1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <mutex> 27 #include <shared_mutex> 28 #include <thread> 29 #include <unordered_map> 30 #include <vector> 31 32 // Header from ATMI interface 33 #include "atmi_interop_hsa.h" 34 #include "atmi_runtime.h" 35 36 #include "internal.h" 37 38 #include "Debug.h" 39 #include "omptargetplugin.h" 40 41 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 42 43 #ifndef TARGET_NAME 44 #define TARGET_NAME AMDHSA 45 #endif 46 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 47 48 // hostrpc interface, FIXME: consider moving to its own include these are 49 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 50 // linked as --whole-archive to override the weak symbols that are used to 51 // implement a fallback for toolchains that do not yet have a hostrpc library. 52 extern "C" { 53 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 54 uint32_t device_id); 55 hsa_status_t hostrpc_init(); 56 hsa_status_t hostrpc_terminate(); 57 58 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 59 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 60 return HSA_STATUS_SUCCESS; 61 } 62 __attribute__((weak)) unsigned long 63 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 64 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 65 "missing\n", 66 device_id); 67 return 0; 68 } 69 } 70 71 int print_kernel_trace; 72 73 // Size of the target call stack struture 74 uint32_t TgtStackItemSize = 0; 75 76 #undef check // Drop definition from internal.h 77 #ifdef OMPTARGET_DEBUG 78 #define check(msg, status) \ 79 if (status != ATMI_STATUS_SUCCESS) { \ 80 /* fprintf(stderr, "[%s:%d] %s failed.\n", __FILE__, __LINE__, #msg);*/ \ 81 DP(#msg " failed\n"); \ 82 /*assert(0);*/ \ 83 } else { \ 84 /* fprintf(stderr, "[%s:%d] %s succeeded.\n", __FILE__, __LINE__, #msg); \ 85 */ \ 86 DP(#msg " succeeded\n"); \ 87 } 88 #else 89 #define check(msg, status) \ 90 {} 91 #endif 92 93 #include "../../common/elf_common.c" 94 95 static bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 96 const uint16_t amdgcnMachineID = 224; 97 int32_t r = elf_check_machine(image, amdgcnMachineID); 98 if (!r) { 99 DP("Supported machine ID not found\n"); 100 } 101 return r; 102 } 103 104 /// Keep entries table per device 105 struct FuncOrGblEntryTy { 106 __tgt_target_table Table; 107 std::vector<__tgt_offload_entry> Entries; 108 }; 109 110 enum ExecutionModeType { 111 SPMD, // constructors, destructors, 112 // combined constructs (`teams distribute parallel for [simd]`) 113 GENERIC, // everything else 114 NONE 115 }; 116 117 struct KernelArgPool { 118 private: 119 static pthread_mutex_t mutex; 120 121 public: 122 uint32_t kernarg_segment_size; 123 void *kernarg_region = nullptr; 124 std::queue<int> free_kernarg_segments; 125 126 uint32_t kernarg_size_including_implicit() { 127 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 128 } 129 130 ~KernelArgPool() { 131 if (kernarg_region) { 132 auto r = hsa_amd_memory_pool_free(kernarg_region); 133 assert(r == HSA_STATUS_SUCCESS); 134 ErrorCheck(Memory pool free, r); 135 } 136 } 137 138 // Can't really copy or move a mutex 139 KernelArgPool() = default; 140 KernelArgPool(const KernelArgPool &) = delete; 141 KernelArgPool(KernelArgPool &&) = delete; 142 143 KernelArgPool(uint32_t kernarg_segment_size) 144 : kernarg_segment_size(kernarg_segment_size) { 145 146 // atmi uses one pool per kernel for all gpus, with a fixed upper size 147 // preserving that exact scheme here, including the queue<int> 148 { 149 hsa_status_t err = hsa_amd_memory_pool_allocate( 150 atl_gpu_kernarg_pools[0], 151 kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 152 &kernarg_region); 153 ErrorCheck(Allocating memory for the executable-kernel, err); 154 core::allow_access_to_all_gpu_agents(kernarg_region); 155 156 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 157 free_kernarg_segments.push(i); 158 } 159 } 160 } 161 162 void *allocate(uint64_t arg_num) { 163 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 164 lock l(&mutex); 165 void *res = nullptr; 166 if (!free_kernarg_segments.empty()) { 167 168 int free_idx = free_kernarg_segments.front(); 169 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 170 (free_idx * kernarg_size_including_implicit())); 171 assert(free_idx == pointer_to_index(res)); 172 free_kernarg_segments.pop(); 173 } 174 return res; 175 } 176 177 void deallocate(void *ptr) { 178 lock l(&mutex); 179 int idx = pointer_to_index(ptr); 180 free_kernarg_segments.push(idx); 181 } 182 183 private: 184 int pointer_to_index(void *ptr) { 185 ptrdiff_t bytes = 186 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 187 assert(bytes >= 0); 188 assert(bytes % kernarg_size_including_implicit() == 0); 189 return bytes / kernarg_size_including_implicit(); 190 } 191 struct lock { 192 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 193 ~lock() { pthread_mutex_unlock(m); } 194 pthread_mutex_t *m; 195 }; 196 }; 197 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 198 199 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 200 KernelArgPoolMap; 201 202 /// Use a single entity to encode a kernel and a set of flags 203 struct KernelTy { 204 // execution mode of kernel 205 // 0 - SPMD mode (without master warp) 206 // 1 - Generic mode (with master warp) 207 int8_t ExecutionMode; 208 int16_t ConstWGSize; 209 int32_t device_id; 210 void *CallStackAddr = nullptr; 211 const char *Name; 212 213 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 214 void *_CallStackAddr, const char *_Name, 215 uint32_t _kernarg_segment_size) 216 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 217 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 218 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 219 220 std::string N(_Name); 221 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 222 KernelArgPoolMap.insert( 223 std::make_pair(N, std::unique_ptr<KernelArgPool>( 224 new KernelArgPool(_kernarg_segment_size)))); 225 } 226 } 227 }; 228 229 /// List that contains all the kernels. 230 /// FIXME: we may need this to be per device and per library. 231 std::list<KernelTy> KernelsList; 232 233 // ATMI API to get gpu and gpu memory place 234 static atmi_place_t get_gpu_place(int device_id) { 235 return ATMI_PLACE_GPU(0, device_id); 236 } 237 static atmi_mem_place_t get_gpu_mem_place(int device_id) { 238 return ATMI_MEM_PLACE_GPU_MEM(0, device_id, 0); 239 } 240 241 static std::vector<hsa_agent_t> find_gpu_agents() { 242 std::vector<hsa_agent_t> res; 243 244 hsa_status_t err = hsa_iterate_agents( 245 [](hsa_agent_t agent, void *data) -> hsa_status_t { 246 std::vector<hsa_agent_t> *res = 247 static_cast<std::vector<hsa_agent_t> *>(data); 248 249 hsa_device_type_t device_type; 250 // get_info fails iff HSA runtime not yet initialized 251 hsa_status_t err = 252 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 253 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 254 printf("rtl.cpp: err %d\n", err); 255 assert(err == HSA_STATUS_SUCCESS); 256 257 if (device_type == HSA_DEVICE_TYPE_GPU) { 258 res->push_back(agent); 259 } 260 return HSA_STATUS_SUCCESS; 261 }, 262 &res); 263 264 // iterate_agents fails iff HSA runtime not yet initialized 265 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 266 printf("rtl.cpp: err %d\n", err); 267 assert(err == HSA_STATUS_SUCCESS); 268 return res; 269 } 270 271 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 272 void *data) { 273 if (status != HSA_STATUS_SUCCESS) { 274 const char *status_string; 275 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 276 status_string = "unavailable"; 277 } 278 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 279 __LINE__, source, status, status_string); 280 abort(); 281 } 282 } 283 284 namespace core { 285 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 286 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 287 } 288 289 uint16_t create_header(hsa_packet_type_t type, int barrier, 290 atmi_task_fence_scope_t acq_fence, 291 atmi_task_fence_scope_t rel_fence) { 292 uint16_t header = type << HSA_PACKET_HEADER_TYPE; 293 header |= barrier << HSA_PACKET_HEADER_BARRIER; 294 header |= (hsa_fence_scope_t) static_cast<int>( 295 acq_fence << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE); 296 header |= (hsa_fence_scope_t) static_cast<int>( 297 rel_fence << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE); 298 return header; 299 } 300 } // namespace core 301 302 /// Class containing all the device information 303 class RTLDeviceInfoTy { 304 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 305 306 public: 307 // load binary populates symbol tables and mutates various global state 308 // run uses those symbol tables 309 std::shared_timed_mutex load_run_lock; 310 311 int NumberOfDevices; 312 313 // GPU devices 314 std::vector<hsa_agent_t> HSAAgents; 315 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 316 317 // Device properties 318 std::vector<int> ComputeUnits; 319 std::vector<int> GroupsPerDevice; 320 std::vector<int> ThreadsPerGroup; 321 std::vector<int> WarpSize; 322 323 // OpenMP properties 324 std::vector<int> NumTeams; 325 std::vector<int> NumThreads; 326 327 // OpenMP Environment properties 328 int EnvNumTeams; 329 int EnvTeamLimit; 330 int EnvMaxTeamsDefault; 331 332 // OpenMP Requires Flags 333 int64_t RequiresFlags; 334 335 // Resource pools 336 SignalPoolT FreeSignalPool; 337 338 struct atmiFreePtrDeletor { 339 void operator()(void *p) { 340 atmi_free(p); // ignore failure to free 341 } 342 }; 343 344 // device_State shared across loaded binaries, error if inconsistent size 345 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 346 deviceStateStore; 347 348 static const unsigned HardTeamLimit = 349 (1 << 16) - 1; // 64K needed to fit in uint16 350 static const int DefaultNumTeams = 128; 351 static const int Max_Teams = 352 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 353 static const int Warp_Size = 354 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 355 static const int Max_WG_Size = 356 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 357 static const int Default_WG_Size = 358 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 359 360 using MemcpyFunc = atmi_status_t (*)(hsa_signal_t, void *, const void *, 361 size_t size, hsa_agent_t); 362 atmi_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 363 MemcpyFunc Func, int32_t deviceId) { 364 hsa_agent_t agent = HSAAgents[deviceId]; 365 hsa_signal_t s = FreeSignalPool.pop(); 366 if (s.handle == 0) { 367 return ATMI_STATUS_ERROR; 368 } 369 atmi_status_t r = Func(s, dest, src, size, agent); 370 FreeSignalPool.push(s); 371 return r; 372 } 373 374 atmi_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 375 size_t size, int32_t deviceId) { 376 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 377 } 378 379 atmi_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 380 size_t size, int32_t deviceId) { 381 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 382 } 383 384 // Record entry point associated with device 385 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 386 assert(device_id < (int32_t)FuncGblEntries.size() && 387 "Unexpected device id!"); 388 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 389 390 E.Entries.push_back(entry); 391 } 392 393 // Return true if the entry is associated with device 394 bool findOffloadEntry(int32_t device_id, void *addr) { 395 assert(device_id < (int32_t)FuncGblEntries.size() && 396 "Unexpected device id!"); 397 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 398 399 for (auto &it : E.Entries) { 400 if (it.addr == addr) 401 return true; 402 } 403 404 return false; 405 } 406 407 // Return the pointer to the target entries table 408 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 409 assert(device_id < (int32_t)FuncGblEntries.size() && 410 "Unexpected device id!"); 411 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 412 413 int32_t size = E.Entries.size(); 414 415 // Table is empty 416 if (!size) 417 return 0; 418 419 __tgt_offload_entry *begin = &E.Entries[0]; 420 __tgt_offload_entry *end = &E.Entries[size - 1]; 421 422 // Update table info according to the entries and return the pointer 423 E.Table.EntriesBegin = begin; 424 E.Table.EntriesEnd = ++end; 425 426 return &E.Table; 427 } 428 429 // Clear entries table for a device 430 void clearOffloadEntriesTable(int device_id) { 431 assert(device_id < (int32_t)FuncGblEntries.size() && 432 "Unexpected device id!"); 433 FuncGblEntries[device_id].emplace_back(); 434 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 435 // KernelArgPoolMap.clear(); 436 E.Entries.clear(); 437 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 438 } 439 440 RTLDeviceInfoTy() { 441 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 442 // anytime. You do not need a debug library build. 443 // 0 => no tracing 444 // 1 => tracing dispatch only 445 // >1 => verbosity increase 446 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 447 print_kernel_trace = atoi(envStr); 448 else 449 print_kernel_trace = 0; 450 451 DP("Start initializing HSA-ATMI\n"); 452 atmi_status_t err = atmi_init(); 453 if (err != ATMI_STATUS_SUCCESS) { 454 DP("Error when initializing HSA-ATMI\n"); 455 return; 456 } 457 // Init hostcall soon after initializing ATMI 458 hostrpc_init(); 459 460 HSAAgents = find_gpu_agents(); 461 NumberOfDevices = (int)HSAAgents.size(); 462 463 if (NumberOfDevices == 0) { 464 DP("There are no devices supporting HSA.\n"); 465 return; 466 } else { 467 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 468 } 469 470 // Init the device info 471 HSAQueues.resize(NumberOfDevices); 472 FuncGblEntries.resize(NumberOfDevices); 473 ThreadsPerGroup.resize(NumberOfDevices); 474 ComputeUnits.resize(NumberOfDevices); 475 GroupsPerDevice.resize(NumberOfDevices); 476 WarpSize.resize(NumberOfDevices); 477 NumTeams.resize(NumberOfDevices); 478 NumThreads.resize(NumberOfDevices); 479 deviceStateStore.resize(NumberOfDevices); 480 481 for (int i = 0; i < NumberOfDevices; i++) { 482 uint32_t queue_size = 0; 483 { 484 hsa_status_t err; 485 err = hsa_agent_get_info(HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, 486 &queue_size); 487 ErrorCheck(Querying the agent maximum queue size, err); 488 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 489 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 490 } 491 } 492 493 hsa_status_t rc = hsa_queue_create( 494 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 495 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 496 if (rc != HSA_STATUS_SUCCESS) { 497 DP("Failed to create HSA queues\n"); 498 return; 499 } 500 501 deviceStateStore[i] = {nullptr, 0}; 502 } 503 504 for (int i = 0; i < NumberOfDevices; i++) { 505 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 506 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 507 ComputeUnits[i] = 1; 508 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 509 GroupsPerDevice[i], ThreadsPerGroup[i]); 510 } 511 512 // Get environment variables regarding teams 513 char *envStr = getenv("OMP_TEAM_LIMIT"); 514 if (envStr) { 515 // OMP_TEAM_LIMIT has been set 516 EnvTeamLimit = std::stoi(envStr); 517 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 518 } else { 519 EnvTeamLimit = -1; 520 } 521 envStr = getenv("OMP_NUM_TEAMS"); 522 if (envStr) { 523 // OMP_NUM_TEAMS has been set 524 EnvNumTeams = std::stoi(envStr); 525 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 526 } else { 527 EnvNumTeams = -1; 528 } 529 // Get environment variables regarding expMaxTeams 530 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 531 if (envStr) { 532 EnvMaxTeamsDefault = std::stoi(envStr); 533 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 534 } else { 535 EnvMaxTeamsDefault = -1; 536 } 537 538 // Default state. 539 RequiresFlags = OMP_REQ_UNDEFINED; 540 } 541 542 ~RTLDeviceInfoTy() { 543 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 544 // Run destructors on types that use HSA before 545 // atmi_finalize removes access to it 546 deviceStateStore.clear(); 547 KernelArgPoolMap.clear(); 548 // Terminate hostrpc before finalizing ATMI 549 hostrpc_terminate(); 550 atmi_finalize(); 551 } 552 }; 553 554 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 555 556 // TODO: May need to drop the trailing to fields until deviceRTL is updated 557 struct omptarget_device_environmentTy { 558 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 559 // only useful for Debug build of deviceRTLs 560 int32_t num_devices; // gets number of active offload devices 561 int32_t device_num; // gets a value 0 to num_devices-1 562 }; 563 564 static RTLDeviceInfoTy DeviceInfo; 565 566 namespace { 567 568 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 569 __tgt_async_info *AsyncInfoPtr) { 570 assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr"); 571 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 572 // Return success if we are not copying back to host from target. 573 if (!HstPtr) 574 return OFFLOAD_SUCCESS; 575 atmi_status_t err; 576 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 577 (long long unsigned)(Elf64_Addr)TgtPtr, 578 (long long unsigned)(Elf64_Addr)HstPtr); 579 580 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 581 DeviceId); 582 583 if (err != ATMI_STATUS_SUCCESS) { 584 DP("Error when copying data from device to host. Pointers: " 585 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 586 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 587 return OFFLOAD_FAIL; 588 } 589 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 590 (long long unsigned)(Elf64_Addr)TgtPtr, 591 (long long unsigned)(Elf64_Addr)HstPtr); 592 return OFFLOAD_SUCCESS; 593 } 594 595 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 596 __tgt_async_info *AsyncInfoPtr) { 597 assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr"); 598 atmi_status_t err; 599 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 600 // Return success if we are not doing host to target. 601 if (!HstPtr) 602 return OFFLOAD_SUCCESS; 603 604 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 605 (long long unsigned)(Elf64_Addr)HstPtr, 606 (long long unsigned)(Elf64_Addr)TgtPtr); 607 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 608 DeviceId); 609 if (err != ATMI_STATUS_SUCCESS) { 610 DP("Error when copying data from host to device. Pointers: " 611 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 612 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 613 return OFFLOAD_FAIL; 614 } 615 return OFFLOAD_SUCCESS; 616 } 617 618 // Async. 619 // The implementation was written with cuda streams in mind. The semantics of 620 // that are to execute kernels on a queue in order of insertion. A synchronise 621 // call then makes writes visible between host and device. This means a series 622 // of N data_submit_async calls are expected to execute serially. HSA offers 623 // various options to run the data copies concurrently. This may require changes 624 // to libomptarget. 625 626 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 627 // there are no outstanding kernels that need to be synchronized. Any async call 628 // may be passed a Queue==0, at which point the cuda implementation will set it 629 // to non-null (see getStream). The cuda streams are per-device. Upstream may 630 // change this interface to explicitly initialize the async_info_pointer, but 631 // until then hsa lazily initializes it as well. 632 633 void initAsyncInfoPtr(__tgt_async_info *async_info_ptr) { 634 // set non-null while using async calls, return to null to indicate completion 635 assert(async_info_ptr); 636 if (!async_info_ptr->Queue) { 637 async_info_ptr->Queue = reinterpret_cast<void *>(UINT64_MAX); 638 } 639 } 640 void finiAsyncInfoPtr(__tgt_async_info *async_info_ptr) { 641 assert(async_info_ptr); 642 assert(async_info_ptr->Queue); 643 async_info_ptr->Queue = 0; 644 } 645 } // namespace 646 647 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 648 return elf_machine_id_is_amdgcn(image); 649 } 650 651 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 652 653 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 654 DP("Init requires flags to %ld\n", RequiresFlags); 655 DeviceInfo.RequiresFlags = RequiresFlags; 656 return RequiresFlags; 657 } 658 659 int32_t __tgt_rtl_init_device(int device_id) { 660 hsa_status_t err; 661 662 // this is per device id init 663 DP("Initialize the device id: %d\n", device_id); 664 665 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 666 667 // Get number of Compute Unit 668 uint32_t compute_units = 0; 669 err = hsa_agent_get_info( 670 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 671 &compute_units); 672 if (err != HSA_STATUS_SUCCESS) { 673 DeviceInfo.ComputeUnits[device_id] = 1; 674 DP("Error getting compute units : settiing to 1\n"); 675 } else { 676 DeviceInfo.ComputeUnits[device_id] = compute_units; 677 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 678 } 679 if (print_kernel_trace == 4) 680 fprintf(stderr, "Device#%-2d CU's: %2d\n", device_id, 681 DeviceInfo.ComputeUnits[device_id]); 682 683 // Query attributes to determine number of threads/block and blocks/grid. 684 uint16_t workgroup_max_dim[3]; 685 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 686 &workgroup_max_dim); 687 if (err != HSA_STATUS_SUCCESS) { 688 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 689 DP("Error getting grid dims: num groups : %d\n", 690 RTLDeviceInfoTy::DefaultNumTeams); 691 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 692 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 693 DP("Using %d ROCm blocks per grid\n", 694 DeviceInfo.GroupsPerDevice[device_id]); 695 } else { 696 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 697 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 698 "at the hard limit\n", 699 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 700 } 701 702 // Get thread limit 703 hsa_dim3_t grid_max_dim; 704 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 705 if (err == HSA_STATUS_SUCCESS) { 706 DeviceInfo.ThreadsPerGroup[device_id] = 707 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 708 DeviceInfo.GroupsPerDevice[device_id]; 709 if ((DeviceInfo.ThreadsPerGroup[device_id] > 710 RTLDeviceInfoTy::Max_WG_Size) || 711 DeviceInfo.ThreadsPerGroup[device_id] == 0) { 712 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 713 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 714 } else { 715 DP("Using ROCm Queried thread limit: %d\n", 716 DeviceInfo.ThreadsPerGroup[device_id]); 717 } 718 } else { 719 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 720 DP("Error getting max block dimension, use default:%d \n", 721 RTLDeviceInfoTy::Max_WG_Size); 722 } 723 724 // Get wavefront size 725 uint32_t wavefront_size = 0; 726 err = 727 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 728 if (err == HSA_STATUS_SUCCESS) { 729 DP("Queried wavefront size: %d\n", wavefront_size); 730 DeviceInfo.WarpSize[device_id] = wavefront_size; 731 } else { 732 DP("Default wavefront size: %d\n", 733 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 734 DeviceInfo.WarpSize[device_id] = 735 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 736 } 737 738 // Adjust teams to the env variables 739 if (DeviceInfo.EnvTeamLimit > 0 && 740 DeviceInfo.GroupsPerDevice[device_id] > DeviceInfo.EnvTeamLimit) { 741 DeviceInfo.GroupsPerDevice[device_id] = DeviceInfo.EnvTeamLimit; 742 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 743 DeviceInfo.EnvTeamLimit); 744 } 745 746 // Set default number of teams 747 if (DeviceInfo.EnvNumTeams > 0) { 748 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 749 DP("Default number of teams set according to environment %d\n", 750 DeviceInfo.EnvNumTeams); 751 } else { 752 DeviceInfo.NumTeams[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 753 DP("Default number of teams set according to library's default %d\n", 754 RTLDeviceInfoTy::DefaultNumTeams); 755 } 756 757 if (DeviceInfo.NumTeams[device_id] > DeviceInfo.GroupsPerDevice[device_id]) { 758 DeviceInfo.NumTeams[device_id] = DeviceInfo.GroupsPerDevice[device_id]; 759 DP("Default number of teams exceeds device limit, capping at %d\n", 760 DeviceInfo.GroupsPerDevice[device_id]); 761 } 762 763 // Set default number of threads 764 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 765 DP("Default number of threads set according to library's default %d\n", 766 RTLDeviceInfoTy::Default_WG_Size); 767 if (DeviceInfo.NumThreads[device_id] > 768 DeviceInfo.ThreadsPerGroup[device_id]) { 769 DeviceInfo.NumTeams[device_id] = DeviceInfo.ThreadsPerGroup[device_id]; 770 DP("Default number of threads exceeds device limit, capping at %d\n", 771 DeviceInfo.ThreadsPerGroup[device_id]); 772 } 773 774 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 775 device_id, DeviceInfo.GroupsPerDevice[device_id], 776 DeviceInfo.ThreadsPerGroup[device_id]); 777 778 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 779 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 780 DeviceInfo.GroupsPerDevice[device_id], 781 DeviceInfo.GroupsPerDevice[device_id] * 782 DeviceInfo.ThreadsPerGroup[device_id]); 783 784 return OFFLOAD_SUCCESS; 785 } 786 787 namespace { 788 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 789 size_t N; 790 int rc = elf_getshdrnum(elf, &N); 791 if (rc != 0) { 792 return nullptr; 793 } 794 795 Elf64_Shdr *result = nullptr; 796 for (size_t i = 0; i < N; i++) { 797 Elf_Scn *scn = elf_getscn(elf, i); 798 if (scn) { 799 Elf64_Shdr *shdr = elf64_getshdr(scn); 800 if (shdr) { 801 if (shdr->sh_type == SHT_HASH) { 802 if (result == nullptr) { 803 result = shdr; 804 } else { 805 // multiple SHT_HASH sections not handled 806 return nullptr; 807 } 808 } 809 } 810 } 811 } 812 return result; 813 } 814 815 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 816 const char *symname) { 817 818 assert(section_hash); 819 size_t section_symtab_index = section_hash->sh_link; 820 Elf64_Shdr *section_symtab = 821 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 822 size_t section_strtab_index = section_symtab->sh_link; 823 824 const Elf64_Sym *symtab = 825 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 826 827 const uint32_t *hashtab = 828 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 829 830 // Layout: 831 // nbucket 832 // nchain 833 // bucket[nbucket] 834 // chain[nchain] 835 uint32_t nbucket = hashtab[0]; 836 const uint32_t *bucket = &hashtab[2]; 837 const uint32_t *chain = &hashtab[nbucket + 2]; 838 839 const size_t max = strlen(symname) + 1; 840 const uint32_t hash = elf_hash(symname); 841 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 842 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 843 if (strncmp(symname, n, max) == 0) { 844 return &symtab[i]; 845 } 846 } 847 848 return nullptr; 849 } 850 851 typedef struct { 852 void *addr = nullptr; 853 uint32_t size = UINT32_MAX; 854 } symbol_info; 855 856 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 857 symbol_info *res) { 858 if (elf_kind(elf) != ELF_K_ELF) { 859 return 1; 860 } 861 862 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 863 if (!section_hash) { 864 return 1; 865 } 866 867 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 868 if (!sym) { 869 return 1; 870 } 871 872 if (sym->st_size > UINT32_MAX) { 873 return 1; 874 } 875 876 res->size = static_cast<uint32_t>(sym->st_size); 877 res->addr = sym->st_value + base; 878 return 0; 879 } 880 881 int get_symbol_info_without_loading(char *base, size_t img_size, 882 const char *symname, symbol_info *res) { 883 Elf *elf = elf_memory(base, img_size); 884 if (elf) { 885 int rc = get_symbol_info_without_loading(elf, base, symname, res); 886 elf_end(elf); 887 return rc; 888 } 889 return 1; 890 } 891 892 atmi_status_t interop_get_symbol_info(char *base, size_t img_size, 893 const char *symname, void **var_addr, 894 uint32_t *var_size) { 895 symbol_info si; 896 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 897 if (rc == 0) { 898 *var_addr = si.addr; 899 *var_size = si.size; 900 return ATMI_STATUS_SUCCESS; 901 } else { 902 return ATMI_STATUS_ERROR; 903 } 904 } 905 906 template <typename C> 907 atmi_status_t module_register_from_memory_to_place(void *module_bytes, 908 size_t module_size, 909 atmi_place_t place, C cb) { 910 auto L = [](void *data, size_t size, void *cb_state) -> atmi_status_t { 911 C *unwrapped = static_cast<C *>(cb_state); 912 return (*unwrapped)(data, size); 913 }; 914 return atmi_module_register_from_memory_to_place( 915 module_bytes, module_size, place, L, static_cast<void *>(&cb)); 916 } 917 } // namespace 918 919 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 920 uint64_t device_State_bytes = 0; 921 { 922 // If this is the deviceRTL, get the state variable size 923 symbol_info size_si; 924 int rc = get_symbol_info_without_loading( 925 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 926 927 if (rc == 0) { 928 if (size_si.size != sizeof(uint64_t)) { 929 fprintf(stderr, 930 "Found device_State_size variable with wrong size, aborting\n"); 931 exit(1); 932 } 933 934 // Read number of bytes directly from the elf 935 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 936 } 937 } 938 return device_State_bytes; 939 } 940 941 static __tgt_target_table * 942 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 943 944 static __tgt_target_table * 945 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 946 947 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 948 __tgt_device_image *image) { 949 DeviceInfo.load_run_lock.lock(); 950 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 951 DeviceInfo.load_run_lock.unlock(); 952 return res; 953 } 954 955 static atmi_status_t atmi_calloc(void **ret_ptr, size_t size, 956 atmi_mem_place_t place) { 957 uint64_t rounded = 4 * ((size + 3) / 4); 958 void *ptr; 959 atmi_status_t err = atmi_malloc(&ptr, rounded, place); 960 if (err != ATMI_STATUS_SUCCESS) { 961 return err; 962 } 963 964 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 965 if (rc != HSA_STATUS_SUCCESS) { 966 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 967 atmi_free(ptr); 968 return ATMI_STATUS_ERROR; 969 } 970 971 *ret_ptr = ptr; 972 return ATMI_STATUS_SUCCESS; 973 } 974 975 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 976 __tgt_device_image *image) { 977 // This function loads the device image onto gpu[device_id] and does other 978 // per-image initialization work. Specifically: 979 // 980 // - Initialize an omptarget_device_environmentTy instance embedded in the 981 // image at the symbol "omptarget_device_environment" 982 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 983 // 984 // - Allocate a large array per-gpu (could be moved to init_device) 985 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 986 // - Allocate at least that many bytes of gpu memory 987 // - Zero initialize it 988 // - Write the pointer to the symbol omptarget_nvptx_device_State 989 // 990 // - Pulls some per-kernel information together from various sources and 991 // records it in the KernelsList for quicker access later 992 // 993 // The initialization can be done before or after loading the image onto the 994 // gpu. This function presently does a mixture. Using the hsa api to get/set 995 // the information is simpler to implement, in exchange for more complicated 996 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 997 // back from the gpu vs a hashtable lookup on the host. 998 999 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1000 1001 DeviceInfo.clearOffloadEntriesTable(device_id); 1002 1003 // We do not need to set the ELF version because the caller of this function 1004 // had to do that to decide the right runtime to use 1005 1006 if (!elf_machine_id_is_amdgcn(image)) { 1007 return NULL; 1008 } 1009 1010 omptarget_device_environmentTy host_device_env; 1011 host_device_env.num_devices = DeviceInfo.NumberOfDevices; 1012 host_device_env.device_num = device_id; 1013 host_device_env.debug_level = 0; 1014 #ifdef OMPTARGET_DEBUG 1015 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1016 host_device_env.debug_level = std::stoi(envStr); 1017 } 1018 #endif 1019 1020 auto on_deserialized_data = [&](void *data, size_t size) -> atmi_status_t { 1021 const char *device_env_Name = "omptarget_device_environment"; 1022 symbol_info si; 1023 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1024 img_size, device_env_Name, &si); 1025 if (rc != 0) { 1026 DP("Finding global device environment '%s' - symbol missing.\n", 1027 device_env_Name); 1028 // no need to return FAIL, consider this is a not a device debug build. 1029 return ATMI_STATUS_SUCCESS; 1030 } 1031 if (si.size != sizeof(host_device_env)) { 1032 return ATMI_STATUS_ERROR; 1033 } 1034 DP("Setting global device environment %u bytes\n", si.size); 1035 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1036 void *pos = (char *)data + offset; 1037 memcpy(pos, &host_device_env, sizeof(host_device_env)); 1038 return ATMI_STATUS_SUCCESS; 1039 }; 1040 1041 atmi_status_t err; 1042 { 1043 err = module_register_from_memory_to_place( 1044 (void *)image->ImageStart, img_size, get_gpu_place(device_id), 1045 on_deserialized_data); 1046 1047 check("Module registering", err); 1048 if (err != ATMI_STATUS_SUCCESS) { 1049 char GPUName[64] = "--unknown gpu--"; 1050 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 1051 (void)hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 1052 (void *)GPUName); 1053 fprintf(stderr, 1054 "Possible gpu arch mismatch: %s, please check" 1055 " compiler: -march=<gpu> flag\n", 1056 GPUName); 1057 return NULL; 1058 } 1059 } 1060 1061 DP("ATMI module successfully loaded!\n"); 1062 1063 { 1064 // the device_State array is either large value in bss or a void* that 1065 // needs to be assigned to a pointer to an array of size device_state_bytes 1066 1067 void *state_ptr; 1068 uint32_t state_ptr_size; 1069 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1070 get_gpu_mem_place(device_id), "omptarget_nvptx_device_State", 1071 &state_ptr, &state_ptr_size); 1072 1073 if (err != ATMI_STATUS_SUCCESS) { 1074 fprintf(stderr, "failed to find device_state symbol\n"); 1075 return NULL; 1076 } 1077 1078 if (state_ptr_size < sizeof(void *)) { 1079 fprintf(stderr, "unexpected size of state_ptr %u != %zu\n", 1080 state_ptr_size, sizeof(void *)); 1081 return NULL; 1082 } 1083 1084 // if it's larger than a void*, assume it's a bss array and no further 1085 // initialization is required. Only try to set up a pointer for 1086 // sizeof(void*) 1087 if (state_ptr_size == sizeof(void *)) { 1088 uint64_t device_State_bytes = 1089 get_device_State_bytes((char *)image->ImageStart, img_size); 1090 if (device_State_bytes == 0) { 1091 return NULL; 1092 } 1093 1094 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1095 if (dss.first.get() == nullptr) { 1096 assert(dss.second == 0); 1097 void *ptr = NULL; 1098 atmi_status_t err = 1099 atmi_calloc(&ptr, device_State_bytes, get_gpu_mem_place(device_id)); 1100 if (err != ATMI_STATUS_SUCCESS) { 1101 fprintf(stderr, "Failed to allocate device_state array\n"); 1102 return NULL; 1103 } 1104 dss = {std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1105 device_State_bytes}; 1106 } 1107 1108 void *ptr = dss.first.get(); 1109 if (device_State_bytes != dss.second) { 1110 fprintf(stderr, "Inconsistent sizes of device_State unsupported\n"); 1111 exit(1); 1112 } 1113 1114 // write ptr to device memory so it can be used by later kernels 1115 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1116 sizeof(void *), device_id); 1117 if (err != ATMI_STATUS_SUCCESS) { 1118 fprintf(stderr, "memcpy install of state_ptr failed\n"); 1119 return NULL; 1120 } 1121 } 1122 } 1123 1124 // TODO: Check with Guansong to understand the below comment more thoroughly. 1125 // Here, we take advantage of the data that is appended after img_end to get 1126 // the symbols' name we need to load. This data consist of the host entries 1127 // begin and end as well as the target name (see the offloading linker script 1128 // creation in clang compiler). 1129 1130 // Find the symbols in the module by name. The name can be obtain by 1131 // concatenating the host entry name with the target name 1132 1133 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1134 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1135 1136 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1137 1138 if (!e->addr) { 1139 // The host should have always something in the address to 1140 // uniquely identify the target region. 1141 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1142 (unsigned long long)e->size); 1143 return NULL; 1144 } 1145 1146 if (e->size) { 1147 __tgt_offload_entry entry = *e; 1148 1149 void *varptr; 1150 uint32_t varsize; 1151 1152 err = atmi_interop_hsa_get_symbol_info(get_gpu_mem_place(device_id), 1153 e->name, &varptr, &varsize); 1154 1155 if (err != ATMI_STATUS_SUCCESS) { 1156 DP("Loading global '%s' (Failed)\n", e->name); 1157 // Inform the user what symbol prevented offloading 1158 fprintf(stderr, "Loading global '%s' (Failed)\n", e->name); 1159 return NULL; 1160 } 1161 1162 if (varsize != e->size) { 1163 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1164 varsize, e->size); 1165 return NULL; 1166 } 1167 1168 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1169 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1170 entry.addr = (void *)varptr; 1171 1172 DeviceInfo.addOffloadEntry(device_id, entry); 1173 1174 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1175 e->flags & OMP_DECLARE_TARGET_LINK) { 1176 // If unified memory is present any target link variables 1177 // can access host addresses directly. There is no longer a 1178 // need for device copies. 1179 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1180 sizeof(void *), device_id); 1181 if (err != ATMI_STATUS_SUCCESS) 1182 DP("Error when copying USM\n"); 1183 DP("Copy linked variable host address (" DPxMOD ")" 1184 "to device address (" DPxMOD ")\n", 1185 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1186 } 1187 1188 continue; 1189 } 1190 1191 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1192 1193 atmi_mem_place_t place = get_gpu_mem_place(device_id); 1194 uint32_t kernarg_segment_size; 1195 err = atmi_interop_hsa_get_kernel_info( 1196 place, e->name, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1197 &kernarg_segment_size); 1198 1199 // each arg is a void * in this openmp implementation 1200 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1201 std::vector<size_t> arg_sizes(arg_num); 1202 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1203 it != arg_sizes.end(); it++) { 1204 *it = sizeof(void *); 1205 } 1206 1207 // default value GENERIC (in case symbol is missing from cubin file) 1208 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1209 1210 // get flat group size if present, else Default_WG_Size 1211 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1212 1213 // get Kernel Descriptor if present. 1214 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1215 struct KernDescValType { 1216 uint16_t Version; 1217 uint16_t TSize; 1218 uint16_t WG_Size; 1219 uint8_t Mode; 1220 }; 1221 struct KernDescValType KernDescVal; 1222 std::string KernDescNameStr(e->name); 1223 KernDescNameStr += "_kern_desc"; 1224 const char *KernDescName = KernDescNameStr.c_str(); 1225 1226 void *KernDescPtr; 1227 uint32_t KernDescSize; 1228 void *CallStackAddr = nullptr; 1229 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1230 KernDescName, &KernDescPtr, &KernDescSize); 1231 1232 if (err == ATMI_STATUS_SUCCESS) { 1233 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1234 DP("Loading global computation properties '%s' - size mismatch (%u != " 1235 "%lu)\n", 1236 KernDescName, KernDescSize, sizeof(KernDescVal)); 1237 1238 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1239 1240 // Check structure size against recorded size. 1241 if ((size_t)KernDescSize != KernDescVal.TSize) 1242 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1243 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1244 1245 DP("After loading global for %s KernDesc \n", KernDescName); 1246 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1247 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1248 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1249 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1250 1251 // Get ExecMode 1252 ExecModeVal = KernDescVal.Mode; 1253 DP("ExecModeVal %d\n", ExecModeVal); 1254 if (KernDescVal.WG_Size == 0) { 1255 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1256 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1257 } 1258 WGSizeVal = KernDescVal.WG_Size; 1259 DP("WGSizeVal %d\n", WGSizeVal); 1260 check("Loading KernDesc computation property", err); 1261 } else { 1262 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1263 1264 // Generic 1265 std::string ExecModeNameStr(e->name); 1266 ExecModeNameStr += "_exec_mode"; 1267 const char *ExecModeName = ExecModeNameStr.c_str(); 1268 1269 void *ExecModePtr; 1270 uint32_t varsize; 1271 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1272 ExecModeName, &ExecModePtr, &varsize); 1273 1274 if (err == ATMI_STATUS_SUCCESS) { 1275 if ((size_t)varsize != sizeof(int8_t)) { 1276 DP("Loading global computation properties '%s' - size mismatch(%u != " 1277 "%lu)\n", 1278 ExecModeName, varsize, sizeof(int8_t)); 1279 return NULL; 1280 } 1281 1282 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1283 1284 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1285 ExecModeVal); 1286 1287 if (ExecModeVal < 0 || ExecModeVal > 1) { 1288 DP("Error wrong exec_mode value specified in HSA code object file: " 1289 "%d\n", 1290 ExecModeVal); 1291 return NULL; 1292 } 1293 } else { 1294 DP("Loading global exec_mode '%s' - symbol missing, using default " 1295 "value " 1296 "GENERIC (1)\n", 1297 ExecModeName); 1298 } 1299 check("Loading computation property", err); 1300 1301 // Flat group size 1302 std::string WGSizeNameStr(e->name); 1303 WGSizeNameStr += "_wg_size"; 1304 const char *WGSizeName = WGSizeNameStr.c_str(); 1305 1306 void *WGSizePtr; 1307 uint32_t WGSize; 1308 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1309 WGSizeName, &WGSizePtr, &WGSize); 1310 1311 if (err == ATMI_STATUS_SUCCESS) { 1312 if ((size_t)WGSize != sizeof(int16_t)) { 1313 DP("Loading global computation properties '%s' - size mismatch (%u " 1314 "!= " 1315 "%lu)\n", 1316 WGSizeName, WGSize, sizeof(int16_t)); 1317 return NULL; 1318 } 1319 1320 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1321 1322 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1323 1324 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1325 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1326 DP("Error wrong WGSize value specified in HSA code object file: " 1327 "%d\n", 1328 WGSizeVal); 1329 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1330 } 1331 } else { 1332 DP("Warning: Loading WGSize '%s' - symbol not found, " 1333 "using default value %d\n", 1334 WGSizeName, WGSizeVal); 1335 } 1336 1337 check("Loading WGSize computation property", err); 1338 } 1339 1340 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1341 CallStackAddr, e->name, 1342 kernarg_segment_size)); 1343 __tgt_offload_entry entry = *e; 1344 entry.addr = (void *)&KernelsList.back(); 1345 DeviceInfo.addOffloadEntry(device_id, entry); 1346 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1347 } 1348 1349 return DeviceInfo.getOffloadEntriesTable(device_id); 1350 } 1351 1352 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *) { 1353 void *ptr = NULL; 1354 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1355 atmi_status_t err = atmi_malloc(&ptr, size, get_gpu_mem_place(device_id)); 1356 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1357 (long long unsigned)(Elf64_Addr)ptr); 1358 ptr = (err == ATMI_STATUS_SUCCESS) ? ptr : NULL; 1359 return ptr; 1360 } 1361 1362 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1363 int64_t size) { 1364 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1365 __tgt_async_info async_info; 1366 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &async_info); 1367 if (rc != OFFLOAD_SUCCESS) 1368 return OFFLOAD_FAIL; 1369 1370 return __tgt_rtl_synchronize(device_id, &async_info); 1371 } 1372 1373 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1374 int64_t size, 1375 __tgt_async_info *async_info_ptr) { 1376 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1377 if (async_info_ptr) { 1378 initAsyncInfoPtr(async_info_ptr); 1379 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, async_info_ptr); 1380 } else { 1381 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1382 } 1383 } 1384 1385 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1386 int64_t size) { 1387 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1388 __tgt_async_info async_info; 1389 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &async_info); 1390 if (rc != OFFLOAD_SUCCESS) 1391 return OFFLOAD_FAIL; 1392 1393 return __tgt_rtl_synchronize(device_id, &async_info); 1394 } 1395 1396 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1397 void *tgt_ptr, int64_t size, 1398 __tgt_async_info *async_info_ptr) { 1399 assert(async_info_ptr && "async_info is nullptr"); 1400 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1401 initAsyncInfoPtr(async_info_ptr); 1402 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, async_info_ptr); 1403 } 1404 1405 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1406 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1407 atmi_status_t err; 1408 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1409 err = atmi_free(tgt_ptr); 1410 if (err != ATMI_STATUS_SUCCESS) { 1411 DP("Error when freeing CUDA memory\n"); 1412 return OFFLOAD_FAIL; 1413 } 1414 return OFFLOAD_SUCCESS; 1415 } 1416 1417 // Determine launch values for threadsPerGroup and num_groups. 1418 // Outputs: treadsPerGroup, num_groups 1419 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1420 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1421 // loop_tripcount. 1422 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1423 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1424 int num_teams, int thread_limit, uint64_t loop_tripcount) { 1425 1426 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1427 ? DeviceInfo.EnvMaxTeamsDefault 1428 : DeviceInfo.Max_Teams; 1429 if (Max_Teams > DeviceInfo.HardTeamLimit) 1430 Max_Teams = DeviceInfo.HardTeamLimit; 1431 1432 if (print_kernel_trace == 4) { 1433 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1434 RTLDeviceInfoTy::Max_Teams); 1435 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1436 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1437 RTLDeviceInfoTy::Warp_Size); 1438 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1439 RTLDeviceInfoTy::Max_WG_Size); 1440 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1441 RTLDeviceInfoTy::Default_WG_Size); 1442 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1443 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1444 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1445 } 1446 // check for thread_limit() clause 1447 if (thread_limit > 0) { 1448 threadsPerGroup = thread_limit; 1449 DP("Setting threads per block to requested %d\n", thread_limit); 1450 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1451 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1452 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1453 } 1454 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1455 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1456 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1457 } 1458 } 1459 // check flat_max_work_group_size attr here 1460 if (threadsPerGroup > ConstWGSize) { 1461 threadsPerGroup = ConstWGSize; 1462 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1463 threadsPerGroup); 1464 } 1465 if (print_kernel_trace == 4) 1466 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1467 DP("Preparing %d threads\n", threadsPerGroup); 1468 1469 // Set default num_groups (teams) 1470 if (DeviceInfo.EnvTeamLimit > 0) 1471 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1472 ? Max_Teams 1473 : DeviceInfo.EnvTeamLimit; 1474 else 1475 num_groups = Max_Teams; 1476 DP("Set default num of groups %d\n", num_groups); 1477 1478 if (print_kernel_trace == 4) { 1479 fprintf(stderr, "num_groups: %d\n", num_groups); 1480 fprintf(stderr, "num_teams: %d\n", num_teams); 1481 } 1482 1483 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1484 // This reduction is typical for default case (no thread_limit clause). 1485 // or when user goes crazy with num_teams clause. 1486 // FIXME: We cant distinguish between a constant or variable thread limit. 1487 // So we only handle constant thread_limits. 1488 if (threadsPerGroup > 1489 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1490 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1491 // here? 1492 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1493 1494 // check for num_teams() clause 1495 if (num_teams > 0) { 1496 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1497 } 1498 if (print_kernel_trace == 4) { 1499 fprintf(stderr, "num_groups: %d\n", num_groups); 1500 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1501 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1502 } 1503 1504 if (DeviceInfo.EnvNumTeams > 0) { 1505 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1506 : num_groups; 1507 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1508 } else if (DeviceInfo.EnvTeamLimit > 0) { 1509 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1510 ? DeviceInfo.EnvTeamLimit 1511 : num_groups; 1512 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1513 } else { 1514 if (num_teams <= 0) { 1515 if (loop_tripcount > 0) { 1516 if (ExecutionMode == SPMD) { 1517 // round up to the nearest integer 1518 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1519 } else { 1520 num_groups = loop_tripcount; 1521 } 1522 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1523 "threads per block %d\n", 1524 num_groups, loop_tripcount, threadsPerGroup); 1525 } 1526 } else { 1527 num_groups = num_teams; 1528 } 1529 if (num_groups > Max_Teams) { 1530 num_groups = Max_Teams; 1531 if (print_kernel_trace == 4) 1532 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1533 Max_Teams); 1534 } 1535 if (num_groups > num_teams && num_teams > 0) { 1536 num_groups = num_teams; 1537 if (print_kernel_trace == 4) 1538 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1539 num_groups, num_teams); 1540 } 1541 } 1542 1543 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1544 if (num_teams > 0) { 1545 num_groups = num_teams; 1546 // Cap num_groups to EnvMaxTeamsDefault if set. 1547 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1548 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1549 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1550 } 1551 if (print_kernel_trace == 4) { 1552 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1553 fprintf(stderr, "num_groups: %d\n", num_groups); 1554 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1555 } 1556 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1557 threadsPerGroup); 1558 } 1559 1560 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1561 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1562 bool full = true; 1563 while (full) { 1564 full = 1565 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1566 } 1567 return packet_id; 1568 } 1569 1570 extern bool g_atmi_hostcall_required; // declared without header by atmi 1571 1572 static int32_t __tgt_rtl_run_target_team_region_locked( 1573 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1574 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1575 int32_t thread_limit, uint64_t loop_tripcount); 1576 1577 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1578 void **tgt_args, 1579 ptrdiff_t *tgt_offsets, 1580 int32_t arg_num, int32_t num_teams, 1581 int32_t thread_limit, 1582 uint64_t loop_tripcount) { 1583 1584 DeviceInfo.load_run_lock.lock_shared(); 1585 int32_t res = __tgt_rtl_run_target_team_region_locked( 1586 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1587 thread_limit, loop_tripcount); 1588 1589 DeviceInfo.load_run_lock.unlock_shared(); 1590 return res; 1591 } 1592 1593 int32_t __tgt_rtl_run_target_team_region_locked( 1594 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1595 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1596 int32_t thread_limit, uint64_t loop_tripcount) { 1597 // Set the context we are using 1598 // update thread limit content in gpu memory if un-initialized or specified 1599 // from host 1600 1601 DP("Run target team region thread_limit %d\n", thread_limit); 1602 1603 // All args are references. 1604 std::vector<void *> args(arg_num); 1605 std::vector<void *> ptrs(arg_num); 1606 1607 DP("Arg_num: %d\n", arg_num); 1608 for (int32_t i = 0; i < arg_num; ++i) { 1609 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1610 args[i] = &ptrs[i]; 1611 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1612 } 1613 1614 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1615 1616 /* 1617 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1618 */ 1619 int num_groups = 0; 1620 1621 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1622 1623 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1624 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1625 DeviceInfo.EnvNumTeams, 1626 num_teams, // From run_region arg 1627 thread_limit, // From run_region arg 1628 loop_tripcount // From run_region arg 1629 ); 1630 1631 if (print_kernel_trace == 4) 1632 // enum modes are SPMD, GENERIC, NONE 0,1,2 1633 fprintf(stderr, 1634 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1635 "reqd:(%4dX%4d) n:%s\n", 1636 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1637 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1638 KernelInfo->Name); 1639 1640 // Run on the device. 1641 { 1642 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1643 uint64_t packet_id = acquire_available_packet_id(queue); 1644 1645 const uint32_t mask = queue->size - 1; // size is a power of 2 1646 hsa_kernel_dispatch_packet_t *packet = 1647 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1648 (packet_id & mask); 1649 1650 // packet->header is written last 1651 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1652 packet->workgroup_size_x = threadsPerGroup; 1653 packet->workgroup_size_y = 1; 1654 packet->workgroup_size_z = 1; 1655 packet->reserved0 = 0; 1656 packet->grid_size_x = num_groups * threadsPerGroup; 1657 packet->grid_size_y = 1; 1658 packet->grid_size_z = 1; 1659 packet->private_segment_size = 0; 1660 packet->group_segment_size = 0; 1661 packet->kernel_object = 0; 1662 packet->kernarg_address = 0; // use the block allocator 1663 packet->reserved2 = 0; // atmi writes id_ here 1664 packet->completion_signal = {0}; // may want a pool of signals 1665 1666 std::string kernel_name = std::string(KernelInfo->Name); 1667 { 1668 assert(KernelInfoTable[device_id].find(kernel_name) != 1669 KernelInfoTable[device_id].end()); 1670 auto it = KernelInfoTable[device_id][kernel_name]; 1671 packet->kernel_object = it.kernel_object; 1672 packet->private_segment_size = it.private_segment_size; 1673 packet->group_segment_size = it.group_segment_size; 1674 assert(arg_num == (int)it.num_args); 1675 } 1676 1677 KernelArgPool *ArgPool = nullptr; 1678 { 1679 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1680 if (it != KernelArgPoolMap.end()) { 1681 ArgPool = (it->second).get(); 1682 } 1683 } 1684 if (!ArgPool) { 1685 fprintf(stderr, "Warning: No ArgPool for %s on device %d\n", 1686 KernelInfo->Name, device_id); 1687 } 1688 { 1689 void *kernarg = nullptr; 1690 if (ArgPool) { 1691 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1692 kernarg = ArgPool->allocate(arg_num); 1693 } 1694 if (!kernarg) { 1695 printf("Allocate kernarg failed\n"); 1696 exit(1); 1697 } 1698 1699 // Copy explicit arguments 1700 for (int i = 0; i < arg_num; i++) { 1701 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1702 } 1703 1704 // Initialize implicit arguments. ATMI seems to leave most fields 1705 // uninitialized 1706 atmi_implicit_args_t *impl_args = 1707 reinterpret_cast<atmi_implicit_args_t *>( 1708 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1709 memset(impl_args, 0, 1710 sizeof(atmi_implicit_args_t)); // may not be necessary 1711 impl_args->offset_x = 0; 1712 impl_args->offset_y = 0; 1713 impl_args->offset_z = 0; 1714 1715 // assign a hostcall buffer for the selected Q 1716 if (g_atmi_hostcall_required) { 1717 // hostrpc_assign_buffer is not thread safe, and this function is 1718 // under a multiple reader lock, not a writer lock. 1719 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 1720 pthread_mutex_lock(&hostcall_init_lock); 1721 impl_args->hostcall_ptr = hostrpc_assign_buffer( 1722 DeviceInfo.HSAAgents[device_id], queue, device_id); 1723 pthread_mutex_unlock(&hostcall_init_lock); 1724 if (!impl_args->hostcall_ptr) { 1725 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 1726 "error\n"); 1727 return OFFLOAD_FAIL; 1728 } 1729 } 1730 1731 packet->kernarg_address = kernarg; 1732 } 1733 1734 { 1735 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1736 if (s.handle == 0) { 1737 printf("Failed to get signal instance\n"); 1738 exit(1); 1739 } 1740 packet->completion_signal = s; 1741 hsa_signal_store_relaxed(packet->completion_signal, 1); 1742 } 1743 1744 core::packet_store_release( 1745 reinterpret_cast<uint32_t *>(packet), 1746 core::create_header(HSA_PACKET_TYPE_KERNEL_DISPATCH, 0, 1747 ATMI_FENCE_SCOPE_SYSTEM, ATMI_FENCE_SCOPE_SYSTEM), 1748 packet->setup); 1749 1750 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1751 1752 while (hsa_signal_wait_scacquire(packet->completion_signal, 1753 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1754 HSA_WAIT_STATE_BLOCKED) != 0) 1755 ; 1756 1757 assert(ArgPool); 1758 ArgPool->deallocate(packet->kernarg_address); 1759 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 1760 } 1761 1762 DP("Kernel completed\n"); 1763 return OFFLOAD_SUCCESS; 1764 } 1765 1766 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 1767 void **tgt_args, ptrdiff_t *tgt_offsets, 1768 int32_t arg_num) { 1769 // use one team and one thread 1770 // fix thread num 1771 int32_t team_num = 1; 1772 int32_t thread_limit = 0; // use default 1773 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1774 tgt_offsets, arg_num, team_num, 1775 thread_limit, 0); 1776 } 1777 1778 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 1779 void *tgt_entry_ptr, void **tgt_args, 1780 ptrdiff_t *tgt_offsets, 1781 int32_t arg_num, 1782 __tgt_async_info *async_info_ptr) { 1783 assert(async_info_ptr && "async_info is nullptr"); 1784 initAsyncInfoPtr(async_info_ptr); 1785 1786 // use one team and one thread 1787 // fix thread num 1788 int32_t team_num = 1; 1789 int32_t thread_limit = 0; // use default 1790 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1791 tgt_offsets, arg_num, team_num, 1792 thread_limit, 0); 1793 } 1794 1795 int32_t __tgt_rtl_synchronize(int32_t device_id, 1796 __tgt_async_info *async_info_ptr) { 1797 assert(async_info_ptr && "async_info is nullptr"); 1798 1799 // Cuda asserts that async_info_ptr->Queue is non-null, but this invariant 1800 // is not ensured by devices.cpp for amdgcn 1801 // assert(async_info_ptr->Queue && "async_info_ptr->Queue is nullptr"); 1802 if (async_info_ptr->Queue) { 1803 finiAsyncInfoPtr(async_info_ptr); 1804 } 1805 return OFFLOAD_SUCCESS; 1806 } 1807