1 //===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <functional> 19 #include <libelf.h> 20 #include <list> 21 #include <memory> 22 #include <mutex> 23 #include <shared_mutex> 24 #include <unordered_map> 25 #include <vector> 26 27 #include "interop_hsa.h" 28 #include "impl_runtime.h" 29 30 #include "internal.h" 31 #include "rt.h" 32 33 #include "get_elf_mach_gfx_name.h" 34 #include "omptargetplugin.h" 35 #include "print_tracing.h" 36 37 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 38 39 40 // hostrpc interface, FIXME: consider moving to its own include these are 41 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 42 // linked as --whole-archive to override the weak symbols that are used to 43 // implement a fallback for toolchains that do not yet have a hostrpc library. 44 extern "C" { 45 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 46 uint32_t device_id); 47 hsa_status_t hostrpc_init(); 48 hsa_status_t hostrpc_terminate(); 49 50 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 51 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 52 return HSA_STATUS_SUCCESS; 53 } 54 __attribute__((weak)) unsigned long 55 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 56 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 57 "missing\n", 58 device_id); 59 return 0; 60 } 61 } 62 63 // Heuristic parameters used for kernel launch 64 // Number of teams per CU to allow scheduling flexibility 65 static const unsigned DefaultTeamsPerCU = 4; 66 67 int print_kernel_trace; 68 69 #ifdef OMPTARGET_DEBUG 70 #define check(msg, status) \ 71 if (status != HSA_STATUS_SUCCESS) { \ 72 DP(#msg " failed\n"); \ 73 } else { \ 74 DP(#msg " succeeded\n"); \ 75 } 76 #else 77 #define check(msg, status) \ 78 {} 79 #endif 80 81 #include "elf_common.h" 82 83 namespace hsa { 84 template <typename C> hsa_status_t iterate_agents(C cb) { 85 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 86 C *unwrapped = static_cast<C *>(data); 87 return (*unwrapped)(agent); 88 }; 89 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 90 } 91 92 template <typename C> 93 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { 94 auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { 95 C *unwrapped = static_cast<C *>(data); 96 return (*unwrapped)(MemoryPool); 97 }; 98 99 return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb)); 100 } 101 102 } // namespace hsa 103 104 /// Keep entries table per device 105 struct FuncOrGblEntryTy { 106 __tgt_target_table Table; 107 std::vector<__tgt_offload_entry> Entries; 108 }; 109 110 enum ExecutionModeType { 111 SPMD, // constructors, destructors, 112 // combined constructs (`teams distribute parallel for [simd]`) 113 GENERIC, // everything else 114 SPMD_GENERIC, // Generic kernel with SPMD execution 115 NONE 116 }; 117 118 struct KernelArgPool { 119 private: 120 static pthread_mutex_t mutex; 121 122 public: 123 uint32_t kernarg_segment_size; 124 void *kernarg_region = nullptr; 125 std::queue<int> free_kernarg_segments; 126 127 uint32_t kernarg_size_including_implicit() { 128 return kernarg_segment_size + sizeof(impl_implicit_args_t); 129 } 130 131 ~KernelArgPool() { 132 if (kernarg_region) { 133 auto r = hsa_amd_memory_pool_free(kernarg_region); 134 if (r != HSA_STATUS_SUCCESS) { 135 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 136 } 137 } 138 } 139 140 // Can't really copy or move a mutex 141 KernelArgPool() = default; 142 KernelArgPool(const KernelArgPool &) = delete; 143 KernelArgPool(KernelArgPool &&) = delete; 144 145 KernelArgPool(uint32_t kernarg_segment_size, 146 hsa_amd_memory_pool_t &memory_pool) 147 : kernarg_segment_size(kernarg_segment_size) { 148 149 // impl uses one pool per kernel for all gpus, with a fixed upper size 150 // preserving that exact scheme here, including the queue<int> 151 152 hsa_status_t err = hsa_amd_memory_pool_allocate( 153 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 154 &kernarg_region); 155 156 if (err != HSA_STATUS_SUCCESS) { 157 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 158 kernarg_region = nullptr; // paranoid 159 return; 160 } 161 162 err = core::allow_access_to_all_gpu_agents(kernarg_region); 163 if (err != HSA_STATUS_SUCCESS) { 164 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 165 get_error_string(err)); 166 auto r = hsa_amd_memory_pool_free(kernarg_region); 167 if (r != HSA_STATUS_SUCCESS) { 168 // if free failed, can't do anything more to resolve it 169 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 170 } 171 kernarg_region = nullptr; 172 return; 173 } 174 175 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 176 free_kernarg_segments.push(i); 177 } 178 } 179 180 void *allocate(uint64_t arg_num) { 181 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 182 lock l(&mutex); 183 void *res = nullptr; 184 if (!free_kernarg_segments.empty()) { 185 186 int free_idx = free_kernarg_segments.front(); 187 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 188 (free_idx * kernarg_size_including_implicit())); 189 assert(free_idx == pointer_to_index(res)); 190 free_kernarg_segments.pop(); 191 } 192 return res; 193 } 194 195 void deallocate(void *ptr) { 196 lock l(&mutex); 197 int idx = pointer_to_index(ptr); 198 free_kernarg_segments.push(idx); 199 } 200 201 private: 202 int pointer_to_index(void *ptr) { 203 ptrdiff_t bytes = 204 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 205 assert(bytes >= 0); 206 assert(bytes % kernarg_size_including_implicit() == 0); 207 return bytes / kernarg_size_including_implicit(); 208 } 209 struct lock { 210 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 211 ~lock() { pthread_mutex_unlock(m); } 212 pthread_mutex_t *m; 213 }; 214 }; 215 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 216 217 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 218 KernelArgPoolMap; 219 220 /// Use a single entity to encode a kernel and a set of flags 221 struct KernelTy { 222 // execution mode of kernel 223 // 0 - SPMD mode (without master warp) 224 // 1 - Generic mode (with master warp) 225 // 2 - SPMD mode execution with Generic mode semantics. 226 int8_t ExecutionMode; 227 int16_t ConstWGSize; 228 int32_t device_id; 229 void *CallStackAddr = nullptr; 230 const char *Name; 231 232 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 233 void *_CallStackAddr, const char *_Name, 234 uint32_t _kernarg_segment_size, 235 hsa_amd_memory_pool_t &KernArgMemoryPool) 236 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 237 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 238 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 239 240 std::string N(_Name); 241 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 242 KernelArgPoolMap.insert( 243 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 244 _kernarg_segment_size, KernArgMemoryPool)))); 245 } 246 } 247 }; 248 249 /// List that contains all the kernels. 250 /// FIXME: we may need this to be per device and per library. 251 std::list<KernelTy> KernelsList; 252 253 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 254 255 hsa_status_t err = 256 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 257 hsa_device_type_t device_type; 258 // get_info fails iff HSA runtime not yet initialized 259 hsa_status_t err = 260 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 261 262 if (err != HSA_STATUS_SUCCESS) { 263 if (print_kernel_trace > 0) 264 DP("rtl.cpp: err %s\n", get_error_string(err)); 265 266 return err; 267 } 268 269 CB(device_type, agent); 270 return HSA_STATUS_SUCCESS; 271 }); 272 273 // iterate_agents fails iff HSA runtime not yet initialized 274 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 275 DP("rtl.cpp: err %s\n", get_error_string(err)); 276 } 277 278 return err; 279 } 280 281 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 282 void *data) { 283 if (status != HSA_STATUS_SUCCESS) { 284 const char *status_string; 285 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 286 status_string = "unavailable"; 287 } 288 DP("[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, __LINE__, source, 289 status, status_string); 290 abort(); 291 } 292 } 293 294 namespace core { 295 namespace { 296 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 297 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 298 } 299 300 uint16_t create_header() { 301 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 302 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 303 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 304 return header; 305 } 306 307 hsa_status_t addKernArgPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 308 std::vector<hsa_amd_memory_pool_t> *Result = 309 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 310 bool AllocAllowed = false; 311 hsa_status_t err = hsa_amd_memory_pool_get_info( 312 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 313 &AllocAllowed); 314 if (err != HSA_STATUS_SUCCESS) { 315 DP("Alloc allowed in memory pool check failed: %s\n", 316 get_error_string(err)); 317 return err; 318 } 319 320 if (!AllocAllowed) { 321 // nothing needs to be done here. 322 return HSA_STATUS_SUCCESS; 323 } 324 325 uint32_t GlobalFlags = 0; 326 err = hsa_amd_memory_pool_get_info( 327 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 328 if (err != HSA_STATUS_SUCCESS) { 329 DP("Get memory pool info failed: %s\n", get_error_string(err)); 330 return err; 331 } 332 333 size_t size = 0; 334 err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, 335 &size); 336 if (err != HSA_STATUS_SUCCESS) { 337 DP("Get memory pool size failed: %s\n", get_error_string(err)); 338 return err; 339 } 340 341 if ((GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) && 342 (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) && 343 size > 0) { 344 Result->push_back(MemoryPool); 345 } 346 347 return HSA_STATUS_SUCCESS; 348 } 349 350 std::pair<hsa_status_t, bool> 351 isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { 352 bool AllocAllowed = false; 353 hsa_status_t Err = hsa_amd_memory_pool_get_info( 354 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 355 &AllocAllowed); 356 if (Err != HSA_STATUS_SUCCESS) { 357 DP("Alloc allowed in memory pool check failed: %s\n", 358 get_error_string(Err)); 359 return {Err, false}; 360 } 361 362 return {HSA_STATUS_SUCCESS, AllocAllowed}; 363 } 364 365 template <typename AccumulatorFunc> 366 hsa_status_t collectMemoryPools(const std::vector<hsa_agent_t> &Agents, 367 AccumulatorFunc Func) { 368 for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { 369 hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( 370 Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { 371 hsa_status_t Err; 372 bool Valid = false; 373 std::tie(Err, Valid) = isValidMemoryPool(MemoryPool); 374 if (Err != HSA_STATUS_SUCCESS) { 375 return Err; 376 } 377 if (Valid) 378 Func(MemoryPool, DeviceId); 379 return HSA_STATUS_SUCCESS; 380 }); 381 382 if (Err != HSA_STATUS_SUCCESS) { 383 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 384 "Iterate all memory pools", get_error_string(Err)); 385 return Err; 386 } 387 } 388 389 return HSA_STATUS_SUCCESS; 390 } 391 392 std::pair<hsa_status_t, hsa_amd_memory_pool_t> 393 FindKernargPool(const std::vector<hsa_agent_t> &HSAAgents) { 394 std::vector<hsa_amd_memory_pool_t> KernArgPools; 395 for (const auto &Agent : HSAAgents) { 396 hsa_status_t err = HSA_STATUS_SUCCESS; 397 err = hsa_amd_agent_iterate_memory_pools( 398 Agent, addKernArgPool, static_cast<void *>(&KernArgPools)); 399 if (err != HSA_STATUS_SUCCESS) { 400 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 401 "Iterate all memory pools", get_error_string(err)); 402 return {err, hsa_amd_memory_pool_t{}}; 403 } 404 } 405 406 if (KernArgPools.empty()) { 407 DP("Unable to find any valid kernarg pool\n"); 408 return {HSA_STATUS_ERROR, hsa_amd_memory_pool_t{}}; 409 } 410 411 return {HSA_STATUS_SUCCESS, KernArgPools[0]}; 412 } 413 414 } // namespace 415 } // namespace core 416 417 struct EnvironmentVariables { 418 int NumTeams; 419 int TeamLimit; 420 int TeamThreadLimit; 421 int MaxTeamsDefault; 422 }; 423 424 template <uint32_t wavesize> 425 static constexpr const llvm::omp::GV &getGridValue() { 426 return llvm::omp::getAMDGPUGridValues<wavesize>(); 427 } 428 429 struct HSALifetime { 430 // Wrapper around HSA used to ensure it is constructed before other types 431 // and destructed after, which means said other types can use raii for 432 // cleanup without risking running outside of the lifetime of HSA 433 const hsa_status_t S; 434 435 bool success() { return S == HSA_STATUS_SUCCESS; } 436 HSALifetime() : S(hsa_init()) {} 437 438 ~HSALifetime() { 439 if (S == HSA_STATUS_SUCCESS) { 440 hsa_status_t Err = hsa_shut_down(); 441 if (Err != HSA_STATUS_SUCCESS) { 442 // Can't call into HSA to get a string from the integer 443 DP("Shutting down HSA failed: %d\n", Err); 444 } 445 } 446 } 447 }; 448 449 /// Class containing all the device information 450 class RTLDeviceInfoTy { 451 HSALifetime HSA; // First field => constructed first and destructed last 452 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 453 454 struct QueueDeleter { 455 void operator()(hsa_queue_t *Q) { 456 if (Q) { 457 hsa_status_t Err = hsa_queue_destroy(Q); 458 if (Err != HSA_STATUS_SUCCESS) { 459 DP("Error destroying hsa queue: %s\n", get_error_string(Err)); 460 } 461 } 462 } 463 }; 464 465 public: 466 // load binary populates symbol tables and mutates various global state 467 // run uses those symbol tables 468 std::shared_timed_mutex load_run_lock; 469 470 int NumberOfDevices = 0; 471 472 // GPU devices 473 std::vector<hsa_agent_t> HSAAgents; 474 std::vector<std::unique_ptr<hsa_queue_t, QueueDeleter>> 475 HSAQueues; // one per gpu 476 477 // CPUs 478 std::vector<hsa_agent_t> CPUAgents; 479 480 // Device properties 481 std::vector<int> ComputeUnits; 482 std::vector<int> GroupsPerDevice; 483 std::vector<int> ThreadsPerGroup; 484 std::vector<int> WarpSize; 485 std::vector<std::string> GPUName; 486 487 // OpenMP properties 488 std::vector<int> NumTeams; 489 std::vector<int> NumThreads; 490 491 // OpenMP Environment properties 492 EnvironmentVariables Env; 493 494 // OpenMP Requires Flags 495 int64_t RequiresFlags; 496 497 // Resource pools 498 SignalPoolT FreeSignalPool; 499 500 bool hostcall_required = false; 501 502 std::vector<hsa_executable_t> HSAExecutables; 503 504 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 505 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 506 507 hsa_amd_memory_pool_t KernArgPool; 508 509 // fine grained memory pool for host allocations 510 hsa_amd_memory_pool_t HostFineGrainedMemoryPool; 511 512 // fine and coarse-grained memory pools per offloading device 513 std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools; 514 std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools; 515 516 struct implFreePtrDeletor { 517 void operator()(void *p) { 518 core::Runtime::Memfree(p); // ignore failure to free 519 } 520 }; 521 522 // device_State shared across loaded binaries, error if inconsistent size 523 std::vector<std::pair<std::unique_ptr<void, implFreePtrDeletor>, uint64_t>> 524 deviceStateStore; 525 526 static const unsigned HardTeamLimit = 527 (1 << 16) - 1; // 64K needed to fit in uint16 528 static const int DefaultNumTeams = 128; 529 530 // These need to be per-device since different devices can have different 531 // wave sizes, but are currently the same number for each so that refactor 532 // can be postponed. 533 static_assert(getGridValue<32>().GV_Max_Teams == 534 getGridValue<64>().GV_Max_Teams, 535 ""); 536 static const int Max_Teams = getGridValue<64>().GV_Max_Teams; 537 538 static_assert(getGridValue<32>().GV_Max_WG_Size == 539 getGridValue<64>().GV_Max_WG_Size, 540 ""); 541 static const int Max_WG_Size = getGridValue<64>().GV_Max_WG_Size; 542 543 static_assert(getGridValue<32>().GV_Default_WG_Size == 544 getGridValue<64>().GV_Default_WG_Size, 545 ""); 546 static const int Default_WG_Size = getGridValue<64>().GV_Default_WG_Size; 547 548 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 549 size_t size, hsa_agent_t, 550 hsa_amd_memory_pool_t); 551 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 552 MemcpyFunc Func, int32_t deviceId) { 553 hsa_agent_t agent = HSAAgents[deviceId]; 554 hsa_signal_t s = FreeSignalPool.pop(); 555 if (s.handle == 0) { 556 return HSA_STATUS_ERROR; 557 } 558 hsa_status_t r = Func(s, dest, src, size, agent, HostFineGrainedMemoryPool); 559 FreeSignalPool.push(s); 560 return r; 561 } 562 563 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 564 size_t size, int32_t deviceId) { 565 return freesignalpool_memcpy(dest, src, size, impl_memcpy_d2h, deviceId); 566 } 567 568 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 569 size_t size, int32_t deviceId) { 570 return freesignalpool_memcpy(dest, src, size, impl_memcpy_h2d, deviceId); 571 } 572 573 // Record entry point associated with device 574 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 575 assert(device_id < (int32_t)FuncGblEntries.size() && 576 "Unexpected device id!"); 577 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 578 579 E.Entries.push_back(entry); 580 } 581 582 // Return true if the entry is associated with device 583 bool findOffloadEntry(int32_t device_id, void *addr) { 584 assert(device_id < (int32_t)FuncGblEntries.size() && 585 "Unexpected device id!"); 586 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 587 588 for (auto &it : E.Entries) { 589 if (it.addr == addr) 590 return true; 591 } 592 593 return false; 594 } 595 596 // Return the pointer to the target entries table 597 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 598 assert(device_id < (int32_t)FuncGblEntries.size() && 599 "Unexpected device id!"); 600 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 601 602 int32_t size = E.Entries.size(); 603 604 // Table is empty 605 if (!size) 606 return 0; 607 608 __tgt_offload_entry *begin = &E.Entries[0]; 609 __tgt_offload_entry *end = &E.Entries[size - 1]; 610 611 // Update table info according to the entries and return the pointer 612 E.Table.EntriesBegin = begin; 613 E.Table.EntriesEnd = ++end; 614 615 return &E.Table; 616 } 617 618 // Clear entries table for a device 619 void clearOffloadEntriesTable(int device_id) { 620 assert(device_id < (int32_t)FuncGblEntries.size() && 621 "Unexpected device id!"); 622 FuncGblEntries[device_id].emplace_back(); 623 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 624 // KernelArgPoolMap.clear(); 625 E.Entries.clear(); 626 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 627 } 628 629 hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, 630 int DeviceId) { 631 assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); 632 uint32_t GlobalFlags = 0; 633 hsa_status_t Err = hsa_amd_memory_pool_get_info( 634 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 635 636 if (Err != HSA_STATUS_SUCCESS) { 637 return Err; 638 } 639 640 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 641 DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; 642 } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { 643 DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; 644 } 645 646 return HSA_STATUS_SUCCESS; 647 } 648 649 hsa_status_t addHostMemoryPool(hsa_amd_memory_pool_t MemoryPool, 650 int DeviceId) { 651 uint32_t GlobalFlags = 0; 652 hsa_status_t Err = hsa_amd_memory_pool_get_info( 653 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 654 655 if (Err != HSA_STATUS_SUCCESS) { 656 return Err; 657 } 658 659 uint32_t Size; 660 Err = hsa_amd_memory_pool_get_info(MemoryPool, 661 HSA_AMD_MEMORY_POOL_INFO_SIZE, &Size); 662 if (Err != HSA_STATUS_SUCCESS) { 663 return Err; 664 } 665 666 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED && 667 Size > 0) { 668 HostFineGrainedMemoryPool = MemoryPool; 669 } 670 671 return HSA_STATUS_SUCCESS; 672 } 673 674 hsa_status_t setupMemoryPools() { 675 using namespace std::placeholders; 676 hsa_status_t Err; 677 Err = core::collectMemoryPools( 678 CPUAgents, std::bind(&RTLDeviceInfoTy::addHostMemoryPool, this, _1, _2)); 679 if (Err != HSA_STATUS_SUCCESS) { 680 DP("HSA error in collecting memory pools for CPU: %s\n", 681 get_error_string(Err)); 682 return Err; 683 } 684 Err = core::collectMemoryPools( 685 HSAAgents, std::bind(&RTLDeviceInfoTy::addDeviceMemoryPool, this, _1, _2)); 686 if (Err != HSA_STATUS_SUCCESS) { 687 DP("HSA error in collecting memory pools for offload devices: %s\n", 688 get_error_string(Err)); 689 return Err; 690 } 691 return HSA_STATUS_SUCCESS; 692 } 693 694 hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { 695 assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && 696 "Invalid device Id"); 697 return DeviceCoarseGrainedMemoryPools[DeviceId]; 698 } 699 700 hsa_amd_memory_pool_t getHostMemoryPool() { 701 return HostFineGrainedMemoryPool; 702 } 703 704 static int readEnvElseMinusOne(const char *Env) { 705 const char *envStr = getenv(Env); 706 int res = -1; 707 if (envStr) { 708 res = std::stoi(envStr); 709 DP("Parsed %s=%d\n", Env, res); 710 } 711 return res; 712 } 713 714 RTLDeviceInfoTy() { 715 DP("Start initializing " GETNAME(TARGET_NAME) "\n"); 716 717 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 718 // anytime. You do not need a debug library build. 719 // 0 => no tracing 720 // 1 => tracing dispatch only 721 // >1 => verbosity increase 722 723 if (!HSA.success()) { 724 DP("Error when initializing HSA in " GETNAME(TARGET_NAME) "\n"); 725 return; 726 } 727 728 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 729 print_kernel_trace = atoi(envStr); 730 else 731 print_kernel_trace = 0; 732 733 hsa_status_t err = core::atl_init_gpu_context(); 734 if (err != HSA_STATUS_SUCCESS) { 735 DP("Error when initializing " GETNAME(TARGET_NAME) "\n"); 736 return; 737 } 738 739 // Init hostcall soon after initializing hsa 740 hostrpc_init(); 741 742 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 743 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 744 CPUAgents.push_back(Agent); 745 } else { 746 HSAAgents.push_back(Agent); 747 } 748 }); 749 if (err != HSA_STATUS_SUCCESS) 750 return; 751 752 NumberOfDevices = (int)HSAAgents.size(); 753 754 if (NumberOfDevices == 0) { 755 DP("There are no devices supporting HSA.\n"); 756 return; 757 } else { 758 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 759 } 760 std::tie(err, KernArgPool) = core::FindKernargPool(CPUAgents); 761 if (err != HSA_STATUS_SUCCESS) { 762 DP("Error when reading memory pools\n"); 763 return; 764 } 765 766 // Init the device info 767 HSAQueues.resize(NumberOfDevices); 768 FuncGblEntries.resize(NumberOfDevices); 769 ThreadsPerGroup.resize(NumberOfDevices); 770 ComputeUnits.resize(NumberOfDevices); 771 GPUName.resize(NumberOfDevices); 772 GroupsPerDevice.resize(NumberOfDevices); 773 WarpSize.resize(NumberOfDevices); 774 NumTeams.resize(NumberOfDevices); 775 NumThreads.resize(NumberOfDevices); 776 deviceStateStore.resize(NumberOfDevices); 777 KernelInfoTable.resize(NumberOfDevices); 778 SymbolInfoTable.resize(NumberOfDevices); 779 DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); 780 DeviceFineGrainedMemoryPools.resize(NumberOfDevices); 781 782 err = setupMemoryPools(); 783 if (err != HSA_STATUS_SUCCESS) { 784 DP("Error when setting up memory pools"); 785 return; 786 } 787 788 for (int i = 0; i < NumberOfDevices; i++) { 789 uint32_t queue_size = 0; 790 { 791 hsa_status_t err = hsa_agent_get_info( 792 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 793 if (err != HSA_STATUS_SUCCESS) { 794 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 795 return; 796 } 797 enum { MaxQueueSize = 4096 }; 798 if (queue_size > MaxQueueSize) { 799 queue_size = MaxQueueSize; 800 } 801 } 802 803 { 804 hsa_queue_t *Q = nullptr; 805 hsa_status_t rc = 806 hsa_queue_create(HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, 807 callbackQueue, NULL, UINT32_MAX, UINT32_MAX, &Q); 808 if (rc != HSA_STATUS_SUCCESS) { 809 DP("Failed to create HSA queue %d\n", i); 810 return; 811 } 812 HSAQueues[i].reset(Q); 813 } 814 815 deviceStateStore[i] = {nullptr, 0}; 816 } 817 818 for (int i = 0; i < NumberOfDevices; i++) { 819 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 820 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 821 ComputeUnits[i] = 1; 822 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 823 GroupsPerDevice[i], ThreadsPerGroup[i]); 824 } 825 826 // Get environment variables regarding teams 827 Env.TeamLimit = readEnvElseMinusOne("OMP_TEAM_LIMIT"); 828 Env.NumTeams = readEnvElseMinusOne("OMP_NUM_TEAMS"); 829 Env.MaxTeamsDefault = readEnvElseMinusOne("OMP_MAX_TEAMS_DEFAULT"); 830 Env.TeamThreadLimit = readEnvElseMinusOne("OMP_TEAMS_THREAD_LIMIT"); 831 832 // Default state. 833 RequiresFlags = OMP_REQ_UNDEFINED; 834 } 835 836 ~RTLDeviceInfoTy() { 837 DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n"); 838 if (!HSA.success()) { 839 // Then none of these can have been set up and they can't be torn down 840 return; 841 } 842 // Run destructors on types that use HSA before 843 // impl_finalize removes access to it 844 deviceStateStore.clear(); 845 KernelArgPoolMap.clear(); 846 // Terminate hostrpc before finalizing hsa 847 hostrpc_terminate(); 848 849 hsa_status_t Err; 850 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 851 Err = hsa_executable_destroy(HSAExecutables[I]); 852 if (Err != HSA_STATUS_SUCCESS) { 853 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 854 "Destroying executable", get_error_string(Err)); 855 } 856 } 857 } 858 }; 859 860 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 861 862 // TODO: May need to drop the trailing to fields until deviceRTL is updated 863 struct omptarget_device_environmentTy { 864 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 865 // only useful for Debug build of deviceRTLs 866 int32_t num_devices; // gets number of active offload devices 867 int32_t device_num; // gets a value 0 to num_devices-1 868 }; 869 870 static RTLDeviceInfoTy DeviceInfo; 871 872 namespace { 873 874 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 875 __tgt_async_info *AsyncInfo) { 876 assert(AsyncInfo && "AsyncInfo is nullptr"); 877 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 878 // Return success if we are not copying back to host from target. 879 if (!HstPtr) 880 return OFFLOAD_SUCCESS; 881 hsa_status_t err; 882 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 883 (long long unsigned)(Elf64_Addr)TgtPtr, 884 (long long unsigned)(Elf64_Addr)HstPtr); 885 886 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 887 DeviceId); 888 889 if (err != HSA_STATUS_SUCCESS) { 890 DP("Error when copying data from device to host. Pointers: " 891 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 892 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 893 return OFFLOAD_FAIL; 894 } 895 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 896 (long long unsigned)(Elf64_Addr)TgtPtr, 897 (long long unsigned)(Elf64_Addr)HstPtr); 898 return OFFLOAD_SUCCESS; 899 } 900 901 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 902 __tgt_async_info *AsyncInfo) { 903 assert(AsyncInfo && "AsyncInfo is nullptr"); 904 hsa_status_t err; 905 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 906 // Return success if we are not doing host to target. 907 if (!HstPtr) 908 return OFFLOAD_SUCCESS; 909 910 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 911 (long long unsigned)(Elf64_Addr)HstPtr, 912 (long long unsigned)(Elf64_Addr)TgtPtr); 913 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 914 DeviceId); 915 if (err != HSA_STATUS_SUCCESS) { 916 DP("Error when copying data from host to device. Pointers: " 917 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 918 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 919 return OFFLOAD_FAIL; 920 } 921 return OFFLOAD_SUCCESS; 922 } 923 924 // Async. 925 // The implementation was written with cuda streams in mind. The semantics of 926 // that are to execute kernels on a queue in order of insertion. A synchronise 927 // call then makes writes visible between host and device. This means a series 928 // of N data_submit_async calls are expected to execute serially. HSA offers 929 // various options to run the data copies concurrently. This may require changes 930 // to libomptarget. 931 932 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 933 // there are no outstanding kernels that need to be synchronized. Any async call 934 // may be passed a Queue==0, at which point the cuda implementation will set it 935 // to non-null (see getStream). The cuda streams are per-device. Upstream may 936 // change this interface to explicitly initialize the AsyncInfo_pointer, but 937 // until then hsa lazily initializes it as well. 938 939 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 940 // set non-null while using async calls, return to null to indicate completion 941 assert(AsyncInfo); 942 if (!AsyncInfo->Queue) { 943 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 944 } 945 } 946 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 947 assert(AsyncInfo); 948 assert(AsyncInfo->Queue); 949 AsyncInfo->Queue = 0; 950 } 951 952 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 953 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 954 int32_t r = elf_check_machine(image, amdgcnMachineID); 955 if (!r) { 956 DP("Supported machine ID not found\n"); 957 } 958 return r; 959 } 960 961 uint32_t elf_e_flags(__tgt_device_image *image) { 962 char *img_begin = (char *)image->ImageStart; 963 size_t img_size = (char *)image->ImageEnd - img_begin; 964 965 Elf *e = elf_memory(img_begin, img_size); 966 if (!e) { 967 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 968 return 0; 969 } 970 971 Elf64_Ehdr *eh64 = elf64_getehdr(e); 972 973 if (!eh64) { 974 DP("Unable to get machine ID from ELF file!\n"); 975 elf_end(e); 976 return 0; 977 } 978 979 uint32_t Flags = eh64->e_flags; 980 981 elf_end(e); 982 DP("ELF Flags: 0x%x\n", Flags); 983 return Flags; 984 } 985 } // namespace 986 987 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 988 return elf_machine_id_is_amdgcn(image); 989 } 990 991 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 992 993 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 994 DP("Init requires flags to %ld\n", RequiresFlags); 995 DeviceInfo.RequiresFlags = RequiresFlags; 996 return RequiresFlags; 997 } 998 999 namespace { 1000 template <typename T> bool enforce_upper_bound(T *value, T upper) { 1001 bool changed = *value > upper; 1002 if (changed) { 1003 *value = upper; 1004 } 1005 return changed; 1006 } 1007 } // namespace 1008 1009 int32_t __tgt_rtl_init_device(int device_id) { 1010 hsa_status_t err; 1011 1012 // this is per device id init 1013 DP("Initialize the device id: %d\n", device_id); 1014 1015 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 1016 1017 // Get number of Compute Unit 1018 uint32_t compute_units = 0; 1019 err = hsa_agent_get_info( 1020 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 1021 &compute_units); 1022 if (err != HSA_STATUS_SUCCESS) { 1023 DeviceInfo.ComputeUnits[device_id] = 1; 1024 DP("Error getting compute units : settiing to 1\n"); 1025 } else { 1026 DeviceInfo.ComputeUnits[device_id] = compute_units; 1027 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 1028 } 1029 1030 char GetInfoName[64]; // 64 max size returned by get info 1031 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 1032 (void *)GetInfoName); 1033 if (err) 1034 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 1035 else { 1036 DeviceInfo.GPUName[device_id] = GetInfoName; 1037 } 1038 1039 if (print_kernel_trace & STARTUP_DETAILS) 1040 DP("Device#%-2d CU's: %2d %s\n", device_id, 1041 DeviceInfo.ComputeUnits[device_id], 1042 DeviceInfo.GPUName[device_id].c_str()); 1043 1044 // Query attributes to determine number of threads/block and blocks/grid. 1045 uint16_t workgroup_max_dim[3]; 1046 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 1047 &workgroup_max_dim); 1048 if (err != HSA_STATUS_SUCCESS) { 1049 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 1050 DP("Error getting grid dims: num groups : %d\n", 1051 RTLDeviceInfoTy::DefaultNumTeams); 1052 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 1053 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 1054 DP("Using %d ROCm blocks per grid\n", 1055 DeviceInfo.GroupsPerDevice[device_id]); 1056 } else { 1057 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 1058 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 1059 "at the hard limit\n", 1060 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 1061 } 1062 1063 // Get thread limit 1064 hsa_dim3_t grid_max_dim; 1065 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 1066 if (err == HSA_STATUS_SUCCESS) { 1067 DeviceInfo.ThreadsPerGroup[device_id] = 1068 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 1069 DeviceInfo.GroupsPerDevice[device_id]; 1070 1071 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 1072 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1073 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1074 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 1075 RTLDeviceInfoTy::Max_WG_Size)) { 1076 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1077 } else { 1078 DP("Using ROCm Queried thread limit: %d\n", 1079 DeviceInfo.ThreadsPerGroup[device_id]); 1080 } 1081 } else { 1082 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1083 DP("Error getting max block dimension, use default:%d \n", 1084 RTLDeviceInfoTy::Max_WG_Size); 1085 } 1086 1087 // Get wavefront size 1088 uint32_t wavefront_size = 0; 1089 err = 1090 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 1091 if (err == HSA_STATUS_SUCCESS) { 1092 DP("Queried wavefront size: %d\n", wavefront_size); 1093 DeviceInfo.WarpSize[device_id] = wavefront_size; 1094 } else { 1095 // TODO: Burn the wavefront size into the code object 1096 DP("Warning: Unknown wavefront size, assuming 64\n"); 1097 DeviceInfo.WarpSize[device_id] = 64; 1098 } 1099 1100 // Adjust teams to the env variables 1101 1102 if (DeviceInfo.Env.TeamLimit > 0 && 1103 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 1104 DeviceInfo.Env.TeamLimit))) { 1105 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 1106 DeviceInfo.Env.TeamLimit); 1107 } 1108 1109 // Set default number of teams 1110 if (DeviceInfo.Env.NumTeams > 0) { 1111 DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams; 1112 DP("Default number of teams set according to environment %d\n", 1113 DeviceInfo.Env.NumTeams); 1114 } else { 1115 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 1116 int TeamsPerCU = DefaultTeamsPerCU; 1117 if (TeamsPerCUEnvStr) { 1118 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 1119 } 1120 1121 DeviceInfo.NumTeams[device_id] = 1122 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 1123 DP("Default number of teams = %d * number of compute units %d\n", 1124 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 1125 } 1126 1127 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 1128 DeviceInfo.GroupsPerDevice[device_id])) { 1129 DP("Default number of teams exceeds device limit, capping at %d\n", 1130 DeviceInfo.GroupsPerDevice[device_id]); 1131 } 1132 1133 // Adjust threads to the env variables 1134 if (DeviceInfo.Env.TeamThreadLimit > 0 && 1135 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1136 DeviceInfo.Env.TeamThreadLimit))) { 1137 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 1138 DeviceInfo.Env.TeamThreadLimit); 1139 } 1140 1141 // Set default number of threads 1142 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 1143 DP("Default number of threads set according to library's default %d\n", 1144 RTLDeviceInfoTy::Default_WG_Size); 1145 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1146 DeviceInfo.ThreadsPerGroup[device_id])) { 1147 DP("Default number of threads exceeds device limit, capping at %d\n", 1148 DeviceInfo.ThreadsPerGroup[device_id]); 1149 } 1150 1151 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 1152 device_id, DeviceInfo.GroupsPerDevice[device_id], 1153 DeviceInfo.ThreadsPerGroup[device_id]); 1154 1155 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 1156 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 1157 DeviceInfo.GroupsPerDevice[device_id], 1158 DeviceInfo.GroupsPerDevice[device_id] * 1159 DeviceInfo.ThreadsPerGroup[device_id]); 1160 1161 return OFFLOAD_SUCCESS; 1162 } 1163 1164 namespace { 1165 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 1166 size_t N; 1167 int rc = elf_getshdrnum(elf, &N); 1168 if (rc != 0) { 1169 return nullptr; 1170 } 1171 1172 Elf64_Shdr *result = nullptr; 1173 for (size_t i = 0; i < N; i++) { 1174 Elf_Scn *scn = elf_getscn(elf, i); 1175 if (scn) { 1176 Elf64_Shdr *shdr = elf64_getshdr(scn); 1177 if (shdr) { 1178 if (shdr->sh_type == SHT_HASH) { 1179 if (result == nullptr) { 1180 result = shdr; 1181 } else { 1182 // multiple SHT_HASH sections not handled 1183 return nullptr; 1184 } 1185 } 1186 } 1187 } 1188 } 1189 return result; 1190 } 1191 1192 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1193 const char *symname) { 1194 1195 assert(section_hash); 1196 size_t section_symtab_index = section_hash->sh_link; 1197 Elf64_Shdr *section_symtab = 1198 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1199 size_t section_strtab_index = section_symtab->sh_link; 1200 1201 const Elf64_Sym *symtab = 1202 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1203 1204 const uint32_t *hashtab = 1205 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1206 1207 // Layout: 1208 // nbucket 1209 // nchain 1210 // bucket[nbucket] 1211 // chain[nchain] 1212 uint32_t nbucket = hashtab[0]; 1213 const uint32_t *bucket = &hashtab[2]; 1214 const uint32_t *chain = &hashtab[nbucket + 2]; 1215 1216 const size_t max = strlen(symname) + 1; 1217 const uint32_t hash = elf_hash(symname); 1218 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1219 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1220 if (strncmp(symname, n, max) == 0) { 1221 return &symtab[i]; 1222 } 1223 } 1224 1225 return nullptr; 1226 } 1227 1228 struct symbol_info { 1229 void *addr = nullptr; 1230 uint32_t size = UINT32_MAX; 1231 uint32_t sh_type = SHT_NULL; 1232 }; 1233 1234 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1235 symbol_info *res) { 1236 if (elf_kind(elf) != ELF_K_ELF) { 1237 return 1; 1238 } 1239 1240 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1241 if (!section_hash) { 1242 return 1; 1243 } 1244 1245 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1246 if (!sym) { 1247 return 1; 1248 } 1249 1250 if (sym->st_size > UINT32_MAX) { 1251 return 1; 1252 } 1253 1254 if (sym->st_shndx == SHN_UNDEF) { 1255 return 1; 1256 } 1257 1258 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1259 if (!section) { 1260 return 1; 1261 } 1262 1263 Elf64_Shdr *header = elf64_getshdr(section); 1264 if (!header) { 1265 return 1; 1266 } 1267 1268 res->addr = sym->st_value + base; 1269 res->size = static_cast<uint32_t>(sym->st_size); 1270 res->sh_type = header->sh_type; 1271 return 0; 1272 } 1273 1274 int get_symbol_info_without_loading(char *base, size_t img_size, 1275 const char *symname, symbol_info *res) { 1276 Elf *elf = elf_memory(base, img_size); 1277 if (elf) { 1278 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1279 elf_end(elf); 1280 return rc; 1281 } 1282 return 1; 1283 } 1284 1285 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1286 const char *symname, void **var_addr, 1287 uint32_t *var_size) { 1288 symbol_info si; 1289 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1290 if (rc == 0) { 1291 *var_addr = si.addr; 1292 *var_size = si.size; 1293 return HSA_STATUS_SUCCESS; 1294 } else { 1295 return HSA_STATUS_ERROR; 1296 } 1297 } 1298 1299 template <typename C> 1300 hsa_status_t module_register_from_memory_to_place( 1301 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1302 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1303 void *module_bytes, size_t module_size, int DeviceId, C cb, 1304 std::vector<hsa_executable_t> &HSAExecutables) { 1305 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1306 C *unwrapped = static_cast<C *>(cb_state); 1307 return (*unwrapped)(data, size); 1308 }; 1309 return core::RegisterModuleFromMemory( 1310 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1311 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1312 HSAExecutables); 1313 } 1314 } // namespace 1315 1316 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1317 uint64_t device_State_bytes = 0; 1318 { 1319 // If this is the deviceRTL, get the state variable size 1320 symbol_info size_si; 1321 int rc = get_symbol_info_without_loading( 1322 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1323 1324 if (rc == 0) { 1325 if (size_si.size != sizeof(uint64_t)) { 1326 DP("Found device_State_size variable with wrong size\n"); 1327 return 0; 1328 } 1329 1330 // Read number of bytes directly from the elf 1331 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1332 } 1333 } 1334 return device_State_bytes; 1335 } 1336 1337 static __tgt_target_table * 1338 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1339 1340 static __tgt_target_table * 1341 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1342 1343 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1344 __tgt_device_image *image) { 1345 DeviceInfo.load_run_lock.lock(); 1346 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1347 DeviceInfo.load_run_lock.unlock(); 1348 return res; 1349 } 1350 1351 struct device_environment { 1352 // initialise an omptarget_device_environmentTy in the deviceRTL 1353 // patches around differences in the deviceRTL between trunk, aomp, 1354 // rocmcc. Over time these differences will tend to zero and this class 1355 // simplified. 1356 // Symbol may be in .data or .bss, and may be missing fields: 1357 // - aomp has debug_level, num_devices, device_num 1358 // - trunk has debug_level 1359 // - under review in trunk is debug_level, device_num 1360 // - rocmcc matches aomp, patch to swap num_devices and device_num 1361 1362 // The symbol may also have been deadstripped because the device side 1363 // accessors were unused. 1364 1365 // If the symbol is in .data (aomp, rocm) it can be written directly. 1366 // If it is in .bss, we must wait for it to be allocated space on the 1367 // gpu (trunk) and initialize after loading. 1368 const char *sym() { return "omptarget_device_environment"; } 1369 1370 omptarget_device_environmentTy host_device_env; 1371 symbol_info si; 1372 bool valid = false; 1373 1374 __tgt_device_image *image; 1375 const size_t img_size; 1376 1377 device_environment(int device_id, int number_devices, 1378 __tgt_device_image *image, const size_t img_size) 1379 : image(image), img_size(img_size) { 1380 1381 host_device_env.num_devices = number_devices; 1382 host_device_env.device_num = device_id; 1383 host_device_env.debug_level = 0; 1384 #ifdef OMPTARGET_DEBUG 1385 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1386 host_device_env.debug_level = std::stoi(envStr); 1387 } 1388 #endif 1389 1390 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1391 img_size, sym(), &si); 1392 if (rc != 0) { 1393 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1394 return; 1395 } 1396 1397 if (si.size > sizeof(host_device_env)) { 1398 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1399 sizeof(host_device_env)); 1400 return; 1401 } 1402 1403 valid = true; 1404 } 1405 1406 bool in_image() { return si.sh_type != SHT_NOBITS; } 1407 1408 hsa_status_t before_loading(void *data, size_t size) { 1409 if (valid) { 1410 if (in_image()) { 1411 DP("Setting global device environment before load (%u bytes)\n", 1412 si.size); 1413 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1414 void *pos = (char *)data + offset; 1415 memcpy(pos, &host_device_env, si.size); 1416 } 1417 } 1418 return HSA_STATUS_SUCCESS; 1419 } 1420 1421 hsa_status_t after_loading() { 1422 if (valid) { 1423 if (!in_image()) { 1424 DP("Setting global device environment after load (%u bytes)\n", 1425 si.size); 1426 int device_id = host_device_env.device_num; 1427 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1428 void *state_ptr; 1429 uint32_t state_ptr_size; 1430 hsa_status_t err = interop_hsa_get_symbol_info( 1431 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1432 if (err != HSA_STATUS_SUCCESS) { 1433 DP("failed to find %s in loaded image\n", sym()); 1434 return err; 1435 } 1436 1437 if (state_ptr_size != si.size) { 1438 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1439 si.size); 1440 return HSA_STATUS_ERROR; 1441 } 1442 1443 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1444 state_ptr_size, device_id); 1445 } 1446 } 1447 return HSA_STATUS_SUCCESS; 1448 } 1449 }; 1450 1451 static hsa_status_t impl_calloc(void **ret_ptr, size_t size, int DeviceId) { 1452 uint64_t rounded = 4 * ((size + 3) / 4); 1453 void *ptr; 1454 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(DeviceId); 1455 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, rounded, 0, &ptr); 1456 if (err != HSA_STATUS_SUCCESS) { 1457 return err; 1458 } 1459 1460 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1461 if (rc != HSA_STATUS_SUCCESS) { 1462 DP("zero fill device_state failed with %u\n", rc); 1463 core::Runtime::Memfree(ptr); 1464 return HSA_STATUS_ERROR; 1465 } 1466 1467 *ret_ptr = ptr; 1468 return HSA_STATUS_SUCCESS; 1469 } 1470 1471 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1472 symbol_info si; 1473 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1474 return (rc == 0) && (si.addr != nullptr); 1475 } 1476 1477 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1478 __tgt_device_image *image) { 1479 // This function loads the device image onto gpu[device_id] and does other 1480 // per-image initialization work. Specifically: 1481 // 1482 // - Initialize an omptarget_device_environmentTy instance embedded in the 1483 // image at the symbol "omptarget_device_environment" 1484 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1485 // 1486 // - Allocate a large array per-gpu (could be moved to init_device) 1487 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1488 // - Allocate at least that many bytes of gpu memory 1489 // - Zero initialize it 1490 // - Write the pointer to the symbol omptarget_nvptx_device_State 1491 // 1492 // - Pulls some per-kernel information together from various sources and 1493 // records it in the KernelsList for quicker access later 1494 // 1495 // The initialization can be done before or after loading the image onto the 1496 // gpu. This function presently does a mixture. Using the hsa api to get/set 1497 // the information is simpler to implement, in exchange for more complicated 1498 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1499 // back from the gpu vs a hashtable lookup on the host. 1500 1501 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1502 1503 DeviceInfo.clearOffloadEntriesTable(device_id); 1504 1505 // We do not need to set the ELF version because the caller of this function 1506 // had to do that to decide the right runtime to use 1507 1508 if (!elf_machine_id_is_amdgcn(image)) { 1509 return NULL; 1510 } 1511 1512 { 1513 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1514 img_size); 1515 1516 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1517 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1518 hsa_status_t err = module_register_from_memory_to_place( 1519 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1520 [&](void *data, size_t size) { 1521 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1522 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1523 __ATOMIC_RELEASE); 1524 } 1525 return env.before_loading(data, size); 1526 }, 1527 DeviceInfo.HSAExecutables); 1528 1529 check("Module registering", err); 1530 if (err != HSA_STATUS_SUCCESS) { 1531 const char *DeviceName = DeviceInfo.GPUName[device_id].c_str(); 1532 const char *ElfName = get_elf_mach_gfx_name(elf_e_flags(image)); 1533 1534 if (strcmp(DeviceName, ElfName) != 0) { 1535 DP("Possible gpu arch mismatch: device:%s, image:%s please check" 1536 " compiler flag: -march=<gpu>\n", 1537 DeviceName, ElfName); 1538 } else { 1539 DP("Error loading image onto GPU: %s\n", get_error_string(err)); 1540 } 1541 1542 return NULL; 1543 } 1544 1545 err = env.after_loading(); 1546 if (err != HSA_STATUS_SUCCESS) { 1547 return NULL; 1548 } 1549 } 1550 1551 DP("AMDGPU module successfully loaded!\n"); 1552 1553 { 1554 // the device_State array is either large value in bss or a void* that 1555 // needs to be assigned to a pointer to an array of size device_state_bytes 1556 // If absent, it has been deadstripped and needs no setup. 1557 1558 void *state_ptr; 1559 uint32_t state_ptr_size; 1560 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1561 hsa_status_t err = interop_hsa_get_symbol_info( 1562 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1563 &state_ptr_size); 1564 1565 if (err != HSA_STATUS_SUCCESS) { 1566 DP("No device_state symbol found, skipping initialization\n"); 1567 } else { 1568 if (state_ptr_size < sizeof(void *)) { 1569 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1570 sizeof(void *)); 1571 return NULL; 1572 } 1573 1574 // if it's larger than a void*, assume it's a bss array and no further 1575 // initialization is required. Only try to set up a pointer for 1576 // sizeof(void*) 1577 if (state_ptr_size == sizeof(void *)) { 1578 uint64_t device_State_bytes = 1579 get_device_State_bytes((char *)image->ImageStart, img_size); 1580 if (device_State_bytes == 0) { 1581 DP("Can't initialize device_State, missing size information\n"); 1582 return NULL; 1583 } 1584 1585 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1586 if (dss.first.get() == nullptr) { 1587 assert(dss.second == 0); 1588 void *ptr = NULL; 1589 hsa_status_t err = impl_calloc(&ptr, device_State_bytes, device_id); 1590 if (err != HSA_STATUS_SUCCESS) { 1591 DP("Failed to allocate device_state array\n"); 1592 return NULL; 1593 } 1594 dss = { 1595 std::unique_ptr<void, RTLDeviceInfoTy::implFreePtrDeletor>{ptr}, 1596 device_State_bytes, 1597 }; 1598 } 1599 1600 void *ptr = dss.first.get(); 1601 if (device_State_bytes != dss.second) { 1602 DP("Inconsistent sizes of device_State unsupported\n"); 1603 return NULL; 1604 } 1605 1606 // write ptr to device memory so it can be used by later kernels 1607 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1608 sizeof(void *), device_id); 1609 if (err != HSA_STATUS_SUCCESS) { 1610 DP("memcpy install of state_ptr failed\n"); 1611 return NULL; 1612 } 1613 } 1614 } 1615 } 1616 1617 // Here, we take advantage of the data that is appended after img_end to get 1618 // the symbols' name we need to load. This data consist of the host entries 1619 // begin and end as well as the target name (see the offloading linker script 1620 // creation in clang compiler). 1621 1622 // Find the symbols in the module by name. The name can be obtain by 1623 // concatenating the host entry name with the target name 1624 1625 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1626 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1627 1628 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1629 1630 if (!e->addr) { 1631 // The host should have always something in the address to 1632 // uniquely identify the target region. 1633 DP("Analyzing host entry '<null>' (size = %lld)...\n", 1634 (unsigned long long)e->size); 1635 return NULL; 1636 } 1637 1638 if (e->size) { 1639 __tgt_offload_entry entry = *e; 1640 1641 void *varptr; 1642 uint32_t varsize; 1643 1644 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1645 hsa_status_t err = interop_hsa_get_symbol_info( 1646 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1647 1648 if (err != HSA_STATUS_SUCCESS) { 1649 // Inform the user what symbol prevented offloading 1650 DP("Loading global '%s' (Failed)\n", e->name); 1651 return NULL; 1652 } 1653 1654 if (varsize != e->size) { 1655 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1656 varsize, e->size); 1657 return NULL; 1658 } 1659 1660 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1661 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1662 entry.addr = (void *)varptr; 1663 1664 DeviceInfo.addOffloadEntry(device_id, entry); 1665 1666 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1667 e->flags & OMP_DECLARE_TARGET_LINK) { 1668 // If unified memory is present any target link variables 1669 // can access host addresses directly. There is no longer a 1670 // need for device copies. 1671 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1672 sizeof(void *), device_id); 1673 if (err != HSA_STATUS_SUCCESS) 1674 DP("Error when copying USM\n"); 1675 DP("Copy linked variable host address (" DPxMOD ")" 1676 "to device address (" DPxMOD ")\n", 1677 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1678 } 1679 1680 continue; 1681 } 1682 1683 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1684 1685 uint32_t kernarg_segment_size; 1686 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1687 hsa_status_t err = interop_hsa_get_kernel_info( 1688 KernelInfoMap, device_id, e->name, 1689 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1690 &kernarg_segment_size); 1691 1692 // each arg is a void * in this openmp implementation 1693 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1694 std::vector<size_t> arg_sizes(arg_num); 1695 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1696 it != arg_sizes.end(); it++) { 1697 *it = sizeof(void *); 1698 } 1699 1700 // default value GENERIC (in case symbol is missing from cubin file) 1701 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1702 1703 // get flat group size if present, else Default_WG_Size 1704 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1705 1706 // get Kernel Descriptor if present. 1707 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1708 struct KernDescValType { 1709 uint16_t Version; 1710 uint16_t TSize; 1711 uint16_t WG_Size; 1712 uint8_t Mode; 1713 }; 1714 struct KernDescValType KernDescVal; 1715 std::string KernDescNameStr(e->name); 1716 KernDescNameStr += "_kern_desc"; 1717 const char *KernDescName = KernDescNameStr.c_str(); 1718 1719 void *KernDescPtr; 1720 uint32_t KernDescSize; 1721 void *CallStackAddr = nullptr; 1722 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1723 KernDescName, &KernDescPtr, &KernDescSize); 1724 1725 if (err == HSA_STATUS_SUCCESS) { 1726 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1727 DP("Loading global computation properties '%s' - size mismatch (%u != " 1728 "%lu)\n", 1729 KernDescName, KernDescSize, sizeof(KernDescVal)); 1730 1731 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1732 1733 // Check structure size against recorded size. 1734 if ((size_t)KernDescSize != KernDescVal.TSize) 1735 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1736 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1737 1738 DP("After loading global for %s KernDesc \n", KernDescName); 1739 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1740 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1741 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1742 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1743 1744 // Get ExecMode 1745 ExecModeVal = KernDescVal.Mode; 1746 DP("ExecModeVal %d\n", ExecModeVal); 1747 if (KernDescVal.WG_Size == 0) { 1748 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1749 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1750 } 1751 WGSizeVal = KernDescVal.WG_Size; 1752 DP("WGSizeVal %d\n", WGSizeVal); 1753 check("Loading KernDesc computation property", err); 1754 } else { 1755 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1756 1757 // Generic 1758 std::string ExecModeNameStr(e->name); 1759 ExecModeNameStr += "_exec_mode"; 1760 const char *ExecModeName = ExecModeNameStr.c_str(); 1761 1762 void *ExecModePtr; 1763 uint32_t varsize; 1764 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1765 ExecModeName, &ExecModePtr, &varsize); 1766 1767 if (err == HSA_STATUS_SUCCESS) { 1768 if ((size_t)varsize != sizeof(int8_t)) { 1769 DP("Loading global computation properties '%s' - size mismatch(%u != " 1770 "%lu)\n", 1771 ExecModeName, varsize, sizeof(int8_t)); 1772 return NULL; 1773 } 1774 1775 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1776 1777 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1778 ExecModeVal); 1779 1780 if (ExecModeVal < 0 || ExecModeVal > 2) { 1781 DP("Error wrong exec_mode value specified in HSA code object file: " 1782 "%d\n", 1783 ExecModeVal); 1784 return NULL; 1785 } 1786 } else { 1787 DP("Loading global exec_mode '%s' - symbol missing, using default " 1788 "value " 1789 "GENERIC (1)\n", 1790 ExecModeName); 1791 } 1792 check("Loading computation property", err); 1793 1794 // Flat group size 1795 std::string WGSizeNameStr(e->name); 1796 WGSizeNameStr += "_wg_size"; 1797 const char *WGSizeName = WGSizeNameStr.c_str(); 1798 1799 void *WGSizePtr; 1800 uint32_t WGSize; 1801 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1802 WGSizeName, &WGSizePtr, &WGSize); 1803 1804 if (err == HSA_STATUS_SUCCESS) { 1805 if ((size_t)WGSize != sizeof(int16_t)) { 1806 DP("Loading global computation properties '%s' - size mismatch (%u " 1807 "!= " 1808 "%lu)\n", 1809 WGSizeName, WGSize, sizeof(int16_t)); 1810 return NULL; 1811 } 1812 1813 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1814 1815 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1816 1817 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1818 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1819 DP("Error wrong WGSize value specified in HSA code object file: " 1820 "%d\n", 1821 WGSizeVal); 1822 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1823 } 1824 } else { 1825 DP("Warning: Loading WGSize '%s' - symbol not found, " 1826 "using default value %d\n", 1827 WGSizeName, WGSizeVal); 1828 } 1829 1830 check("Loading WGSize computation property", err); 1831 } 1832 1833 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1834 CallStackAddr, e->name, kernarg_segment_size, 1835 DeviceInfo.KernArgPool)); 1836 __tgt_offload_entry entry = *e; 1837 entry.addr = (void *)&KernelsList.back(); 1838 DeviceInfo.addOffloadEntry(device_id, entry); 1839 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1840 } 1841 1842 return DeviceInfo.getOffloadEntriesTable(device_id); 1843 } 1844 1845 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1846 void *ptr = NULL; 1847 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1848 1849 if (kind != TARGET_ALLOC_DEFAULT) { 1850 REPORT("Invalid target data allocation kind or requested allocator not " 1851 "implemented yet\n"); 1852 return NULL; 1853 } 1854 1855 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(device_id); 1856 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, size, 0, &ptr); 1857 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1858 (long long unsigned)(Elf64_Addr)ptr); 1859 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1860 return ptr; 1861 } 1862 1863 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1864 int64_t size) { 1865 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1866 __tgt_async_info AsyncInfo; 1867 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1868 if (rc != OFFLOAD_SUCCESS) 1869 return OFFLOAD_FAIL; 1870 1871 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1872 } 1873 1874 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1875 int64_t size, __tgt_async_info *AsyncInfo) { 1876 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1877 if (AsyncInfo) { 1878 initAsyncInfo(AsyncInfo); 1879 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1880 } else { 1881 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1882 } 1883 } 1884 1885 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1886 int64_t size) { 1887 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1888 __tgt_async_info AsyncInfo; 1889 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1890 if (rc != OFFLOAD_SUCCESS) 1891 return OFFLOAD_FAIL; 1892 1893 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1894 } 1895 1896 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1897 void *tgt_ptr, int64_t size, 1898 __tgt_async_info *AsyncInfo) { 1899 assert(AsyncInfo && "AsyncInfo is nullptr"); 1900 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1901 initAsyncInfo(AsyncInfo); 1902 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1903 } 1904 1905 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1906 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1907 hsa_status_t err; 1908 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1909 err = core::Runtime::Memfree(tgt_ptr); 1910 if (err != HSA_STATUS_SUCCESS) { 1911 DP("Error when freeing CUDA memory\n"); 1912 return OFFLOAD_FAIL; 1913 } 1914 return OFFLOAD_SUCCESS; 1915 } 1916 1917 // Determine launch values for kernel. 1918 struct launchVals { 1919 int WorkgroupSize; 1920 int GridSize; 1921 }; 1922 launchVals getLaunchVals(int WarpSize, EnvironmentVariables Env, 1923 int ConstWGSize, int ExecutionMode, int num_teams, 1924 int thread_limit, uint64_t loop_tripcount, 1925 int DeviceNumTeams) { 1926 1927 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1928 int num_groups = 0; 1929 1930 int Max_Teams = 1931 Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams; 1932 if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit) 1933 Max_Teams = RTLDeviceInfoTy::HardTeamLimit; 1934 1935 if (print_kernel_trace & STARTUP_DETAILS) { 1936 DP("RTLDeviceInfoTy::Max_Teams: %d\n", RTLDeviceInfoTy::Max_Teams); 1937 DP("Max_Teams: %d\n", Max_Teams); 1938 DP("RTLDeviceInfoTy::Warp_Size: %d\n", WarpSize); 1939 DP("RTLDeviceInfoTy::Max_WG_Size: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1940 DP("RTLDeviceInfoTy::Default_WG_Size: %d\n", 1941 RTLDeviceInfoTy::Default_WG_Size); 1942 DP("thread_limit: %d\n", thread_limit); 1943 DP("threadsPerGroup: %d\n", threadsPerGroup); 1944 DP("ConstWGSize: %d\n", ConstWGSize); 1945 } 1946 // check for thread_limit() clause 1947 if (thread_limit > 0) { 1948 threadsPerGroup = thread_limit; 1949 DP("Setting threads per block to requested %d\n", thread_limit); 1950 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1951 threadsPerGroup += WarpSize; 1952 DP("Adding master wavefront: +%d threads\n", WarpSize); 1953 } 1954 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1955 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1956 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1957 } 1958 } 1959 // check flat_max_work_group_size attr here 1960 if (threadsPerGroup > ConstWGSize) { 1961 threadsPerGroup = ConstWGSize; 1962 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1963 threadsPerGroup); 1964 } 1965 if (print_kernel_trace & STARTUP_DETAILS) 1966 DP("threadsPerGroup: %d\n", threadsPerGroup); 1967 DP("Preparing %d threads\n", threadsPerGroup); 1968 1969 // Set default num_groups (teams) 1970 if (Env.TeamLimit > 0) 1971 num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit; 1972 else 1973 num_groups = Max_Teams; 1974 DP("Set default num of groups %d\n", num_groups); 1975 1976 if (print_kernel_trace & STARTUP_DETAILS) { 1977 DP("num_groups: %d\n", num_groups); 1978 DP("num_teams: %d\n", num_teams); 1979 } 1980 1981 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1982 // This reduction is typical for default case (no thread_limit clause). 1983 // or when user goes crazy with num_teams clause. 1984 // FIXME: We cant distinguish between a constant or variable thread limit. 1985 // So we only handle constant thread_limits. 1986 if (threadsPerGroup > 1987 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1988 // Should we round threadsPerGroup up to nearest WarpSize 1989 // here? 1990 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1991 1992 // check for num_teams() clause 1993 if (num_teams > 0) { 1994 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1995 } 1996 if (print_kernel_trace & STARTUP_DETAILS) { 1997 DP("num_groups: %d\n", num_groups); 1998 DP("Env.NumTeams %d\n", Env.NumTeams); 1999 DP("Env.TeamLimit %d\n", Env.TeamLimit); 2000 } 2001 2002 if (Env.NumTeams > 0) { 2003 num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups; 2004 DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams); 2005 } else if (Env.TeamLimit > 0) { 2006 num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups; 2007 DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit); 2008 } else { 2009 if (num_teams <= 0) { 2010 if (loop_tripcount > 0) { 2011 if (ExecutionMode == SPMD) { 2012 // round up to the nearest integer 2013 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 2014 } else if (ExecutionMode == GENERIC) { 2015 num_groups = loop_tripcount; 2016 } else /* ExecutionMode == SPMD_GENERIC */ { 2017 // This is a generic kernel that was transformed to use SPMD-mode 2018 // execution but uses Generic-mode semantics for scheduling. 2019 num_groups = loop_tripcount; 2020 } 2021 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 2022 "threads per block %d\n", 2023 num_groups, loop_tripcount, threadsPerGroup); 2024 } 2025 } else { 2026 num_groups = num_teams; 2027 } 2028 if (num_groups > Max_Teams) { 2029 num_groups = Max_Teams; 2030 if (print_kernel_trace & STARTUP_DETAILS) 2031 DP("Limiting num_groups %d to Max_Teams %d \n", num_groups, Max_Teams); 2032 } 2033 if (num_groups > num_teams && num_teams > 0) { 2034 num_groups = num_teams; 2035 if (print_kernel_trace & STARTUP_DETAILS) 2036 DP("Limiting num_groups %d to clause num_teams %d \n", num_groups, 2037 num_teams); 2038 } 2039 } 2040 2041 // num_teams clause always honored, no matter what, unless DEFAULT is active. 2042 if (num_teams > 0) { 2043 num_groups = num_teams; 2044 // Cap num_groups to EnvMaxTeamsDefault if set. 2045 if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault) 2046 num_groups = Env.MaxTeamsDefault; 2047 } 2048 if (print_kernel_trace & STARTUP_DETAILS) { 2049 DP("threadsPerGroup: %d\n", threadsPerGroup); 2050 DP("num_groups: %d\n", num_groups); 2051 DP("loop_tripcount: %ld\n", loop_tripcount); 2052 } 2053 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 2054 threadsPerGroup); 2055 2056 launchVals res; 2057 res.WorkgroupSize = threadsPerGroup; 2058 res.GridSize = threadsPerGroup * num_groups; 2059 return res; 2060 } 2061 2062 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 2063 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 2064 bool full = true; 2065 while (full) { 2066 full = 2067 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 2068 } 2069 return packet_id; 2070 } 2071 2072 static int32_t __tgt_rtl_run_target_team_region_locked( 2073 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2074 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2075 int32_t thread_limit, uint64_t loop_tripcount); 2076 2077 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 2078 void **tgt_args, 2079 ptrdiff_t *tgt_offsets, 2080 int32_t arg_num, int32_t num_teams, 2081 int32_t thread_limit, 2082 uint64_t loop_tripcount) { 2083 2084 DeviceInfo.load_run_lock.lock_shared(); 2085 int32_t res = __tgt_rtl_run_target_team_region_locked( 2086 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 2087 thread_limit, loop_tripcount); 2088 2089 DeviceInfo.load_run_lock.unlock_shared(); 2090 return res; 2091 } 2092 2093 int32_t __tgt_rtl_run_target_team_region_locked( 2094 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2095 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2096 int32_t thread_limit, uint64_t loop_tripcount) { 2097 // Set the context we are using 2098 // update thread limit content in gpu memory if un-initialized or specified 2099 // from host 2100 2101 DP("Run target team region thread_limit %d\n", thread_limit); 2102 2103 // All args are references. 2104 std::vector<void *> args(arg_num); 2105 std::vector<void *> ptrs(arg_num); 2106 2107 DP("Arg_num: %d\n", arg_num); 2108 for (int32_t i = 0; i < arg_num; ++i) { 2109 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 2110 args[i] = &ptrs[i]; 2111 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 2112 } 2113 2114 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 2115 2116 std::string kernel_name = std::string(KernelInfo->Name); 2117 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 2118 if (KernelInfoTable[device_id].find(kernel_name) == 2119 KernelInfoTable[device_id].end()) { 2120 DP("Kernel %s not found\n", kernel_name.c_str()); 2121 return OFFLOAD_FAIL; 2122 } 2123 2124 const atl_kernel_info_t KernelInfoEntry = 2125 KernelInfoTable[device_id][kernel_name]; 2126 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 2127 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 2128 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 2129 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 2130 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 2131 2132 assert(arg_num == (int)KernelInfoEntry.num_args); 2133 2134 /* 2135 * Set limit based on ThreadsPerGroup and GroupsPerDevice 2136 */ 2137 launchVals LV = 2138 getLaunchVals(DeviceInfo.WarpSize[device_id], DeviceInfo.Env, 2139 KernelInfo->ConstWGSize, KernelInfo->ExecutionMode, 2140 num_teams, // From run_region arg 2141 thread_limit, // From run_region arg 2142 loop_tripcount, // From run_region arg 2143 DeviceInfo.NumTeams[KernelInfo->device_id]); 2144 const int GridSize = LV.GridSize; 2145 const int WorkgroupSize = LV.WorkgroupSize; 2146 2147 if (print_kernel_trace >= LAUNCH) { 2148 int num_groups = GridSize / WorkgroupSize; 2149 // enum modes are SPMD, GENERIC, NONE 0,1,2 2150 // if doing rtl timing, print to stderr, unless stdout requested. 2151 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 2152 fprintf(traceToStdout ? stdout : stderr, 2153 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 2154 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 2155 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 2156 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 2157 arg_num, num_groups, WorkgroupSize, num_teams, thread_limit, 2158 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 2159 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 2160 } 2161 2162 // Run on the device. 2163 { 2164 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id].get(); 2165 if (!queue) { 2166 return OFFLOAD_FAIL; 2167 } 2168 uint64_t packet_id = acquire_available_packet_id(queue); 2169 2170 const uint32_t mask = queue->size - 1; // size is a power of 2 2171 hsa_kernel_dispatch_packet_t *packet = 2172 (hsa_kernel_dispatch_packet_t *)queue->base_address + 2173 (packet_id & mask); 2174 2175 // packet->header is written last 2176 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 2177 packet->workgroup_size_x = WorkgroupSize; 2178 packet->workgroup_size_y = 1; 2179 packet->workgroup_size_z = 1; 2180 packet->reserved0 = 0; 2181 packet->grid_size_x = GridSize; 2182 packet->grid_size_y = 1; 2183 packet->grid_size_z = 1; 2184 packet->private_segment_size = KernelInfoEntry.private_segment_size; 2185 packet->group_segment_size = KernelInfoEntry.group_segment_size; 2186 packet->kernel_object = KernelInfoEntry.kernel_object; 2187 packet->kernarg_address = 0; // use the block allocator 2188 packet->reserved2 = 0; // impl writes id_ here 2189 packet->completion_signal = {0}; // may want a pool of signals 2190 2191 KernelArgPool *ArgPool = nullptr; 2192 { 2193 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 2194 if (it != KernelArgPoolMap.end()) { 2195 ArgPool = (it->second).get(); 2196 } 2197 } 2198 if (!ArgPool) { 2199 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 2200 device_id); 2201 } 2202 { 2203 void *kernarg = nullptr; 2204 if (ArgPool) { 2205 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 2206 kernarg = ArgPool->allocate(arg_num); 2207 } 2208 if (!kernarg) { 2209 DP("Allocate kernarg failed\n"); 2210 return OFFLOAD_FAIL; 2211 } 2212 2213 // Copy explicit arguments 2214 for (int i = 0; i < arg_num; i++) { 2215 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 2216 } 2217 2218 // Initialize implicit arguments. TODO: Which of these can be dropped 2219 impl_implicit_args_t *impl_args = 2220 reinterpret_cast<impl_implicit_args_t *>( 2221 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 2222 memset(impl_args, 0, 2223 sizeof(impl_implicit_args_t)); // may not be necessary 2224 impl_args->offset_x = 0; 2225 impl_args->offset_y = 0; 2226 impl_args->offset_z = 0; 2227 2228 // assign a hostcall buffer for the selected Q 2229 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 2230 // hostrpc_assign_buffer is not thread safe, and this function is 2231 // under a multiple reader lock, not a writer lock. 2232 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 2233 pthread_mutex_lock(&hostcall_init_lock); 2234 impl_args->hostcall_ptr = hostrpc_assign_buffer( 2235 DeviceInfo.HSAAgents[device_id], queue, device_id); 2236 pthread_mutex_unlock(&hostcall_init_lock); 2237 if (!impl_args->hostcall_ptr) { 2238 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 2239 "error\n"); 2240 return OFFLOAD_FAIL; 2241 } 2242 } 2243 2244 packet->kernarg_address = kernarg; 2245 } 2246 2247 { 2248 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 2249 if (s.handle == 0) { 2250 DP("Failed to get signal instance\n"); 2251 return OFFLOAD_FAIL; 2252 } 2253 packet->completion_signal = s; 2254 hsa_signal_store_relaxed(packet->completion_signal, 1); 2255 } 2256 2257 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 2258 core::create_header(), packet->setup); 2259 2260 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 2261 2262 while (hsa_signal_wait_scacquire(packet->completion_signal, 2263 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 2264 HSA_WAIT_STATE_BLOCKED) != 0) 2265 ; 2266 2267 assert(ArgPool); 2268 ArgPool->deallocate(packet->kernarg_address); 2269 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 2270 } 2271 2272 DP("Kernel completed\n"); 2273 return OFFLOAD_SUCCESS; 2274 } 2275 2276 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2277 void **tgt_args, ptrdiff_t *tgt_offsets, 2278 int32_t arg_num) { 2279 // use one team and one thread 2280 // fix thread num 2281 int32_t team_num = 1; 2282 int32_t thread_limit = 0; // use default 2283 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2284 tgt_offsets, arg_num, team_num, 2285 thread_limit, 0); 2286 } 2287 2288 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2289 void *tgt_entry_ptr, void **tgt_args, 2290 ptrdiff_t *tgt_offsets, 2291 int32_t arg_num, 2292 __tgt_async_info *AsyncInfo) { 2293 assert(AsyncInfo && "AsyncInfo is nullptr"); 2294 initAsyncInfo(AsyncInfo); 2295 2296 // use one team and one thread 2297 // fix thread num 2298 int32_t team_num = 1; 2299 int32_t thread_limit = 0; // use default 2300 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2301 tgt_offsets, arg_num, team_num, 2302 thread_limit, 0); 2303 } 2304 2305 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2306 assert(AsyncInfo && "AsyncInfo is nullptr"); 2307 2308 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2309 // is not ensured by devices.cpp for amdgcn 2310 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2311 if (AsyncInfo->Queue) { 2312 finiAsyncInfo(AsyncInfo); 2313 } 2314 return OFFLOAD_SUCCESS; 2315 } 2316 2317 namespace core { 2318 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 2319 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 2320 &DeviceInfo.HSAAgents[0], NULL, ptr); 2321 } 2322 2323 } // namespace core 2324