1 //===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for AMD hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <functional> 19 #include <libelf.h> 20 #include <list> 21 #include <memory> 22 #include <mutex> 23 #include <shared_mutex> 24 #include <unordered_map> 25 #include <vector> 26 27 #include "interop_hsa.h" 28 #include "impl_runtime.h" 29 30 #include "internal.h" 31 #include "rt.h" 32 33 #include "DeviceEnvironment.h" 34 #include "get_elf_mach_gfx_name.h" 35 #include "omptargetplugin.h" 36 #include "print_tracing.h" 37 38 #include "llvm/Frontend/OpenMP/OMPConstants.h" 39 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 40 41 // hostrpc interface, FIXME: consider moving to its own include these are 42 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 43 // linked as --whole-archive to override the weak symbols that are used to 44 // implement a fallback for toolchains that do not yet have a hostrpc library. 45 extern "C" { 46 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 47 uint32_t device_id); 48 hsa_status_t hostrpc_init(); 49 hsa_status_t hostrpc_terminate(); 50 51 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 52 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 53 return HSA_STATUS_SUCCESS; 54 } 55 __attribute__((weak)) unsigned long 56 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 57 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 58 "missing\n", 59 device_id); 60 return 0; 61 } 62 } 63 64 // Heuristic parameters used for kernel launch 65 // Number of teams per CU to allow scheduling flexibility 66 static const unsigned DefaultTeamsPerCU = 4; 67 68 int print_kernel_trace; 69 70 #ifdef OMPTARGET_DEBUG 71 #define check(msg, status) \ 72 if (status != HSA_STATUS_SUCCESS) { \ 73 DP(#msg " failed\n"); \ 74 } else { \ 75 DP(#msg " succeeded\n"); \ 76 } 77 #else 78 #define check(msg, status) \ 79 {} 80 #endif 81 82 #include "elf_common.h" 83 84 namespace hsa { 85 template <typename C> hsa_status_t iterate_agents(C cb) { 86 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 87 C *unwrapped = static_cast<C *>(data); 88 return (*unwrapped)(agent); 89 }; 90 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 91 } 92 93 template <typename C> 94 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { 95 auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { 96 C *unwrapped = static_cast<C *>(data); 97 return (*unwrapped)(MemoryPool); 98 }; 99 100 return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb)); 101 } 102 103 } // namespace hsa 104 105 /// Keep entries table per device 106 struct FuncOrGblEntryTy { 107 __tgt_target_table Table; 108 std::vector<__tgt_offload_entry> Entries; 109 }; 110 111 struct KernelArgPool { 112 private: 113 static pthread_mutex_t mutex; 114 115 public: 116 uint32_t kernarg_segment_size; 117 void *kernarg_region = nullptr; 118 std::queue<int> free_kernarg_segments; 119 120 uint32_t kernarg_size_including_implicit() { 121 return kernarg_segment_size + sizeof(impl_implicit_args_t); 122 } 123 124 ~KernelArgPool() { 125 if (kernarg_region) { 126 auto r = hsa_amd_memory_pool_free(kernarg_region); 127 if (r != HSA_STATUS_SUCCESS) { 128 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 129 } 130 } 131 } 132 133 // Can't really copy or move a mutex 134 KernelArgPool() = default; 135 KernelArgPool(const KernelArgPool &) = delete; 136 KernelArgPool(KernelArgPool &&) = delete; 137 138 KernelArgPool(uint32_t kernarg_segment_size, 139 hsa_amd_memory_pool_t &memory_pool) 140 : kernarg_segment_size(kernarg_segment_size) { 141 142 // impl uses one pool per kernel for all gpus, with a fixed upper size 143 // preserving that exact scheme here, including the queue<int> 144 145 hsa_status_t err = hsa_amd_memory_pool_allocate( 146 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 147 &kernarg_region); 148 149 if (err != HSA_STATUS_SUCCESS) { 150 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 151 kernarg_region = nullptr; // paranoid 152 return; 153 } 154 155 err = core::allow_access_to_all_gpu_agents(kernarg_region); 156 if (err != HSA_STATUS_SUCCESS) { 157 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 158 get_error_string(err)); 159 auto r = hsa_amd_memory_pool_free(kernarg_region); 160 if (r != HSA_STATUS_SUCCESS) { 161 // if free failed, can't do anything more to resolve it 162 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 163 } 164 kernarg_region = nullptr; 165 return; 166 } 167 168 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 169 free_kernarg_segments.push(i); 170 } 171 } 172 173 void *allocate(uint64_t arg_num) { 174 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 175 lock l(&mutex); 176 void *res = nullptr; 177 if (!free_kernarg_segments.empty()) { 178 179 int free_idx = free_kernarg_segments.front(); 180 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 181 (free_idx * kernarg_size_including_implicit())); 182 assert(free_idx == pointer_to_index(res)); 183 free_kernarg_segments.pop(); 184 } 185 return res; 186 } 187 188 void deallocate(void *ptr) { 189 lock l(&mutex); 190 int idx = pointer_to_index(ptr); 191 free_kernarg_segments.push(idx); 192 } 193 194 private: 195 int pointer_to_index(void *ptr) { 196 ptrdiff_t bytes = 197 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 198 assert(bytes >= 0); 199 assert(bytes % kernarg_size_including_implicit() == 0); 200 return bytes / kernarg_size_including_implicit(); 201 } 202 struct lock { 203 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 204 ~lock() { pthread_mutex_unlock(m); } 205 pthread_mutex_t *m; 206 }; 207 }; 208 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 209 210 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 211 KernelArgPoolMap; 212 213 /// Use a single entity to encode a kernel and a set of flags 214 struct KernelTy { 215 llvm::omp::OMPTgtExecModeFlags ExecutionMode; 216 int16_t ConstWGSize; 217 int32_t device_id; 218 void *CallStackAddr = nullptr; 219 const char *Name; 220 221 KernelTy(llvm::omp::OMPTgtExecModeFlags _ExecutionMode, int16_t _ConstWGSize, 222 int32_t _device_id, void *_CallStackAddr, const char *_Name, 223 uint32_t _kernarg_segment_size, 224 hsa_amd_memory_pool_t &KernArgMemoryPool) 225 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 226 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 227 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 228 229 std::string N(_Name); 230 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 231 KernelArgPoolMap.insert( 232 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 233 _kernarg_segment_size, KernArgMemoryPool)))); 234 } 235 } 236 }; 237 238 /// List that contains all the kernels. 239 /// FIXME: we may need this to be per device and per library. 240 std::list<KernelTy> KernelsList; 241 242 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 243 244 hsa_status_t err = 245 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 246 hsa_device_type_t device_type; 247 // get_info fails iff HSA runtime not yet initialized 248 hsa_status_t err = 249 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 250 251 if (err != HSA_STATUS_SUCCESS) { 252 if (print_kernel_trace > 0) 253 DP("rtl.cpp: err %s\n", get_error_string(err)); 254 255 return err; 256 } 257 258 CB(device_type, agent); 259 return HSA_STATUS_SUCCESS; 260 }); 261 262 // iterate_agents fails iff HSA runtime not yet initialized 263 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 264 DP("rtl.cpp: err %s\n", get_error_string(err)); 265 } 266 267 return err; 268 } 269 270 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 271 void *data) { 272 if (status != HSA_STATUS_SUCCESS) { 273 const char *status_string; 274 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 275 status_string = "unavailable"; 276 } 277 DP("[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, __LINE__, source, 278 status, status_string); 279 abort(); 280 } 281 } 282 283 namespace core { 284 namespace { 285 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 286 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 287 } 288 289 uint16_t create_header() { 290 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 291 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 292 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 293 return header; 294 } 295 296 hsa_status_t isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { 297 bool AllocAllowed = false; 298 hsa_status_t Err = hsa_amd_memory_pool_get_info( 299 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 300 &AllocAllowed); 301 if (Err != HSA_STATUS_SUCCESS) { 302 DP("Alloc allowed in memory pool check failed: %s\n", 303 get_error_string(Err)); 304 return Err; 305 } 306 307 size_t Size = 0; 308 Err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, 309 &Size); 310 if (Err != HSA_STATUS_SUCCESS) { 311 DP("Get memory pool size failed: %s\n", get_error_string(Err)); 312 return Err; 313 } 314 315 return (AllocAllowed && Size > 0) ? HSA_STATUS_SUCCESS : HSA_STATUS_ERROR; 316 } 317 318 hsa_status_t addMemoryPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 319 std::vector<hsa_amd_memory_pool_t> *Result = 320 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 321 322 hsa_status_t err; 323 if ((err = isValidMemoryPool(MemoryPool)) != HSA_STATUS_SUCCESS) { 324 return err; 325 } 326 327 Result->push_back(MemoryPool); 328 return HSA_STATUS_SUCCESS; 329 } 330 331 } // namespace 332 } // namespace core 333 334 struct EnvironmentVariables { 335 int NumTeams; 336 int TeamLimit; 337 int TeamThreadLimit; 338 int MaxTeamsDefault; 339 }; 340 341 template <uint32_t wavesize> 342 static constexpr const llvm::omp::GV &getGridValue() { 343 return llvm::omp::getAMDGPUGridValues<wavesize>(); 344 } 345 346 struct HSALifetime { 347 // Wrapper around HSA used to ensure it is constructed before other types 348 // and destructed after, which means said other types can use raii for 349 // cleanup without risking running outside of the lifetime of HSA 350 const hsa_status_t S; 351 352 bool success() { return S == HSA_STATUS_SUCCESS; } 353 HSALifetime() : S(hsa_init()) {} 354 355 ~HSALifetime() { 356 if (S == HSA_STATUS_SUCCESS) { 357 hsa_status_t Err = hsa_shut_down(); 358 if (Err != HSA_STATUS_SUCCESS) { 359 // Can't call into HSA to get a string from the integer 360 DP("Shutting down HSA failed: %d\n", Err); 361 } 362 } 363 } 364 }; 365 366 /// Class containing all the device information 367 class RTLDeviceInfoTy { 368 HSALifetime HSA; // First field => constructed first and destructed last 369 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 370 371 struct QueueDeleter { 372 void operator()(hsa_queue_t *Q) { 373 if (Q) { 374 hsa_status_t Err = hsa_queue_destroy(Q); 375 if (Err != HSA_STATUS_SUCCESS) { 376 DP("Error destroying hsa queue: %s\n", get_error_string(Err)); 377 } 378 } 379 } 380 }; 381 382 public: 383 bool ConstructionSucceeded = false; 384 385 // load binary populates symbol tables and mutates various global state 386 // run uses those symbol tables 387 std::shared_timed_mutex load_run_lock; 388 389 int NumberOfDevices = 0; 390 391 // GPU devices 392 std::vector<hsa_agent_t> HSAAgents; 393 std::vector<std::unique_ptr<hsa_queue_t, QueueDeleter>> 394 HSAQueues; // one per gpu 395 396 // CPUs 397 std::vector<hsa_agent_t> CPUAgents; 398 399 // Device properties 400 std::vector<int> ComputeUnits; 401 std::vector<int> GroupsPerDevice; 402 std::vector<int> ThreadsPerGroup; 403 std::vector<int> WarpSize; 404 std::vector<std::string> GPUName; 405 406 // OpenMP properties 407 std::vector<int> NumTeams; 408 std::vector<int> NumThreads; 409 410 // OpenMP Environment properties 411 EnvironmentVariables Env; 412 413 // OpenMP Requires Flags 414 int64_t RequiresFlags; 415 416 // Resource pools 417 SignalPoolT FreeSignalPool; 418 419 bool hostcall_required = false; 420 421 std::vector<hsa_executable_t> HSAExecutables; 422 423 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 424 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 425 426 hsa_amd_memory_pool_t KernArgPool; 427 428 // fine grained memory pool for host allocations 429 hsa_amd_memory_pool_t HostFineGrainedMemoryPool; 430 431 // fine and coarse-grained memory pools per offloading device 432 std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools; 433 std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools; 434 435 struct implFreePtrDeletor { 436 void operator()(void *p) { 437 core::Runtime::Memfree(p); // ignore failure to free 438 } 439 }; 440 441 // device_State shared across loaded binaries, error if inconsistent size 442 std::vector<std::pair<std::unique_ptr<void, implFreePtrDeletor>, uint64_t>> 443 deviceStateStore; 444 445 static const unsigned HardTeamLimit = 446 (1 << 16) - 1; // 64K needed to fit in uint16 447 static const int DefaultNumTeams = 128; 448 449 // These need to be per-device since different devices can have different 450 // wave sizes, but are currently the same number for each so that refactor 451 // can be postponed. 452 static_assert(getGridValue<32>().GV_Max_Teams == 453 getGridValue<64>().GV_Max_Teams, 454 ""); 455 static const int Max_Teams = getGridValue<64>().GV_Max_Teams; 456 457 static_assert(getGridValue<32>().GV_Max_WG_Size == 458 getGridValue<64>().GV_Max_WG_Size, 459 ""); 460 static const int Max_WG_Size = getGridValue<64>().GV_Max_WG_Size; 461 462 static_assert(getGridValue<32>().GV_Default_WG_Size == 463 getGridValue<64>().GV_Default_WG_Size, 464 ""); 465 static const int Default_WG_Size = getGridValue<64>().GV_Default_WG_Size; 466 467 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, void *, size_t size, 468 hsa_agent_t, hsa_amd_memory_pool_t); 469 hsa_status_t freesignalpool_memcpy(void *dest, void *src, size_t size, 470 MemcpyFunc Func, int32_t deviceId) { 471 hsa_agent_t agent = HSAAgents[deviceId]; 472 hsa_signal_t s = FreeSignalPool.pop(); 473 if (s.handle == 0) { 474 return HSA_STATUS_ERROR; 475 } 476 hsa_status_t r = Func(s, dest, src, size, agent, HostFineGrainedMemoryPool); 477 FreeSignalPool.push(s); 478 return r; 479 } 480 481 hsa_status_t freesignalpool_memcpy_d2h(void *dest, void *src, size_t size, 482 int32_t deviceId) { 483 return freesignalpool_memcpy(dest, src, size, impl_memcpy_d2h, deviceId); 484 } 485 486 hsa_status_t freesignalpool_memcpy_h2d(void *dest, void *src, size_t size, 487 int32_t deviceId) { 488 return freesignalpool_memcpy(dest, src, size, impl_memcpy_h2d, deviceId); 489 } 490 491 // Record entry point associated with device 492 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 493 assert(device_id < (int32_t)FuncGblEntries.size() && 494 "Unexpected device id!"); 495 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 496 497 E.Entries.push_back(entry); 498 } 499 500 // Return true if the entry is associated with device 501 bool findOffloadEntry(int32_t device_id, void *addr) { 502 assert(device_id < (int32_t)FuncGblEntries.size() && 503 "Unexpected device id!"); 504 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 505 506 for (auto &it : E.Entries) { 507 if (it.addr == addr) 508 return true; 509 } 510 511 return false; 512 } 513 514 // Return the pointer to the target entries table 515 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 516 assert(device_id < (int32_t)FuncGblEntries.size() && 517 "Unexpected device id!"); 518 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 519 520 int32_t size = E.Entries.size(); 521 522 // Table is empty 523 if (!size) 524 return 0; 525 526 __tgt_offload_entry *begin = &E.Entries[0]; 527 __tgt_offload_entry *end = &E.Entries[size - 1]; 528 529 // Update table info according to the entries and return the pointer 530 E.Table.EntriesBegin = begin; 531 E.Table.EntriesEnd = ++end; 532 533 return &E.Table; 534 } 535 536 // Clear entries table for a device 537 void clearOffloadEntriesTable(int device_id) { 538 assert(device_id < (int32_t)FuncGblEntries.size() && 539 "Unexpected device id!"); 540 FuncGblEntries[device_id].emplace_back(); 541 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 542 // KernelArgPoolMap.clear(); 543 E.Entries.clear(); 544 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 545 } 546 547 hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, 548 int DeviceId) { 549 assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); 550 uint32_t GlobalFlags = 0; 551 hsa_status_t Err = hsa_amd_memory_pool_get_info( 552 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 553 554 if (Err != HSA_STATUS_SUCCESS) { 555 return Err; 556 } 557 558 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 559 DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; 560 } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { 561 DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; 562 } 563 564 return HSA_STATUS_SUCCESS; 565 } 566 567 hsa_status_t setupDevicePools(const std::vector<hsa_agent_t> &Agents) { 568 for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { 569 hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( 570 Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { 571 hsa_status_t ValidStatus = core::isValidMemoryPool(MemoryPool); 572 if (ValidStatus != HSA_STATUS_SUCCESS) { 573 DP("Alloc allowed in memory pool check failed: %s\n", 574 get_error_string(ValidStatus)); 575 return HSA_STATUS_SUCCESS; 576 } 577 return addDeviceMemoryPool(MemoryPool, DeviceId); 578 }); 579 580 if (Err != HSA_STATUS_SUCCESS) { 581 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 582 "Iterate all memory pools", get_error_string(Err)); 583 return Err; 584 } 585 } 586 return HSA_STATUS_SUCCESS; 587 } 588 589 hsa_status_t setupHostMemoryPools(std::vector<hsa_agent_t> &Agents) { 590 std::vector<hsa_amd_memory_pool_t> HostPools; 591 592 // collect all the "valid" pools for all the given agents. 593 for (const auto &Agent : Agents) { 594 hsa_status_t Err = hsa_amd_agent_iterate_memory_pools( 595 Agent, core::addMemoryPool, static_cast<void *>(&HostPools)); 596 if (Err != HSA_STATUS_SUCCESS) { 597 DP("addMemoryPool returned %s, continuing\n", get_error_string(Err)); 598 } 599 } 600 601 // We need two fine-grained pools. 602 // 1. One with kernarg flag set for storing kernel arguments 603 // 2. Second for host allocations 604 bool FineGrainedMemoryPoolSet = false; 605 bool KernArgPoolSet = false; 606 for (const auto &MemoryPool : HostPools) { 607 hsa_status_t Err = HSA_STATUS_SUCCESS; 608 uint32_t GlobalFlags = 0; 609 Err = hsa_amd_memory_pool_get_info( 610 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 611 if (Err != HSA_STATUS_SUCCESS) { 612 DP("Get memory pool info failed: %s\n", get_error_string(Err)); 613 return Err; 614 } 615 616 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 617 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) { 618 KernArgPool = MemoryPool; 619 KernArgPoolSet = true; 620 } 621 HostFineGrainedMemoryPool = MemoryPool; 622 FineGrainedMemoryPoolSet = true; 623 } 624 } 625 626 if (FineGrainedMemoryPoolSet && KernArgPoolSet) 627 return HSA_STATUS_SUCCESS; 628 629 return HSA_STATUS_ERROR; 630 } 631 632 hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { 633 assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && 634 "Invalid device Id"); 635 return DeviceCoarseGrainedMemoryPools[DeviceId]; 636 } 637 638 hsa_amd_memory_pool_t getHostMemoryPool() { 639 return HostFineGrainedMemoryPool; 640 } 641 642 static int readEnvElseMinusOne(const char *Env) { 643 const char *envStr = getenv(Env); 644 int res = -1; 645 if (envStr) { 646 res = std::stoi(envStr); 647 DP("Parsed %s=%d\n", Env, res); 648 } 649 return res; 650 } 651 652 RTLDeviceInfoTy() { 653 DP("Start initializing " GETNAME(TARGET_NAME) "\n"); 654 655 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 656 // anytime. You do not need a debug library build. 657 // 0 => no tracing 658 // 1 => tracing dispatch only 659 // >1 => verbosity increase 660 661 if (!HSA.success()) { 662 DP("Error when initializing HSA in " GETNAME(TARGET_NAME) "\n"); 663 return; 664 } 665 666 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 667 print_kernel_trace = atoi(envStr); 668 else 669 print_kernel_trace = 0; 670 671 hsa_status_t err = core::atl_init_gpu_context(); 672 if (err != HSA_STATUS_SUCCESS) { 673 DP("Error when initializing " GETNAME(TARGET_NAME) "\n"); 674 return; 675 } 676 677 // Init hostcall soon after initializing hsa 678 hostrpc_init(); 679 680 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 681 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 682 CPUAgents.push_back(Agent); 683 } else { 684 HSAAgents.push_back(Agent); 685 } 686 }); 687 if (err != HSA_STATUS_SUCCESS) 688 return; 689 690 NumberOfDevices = (int)HSAAgents.size(); 691 692 if (NumberOfDevices == 0) { 693 DP("There are no devices supporting HSA.\n"); 694 return; 695 } else { 696 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 697 } 698 699 // Init the device info 700 HSAQueues.resize(NumberOfDevices); 701 FuncGblEntries.resize(NumberOfDevices); 702 ThreadsPerGroup.resize(NumberOfDevices); 703 ComputeUnits.resize(NumberOfDevices); 704 GPUName.resize(NumberOfDevices); 705 GroupsPerDevice.resize(NumberOfDevices); 706 WarpSize.resize(NumberOfDevices); 707 NumTeams.resize(NumberOfDevices); 708 NumThreads.resize(NumberOfDevices); 709 deviceStateStore.resize(NumberOfDevices); 710 KernelInfoTable.resize(NumberOfDevices); 711 SymbolInfoTable.resize(NumberOfDevices); 712 DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); 713 DeviceFineGrainedMemoryPools.resize(NumberOfDevices); 714 715 err = setupDevicePools(HSAAgents); 716 if (err != HSA_STATUS_SUCCESS) { 717 DP("Setup for Device Memory Pools failed\n"); 718 return; 719 } 720 721 err = setupHostMemoryPools(CPUAgents); 722 if (err != HSA_STATUS_SUCCESS) { 723 DP("Setup for Host Memory Pools failed\n"); 724 return; 725 } 726 727 for (int i = 0; i < NumberOfDevices; i++) { 728 uint32_t queue_size = 0; 729 { 730 hsa_status_t err = hsa_agent_get_info( 731 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 732 if (err != HSA_STATUS_SUCCESS) { 733 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 734 return; 735 } 736 enum { MaxQueueSize = 4096 }; 737 if (queue_size > MaxQueueSize) { 738 queue_size = MaxQueueSize; 739 } 740 } 741 742 { 743 hsa_queue_t *Q = nullptr; 744 hsa_status_t rc = 745 hsa_queue_create(HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, 746 callbackQueue, NULL, UINT32_MAX, UINT32_MAX, &Q); 747 if (rc != HSA_STATUS_SUCCESS) { 748 DP("Failed to create HSA queue %d\n", i); 749 return; 750 } 751 HSAQueues[i].reset(Q); 752 } 753 754 deviceStateStore[i] = {nullptr, 0}; 755 } 756 757 for (int i = 0; i < NumberOfDevices; i++) { 758 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 759 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 760 ComputeUnits[i] = 1; 761 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 762 GroupsPerDevice[i], ThreadsPerGroup[i]); 763 } 764 765 // Get environment variables regarding teams 766 Env.TeamLimit = readEnvElseMinusOne("OMP_TEAM_LIMIT"); 767 Env.NumTeams = readEnvElseMinusOne("OMP_NUM_TEAMS"); 768 Env.MaxTeamsDefault = readEnvElseMinusOne("OMP_MAX_TEAMS_DEFAULT"); 769 Env.TeamThreadLimit = readEnvElseMinusOne("OMP_TEAMS_THREAD_LIMIT"); 770 771 // Default state. 772 RequiresFlags = OMP_REQ_UNDEFINED; 773 774 ConstructionSucceeded = true; 775 } 776 777 ~RTLDeviceInfoTy() { 778 DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n"); 779 if (!HSA.success()) { 780 // Then none of these can have been set up and they can't be torn down 781 return; 782 } 783 // Run destructors on types that use HSA before 784 // impl_finalize removes access to it 785 deviceStateStore.clear(); 786 KernelArgPoolMap.clear(); 787 // Terminate hostrpc before finalizing hsa 788 hostrpc_terminate(); 789 790 hsa_status_t Err; 791 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 792 Err = hsa_executable_destroy(HSAExecutables[I]); 793 if (Err != HSA_STATUS_SUCCESS) { 794 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 795 "Destroying executable", get_error_string(Err)); 796 } 797 } 798 } 799 }; 800 801 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 802 803 static RTLDeviceInfoTy DeviceInfo; 804 805 namespace { 806 807 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 808 __tgt_async_info *AsyncInfo) { 809 assert(AsyncInfo && "AsyncInfo is nullptr"); 810 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 811 // Return success if we are not copying back to host from target. 812 if (!HstPtr) 813 return OFFLOAD_SUCCESS; 814 hsa_status_t err; 815 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 816 (long long unsigned)(Elf64_Addr)TgtPtr, 817 (long long unsigned)(Elf64_Addr)HstPtr); 818 819 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 820 DeviceId); 821 822 if (err != HSA_STATUS_SUCCESS) { 823 DP("Error when copying data from device to host. Pointers: " 824 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 825 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 826 return OFFLOAD_FAIL; 827 } 828 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 829 (long long unsigned)(Elf64_Addr)TgtPtr, 830 (long long unsigned)(Elf64_Addr)HstPtr); 831 return OFFLOAD_SUCCESS; 832 } 833 834 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 835 __tgt_async_info *AsyncInfo) { 836 assert(AsyncInfo && "AsyncInfo is nullptr"); 837 hsa_status_t err; 838 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 839 // Return success if we are not doing host to target. 840 if (!HstPtr) 841 return OFFLOAD_SUCCESS; 842 843 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 844 (long long unsigned)(Elf64_Addr)HstPtr, 845 (long long unsigned)(Elf64_Addr)TgtPtr); 846 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 847 DeviceId); 848 if (err != HSA_STATUS_SUCCESS) { 849 DP("Error when copying data from host to device. Pointers: " 850 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 851 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 852 return OFFLOAD_FAIL; 853 } 854 return OFFLOAD_SUCCESS; 855 } 856 857 // Async. 858 // The implementation was written with cuda streams in mind. The semantics of 859 // that are to execute kernels on a queue in order of insertion. A synchronise 860 // call then makes writes visible between host and device. This means a series 861 // of N data_submit_async calls are expected to execute serially. HSA offers 862 // various options to run the data copies concurrently. This may require changes 863 // to libomptarget. 864 865 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 866 // there are no outstanding kernels that need to be synchronized. Any async call 867 // may be passed a Queue==0, at which point the cuda implementation will set it 868 // to non-null (see getStream). The cuda streams are per-device. Upstream may 869 // change this interface to explicitly initialize the AsyncInfo_pointer, but 870 // until then hsa lazily initializes it as well. 871 872 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 873 // set non-null while using async calls, return to null to indicate completion 874 assert(AsyncInfo); 875 if (!AsyncInfo->Queue) { 876 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 877 } 878 } 879 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 880 assert(AsyncInfo); 881 assert(AsyncInfo->Queue); 882 AsyncInfo->Queue = 0; 883 } 884 885 // Determine launch values for kernel. 886 struct launchVals { 887 int WorkgroupSize; 888 int GridSize; 889 }; 890 launchVals getLaunchVals(int WarpSize, EnvironmentVariables Env, 891 int ConstWGSize, 892 llvm::omp::OMPTgtExecModeFlags ExecutionMode, 893 int num_teams, int thread_limit, 894 uint64_t loop_tripcount, int DeviceNumTeams) { 895 896 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 897 int num_groups = 0; 898 899 int Max_Teams = 900 Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams; 901 if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit) 902 Max_Teams = RTLDeviceInfoTy::HardTeamLimit; 903 904 if (print_kernel_trace & STARTUP_DETAILS) { 905 DP("RTLDeviceInfoTy::Max_Teams: %d\n", RTLDeviceInfoTy::Max_Teams); 906 DP("Max_Teams: %d\n", Max_Teams); 907 DP("RTLDeviceInfoTy::Warp_Size: %d\n", WarpSize); 908 DP("RTLDeviceInfoTy::Max_WG_Size: %d\n", RTLDeviceInfoTy::Max_WG_Size); 909 DP("RTLDeviceInfoTy::Default_WG_Size: %d\n", 910 RTLDeviceInfoTy::Default_WG_Size); 911 DP("thread_limit: %d\n", thread_limit); 912 DP("threadsPerGroup: %d\n", threadsPerGroup); 913 DP("ConstWGSize: %d\n", ConstWGSize); 914 } 915 // check for thread_limit() clause 916 if (thread_limit > 0) { 917 threadsPerGroup = thread_limit; 918 DP("Setting threads per block to requested %d\n", thread_limit); 919 // Add master warp for GENERIC 920 if (ExecutionMode == 921 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) { 922 threadsPerGroup += WarpSize; 923 DP("Adding master wavefront: +%d threads\n", WarpSize); 924 } 925 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 926 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 927 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 928 } 929 } 930 // check flat_max_work_group_size attr here 931 if (threadsPerGroup > ConstWGSize) { 932 threadsPerGroup = ConstWGSize; 933 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 934 threadsPerGroup); 935 } 936 if (print_kernel_trace & STARTUP_DETAILS) 937 DP("threadsPerGroup: %d\n", threadsPerGroup); 938 DP("Preparing %d threads\n", threadsPerGroup); 939 940 // Set default num_groups (teams) 941 if (Env.TeamLimit > 0) 942 num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit; 943 else 944 num_groups = Max_Teams; 945 DP("Set default num of groups %d\n", num_groups); 946 947 if (print_kernel_trace & STARTUP_DETAILS) { 948 DP("num_groups: %d\n", num_groups); 949 DP("num_teams: %d\n", num_teams); 950 } 951 952 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 953 // This reduction is typical for default case (no thread_limit clause). 954 // or when user goes crazy with num_teams clause. 955 // FIXME: We cant distinguish between a constant or variable thread limit. 956 // So we only handle constant thread_limits. 957 if (threadsPerGroup > 958 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 959 // Should we round threadsPerGroup up to nearest WarpSize 960 // here? 961 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 962 963 // check for num_teams() clause 964 if (num_teams > 0) { 965 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 966 } 967 if (print_kernel_trace & STARTUP_DETAILS) { 968 DP("num_groups: %d\n", num_groups); 969 DP("Env.NumTeams %d\n", Env.NumTeams); 970 DP("Env.TeamLimit %d\n", Env.TeamLimit); 971 } 972 973 if (Env.NumTeams > 0) { 974 num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups; 975 DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams); 976 } else if (Env.TeamLimit > 0) { 977 num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups; 978 DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit); 979 } else { 980 if (num_teams <= 0) { 981 if (loop_tripcount > 0) { 982 if (ExecutionMode == 983 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_SPMD) { 984 // round up to the nearest integer 985 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 986 } else if (ExecutionMode == 987 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) { 988 num_groups = loop_tripcount; 989 } else /* OMP_TGT_EXEC_MODE_GENERIC_SPMD */ { 990 // This is a generic kernel that was transformed to use SPMD-mode 991 // execution but uses Generic-mode semantics for scheduling. 992 num_groups = loop_tripcount; 993 } 994 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 995 "threads per block %d\n", 996 num_groups, loop_tripcount, threadsPerGroup); 997 } 998 } else { 999 num_groups = num_teams; 1000 } 1001 if (num_groups > Max_Teams) { 1002 num_groups = Max_Teams; 1003 if (print_kernel_trace & STARTUP_DETAILS) 1004 DP("Limiting num_groups %d to Max_Teams %d \n", num_groups, Max_Teams); 1005 } 1006 if (num_groups > num_teams && num_teams > 0) { 1007 num_groups = num_teams; 1008 if (print_kernel_trace & STARTUP_DETAILS) 1009 DP("Limiting num_groups %d to clause num_teams %d \n", num_groups, 1010 num_teams); 1011 } 1012 } 1013 1014 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1015 if (num_teams > 0) { 1016 num_groups = num_teams; 1017 // Cap num_groups to EnvMaxTeamsDefault if set. 1018 if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault) 1019 num_groups = Env.MaxTeamsDefault; 1020 } 1021 if (print_kernel_trace & STARTUP_DETAILS) { 1022 DP("threadsPerGroup: %d\n", threadsPerGroup); 1023 DP("num_groups: %d\n", num_groups); 1024 DP("loop_tripcount: %ld\n", loop_tripcount); 1025 } 1026 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1027 threadsPerGroup); 1028 1029 launchVals res; 1030 res.WorkgroupSize = threadsPerGroup; 1031 res.GridSize = threadsPerGroup * num_groups; 1032 return res; 1033 } 1034 1035 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1036 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1037 bool full = true; 1038 while (full) { 1039 full = 1040 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1041 } 1042 return packet_id; 1043 } 1044 1045 int32_t __tgt_rtl_run_target_team_region_locked( 1046 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1047 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1048 int32_t thread_limit, uint64_t loop_tripcount) { 1049 // Set the context we are using 1050 // update thread limit content in gpu memory if un-initialized or specified 1051 // from host 1052 1053 DP("Run target team region thread_limit %d\n", thread_limit); 1054 1055 // All args are references. 1056 std::vector<void *> args(arg_num); 1057 std::vector<void *> ptrs(arg_num); 1058 1059 DP("Arg_num: %d\n", arg_num); 1060 for (int32_t i = 0; i < arg_num; ++i) { 1061 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1062 args[i] = &ptrs[i]; 1063 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1064 } 1065 1066 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1067 1068 std::string kernel_name = std::string(KernelInfo->Name); 1069 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 1070 if (KernelInfoTable[device_id].find(kernel_name) == 1071 KernelInfoTable[device_id].end()) { 1072 DP("Kernel %s not found\n", kernel_name.c_str()); 1073 return OFFLOAD_FAIL; 1074 } 1075 1076 const atl_kernel_info_t KernelInfoEntry = 1077 KernelInfoTable[device_id][kernel_name]; 1078 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 1079 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 1080 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 1081 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 1082 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 1083 1084 assert(arg_num == (int)KernelInfoEntry.explicit_argument_count); 1085 1086 /* 1087 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1088 */ 1089 launchVals LV = 1090 getLaunchVals(DeviceInfo.WarpSize[device_id], DeviceInfo.Env, 1091 KernelInfo->ConstWGSize, KernelInfo->ExecutionMode, 1092 num_teams, // From run_region arg 1093 thread_limit, // From run_region arg 1094 loop_tripcount, // From run_region arg 1095 DeviceInfo.NumTeams[KernelInfo->device_id]); 1096 const int GridSize = LV.GridSize; 1097 const int WorkgroupSize = LV.WorkgroupSize; 1098 1099 if (print_kernel_trace >= LAUNCH) { 1100 int num_groups = GridSize / WorkgroupSize; 1101 // enum modes are SPMD, GENERIC, NONE 0,1,2 1102 // if doing rtl timing, print to stderr, unless stdout requested. 1103 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1104 fprintf(traceToStdout ? stdout : stderr, 1105 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1106 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 1107 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 1108 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1109 arg_num, num_groups, WorkgroupSize, num_teams, thread_limit, 1110 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 1111 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 1112 } 1113 1114 // Run on the device. 1115 { 1116 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id].get(); 1117 if (!queue) { 1118 return OFFLOAD_FAIL; 1119 } 1120 uint64_t packet_id = acquire_available_packet_id(queue); 1121 1122 const uint32_t mask = queue->size - 1; // size is a power of 2 1123 hsa_kernel_dispatch_packet_t *packet = 1124 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1125 (packet_id & mask); 1126 1127 // packet->header is written last 1128 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1129 packet->workgroup_size_x = WorkgroupSize; 1130 packet->workgroup_size_y = 1; 1131 packet->workgroup_size_z = 1; 1132 packet->reserved0 = 0; 1133 packet->grid_size_x = GridSize; 1134 packet->grid_size_y = 1; 1135 packet->grid_size_z = 1; 1136 packet->private_segment_size = KernelInfoEntry.private_segment_size; 1137 packet->group_segment_size = KernelInfoEntry.group_segment_size; 1138 packet->kernel_object = KernelInfoEntry.kernel_object; 1139 packet->kernarg_address = 0; // use the block allocator 1140 packet->reserved2 = 0; // impl writes id_ here 1141 packet->completion_signal = {0}; // may want a pool of signals 1142 1143 KernelArgPool *ArgPool = nullptr; 1144 void *kernarg = nullptr; 1145 { 1146 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1147 if (it != KernelArgPoolMap.end()) { 1148 ArgPool = (it->second).get(); 1149 } 1150 } 1151 if (!ArgPool) { 1152 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 1153 device_id); 1154 } 1155 { 1156 if (ArgPool) { 1157 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1158 kernarg = ArgPool->allocate(arg_num); 1159 } 1160 if (!kernarg) { 1161 DP("Allocate kernarg failed\n"); 1162 return OFFLOAD_FAIL; 1163 } 1164 1165 // Copy explicit arguments 1166 for (int i = 0; i < arg_num; i++) { 1167 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1168 } 1169 1170 // Initialize implicit arguments. TODO: Which of these can be dropped 1171 impl_implicit_args_t *impl_args = 1172 reinterpret_cast<impl_implicit_args_t *>( 1173 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1174 memset(impl_args, 0, 1175 sizeof(impl_implicit_args_t)); // may not be necessary 1176 impl_args->offset_x = 0; 1177 impl_args->offset_y = 0; 1178 impl_args->offset_z = 0; 1179 1180 // assign a hostcall buffer for the selected Q 1181 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 1182 // hostrpc_assign_buffer is not thread safe, and this function is 1183 // under a multiple reader lock, not a writer lock. 1184 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 1185 pthread_mutex_lock(&hostcall_init_lock); 1186 unsigned long buffer = hostrpc_assign_buffer( 1187 DeviceInfo.HSAAgents[device_id], queue, device_id); 1188 pthread_mutex_unlock(&hostcall_init_lock); 1189 if (!buffer) { 1190 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 1191 "error\n"); 1192 return OFFLOAD_FAIL; 1193 } 1194 1195 if (KernelInfoEntry.implicit_argument_count >= 4) { 1196 // Initialise pointer for implicit_argument_count != 0 ABI 1197 // Guess that the right implicit argument is at offset 24 after 1198 // the explicit arguments. In the future, should be able to read 1199 // the offset from msgpack. Clang is not annotating it at present. 1200 uint64_t Offset = 1201 sizeof(void *) * (KernelInfoEntry.explicit_argument_count + 3); 1202 if ((Offset + 8) > (ArgPool->kernarg_segment_size)) { 1203 DP("Bad offset of hostcall, exceeds kernarg segment size\n"); 1204 } else { 1205 memcpy(static_cast<char *>(kernarg) + Offset, &buffer, 8); 1206 } 1207 } 1208 1209 // initialise pointer for implicit_argument_count == 0 ABI 1210 impl_args->hostcall_ptr = buffer; 1211 } 1212 1213 packet->kernarg_address = kernarg; 1214 } 1215 1216 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1217 if (s.handle == 0) { 1218 DP("Failed to get signal instance\n"); 1219 return OFFLOAD_FAIL; 1220 } 1221 packet->completion_signal = s; 1222 hsa_signal_store_relaxed(packet->completion_signal, 1); 1223 1224 // Publish the packet indicating it is ready to be processed 1225 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 1226 core::create_header(), packet->setup); 1227 1228 // Since the packet is already published, its contents must not be 1229 // accessed any more 1230 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1231 1232 while (hsa_signal_wait_scacquire(s, HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1233 HSA_WAIT_STATE_BLOCKED) != 0) 1234 ; 1235 1236 assert(ArgPool); 1237 ArgPool->deallocate(kernarg); 1238 DeviceInfo.FreeSignalPool.push(s); 1239 } 1240 1241 DP("Kernel completed\n"); 1242 return OFFLOAD_SUCCESS; 1243 } 1244 1245 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 1246 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 1247 int32_t r = elf_check_machine(image, amdgcnMachineID); 1248 if (!r) { 1249 DP("Supported machine ID not found\n"); 1250 } 1251 return r; 1252 } 1253 1254 uint32_t elf_e_flags(__tgt_device_image *image) { 1255 char *img_begin = (char *)image->ImageStart; 1256 size_t img_size = (char *)image->ImageEnd - img_begin; 1257 1258 Elf *e = elf_memory(img_begin, img_size); 1259 if (!e) { 1260 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 1261 return 0; 1262 } 1263 1264 Elf64_Ehdr *eh64 = elf64_getehdr(e); 1265 1266 if (!eh64) { 1267 DP("Unable to get machine ID from ELF file!\n"); 1268 elf_end(e); 1269 return 0; 1270 } 1271 1272 uint32_t Flags = eh64->e_flags; 1273 1274 elf_end(e); 1275 DP("ELF Flags: 0x%x\n", Flags); 1276 return Flags; 1277 } 1278 } // namespace 1279 1280 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 1281 return elf_machine_id_is_amdgcn(image); 1282 } 1283 1284 int __tgt_rtl_number_of_devices() { 1285 // If the construction failed, no methods are safe to call 1286 if (DeviceInfo.ConstructionSucceeded) { 1287 return DeviceInfo.NumberOfDevices; 1288 } else { 1289 DP("AMDGPU plugin construction failed. Zero devices available\n"); 1290 return 0; 1291 } 1292 } 1293 1294 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 1295 DP("Init requires flags to %ld\n", RequiresFlags); 1296 DeviceInfo.RequiresFlags = RequiresFlags; 1297 return RequiresFlags; 1298 } 1299 1300 namespace { 1301 template <typename T> bool enforce_upper_bound(T *value, T upper) { 1302 bool changed = *value > upper; 1303 if (changed) { 1304 *value = upper; 1305 } 1306 return changed; 1307 } 1308 } // namespace 1309 1310 int32_t __tgt_rtl_init_device(int device_id) { 1311 hsa_status_t err; 1312 1313 // this is per device id init 1314 DP("Initialize the device id: %d\n", device_id); 1315 1316 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 1317 1318 // Get number of Compute Unit 1319 uint32_t compute_units = 0; 1320 err = hsa_agent_get_info( 1321 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 1322 &compute_units); 1323 if (err != HSA_STATUS_SUCCESS) { 1324 DeviceInfo.ComputeUnits[device_id] = 1; 1325 DP("Error getting compute units : settiing to 1\n"); 1326 } else { 1327 DeviceInfo.ComputeUnits[device_id] = compute_units; 1328 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 1329 } 1330 1331 char GetInfoName[64]; // 64 max size returned by get info 1332 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 1333 (void *)GetInfoName); 1334 if (err) 1335 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 1336 else { 1337 DeviceInfo.GPUName[device_id] = GetInfoName; 1338 } 1339 1340 if (print_kernel_trace & STARTUP_DETAILS) 1341 DP("Device#%-2d CU's: %2d %s\n", device_id, 1342 DeviceInfo.ComputeUnits[device_id], 1343 DeviceInfo.GPUName[device_id].c_str()); 1344 1345 // Query attributes to determine number of threads/block and blocks/grid. 1346 uint16_t workgroup_max_dim[3]; 1347 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 1348 &workgroup_max_dim); 1349 if (err != HSA_STATUS_SUCCESS) { 1350 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 1351 DP("Error getting grid dims: num groups : %d\n", 1352 RTLDeviceInfoTy::DefaultNumTeams); 1353 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 1354 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 1355 DP("Using %d ROCm blocks per grid\n", 1356 DeviceInfo.GroupsPerDevice[device_id]); 1357 } else { 1358 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 1359 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 1360 "at the hard limit\n", 1361 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 1362 } 1363 1364 // Get thread limit 1365 hsa_dim3_t grid_max_dim; 1366 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 1367 if (err == HSA_STATUS_SUCCESS) { 1368 DeviceInfo.ThreadsPerGroup[device_id] = 1369 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 1370 DeviceInfo.GroupsPerDevice[device_id]; 1371 1372 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 1373 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1374 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1375 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 1376 RTLDeviceInfoTy::Max_WG_Size)) { 1377 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1378 } else { 1379 DP("Using ROCm Queried thread limit: %d\n", 1380 DeviceInfo.ThreadsPerGroup[device_id]); 1381 } 1382 } else { 1383 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1384 DP("Error getting max block dimension, use default:%d \n", 1385 RTLDeviceInfoTy::Max_WG_Size); 1386 } 1387 1388 // Get wavefront size 1389 uint32_t wavefront_size = 0; 1390 err = 1391 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 1392 if (err == HSA_STATUS_SUCCESS) { 1393 DP("Queried wavefront size: %d\n", wavefront_size); 1394 DeviceInfo.WarpSize[device_id] = wavefront_size; 1395 } else { 1396 // TODO: Burn the wavefront size into the code object 1397 DP("Warning: Unknown wavefront size, assuming 64\n"); 1398 DeviceInfo.WarpSize[device_id] = 64; 1399 } 1400 1401 // Adjust teams to the env variables 1402 1403 if (DeviceInfo.Env.TeamLimit > 0 && 1404 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 1405 DeviceInfo.Env.TeamLimit))) { 1406 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 1407 DeviceInfo.Env.TeamLimit); 1408 } 1409 1410 // Set default number of teams 1411 if (DeviceInfo.Env.NumTeams > 0) { 1412 DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams; 1413 DP("Default number of teams set according to environment %d\n", 1414 DeviceInfo.Env.NumTeams); 1415 } else { 1416 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 1417 int TeamsPerCU = DefaultTeamsPerCU; 1418 if (TeamsPerCUEnvStr) { 1419 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 1420 } 1421 1422 DeviceInfo.NumTeams[device_id] = 1423 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 1424 DP("Default number of teams = %d * number of compute units %d\n", 1425 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 1426 } 1427 1428 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 1429 DeviceInfo.GroupsPerDevice[device_id])) { 1430 DP("Default number of teams exceeds device limit, capping at %d\n", 1431 DeviceInfo.GroupsPerDevice[device_id]); 1432 } 1433 1434 // Adjust threads to the env variables 1435 if (DeviceInfo.Env.TeamThreadLimit > 0 && 1436 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1437 DeviceInfo.Env.TeamThreadLimit))) { 1438 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 1439 DeviceInfo.Env.TeamThreadLimit); 1440 } 1441 1442 // Set default number of threads 1443 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 1444 DP("Default number of threads set according to library's default %d\n", 1445 RTLDeviceInfoTy::Default_WG_Size); 1446 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1447 DeviceInfo.ThreadsPerGroup[device_id])) { 1448 DP("Default number of threads exceeds device limit, capping at %d\n", 1449 DeviceInfo.ThreadsPerGroup[device_id]); 1450 } 1451 1452 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 1453 device_id, DeviceInfo.GroupsPerDevice[device_id], 1454 DeviceInfo.ThreadsPerGroup[device_id]); 1455 1456 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 1457 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 1458 DeviceInfo.GroupsPerDevice[device_id], 1459 DeviceInfo.GroupsPerDevice[device_id] * 1460 DeviceInfo.ThreadsPerGroup[device_id]); 1461 1462 return OFFLOAD_SUCCESS; 1463 } 1464 1465 namespace { 1466 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 1467 size_t N; 1468 int rc = elf_getshdrnum(elf, &N); 1469 if (rc != 0) { 1470 return nullptr; 1471 } 1472 1473 Elf64_Shdr *result = nullptr; 1474 for (size_t i = 0; i < N; i++) { 1475 Elf_Scn *scn = elf_getscn(elf, i); 1476 if (scn) { 1477 Elf64_Shdr *shdr = elf64_getshdr(scn); 1478 if (shdr) { 1479 if (shdr->sh_type == SHT_HASH) { 1480 if (result == nullptr) { 1481 result = shdr; 1482 } else { 1483 // multiple SHT_HASH sections not handled 1484 return nullptr; 1485 } 1486 } 1487 } 1488 } 1489 } 1490 return result; 1491 } 1492 1493 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1494 const char *symname) { 1495 1496 assert(section_hash); 1497 size_t section_symtab_index = section_hash->sh_link; 1498 Elf64_Shdr *section_symtab = 1499 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1500 size_t section_strtab_index = section_symtab->sh_link; 1501 1502 const Elf64_Sym *symtab = 1503 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1504 1505 const uint32_t *hashtab = 1506 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1507 1508 // Layout: 1509 // nbucket 1510 // nchain 1511 // bucket[nbucket] 1512 // chain[nchain] 1513 uint32_t nbucket = hashtab[0]; 1514 const uint32_t *bucket = &hashtab[2]; 1515 const uint32_t *chain = &hashtab[nbucket + 2]; 1516 1517 const size_t max = strlen(symname) + 1; 1518 const uint32_t hash = elf_hash(symname); 1519 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1520 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1521 if (strncmp(symname, n, max) == 0) { 1522 return &symtab[i]; 1523 } 1524 } 1525 1526 return nullptr; 1527 } 1528 1529 struct symbol_info { 1530 void *addr = nullptr; 1531 uint32_t size = UINT32_MAX; 1532 uint32_t sh_type = SHT_NULL; 1533 }; 1534 1535 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1536 symbol_info *res) { 1537 if (elf_kind(elf) != ELF_K_ELF) { 1538 return 1; 1539 } 1540 1541 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1542 if (!section_hash) { 1543 return 1; 1544 } 1545 1546 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1547 if (!sym) { 1548 return 1; 1549 } 1550 1551 if (sym->st_size > UINT32_MAX) { 1552 return 1; 1553 } 1554 1555 if (sym->st_shndx == SHN_UNDEF) { 1556 return 1; 1557 } 1558 1559 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1560 if (!section) { 1561 return 1; 1562 } 1563 1564 Elf64_Shdr *header = elf64_getshdr(section); 1565 if (!header) { 1566 return 1; 1567 } 1568 1569 res->addr = sym->st_value + base; 1570 res->size = static_cast<uint32_t>(sym->st_size); 1571 res->sh_type = header->sh_type; 1572 return 0; 1573 } 1574 1575 int get_symbol_info_without_loading(char *base, size_t img_size, 1576 const char *symname, symbol_info *res) { 1577 Elf *elf = elf_memory(base, img_size); 1578 if (elf) { 1579 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1580 elf_end(elf); 1581 return rc; 1582 } 1583 return 1; 1584 } 1585 1586 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1587 const char *symname, void **var_addr, 1588 uint32_t *var_size) { 1589 symbol_info si; 1590 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1591 if (rc == 0) { 1592 *var_addr = si.addr; 1593 *var_size = si.size; 1594 return HSA_STATUS_SUCCESS; 1595 } else { 1596 return HSA_STATUS_ERROR; 1597 } 1598 } 1599 1600 template <typename C> 1601 hsa_status_t module_register_from_memory_to_place( 1602 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1603 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1604 void *module_bytes, size_t module_size, int DeviceId, C cb, 1605 std::vector<hsa_executable_t> &HSAExecutables) { 1606 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1607 C *unwrapped = static_cast<C *>(cb_state); 1608 return (*unwrapped)(data, size); 1609 }; 1610 return core::RegisterModuleFromMemory( 1611 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1612 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1613 HSAExecutables); 1614 } 1615 } // namespace 1616 1617 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1618 uint64_t device_State_bytes = 0; 1619 { 1620 // If this is the deviceRTL, get the state variable size 1621 symbol_info size_si; 1622 int rc = get_symbol_info_without_loading( 1623 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1624 1625 if (rc == 0) { 1626 if (size_si.size != sizeof(uint64_t)) { 1627 DP("Found device_State_size variable with wrong size\n"); 1628 return 0; 1629 } 1630 1631 // Read number of bytes directly from the elf 1632 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1633 } 1634 } 1635 return device_State_bytes; 1636 } 1637 1638 static __tgt_target_table * 1639 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1640 1641 static __tgt_target_table * 1642 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1643 1644 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1645 __tgt_device_image *image) { 1646 DeviceInfo.load_run_lock.lock(); 1647 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1648 DeviceInfo.load_run_lock.unlock(); 1649 return res; 1650 } 1651 1652 struct device_environment { 1653 // initialise an DeviceEnvironmentTy in the deviceRTL 1654 // patches around differences in the deviceRTL between trunk, aomp, 1655 // rocmcc. Over time these differences will tend to zero and this class 1656 // simplified. 1657 // Symbol may be in .data or .bss, and may be missing fields, todo: 1658 // review aomp/trunk/rocm and simplify the following 1659 1660 // The symbol may also have been deadstripped because the device side 1661 // accessors were unused. 1662 1663 // If the symbol is in .data (aomp, rocm) it can be written directly. 1664 // If it is in .bss, we must wait for it to be allocated space on the 1665 // gpu (trunk) and initialize after loading. 1666 const char *sym() { return "omptarget_device_environment"; } 1667 1668 DeviceEnvironmentTy host_device_env; 1669 symbol_info si; 1670 bool valid = false; 1671 1672 __tgt_device_image *image; 1673 const size_t img_size; 1674 1675 device_environment(int device_id, int number_devices, 1676 __tgt_device_image *image, const size_t img_size) 1677 : image(image), img_size(img_size) { 1678 1679 host_device_env.NumDevices = number_devices; 1680 host_device_env.DeviceNum = device_id; 1681 host_device_env.DebugKind = 0; 1682 host_device_env.DynamicMemSize = 0; 1683 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1684 host_device_env.DebugKind = std::stoi(envStr); 1685 } 1686 1687 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1688 img_size, sym(), &si); 1689 if (rc != 0) { 1690 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1691 return; 1692 } 1693 1694 if (si.size > sizeof(host_device_env)) { 1695 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1696 sizeof(host_device_env)); 1697 return; 1698 } 1699 1700 valid = true; 1701 } 1702 1703 bool in_image() { return si.sh_type != SHT_NOBITS; } 1704 1705 hsa_status_t before_loading(void *data, size_t size) { 1706 if (valid) { 1707 if (in_image()) { 1708 DP("Setting global device environment before load (%u bytes)\n", 1709 si.size); 1710 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1711 void *pos = (char *)data + offset; 1712 memcpy(pos, &host_device_env, si.size); 1713 } 1714 } 1715 return HSA_STATUS_SUCCESS; 1716 } 1717 1718 hsa_status_t after_loading() { 1719 if (valid) { 1720 if (!in_image()) { 1721 DP("Setting global device environment after load (%u bytes)\n", 1722 si.size); 1723 int device_id = host_device_env.DeviceNum; 1724 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1725 void *state_ptr; 1726 uint32_t state_ptr_size; 1727 hsa_status_t err = interop_hsa_get_symbol_info( 1728 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1729 if (err != HSA_STATUS_SUCCESS) { 1730 DP("failed to find %s in loaded image\n", sym()); 1731 return err; 1732 } 1733 1734 if (state_ptr_size != si.size) { 1735 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1736 si.size); 1737 return HSA_STATUS_ERROR; 1738 } 1739 1740 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1741 state_ptr_size, device_id); 1742 } 1743 } 1744 return HSA_STATUS_SUCCESS; 1745 } 1746 }; 1747 1748 static hsa_status_t impl_calloc(void **ret_ptr, size_t size, int DeviceId) { 1749 uint64_t rounded = 4 * ((size + 3) / 4); 1750 void *ptr; 1751 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(DeviceId); 1752 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, rounded, 0, &ptr); 1753 if (err != HSA_STATUS_SUCCESS) { 1754 return err; 1755 } 1756 1757 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1758 if (rc != HSA_STATUS_SUCCESS) { 1759 DP("zero fill device_state failed with %u\n", rc); 1760 core::Runtime::Memfree(ptr); 1761 return HSA_STATUS_ERROR; 1762 } 1763 1764 *ret_ptr = ptr; 1765 return HSA_STATUS_SUCCESS; 1766 } 1767 1768 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1769 symbol_info si; 1770 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1771 return (rc == 0) && (si.addr != nullptr); 1772 } 1773 1774 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1775 __tgt_device_image *image) { 1776 // This function loads the device image onto gpu[device_id] and does other 1777 // per-image initialization work. Specifically: 1778 // 1779 // - Initialize an DeviceEnvironmentTy instance embedded in the 1780 // image at the symbol "omptarget_device_environment" 1781 // Fields DebugKind, DeviceNum, NumDevices. Used by the deviceRTL. 1782 // 1783 // - Allocate a large array per-gpu (could be moved to init_device) 1784 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1785 // - Allocate at least that many bytes of gpu memory 1786 // - Zero initialize it 1787 // - Write the pointer to the symbol omptarget_nvptx_device_State 1788 // 1789 // - Pulls some per-kernel information together from various sources and 1790 // records it in the KernelsList for quicker access later 1791 // 1792 // The initialization can be done before or after loading the image onto the 1793 // gpu. This function presently does a mixture. Using the hsa api to get/set 1794 // the information is simpler to implement, in exchange for more complicated 1795 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1796 // back from the gpu vs a hashtable lookup on the host. 1797 1798 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1799 1800 DeviceInfo.clearOffloadEntriesTable(device_id); 1801 1802 // We do not need to set the ELF version because the caller of this function 1803 // had to do that to decide the right runtime to use 1804 1805 if (!elf_machine_id_is_amdgcn(image)) { 1806 return NULL; 1807 } 1808 1809 { 1810 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1811 img_size); 1812 1813 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1814 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1815 hsa_status_t err = module_register_from_memory_to_place( 1816 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1817 [&](void *data, size_t size) { 1818 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1819 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1820 __ATOMIC_RELEASE); 1821 } 1822 return env.before_loading(data, size); 1823 }, 1824 DeviceInfo.HSAExecutables); 1825 1826 check("Module registering", err); 1827 if (err != HSA_STATUS_SUCCESS) { 1828 const char *DeviceName = DeviceInfo.GPUName[device_id].c_str(); 1829 const char *ElfName = get_elf_mach_gfx_name(elf_e_flags(image)); 1830 1831 if (strcmp(DeviceName, ElfName) != 0) { 1832 DP("Possible gpu arch mismatch: device:%s, image:%s please check" 1833 " compiler flag: -march=<gpu>\n", 1834 DeviceName, ElfName); 1835 } else { 1836 DP("Error loading image onto GPU: %s\n", get_error_string(err)); 1837 } 1838 1839 return NULL; 1840 } 1841 1842 err = env.after_loading(); 1843 if (err != HSA_STATUS_SUCCESS) { 1844 return NULL; 1845 } 1846 } 1847 1848 DP("AMDGPU module successfully loaded!\n"); 1849 1850 { 1851 // the device_State array is either large value in bss or a void* that 1852 // needs to be assigned to a pointer to an array of size device_state_bytes 1853 // If absent, it has been deadstripped and needs no setup. 1854 1855 void *state_ptr; 1856 uint32_t state_ptr_size; 1857 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1858 hsa_status_t err = interop_hsa_get_symbol_info( 1859 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1860 &state_ptr_size); 1861 1862 if (err != HSA_STATUS_SUCCESS) { 1863 DP("No device_state symbol found, skipping initialization\n"); 1864 } else { 1865 if (state_ptr_size < sizeof(void *)) { 1866 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1867 sizeof(void *)); 1868 return NULL; 1869 } 1870 1871 // if it's larger than a void*, assume it's a bss array and no further 1872 // initialization is required. Only try to set up a pointer for 1873 // sizeof(void*) 1874 if (state_ptr_size == sizeof(void *)) { 1875 uint64_t device_State_bytes = 1876 get_device_State_bytes((char *)image->ImageStart, img_size); 1877 if (device_State_bytes == 0) { 1878 DP("Can't initialize device_State, missing size information\n"); 1879 return NULL; 1880 } 1881 1882 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1883 if (dss.first.get() == nullptr) { 1884 assert(dss.second == 0); 1885 void *ptr = NULL; 1886 hsa_status_t err = impl_calloc(&ptr, device_State_bytes, device_id); 1887 if (err != HSA_STATUS_SUCCESS) { 1888 DP("Failed to allocate device_state array\n"); 1889 return NULL; 1890 } 1891 dss = { 1892 std::unique_ptr<void, RTLDeviceInfoTy::implFreePtrDeletor>{ptr}, 1893 device_State_bytes, 1894 }; 1895 } 1896 1897 void *ptr = dss.first.get(); 1898 if (device_State_bytes != dss.second) { 1899 DP("Inconsistent sizes of device_State unsupported\n"); 1900 return NULL; 1901 } 1902 1903 // write ptr to device memory so it can be used by later kernels 1904 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1905 sizeof(void *), device_id); 1906 if (err != HSA_STATUS_SUCCESS) { 1907 DP("memcpy install of state_ptr failed\n"); 1908 return NULL; 1909 } 1910 } 1911 } 1912 } 1913 1914 // Here, we take advantage of the data that is appended after img_end to get 1915 // the symbols' name we need to load. This data consist of the host entries 1916 // begin and end as well as the target name (see the offloading linker script 1917 // creation in clang compiler). 1918 1919 // Find the symbols in the module by name. The name can be obtain by 1920 // concatenating the host entry name with the target name 1921 1922 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1923 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1924 1925 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1926 1927 if (!e->addr) { 1928 // The host should have always something in the address to 1929 // uniquely identify the target region. 1930 DP("Analyzing host entry '<null>' (size = %lld)...\n", 1931 (unsigned long long)e->size); 1932 return NULL; 1933 } 1934 1935 if (e->size) { 1936 __tgt_offload_entry entry = *e; 1937 1938 void *varptr; 1939 uint32_t varsize; 1940 1941 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1942 hsa_status_t err = interop_hsa_get_symbol_info( 1943 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1944 1945 if (err != HSA_STATUS_SUCCESS) { 1946 // Inform the user what symbol prevented offloading 1947 DP("Loading global '%s' (Failed)\n", e->name); 1948 return NULL; 1949 } 1950 1951 if (varsize != e->size) { 1952 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1953 varsize, e->size); 1954 return NULL; 1955 } 1956 1957 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1958 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1959 entry.addr = (void *)varptr; 1960 1961 DeviceInfo.addOffloadEntry(device_id, entry); 1962 1963 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1964 e->flags & OMP_DECLARE_TARGET_LINK) { 1965 // If unified memory is present any target link variables 1966 // can access host addresses directly. There is no longer a 1967 // need for device copies. 1968 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1969 sizeof(void *), device_id); 1970 if (err != HSA_STATUS_SUCCESS) 1971 DP("Error when copying USM\n"); 1972 DP("Copy linked variable host address (" DPxMOD ")" 1973 "to device address (" DPxMOD ")\n", 1974 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1975 } 1976 1977 continue; 1978 } 1979 1980 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1981 1982 // errors in kernarg_segment_size previously treated as = 0 (or as undef) 1983 uint32_t kernarg_segment_size = 0; 1984 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1985 hsa_status_t err = HSA_STATUS_SUCCESS; 1986 if (!e->name) { 1987 err = HSA_STATUS_ERROR; 1988 } else { 1989 std::string kernelStr = std::string(e->name); 1990 auto It = KernelInfoMap.find(kernelStr); 1991 if (It != KernelInfoMap.end()) { 1992 atl_kernel_info_t info = It->second; 1993 kernarg_segment_size = info.kernel_segment_size; 1994 } else { 1995 err = HSA_STATUS_ERROR; 1996 } 1997 } 1998 1999 // default value GENERIC (in case symbol is missing from cubin file) 2000 llvm::omp::OMPTgtExecModeFlags ExecModeVal = 2001 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC; 2002 2003 // get flat group size if present, else Default_WG_Size 2004 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 2005 2006 // get Kernel Descriptor if present. 2007 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 2008 struct KernDescValType { 2009 uint16_t Version; 2010 uint16_t TSize; 2011 uint16_t WG_Size; 2012 }; 2013 struct KernDescValType KernDescVal; 2014 std::string KernDescNameStr(e->name); 2015 KernDescNameStr += "_kern_desc"; 2016 const char *KernDescName = KernDescNameStr.c_str(); 2017 2018 void *KernDescPtr; 2019 uint32_t KernDescSize; 2020 void *CallStackAddr = nullptr; 2021 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 2022 KernDescName, &KernDescPtr, &KernDescSize); 2023 2024 if (err == HSA_STATUS_SUCCESS) { 2025 if ((size_t)KernDescSize != sizeof(KernDescVal)) 2026 DP("Loading global computation properties '%s' - size mismatch (%u != " 2027 "%lu)\n", 2028 KernDescName, KernDescSize, sizeof(KernDescVal)); 2029 2030 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 2031 2032 // Check structure size against recorded size. 2033 if ((size_t)KernDescSize != KernDescVal.TSize) 2034 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 2035 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 2036 2037 DP("After loading global for %s KernDesc \n", KernDescName); 2038 DP("KernDesc: Version: %d\n", KernDescVal.Version); 2039 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 2040 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 2041 2042 if (KernDescVal.WG_Size == 0) { 2043 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 2044 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 2045 } 2046 WGSizeVal = KernDescVal.WG_Size; 2047 DP("WGSizeVal %d\n", WGSizeVal); 2048 check("Loading KernDesc computation property", err); 2049 } else { 2050 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 2051 2052 // Flat group size 2053 std::string WGSizeNameStr(e->name); 2054 WGSizeNameStr += "_wg_size"; 2055 const char *WGSizeName = WGSizeNameStr.c_str(); 2056 2057 void *WGSizePtr; 2058 uint32_t WGSize; 2059 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 2060 WGSizeName, &WGSizePtr, &WGSize); 2061 2062 if (err == HSA_STATUS_SUCCESS) { 2063 if ((size_t)WGSize != sizeof(int16_t)) { 2064 DP("Loading global computation properties '%s' - size mismatch (%u " 2065 "!= " 2066 "%lu)\n", 2067 WGSizeName, WGSize, sizeof(int16_t)); 2068 return NULL; 2069 } 2070 2071 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 2072 2073 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 2074 2075 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 2076 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 2077 DP("Error wrong WGSize value specified in HSA code object file: " 2078 "%d\n", 2079 WGSizeVal); 2080 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 2081 } 2082 } else { 2083 DP("Warning: Loading WGSize '%s' - symbol not found, " 2084 "using default value %d\n", 2085 WGSizeName, WGSizeVal); 2086 } 2087 2088 check("Loading WGSize computation property", err); 2089 } 2090 2091 // Read execution mode from global in binary 2092 std::string ExecModeNameStr(e->name); 2093 ExecModeNameStr += "_exec_mode"; 2094 const char *ExecModeName = ExecModeNameStr.c_str(); 2095 2096 void *ExecModePtr; 2097 uint32_t varsize; 2098 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 2099 ExecModeName, &ExecModePtr, &varsize); 2100 2101 if (err == HSA_STATUS_SUCCESS) { 2102 if ((size_t)varsize != sizeof(llvm::omp::OMPTgtExecModeFlags)) { 2103 DP("Loading global computation properties '%s' - size mismatch(%u != " 2104 "%lu)\n", 2105 ExecModeName, varsize, sizeof(llvm::omp::OMPTgtExecModeFlags)); 2106 return NULL; 2107 } 2108 2109 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 2110 2111 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 2112 ExecModeVal); 2113 2114 if (ExecModeVal < 0 || 2115 ExecModeVal > llvm::omp::OMP_TGT_EXEC_MODE_GENERIC_SPMD) { 2116 DP("Error wrong exec_mode value specified in HSA code object file: " 2117 "%d\n", 2118 ExecModeVal); 2119 return NULL; 2120 } 2121 } else { 2122 DP("Loading global exec_mode '%s' - symbol missing, using default " 2123 "value " 2124 "GENERIC (1)\n", 2125 ExecModeName); 2126 } 2127 check("Loading computation property", err); 2128 2129 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 2130 CallStackAddr, e->name, kernarg_segment_size, 2131 DeviceInfo.KernArgPool)); 2132 __tgt_offload_entry entry = *e; 2133 entry.addr = (void *)&KernelsList.back(); 2134 DeviceInfo.addOffloadEntry(device_id, entry); 2135 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 2136 } 2137 2138 return DeviceInfo.getOffloadEntriesTable(device_id); 2139 } 2140 2141 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 2142 void *ptr = NULL; 2143 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2144 2145 if (kind != TARGET_ALLOC_DEFAULT) { 2146 REPORT("Invalid target data allocation kind or requested allocator not " 2147 "implemented yet\n"); 2148 return NULL; 2149 } 2150 2151 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(device_id); 2152 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, size, 0, &ptr); 2153 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 2154 (long long unsigned)(Elf64_Addr)ptr); 2155 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 2156 return ptr; 2157 } 2158 2159 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 2160 int64_t size) { 2161 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2162 __tgt_async_info AsyncInfo; 2163 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 2164 if (rc != OFFLOAD_SUCCESS) 2165 return OFFLOAD_FAIL; 2166 2167 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 2168 } 2169 2170 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 2171 int64_t size, __tgt_async_info *AsyncInfo) { 2172 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2173 if (AsyncInfo) { 2174 initAsyncInfo(AsyncInfo); 2175 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 2176 } else { 2177 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 2178 } 2179 } 2180 2181 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 2182 int64_t size) { 2183 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2184 __tgt_async_info AsyncInfo; 2185 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 2186 if (rc != OFFLOAD_SUCCESS) 2187 return OFFLOAD_FAIL; 2188 2189 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 2190 } 2191 2192 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 2193 void *tgt_ptr, int64_t size, 2194 __tgt_async_info *AsyncInfo) { 2195 assert(AsyncInfo && "AsyncInfo is nullptr"); 2196 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2197 initAsyncInfo(AsyncInfo); 2198 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 2199 } 2200 2201 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 2202 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2203 hsa_status_t err; 2204 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 2205 err = core::Runtime::Memfree(tgt_ptr); 2206 if (err != HSA_STATUS_SUCCESS) { 2207 DP("Error when freeing CUDA memory\n"); 2208 return OFFLOAD_FAIL; 2209 } 2210 return OFFLOAD_SUCCESS; 2211 } 2212 2213 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 2214 void **tgt_args, 2215 ptrdiff_t *tgt_offsets, 2216 int32_t arg_num, int32_t num_teams, 2217 int32_t thread_limit, 2218 uint64_t loop_tripcount) { 2219 2220 DeviceInfo.load_run_lock.lock_shared(); 2221 int32_t res = __tgt_rtl_run_target_team_region_locked( 2222 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 2223 thread_limit, loop_tripcount); 2224 2225 DeviceInfo.load_run_lock.unlock_shared(); 2226 return res; 2227 } 2228 2229 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2230 void **tgt_args, ptrdiff_t *tgt_offsets, 2231 int32_t arg_num) { 2232 // use one team and one thread 2233 // fix thread num 2234 int32_t team_num = 1; 2235 int32_t thread_limit = 0; // use default 2236 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2237 tgt_offsets, arg_num, team_num, 2238 thread_limit, 0); 2239 } 2240 2241 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2242 void *tgt_entry_ptr, void **tgt_args, 2243 ptrdiff_t *tgt_offsets, 2244 int32_t arg_num, 2245 __tgt_async_info *AsyncInfo) { 2246 assert(AsyncInfo && "AsyncInfo is nullptr"); 2247 initAsyncInfo(AsyncInfo); 2248 2249 // use one team and one thread 2250 // fix thread num 2251 int32_t team_num = 1; 2252 int32_t thread_limit = 0; // use default 2253 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2254 tgt_offsets, arg_num, team_num, 2255 thread_limit, 0); 2256 } 2257 2258 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2259 assert(AsyncInfo && "AsyncInfo is nullptr"); 2260 2261 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2262 // is not ensured by devices.cpp for amdgcn 2263 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2264 if (AsyncInfo->Queue) { 2265 finiAsyncInfo(AsyncInfo); 2266 } 2267 return OFFLOAD_SUCCESS; 2268 } 2269 2270 namespace core { 2271 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 2272 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 2273 &DeviceInfo.HSAAgents[0], NULL, ptr); 2274 } 2275 2276 } // namespace core 2277