreadsPerGroup[device_id]); 1134 1135 return OFFLOAD_SUCCESS; 1136 } 1137 1138 namespace { 1139 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 1140 size_t N; 1141 int rc = elf_getshdrnum(elf, &N); 1142 if (rc != 0) { 1143 return nullptr; 1144 } 1145 1146 Elf64_Shdr *result = nullptr; 1147 for (size_t i = 0; i < N; i++) { 1148 Elf_Scn *scn = elf_getscn(elf, i); 1149 if (scn) { 1150 Elf64_Shdr *shdr = elf64_getshdr(scn); 1151 if (shdr) { 1152 if (shdr->sh_type == SHT_HASH) { 1153 if (result == nullptr) { 1154 result = shdr; 1155 } else { 1156 // multiple SHT_HASH sections not handled 1157 return nullptr; 1158 } 1159 } 1160 } 1161 } 1162 } 1163 return result; 1164 } 1165 1166 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1167 const char *symname) { 1168 1169 assert(section_hash); 1170 size_t section_symtab_index = section_hash->sh_link; 1171 Elf64_Shdr *section_symtab = 1172 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1173 size_t section_strtab_index = section_symtab->sh_link; 1174 1175 const Elf64_Sym *symtab = 1176 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1177 1178 const uint32_t *hashtab = 1179 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1180 1181 // Layout: 1182 // nbucket 1183 // nchain 1184 // bucket[nbucket] 1185 // chain[nchain] 1186 uint32_t nbucket = hashtab[0]; 1187 const uint32_t *bucket = &hashtab[2]; 1188 const uint32_t *chain = &hashtab[nbucket + 2]; 1189 1190 const size_t max = strlen(symname) + 1; 1191 const uint32_t hash = elf_hash(symname); 1192 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1193 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1194 if (strncmp(symname, n, max) == 0) { 1195 return &symtab[i]; 1196 } 1197 } 1198 1199 return nullptr; 1200 } 1201 1202 struct symbol_info { 1203 void *addr = nullptr; 1204 uint32_t size = UINT32_MAX; 1205 uint32_t sh_type = SHT_NULL; 1206 }; 1207 1208 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1209 symbol_info *res) { 1210 if (elf_kind(elf) != ELF_K_ELF) { 1211 return 1; 1212 } 1213 1214 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1215 if (!section_hash) { 1216 return 1; 1217 } 1218 1219 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1220 if (!sym) { 1221 return 1; 1222 } 1223 1224 if (sym->st_size > UINT32_MAX) { 1225 return 1; 1226 } 1227 1228 if (sym->st_shndx == SHN_UNDEF) { 1229 return 1; 1230 } 1231 1232 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1233 if (!section) { 1234 return 1; 1235 } 1236 1237 Elf64_Shdr *header = elf64_getshdr(section); 1238 if (!header) { 1239 return 1; 1240 } 1241 1242 res->addr = sym->st_value + base; 1243 res->size = static_cast<uint32_t>(sym->st_size); 1244 res->sh_type = header->sh_type; 1245 return 0; 1246 } 1247 1248 int get_symbol_info_without_loading(char *base, size_t img_size, 1249 const char *symname, symbol_info *res) { 1250 Elf *elf = elf_memory(base, img_size); 1251 if (elf) { 1252 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1253 elf_end(elf); 1254 return rc; 1255 } 1256 return 1; 1257 } 1258 1259 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1260 const char *symname, void **var_addr, 1261 uint32_t *var_size) { 1262 symbol_info si; 1263 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1264 if (rc == 0) { 1265 *var_addr = si.addr; 1266 *var_size = si.size; 1267 return HSA_STATUS_SUCCESS; 1268 } else { 1269 return HSA_STATUS_ERROR; 1270 } 1271 } 1272 1273 template <typename C> 1274 hsa_status_t module_register_from_memory_to_place( 1275 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1276 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1277 void *module_bytes, size_t module_size, int DeviceId, C cb, 1278 std::vector<hsa_executable_t> &HSAExecutables) { 1279 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1280 C *unwrapped = static_cast<C *>(cb_state); 1281 return (*unwrapped)(data, size); 1282 }; 1283 return core::RegisterModuleFromMemory( 1284 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1285 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1286 HSAExecutables); 1287 } 1288 } // namespace 1289 1290 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1291 uint64_t device_State_bytes = 0; 1292 { 1293 // If this is the deviceRTL, get the state variable size 1294 symbol_info size_si; 1295 int rc = get_symbol_info_without_loading( 1296 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1297 1298 if (rc == 0) { 1299 if (size_si.size != sizeof(uint64_t)) { 1300 DP("Found device_State_size variable with wrong size\n"); 1301 return 0; 1302 } 1303 1304 // Read number of bytes directly from the elf 1305 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1306 } 1307 } 1308 return device_State_bytes; 1309 } 1310 1311 static __tgt_target_table * 1312 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1313 1314 static __tgt_target_table * 1315 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1316 1317 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1318 __tgt_device_image *image) { 1319 DeviceInfo.load_run_lock.lock(); 1320 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1321 DeviceInfo.load_run_lock.unlock(); 1322 return res; 1323 } 1324 1325 struct device_environment { 1326 // initialise an omptarget_device_environmentTy in the deviceRTL 1327 // patches around differences in the deviceRTL between trunk, aomp, 1328 // rocmcc. Over time these differences will tend to zero and this class 1329 // simplified. 1330 // Symbol may be in .data or .bss, and may be missing fields: 1331 // - aomp has debug_level, num_devices, device_num 1332 // - trunk has debug_level 1333 // - under review in trunk is debug_level, device_num 1334 // - rocmcc matches aomp, patch to swap num_devices and device_num 1335 1336 // The symbol may also have been deadstripped because the device side 1337 // accessors were unused. 1338 1339 // If the symbol is in .data (aomp, rocm) it can be written directly. 1340 // If it is in .bss, we must wait for it to be allocated space on the 1341 // gpu (trunk) and initialize after loading. 1342 const char *sym() { return "omptarget_device_environment"; } 1343 1344 omptarget_device_environmentTy host_device_env; 1345 symbol_info si; 1346 bool valid = false; 1347 1348 __tgt_device_image *image; 1349 const size_t img_size; 1350 1351 device_environment(int device_id, int number_devices, 1352 __tgt_device_image *image, const size_t img_size) 1353 : image(image), img_size(img_size) { 1354 1355 host_device_env.num_devices = number_devices; 1356 host_device_env.device_num = device_id; 1357 host_device_env.debug_level = 0; 1358 #ifdef OMPTARGET_DEBUG 1359 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1360 host_device_env.debug_level = std::stoi(envStr); 1361 } 1362 #endif 1363 1364 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1365 img_size, sym(), &si); 1366 if (rc != 0) { 1367 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1368 return; 1369 } 1370 1371 if (si.size > sizeof(host_device_env)) { 1372 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1373 sizeof(host_device_env)); 1374 return; 1375 } 1376 1377 valid = true; 1378 } 1379 1380 bool in_image() { return si.sh_type != SHT_NOBITS; } 1381 1382 hsa_status_t before_loading(void *data, size_t size) { 1383 if (valid) { 1384 if (in_image()) { 1385 DP("Setting global device environment before load (%u bytes)\n", 1386 si.size); 1387 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1388 void *pos = (char *)data + offset; 1389 memcpy(pos, &host_device_env, si.size); 1390 } 1391 } 1392 return HSA_STATUS_SUCCESS; 1393 } 1394 1395 hsa_status_t after_loading() { 1396 if (valid) { 1397 if (!in_image()) { 1398 DP("Setting global device environment after load (%u bytes)\n", 1399 si.size); 1400 int device_id = host_device_env.device_num; 1401 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1402 void *state_ptr; 1403 uint32_t state_ptr_size; 1404 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1405 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1406 if (err != HSA_STATUS_SUCCESS) { 1407 DP("failed to find %s in loaded image\n", sym()); 1408 return err; 1409 } 1410 1411 if (state_ptr_size != si.size) { 1412 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1413 si.size); 1414 return HSA_STATUS_ERROR; 1415 } 1416 1417 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1418 state_ptr_size, device_id); 1419 } 1420 } 1421 return HSA_STATUS_SUCCESS; 1422 } 1423 }; 1424 1425 static hsa_status_t atmi_calloc(void **ret_ptr, size_t size, int DeviceId) { 1426 uint64_t rounded = 4 * ((size + 3) / 4); 1427 void *ptr; 1428 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, rounded, DeviceId); 1429 if (err != HSA_STATUS_SUCCESS) { 1430 return err; 1431 } 1432 1433 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1434 if (rc != HSA_STATUS_SUCCESS) { 1435 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1436 core::Runtime::Memfree(ptr); 1437 return HSA_STATUS_ERROR; 1438 } 1439 1440 *ret_ptr = ptr; 1441 return HSA_STATUS_SUCCESS; 1442 } 1443 1444 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1445 symbol_info si; 1446 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1447 return (rc == 0) && (si.addr != nullptr); 1448 } 1449 1450 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1451 __tgt_device_image *image) { 1452 // This function loads the device image onto gpu[device_id] and does other 1453 // per-image initialization work. Specifically: 1454 // 1455 // - Initialize an omptarget_device_environmentTy instance embedded in the 1456 // image at the symbol "omptarget_device_environment" 1457 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1458 // 1459 // - Allocate a large array per-gpu (could be moved to init_device) 1460 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1461 // - Allocate at least that many bytes of gpu memory 1462 // - Zero initialize it 1463 // - Write the pointer to the symbol omptarget_nvptx_device_State 1464 // 1465 // - Pulls some per-kernel information together from various sources and 1466 // records it in the KernelsList for quicker access later 1467 // 1468 // The initialization can be done before or after loading the image onto the 1469 // gpu. This function presently does a mixture. Using the hsa api to get/set 1470 // the information is simpler to implement, in exchange for more complicated 1471 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1472 // back from the gpu vs a hashtable lookup on the host. 1473 1474 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1475 1476 DeviceInfo.clearOffloadEntriesTable(device_id); 1477 1478 // We do not need to set the ELF version because the caller of this function 1479 // had to do that to decide the right runtime to use 1480 1481 if (!elf_machine_id_is_amdgcn(image)) { 1482 return NULL; 1483 } 1484 1485 { 1486 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1487 img_size); 1488 1489 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1490 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1491 hsa_status_t err = module_register_from_memory_to_place( 1492 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1493 [&](void *data, size_t size) { 1494 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1495 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1496 __ATOMIC_RELEASE); 1497 } 1498 return env.before_loading(data, size); 1499 }, 1500 DeviceInfo.HSAExecutables); 1501 1502 check("Module registering", err); 1503 if (err != HSA_STATUS_SUCCESS) { 1504 fprintf(stderr, 1505 "Possible gpu arch mismatch: device:%s, image:%s please check" 1506 " compiler flag: -march=<gpu>\n", 1507 DeviceInfo.GPUName[device_id].c_str(), 1508 get_elf_mach_gfx_name(elf_e_flags(image))); 1509 return NULL; 1510 } 1511 1512 err = env.after_loading(); 1513 if (err != HSA_STATUS_SUCCESS) { 1514 return NULL; 1515 } 1516 } 1517 1518 DP("ATMI module successfully loaded!\n"); 1519 1520 { 1521 // the device_State array is either large value in bss or a void* that 1522 // needs to be assigned to a pointer to an array of size device_state_bytes 1523 // If absent, it has been deadstripped and needs no setup. 1524 1525 void *state_ptr; 1526 uint32_t state_ptr_size; 1527 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1528 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1529 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1530 &state_ptr_size); 1531 1532 if (err != HSA_STATUS_SUCCESS) { 1533 DP("No device_state symbol found, skipping initialization\n"); 1534 } else { 1535 if (state_ptr_size < sizeof(void *)) { 1536 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1537 sizeof(void *)); 1538 return NULL; 1539 } 1540 1541 // if it's larger than a void*, assume it's a bss array and no further 1542 // initialization is required. Only try to set up a pointer for 1543 // sizeof(void*) 1544 if (state_ptr_size == sizeof(void *)) { 1545 uint64_t device_State_bytes = 1546 get_device_State_bytes((char *)image->ImageStart, img_size); 1547 if (device_State_bytes == 0) { 1548 DP("Can't initialize device_State, missing size information\n"); 1549 return NULL; 1550 } 1551 1552 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1553 if (dss.first.get() == nullptr) { 1554 assert(dss.second == 0); 1555 void *ptr = NULL; 1556 hsa_status_t err = atmi_calloc(&ptr, device_State_bytes, device_id); 1557 if (err != HSA_STATUS_SUCCESS) { 1558 DP("Failed to allocate device_state array\n"); 1559 return NULL; 1560 } 1561 dss = { 1562 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1563 device_State_bytes, 1564 }; 1565 } 1566 1567 void *ptr = dss.first.get(); 1568 if (device_State_bytes != dss.second) { 1569 DP("Inconsistent sizes of device_State unsupported\n"); 1570 return NULL; 1571 } 1572 1573 // write ptr to device memory so it can be used by later kernels 1574 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1575 sizeof(void *), device_id); 1576 if (err != HSA_STATUS_SUCCESS) { 1577 DP("memcpy install of state_ptr failed\n"); 1578 return NULL; 1579 } 1580 } 1581 } 1582 } 1583 1584 // Here, we take advantage of the data that is appended after img_end to get 1585 // the symbols' name we need to load. This data consist of the host entries 1586 // begin and end as well as the target name (see the offloading linker script 1587 // creation in clang compiler). 1588 1589 // Find the symbols in the module by name. The name can be obtain by 1590 // concatenating the host entry name with the target name 1591 1592 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1593 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1594 1595 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1596 1597 if (!e->addr) { 1598 // The host should have always something in the address to 1599 // uniquely identify the target region. 1600 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1601 (unsigned long long)e->size); 1602 return NULL; 1603 } 1604 1605 if (e->size) { 1606 __tgt_offload_entry entry = *e; 1607 1608 void *varptr; 1609 uint32_t varsize; 1610 1611 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1612 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1613 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1614 1615 if (err != HSA_STATUS_SUCCESS) { 1616 // Inform the user what symbol prevented offloading 1617 DP("Loading global '%s' (Failed)\n", e->name); 1618 return NULL; 1619 } 1620 1621 if (varsize != e->size) { 1622 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1623 varsize, e->size); 1624 return NULL; 1625 } 1626 1627 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1628 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1629 entry.addr = (void *)varptr; 1630 1631 DeviceInfo.addOffloadEntry(device_id, entry); 1632 1633 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1634 e->flags & OMP_DECLARE_TARGET_LINK) { 1635 // If unified memory is present any target link variables 1636 // can access host addresses directly. There is no longer a 1637 // need for device copies. 1638 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1639 sizeof(void *), device_id); 1640 if (err != HSA_STATUS_SUCCESS) 1641 DP("Error when copying USM\n"); 1642 DP("Copy linked variable host address (" DPxMOD ")" 1643 "to device address (" DPxMOD ")\n", 1644 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1645 } 1646 1647 continue; 1648 } 1649 1650 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1651 1652 uint32_t kernarg_segment_size; 1653 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1654 hsa_status_t err = atmi_interop_hsa_get_kernel_info( 1655 KernelInfoMap, device_id, e->name, 1656 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1657 &kernarg_segment_size); 1658 1659 // each arg is a void * in this openmp implementation 1660 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1661 std::vector<size_t> arg_sizes(arg_num); 1662 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1663 it != arg_sizes.end(); it++) { 1664 *it = sizeof(void *); 1665 } 1666 1667 // default value GENERIC (in case symbol is missing from cubin file) 1668 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1669 1670 // get flat group size if present, else Default_WG_Size 1671 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1672 1673 // get Kernel Descriptor if present. 1674 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1675 struct KernDescValType { 1676 uint16_t Version; 1677 uint16_t TSize; 1678 uint16_t WG_Size; 1679 uint8_t Mode; 1680 }; 1681 struct KernDescValType KernDescVal; 1682 std::string KernDescNameStr(e->name); 1683 KernDescNameStr += "_kern_desc"; 1684 const char *KernDescName = KernDescNameStr.c_str(); 1685 1686 void *KernDescPtr; 1687 uint32_t KernDescSize; 1688 void *CallStackAddr = nullptr; 1689 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1690 KernDescName, &KernDescPtr, &KernDescSize); 1691 1692 if (err == HSA_STATUS_SUCCESS) { 1693 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1694 DP("Loading global computation properties '%s' - size mismatch (%u != " 1695 "%lu)\n", 1696 KernDescName, KernDescSize, sizeof(KernDescVal)); 1697 1698 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1699 1700 // Check structure size against recorded size. 1701 if ((size_t)KernDescSize != KernDescVal.TSize) 1702 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1703 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1704 1705 DP("After loading global for %s KernDesc \n", KernDescName); 1706 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1707 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1708 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1709 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1710 1711 // Get ExecMode 1712 ExecModeVal = KernDescVal.Mode; 1713 DP("ExecModeVal %d\n", ExecModeVal); 1714 if (KernDescVal.WG_Size == 0) { 1715 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1716 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1717 } 1718 WGSizeVal = KernDescVal.WG_Size; 1719 DP("WGSizeVal %d\n", WGSizeVal); 1720 check("Loading KernDesc computation property", err); 1721 } else { 1722 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1723 1724 // Generic 1725 std::string ExecModeNameStr(e->name); 1726 ExecModeNameStr += "_exec_mode"; 1727 const char *ExecModeName = ExecModeNameStr.c_str(); 1728 1729 void *ExecModePtr; 1730 uint32_t varsize; 1731 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1732 ExecModeName, &ExecModePtr, &varsize); 1733 1734 if (err == HSA_STATUS_SUCCESS) { 1735 if ((size_t)varsize != sizeof(int8_t)) { 1736 DP("Loading global computation properties '%s' - size mismatch(%u != " 1737 "%lu)\n", 1738 ExecModeName, varsize, sizeof(int8_t)); 1739 return NULL; 1740 } 1741 1742 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1743 1744 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1745 ExecModeVal); 1746 1747 if (ExecModeVal < 0 || ExecModeVal > 1) { 1748 DP("Error wrong exec_mode value specified in HSA code object file: " 1749 "%d\n", 1750 ExecModeVal); 1751 return NULL; 1752 } 1753 } else { 1754 DP("Loading global exec_mode '%s' - symbol missing, using default " 1755 "value " 1756 "GENERIC (1)\n", 1757 ExecModeName); 1758 } 1759 check("Loading computation property", err); 1760 1761 // Flat group size 1762 std::string WGSizeNameStr(e->name); 1763 WGSizeNameStr += "_wg_size"; 1764 const char *WGSizeName = WGSizeNameStr.c_str(); 1765 1766 void *WGSizePtr; 1767 uint32_t WGSize; 1768 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1769 WGSizeName, &WGSizePtr, &WGSize); 1770 1771 if (err == HSA_STATUS_SUCCESS) { 1772 if ((size_t)WGSize != sizeof(int16_t)) { 1773 DP("Loading global computation properties '%s' - size mismatch (%u " 1774 "!= " 1775 "%lu)\n", 1776 WGSizeName, WGSize, sizeof(int16_t)); 1777 return NULL; 1778 } 1779 1780 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1781 1782 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1783 1784 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1785 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1786 DP("Error wrong WGSize value specified in HSA code object file: " 1787 "%d\n", 1788 WGSizeVal); 1789 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1790 } 1791 } else { 1792 DP("Warning: Loading WGSize '%s' - symbol not found, " 1793 "using default value %d\n", 1794 WGSizeName, WGSizeVal); 1795 } 1796 1797 check("Loading WGSize computation property", err); 1798 } 1799 1800 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1801 CallStackAddr, e->name, kernarg_segment_size, 1802 DeviceInfo.KernArgPool)); 1803 __tgt_offload_entry entry = *e; 1804 entry.addr = (void *)&KernelsList.back(); 1805 DeviceInfo.addOffloadEntry(device_id, entry); 1806 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1807 } 1808 1809 return DeviceInfo.getOffloadEntriesTable(device_id); 1810 } 1811 1812 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1813 void *ptr = NULL; 1814 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1815 1816 if (kind != TARGET_ALLOC_DEFAULT) { 1817 REPORT("Invalid target data allocation kind or requested allocator not " 1818 "implemented yet\n"); 1819 return NULL; 1820 } 1821 1822 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, size, device_id); 1823 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1824 (long long unsigned)(Elf64_Addr)ptr); 1825 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1826 return ptr; 1827 } 1828 1829 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1830 int64_t size) { 1831 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1832 __tgt_async_info AsyncInfo; 1833 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1834 if (rc != OFFLOAD_SUCCESS) 1835 return OFFLOAD_FAIL; 1836 1837 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1838 } 1839 1840 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1841 int64_t size, __tgt_async_info *AsyncInfo) { 1842 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1843 if (AsyncInfo) { 1844 initAsyncInfo(AsyncInfo); 1845 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1846 } else { 1847 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1848 } 1849 } 1850 1851 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1852 int64_t size) { 1853 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1854 __tgt_async_info AsyncInfo; 1855 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1856 if (rc != OFFLOAD_SUCCESS) 1857 return OFFLOAD_FAIL; 1858 1859 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1860 } 1861 1862 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1863 void *tgt_ptr, int64_t size, 1864 __tgt_async_info *AsyncInfo) { 1865 assert(AsyncInfo && "AsyncInfo is nullptr"); 1866 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1867 initAsyncInfo(AsyncInfo); 1868 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1869 } 1870 1871 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1872 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1873 hsa_status_t err; 1874 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1875 err = core::Runtime::Memfree(tgt_ptr); 1876 if (err != HSA_STATUS_SUCCESS) { 1877 DP("Error when freeing CUDA memory\n"); 1878 return OFFLOAD_FAIL; 1879 } 1880 return OFFLOAD_SUCCESS; 1881 } 1882 1883 // Determine launch values for threadsPerGroup and num_groups. 1884 // Outputs: treadsPerGroup, num_groups 1885 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1886 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1887 // loop_tripcount. 1888 struct launchVals { 1889 int WorkgroupSize; 1890 int GridSize; 1891 }; 1892 1893 launchVals getLaunchVals(int ConstWGSize, int ExecutionMode, int EnvTeamLimit, 1894 int EnvNumTeams, int num_teams, int thread_limit, 1895 uint64_t loop_tripcount, int DeviceNumTeams) { 1896 1897 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1898 int num_groups = 0; 1899 1900 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1901 ? DeviceInfo.EnvMaxTeamsDefault 1902 : DeviceNumTeams; 1903 if (Max_Teams > DeviceInfo.HardTeamLimit) 1904 Max_Teams = DeviceInfo.HardTeamLimit; 1905 1906 if (print_kernel_trace & STARTUP_DETAILS) { 1907 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1908 RTLDeviceInfoTy::Max_Teams); 1909 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1910 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1911 RTLDeviceInfoTy::Warp_Size); 1912 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1913 RTLDeviceInfoTy::Max_WG_Size); 1914 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1915 RTLDeviceInfoTy::Default_WG_Size); 1916 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1917 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1918 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1919 } 1920 // check for thread_limit() clause 1921 if (thread_limit > 0) { 1922 threadsPerGroup = thread_limit; 1923 DP("Setting threads per block to requested %d\n", thread_limit); 1924 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1925 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1926 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1927 } 1928 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1929 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1930 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1931 } 1932 } 1933 // check flat_max_work_group_size attr here 1934 if (threadsPerGroup > ConstWGSize) { 1935 threadsPerGroup = ConstWGSize; 1936 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1937 threadsPerGroup); 1938 } 1939 if (print_kernel_trace & STARTUP_DETAILS) 1940 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1941 DP("Preparing %d threads\n", threadsPerGroup); 1942 1943 // Set default num_groups (teams) 1944 if (DeviceInfo.EnvTeamLimit > 0) 1945 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1946 ? Max_Teams 1947 : DeviceInfo.EnvTeamLimit; 1948 else 1949 num_groups = Max_Teams; 1950 DP("Set default num of groups %d\n", num_groups); 1951 1952 if (print_kernel_trace & STARTUP_DETAILS) { 1953 fprintf(stderr, "num_groups: %d\n", num_groups); 1954 fprintf(stderr, "num_teams: %d\n", num_teams); 1955 } 1956 1957 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1958 // This reduction is typical for default case (no thread_limit clause). 1959 // or when user goes crazy with num_teams clause. 1960 // FIXME: We cant distinguish between a constant or variable thread limit. 1961 // So we only handle constant thread_limits. 1962 if (threadsPerGroup > 1963 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1964 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1965 // here? 1966 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1967 1968 // check for num_teams() clause 1969 if (num_teams > 0) { 1970 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1971 } 1972 if (print_kernel_trace & STARTUP_DETAILS) { 1973 fprintf(stderr, "num_groups: %d\n", num_groups); 1974 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1975 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1976 } 1977 1978 if (DeviceInfo.EnvNumTeams > 0) { 1979 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1980 : num_groups; 1981 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1982 } else if (DeviceInfo.EnvTeamLimit > 0) { 1983 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1984 ? DeviceInfo.EnvTeamLimit 1985 : num_groups; 1986 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1987 } else { 1988 if (num_teams <= 0) { 1989 if (loop_tripcount > 0) { 1990 if (ExecutionMode == SPMD) { 1991 // round up to the nearest integer 1992 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1993 } else { 1994 num_groups = loop_tripcount; 1995 } 1996 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1997 "threads per block %d\n", 1998 num_groups, loop_tripcount, threadsPerGroup); 1999 } 2000 } else { 2001 num_groups = num_teams; 2002 } 2003 if (num_groups > Max_Teams) { 2004 num_groups = Max_Teams; 2005 if (print_kernel_trace & STARTUP_DETAILS) 2006 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 2007 Max_Teams); 2008 } 2009 if (num_groups > num_teams && num_teams > 0) { 2010 num_groups = num_teams; 2011 if (print_kernel_trace & STARTUP_DETAILS) 2012 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 2013 num_groups, num_teams); 2014 } 2015 } 2016 2017 // num_teams clause always honored, no matter what, unless DEFAULT is active. 2018 if (num_teams > 0) { 2019 num_groups = num_teams; 2020 // Cap num_groups to EnvMaxTeamsDefault if set. 2021 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 2022 num_groups > DeviceInfo.EnvMaxTeamsDefault) 2023 num_groups = DeviceInfo.EnvMaxTeamsDefault; 2024 } 2025 if (print_kernel_trace & STARTUP_DETAILS) { 2026 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 2027 fprintf(stderr, "num_groups: %d\n", num_groups); 2028 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 2029 } 2030 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 2031 threadsPerGroup); 2032 2033 launchVals res; 2034 res.WorkgroupSize = threadsPerGroup; 2035 res.GridSize = threadsPerGroup * num_groups; 2036 return res; 2037 } 2038 2039 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 2040 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 2041 bool full = true; 2042 while (full) { 2043 full = 2044 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 2045 } 2046 return packet_id; 2047 } 2048 2049 static int32_t __tgt_rtl_run_target_team_region_locked( 2050 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2051 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2052 int32_t thread_limit, uint64_t loop_tripcount); 2053 2054 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 2055 void **tgt_args, 2056 ptrdiff_t *tgt_offsets, 2057 int32_t arg_num, int32_t num_teams, 2058 int32_t thread_limit, 2059 uint64_t loop_tripcount) { 2060 2061 DeviceInfo.load_run_lock.lock_shared(); 2062 int32_t res = __tgt_rtl_run_target_team_region_locked( 2063 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 2064 thread_limit, loop_tripcount); 2065 2066 DeviceInfo.load_run_lock.unlock_shared(); 2067 return res; 2068 } 2069 2070 int32_t __tgt_rtl_run_target_team_region_locked( 2071 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2072 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2073 int32_t thread_limit, uint64_t loop_tripcount) { 2074 // Set the context we are using 2075 // update thread limit content in gpu memory if un-initialized or specified 2076 // from host 2077 2078 DP("Run target team region thread_limit %d\n", thread_limit); 2079 2080 // All args are references. 2081 std::vector<void *> args(arg_num); 2082 std::vector<void *> ptrs(arg_num); 2083 2084 DP("Arg_num: %d\n", arg_num); 2085 for (int32_t i = 0; i < arg_num; ++i) { 2086 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 2087 args[i] = &ptrs[i]; 2088 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 2089 } 2090 2091 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 2092 2093 std::string kernel_name = std::string(KernelInfo->Name); 2094 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 2095 if (KernelInfoTable[device_id].find(kernel_name) == 2096 KernelInfoTable[device_id].end()) { 2097 DP("Kernel %s not found\n", kernel_name.c_str()); 2098 return OFFLOAD_FAIL; 2099 } 2100 2101 const atl_kernel_info_t KernelInfoEntry = 2102 KernelInfoTable[device_id][kernel_name]; 2103 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 2104 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 2105 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 2106 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 2107 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 2108 2109 assert(arg_num == (int)KernelInfoEntry.num_args); 2110 2111 /* 2112 * Set limit based on ThreadsPerGroup and GroupsPerDevice 2113 */ 2114 launchVals LV = 2115 getLaunchVals(KernelInfo->ConstWGSize, KernelInfo->ExecutionMode, 2116 DeviceInfo.EnvTeamLimit, DeviceInfo.EnvNumTeams, 2117 num_teams, // From run_region arg 2118 thread_limit, // From run_region arg 2119 loop_tripcount, // From run_region arg 2120 DeviceInfo.NumTeams[KernelInfo->device_id]); 2121 const int GridSize = LV.GridSize; 2122 const int WorkgroupSize = LV.WorkgroupSize; 2123 2124 if (print_kernel_trace >= LAUNCH) { 2125 int num_groups = GridSize / WorkgroupSize; 2126 // enum modes are SPMD, GENERIC, NONE 0,1,2 2127 // if doing rtl timing, print to stderr, unless stdout requested. 2128 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 2129 fprintf(traceToStdout ? stdout : stderr, 2130 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 2131 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 2132 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 2133 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 2134 arg_num, num_groups, WorkgroupSize, num_teams, thread_limit, 2135 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 2136 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 2137 } 2138 2139 // Run on the device. 2140 { 2141 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 2142 if (!queue) { 2143 return OFFLOAD_FAIL; 2144 } 2145 uint64_t packet_id = acquire_available_packet_id(queue); 2146 2147 const uint32_t mask = queue->size - 1; // size is a power of 2 2148 hsa_kernel_dispatch_packet_t *packet = 2149 (hsa_kernel_dispatch_packet_t *)queue->base_address + 2150 (packet_id & mask); 2151 2152 // packet->header is written last 2153 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 2154 packet->workgroup_size_x = WorkgroupSize; 2155 packet->workgroup_size_y = 1; 2156 packet->workgroup_size_z = 1; 2157 packet->reserved0 = 0; 2158 packet->grid_size_x = GridSize; 2159 packet->grid_size_y = 1; 2160 packet->grid_size_z = 1; 2161 packet->private_segment_size = KernelInfoEntry.private_segment_size; 2162 packet->group_segment_size = KernelInfoEntry.group_segment_size; 2163 packet->kernel_object = KernelInfoEntry.kernel_object; 2164 packet->kernarg_address = 0; // use the block allocator 2165 packet->reserved2 = 0; // atmi writes id_ here 2166 packet->completion_signal = {0}; // may want a pool of signals 2167 2168 KernelArgPool *ArgPool = nullptr; 2169 { 2170 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 2171 if (it != KernelArgPoolMap.end()) { 2172 ArgPool = (it->second).get(); 2173 } 2174 } 2175 if (!ArgPool) { 2176 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 2177 device_id); 2178 } 2179 { 2180 void *kernarg = nullptr; 2181 if (ArgPool) { 2182 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 2183 kernarg = ArgPool->allocate(arg_num); 2184 } 2185 if (!kernarg) { 2186 DP("Allocate kernarg failed\n"); 2187 return OFFLOAD_FAIL; 2188 } 2189 2190 // Copy explicit arguments 2191 for (int i = 0; i < arg_num; i++) { 2192 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 2193 } 2194 2195 // Initialize implicit arguments. ATMI seems to leave most fields 2196 // uninitialized 2197 atmi_implicit_args_t *impl_args = 2198 reinterpret_cast<atmi_implicit_args_t *>( 2199 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 2200 memset(impl_args, 0, 2201 sizeof(atmi_implicit_args_t)); // may not be necessary 2202 impl_args->offset_x = 0; 2203 impl_args->offset_y = 0; 2204 impl_args->offset_z = 0; 2205 2206 // assign a hostcall buffer for the selected Q 2207 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 2208 // hostrpc_assign_buffer is not thread safe, and this function is 2209 // under a multiple reader lock, not a writer lock. 2210 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 2211 pthread_mutex_lock(&hostcall_init_lock); 2212 impl_args->hostcall_ptr = hostrpc_assign_buffer( 2213 DeviceInfo.HSAAgents[device_id], queue, device_id); 2214 pthread_mutex_unlock(&hostcall_init_lock); 2215 if (!impl_args->hostcall_ptr) { 2216 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 2217 "error\n"); 2218 return OFFLOAD_FAIL; 2219 } 2220 } 2221 2222 packet->kernarg_address = kernarg; 2223 } 2224 2225 { 2226 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 2227 if (s.handle == 0) { 2228 DP("Failed to get signal instance\n"); 2229 return OFFLOAD_FAIL; 2230 } 2231 packet->completion_signal = s; 2232 hsa_signal_store_relaxed(packet->completion_signal, 1); 2233 } 2234 2235 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 2236 core::create_header(), packet->setup); 2237 2238 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 2239 2240 while (hsa_signal_wait_scacquire(packet->completion_signal, 2241 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 2242 HSA_WAIT_STATE_BLOCKED) != 0) 2243 ; 2244 2245 assert(ArgPool); 2246 ArgPool->deallocate(packet->kernarg_address); 2247 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 2248 } 2249 2250 DP("Kernel completed\n"); 2251 return OFFLOAD_SUCCESS; 2252 } 2253 2254 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2255 void **tgt_args, ptrdiff_t *tgt_offsets, 2256 int32_t arg_num) { 2257 // use one team and one thread 2258 // fix thread num 2259 int32_t team_num = 1; 2260 int32_t thread_limit = 0; // use default 2261 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2262 tgt_offsets, arg_num, team_num, 2263 thread_limit, 0); 2264 } 2265 2266 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2267 void *tgt_entry_ptr, void **tgt_args, 2268 ptrdiff_t *tgt_offsets, 2269 int32_t arg_num, 2270 __tgt_async_info *AsyncInfo) { 2271 assert(AsyncInfo && "AsyncInfo is nullptr"); 2272 initAsyncInfo(AsyncInfo); 2273 2274 // use one team and one thread 2275 // fix thread num 2276 int32_t team_num = 1; 2277 int32_t thread_limit = 0; // use default 2278 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2279 tgt_offsets, arg_num, team_num, 2280 thread_limit, 0); 2281 } 2282 2283 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2284 assert(AsyncInfo && "AsyncInfo is nullptr"); 2285 2286 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2287 // is not ensured by devices.cpp for amdgcn 2288 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2289 if (AsyncInfo->Queue) { 2290 finiAsyncInfo(AsyncInfo); 2291 } 2292 return OFFLOAD_SUCCESS; 2293 } 2294 2295 namespace core { 2296 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 2297 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 2298 &DeviceInfo.HSAAgents[0], NULL, ptr); 2299 } 2300 2301 } // namespace core 2302