1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <mutex> 27 #include <shared_mutex> 28 #include <thread> 29 #include <unordered_map> 30 #include <vector> 31 32 // Header from ATMI interface 33 #include "atmi_interop_hsa.h" 34 #include "atmi_runtime.h" 35 36 #include "internal.h" 37 38 #include "Debug.h" 39 #include "get_elf_mach_gfx_name.h" 40 #include "machine.h" 41 #include "omptargetplugin.h" 42 #include "print_tracing.h" 43 44 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 45 46 #ifndef TARGET_NAME 47 #define TARGET_NAME AMDHSA 48 #endif 49 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 50 51 // hostrpc interface, FIXME: consider moving to its own include these are 52 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 53 // linked as --whole-archive to override the weak symbols that are used to 54 // implement a fallback for toolchains that do not yet have a hostrpc library. 55 extern "C" { 56 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 57 uint32_t device_id); 58 hsa_status_t hostrpc_init(); 59 hsa_status_t hostrpc_terminate(); 60 61 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 62 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 63 return HSA_STATUS_SUCCESS; 64 } 65 __attribute__((weak)) unsigned long 66 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 67 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 68 "missing\n", 69 device_id); 70 return 0; 71 } 72 } 73 74 int print_kernel_trace; 75 76 #ifdef OMPTARGET_DEBUG 77 #define check(msg, status) \ 78 if (status != HSA_STATUS_SUCCESS) { \ 79 DP(#msg " failed\n"); \ 80 } else { \ 81 DP(#msg " succeeded\n"); \ 82 } 83 #else 84 #define check(msg, status) \ 85 {} 86 #endif 87 88 #include "elf_common.h" 89 90 namespace core { 91 hsa_status_t RegisterModuleFromMemory( 92 std::map<std::string, atl_kernel_info_t> &KernelInfo, 93 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, void *, size_t, 94 int DeviceId, 95 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 96 void *cb_state), 97 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables); 98 } 99 100 /// Keep entries table per device 101 struct FuncOrGblEntryTy { 102 __tgt_target_table Table; 103 std::vector<__tgt_offload_entry> Entries; 104 }; 105 106 enum ExecutionModeType { 107 SPMD, // constructors, destructors, 108 // combined constructs (`teams distribute parallel for [simd]`) 109 GENERIC, // everything else 110 NONE 111 }; 112 113 struct KernelArgPool { 114 private: 115 static pthread_mutex_t mutex; 116 117 public: 118 uint32_t kernarg_segment_size; 119 void *kernarg_region = nullptr; 120 std::queue<int> free_kernarg_segments; 121 122 uint32_t kernarg_size_including_implicit() { 123 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 124 } 125 126 ~KernelArgPool() { 127 if (kernarg_region) { 128 auto r = hsa_amd_memory_pool_free(kernarg_region); 129 if (r != HSA_STATUS_SUCCESS) { 130 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 131 } 132 } 133 } 134 135 // Can't really copy or move a mutex 136 KernelArgPool() = default; 137 KernelArgPool(const KernelArgPool &) = delete; 138 KernelArgPool(KernelArgPool &&) = delete; 139 140 KernelArgPool(uint32_t kernarg_segment_size, 141 hsa_amd_memory_pool_t &memory_pool) 142 : kernarg_segment_size(kernarg_segment_size) { 143 144 // atmi uses one pool per kernel for all gpus, with a fixed upper size 145 // preserving that exact scheme here, including the queue<int> 146 147 hsa_status_t err = hsa_amd_memory_pool_allocate( 148 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 149 &kernarg_region); 150 151 if (err != HSA_STATUS_SUCCESS) { 152 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 153 kernarg_region = nullptr; // paranoid 154 return; 155 } 156 157 err = core::allow_access_to_all_gpu_agents(kernarg_region); 158 if (err != HSA_STATUS_SUCCESS) { 159 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 160 get_error_string(err)); 161 auto r = hsa_amd_memory_pool_free(kernarg_region); 162 if (r != HSA_STATUS_SUCCESS) { 163 // if free failed, can't do anything more to resolve it 164 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 165 } 166 kernarg_region = nullptr; 167 return; 168 } 169 170 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 171 free_kernarg_segments.push(i); 172 } 173 } 174 175 void *allocate(uint64_t arg_num) { 176 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 177 lock l(&mutex); 178 void *res = nullptr; 179 if (!free_kernarg_segments.empty()) { 180 181 int free_idx = free_kernarg_segments.front(); 182 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 183 (free_idx * kernarg_size_including_implicit())); 184 assert(free_idx == pointer_to_index(res)); 185 free_kernarg_segments.pop(); 186 } 187 return res; 188 } 189 190 void deallocate(void *ptr) { 191 lock l(&mutex); 192 int idx = pointer_to_index(ptr); 193 free_kernarg_segments.push(idx); 194 } 195 196 private: 197 int pointer_to_index(void *ptr) { 198 ptrdiff_t bytes = 199 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 200 assert(bytes >= 0); 201 assert(bytes % kernarg_size_including_implicit() == 0); 202 return bytes / kernarg_size_including_implicit(); 203 } 204 struct lock { 205 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 206 ~lock() { pthread_mutex_unlock(m); } 207 pthread_mutex_t *m; 208 }; 209 }; 210 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 211 212 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 213 KernelArgPoolMap; 214 215 /// Use a single entity to encode a kernel and a set of flags 216 struct KernelTy { 217 // execution mode of kernel 218 // 0 - SPMD mode (without master warp) 219 // 1 - Generic mode (with master warp) 220 int8_t ExecutionMode; 221 int16_t ConstWGSize; 222 int32_t device_id; 223 void *CallStackAddr = nullptr; 224 const char *Name; 225 226 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 227 void *_CallStackAddr, const char *_Name, 228 uint32_t _kernarg_segment_size, 229 hsa_amd_memory_pool_t &KernArgMemoryPool) 230 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 231 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 232 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 233 234 std::string N(_Name); 235 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 236 KernelArgPoolMap.insert( 237 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 238 _kernarg_segment_size, KernArgMemoryPool)))); 239 } 240 } 241 }; 242 243 /// List that contains all the kernels. 244 /// FIXME: we may need this to be per device and per library. 245 std::list<KernelTy> KernelsList; 246 247 static std::vector<hsa_agent_t> find_gpu_agents() { 248 std::vector<hsa_agent_t> res; 249 250 hsa_status_t err = hsa_iterate_agents( 251 [](hsa_agent_t agent, void *data) -> hsa_status_t { 252 std::vector<hsa_agent_t> *res = 253 static_cast<std::vector<hsa_agent_t> *>(data); 254 255 hsa_device_type_t device_type; 256 // get_info fails iff HSA runtime not yet initialized 257 hsa_status_t err = 258 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 259 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 260 printf("rtl.cpp: err %d\n", err); 261 assert(err == HSA_STATUS_SUCCESS); 262 263 if (device_type == HSA_DEVICE_TYPE_GPU) { 264 res->push_back(agent); 265 } 266 return HSA_STATUS_SUCCESS; 267 }, 268 &res); 269 270 // iterate_agents fails iff HSA runtime not yet initialized 271 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 272 printf("rtl.cpp: err %d\n", err); 273 assert(err == HSA_STATUS_SUCCESS); 274 return res; 275 } 276 277 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 278 void *data) { 279 if (status != HSA_STATUS_SUCCESS) { 280 const char *status_string; 281 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 282 status_string = "unavailable"; 283 } 284 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 285 __LINE__, source, status, status_string); 286 abort(); 287 } 288 } 289 290 namespace core { 291 namespace { 292 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 293 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 294 } 295 296 uint16_t create_header() { 297 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 298 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 299 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 300 return header; 301 } 302 303 hsa_status_t addKernArgPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 304 std::vector<hsa_amd_memory_pool_t> *Result = 305 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 306 bool AllocAllowed = false; 307 hsa_status_t err = hsa_amd_memory_pool_get_info( 308 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 309 &AllocAllowed); 310 if (err != HSA_STATUS_SUCCESS) { 311 fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n", 312 get_error_string(err)); 313 return err; 314 } 315 316 if (!AllocAllowed) { 317 // nothing needs to be done here. 318 return HSA_STATUS_SUCCESS; 319 } 320 321 uint32_t GlobalFlags = 0; 322 err = hsa_amd_memory_pool_get_info( 323 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 324 if (err != HSA_STATUS_SUCCESS) { 325 fprintf(stderr, "Get memory pool info failed: %s\n", get_error_string(err)); 326 return err; 327 } 328 329 if ((GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) && 330 (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT)) { 331 size_t size = 0; 332 err = hsa_amd_memory_pool_get_info(MemoryPool, 333 HSA_AMD_MEMORY_POOL_INFO_SIZE, &size); 334 if (err != HSA_STATUS_SUCCESS) { 335 fprintf(stderr, "Get memory pool size failed: %s\n", 336 get_error_string(err)); 337 return err; 338 } 339 if (size > 0) 340 Result->push_back(MemoryPool); 341 } 342 343 return HSA_STATUS_SUCCESS; 344 } 345 346 std::pair<hsa_status_t, hsa_amd_memory_pool_t> 347 FindKernargPool(const std::vector<hsa_agent_t> &HSAAgents) { 348 std::vector<hsa_amd_memory_pool_t> KernArgPools; 349 for (const auto &processor : g_atl_machine.processors<ATLCPUProcessor>()) { 350 hsa_agent_t Agent = processor.agent(); 351 hsa_status_t err = HSA_STATUS_SUCCESS; 352 err = hsa_amd_agent_iterate_memory_pools( 353 Agent, addKernArgPool, static_cast<void *>(&KernArgPools)); 354 if (err != HSA_STATUS_SUCCESS) { 355 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 356 "Iterate all memory pools", get_error_string(err)); 357 return {err, hsa_amd_memory_pool_t{}}; 358 } 359 } 360 361 if (KernArgPools.empty()) { 362 fprintf(stderr, "Unable to find any valid kernarg pool\n"); 363 return {HSA_STATUS_ERROR, hsa_amd_memory_pool_t{}}; 364 } 365 366 return {HSA_STATUS_SUCCESS, KernArgPools[0]}; 367 } 368 369 } // namespace 370 } // namespace core 371 372 /// Class containing all the device information 373 class RTLDeviceInfoTy { 374 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 375 376 public: 377 // load binary populates symbol tables and mutates various global state 378 // run uses those symbol tables 379 std::shared_timed_mutex load_run_lock; 380 381 int NumberOfDevices; 382 383 // GPU devices 384 std::vector<hsa_agent_t> HSAAgents; 385 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 386 387 // Device properties 388 std::vector<int> ComputeUnits; 389 std::vector<int> GroupsPerDevice; 390 std::vector<int> ThreadsPerGroup; 391 std::vector<int> WarpSize; 392 std::vector<std::string> GPUName; 393 394 // OpenMP properties 395 std::vector<int> NumTeams; 396 std::vector<int> NumThreads; 397 398 // OpenMP Environment properties 399 int EnvNumTeams; 400 int EnvTeamLimit; 401 int EnvMaxTeamsDefault; 402 403 // OpenMP Requires Flags 404 int64_t RequiresFlags; 405 406 // Resource pools 407 SignalPoolT FreeSignalPool; 408 409 bool hostcall_required = false; 410 411 std::vector<hsa_executable_t> HSAExecutables; 412 413 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 414 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 415 416 hsa_amd_memory_pool_t KernArgPool; 417 418 struct atmiFreePtrDeletor { 419 void operator()(void *p) { 420 core::Runtime::Memfree(p); // ignore failure to free 421 } 422 }; 423 424 // device_State shared across loaded binaries, error if inconsistent size 425 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 426 deviceStateStore; 427 428 static const unsigned HardTeamLimit = 429 (1 << 16) - 1; // 64K needed to fit in uint16 430 static const int DefaultNumTeams = 128; 431 static const int Max_Teams = 432 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 433 static const int Warp_Size = 434 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 435 static const int Max_WG_Size = 436 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 437 static const int Default_WG_Size = 438 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 439 440 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 441 size_t size, hsa_agent_t); 442 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 443 MemcpyFunc Func, int32_t deviceId) { 444 hsa_agent_t agent = HSAAgents[deviceId]; 445 hsa_signal_t s = FreeSignalPool.pop(); 446 if (s.handle == 0) { 447 return HSA_STATUS_ERROR; 448 } 449 hsa_status_t r = Func(s, dest, src, size, agent); 450 FreeSignalPool.push(s); 451 return r; 452 } 453 454 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 455 size_t size, int32_t deviceId) { 456 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 457 } 458 459 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 460 size_t size, int32_t deviceId) { 461 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 462 } 463 464 // Record entry point associated with device 465 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 466 assert(device_id < (int32_t)FuncGblEntries.size() && 467 "Unexpected device id!"); 468 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 469 470 E.Entries.push_back(entry); 471 } 472 473 // Return true if the entry is associated with device 474 bool findOffloadEntry(int32_t device_id, void *addr) { 475 assert(device_id < (int32_t)FuncGblEntries.size() && 476 "Unexpected device id!"); 477 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 478 479 for (auto &it : E.Entries) { 480 if (it.addr == addr) 481 return true; 482 } 483 484 return false; 485 } 486 487 // Return the pointer to the target entries table 488 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 489 assert(device_id < (int32_t)FuncGblEntries.size() && 490 "Unexpected device id!"); 491 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 492 493 int32_t size = E.Entries.size(); 494 495 // Table is empty 496 if (!size) 497 return 0; 498 499 __tgt_offload_entry *begin = &E.Entries[0]; 500 __tgt_offload_entry *end = &E.Entries[size - 1]; 501 502 // Update table info according to the entries and return the pointer 503 E.Table.EntriesBegin = begin; 504 E.Table.EntriesEnd = ++end; 505 506 return &E.Table; 507 } 508 509 // Clear entries table for a device 510 void clearOffloadEntriesTable(int device_id) { 511 assert(device_id < (int32_t)FuncGblEntries.size() && 512 "Unexpected device id!"); 513 FuncGblEntries[device_id].emplace_back(); 514 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 515 // KernelArgPoolMap.clear(); 516 E.Entries.clear(); 517 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 518 } 519 520 RTLDeviceInfoTy() { 521 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 522 // anytime. You do not need a debug library build. 523 // 0 => no tracing 524 // 1 => tracing dispatch only 525 // >1 => verbosity increase 526 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 527 print_kernel_trace = atoi(envStr); 528 else 529 print_kernel_trace = 0; 530 531 DP("Start initializing HSA-ATMI\n"); 532 hsa_status_t err = core::atl_init_gpu_context(); 533 if (err != HSA_STATUS_SUCCESS) { 534 DP("Error when initializing HSA-ATMI\n"); 535 return; 536 } 537 538 // Init hostcall soon after initializing ATMI 539 hostrpc_init(); 540 541 HSAAgents = find_gpu_agents(); 542 NumberOfDevices = (int)HSAAgents.size(); 543 544 if (NumberOfDevices == 0) { 545 DP("There are no devices supporting HSA.\n"); 546 return; 547 } else { 548 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 549 } 550 551 std::tie(err, KernArgPool) = core::FindKernargPool(HSAAgents); 552 if (err != HSA_STATUS_SUCCESS) { 553 DP("Error when reading memory pools\n"); 554 return; 555 } 556 557 // Init the device info 558 HSAQueues.resize(NumberOfDevices); 559 FuncGblEntries.resize(NumberOfDevices); 560 ThreadsPerGroup.resize(NumberOfDevices); 561 ComputeUnits.resize(NumberOfDevices); 562 GPUName.resize(NumberOfDevices); 563 GroupsPerDevice.resize(NumberOfDevices); 564 WarpSize.resize(NumberOfDevices); 565 NumTeams.resize(NumberOfDevices); 566 NumThreads.resize(NumberOfDevices); 567 deviceStateStore.resize(NumberOfDevices); 568 KernelInfoTable.resize(NumberOfDevices); 569 SymbolInfoTable.resize(NumberOfDevices); 570 571 for (int i = 0; i < NumberOfDevices; i++) { 572 HSAQueues[i] = nullptr; 573 } 574 575 for (int i = 0; i < NumberOfDevices; i++) { 576 uint32_t queue_size = 0; 577 { 578 hsa_status_t err = hsa_agent_get_info( 579 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 580 if (err != HSA_STATUS_SUCCESS) { 581 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 582 return; 583 } 584 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 585 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 586 } 587 } 588 589 hsa_status_t rc = hsa_queue_create( 590 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 591 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 592 if (rc != HSA_STATUS_SUCCESS) { 593 DP("Failed to create HSA queue %d\n", i); 594 return; 595 } 596 597 deviceStateStore[i] = {nullptr, 0}; 598 } 599 600 for (int i = 0; i < NumberOfDevices; i++) { 601 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 602 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 603 ComputeUnits[i] = 1; 604 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 605 GroupsPerDevice[i], ThreadsPerGroup[i]); 606 } 607 608 // Get environment variables regarding teams 609 char *envStr = getenv("OMP_TEAM_LIMIT"); 610 if (envStr) { 611 // OMP_TEAM_LIMIT has been set 612 EnvTeamLimit = std::stoi(envStr); 613 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 614 } else { 615 EnvTeamLimit = -1; 616 } 617 envStr = getenv("OMP_NUM_TEAMS"); 618 if (envStr) { 619 // OMP_NUM_TEAMS has been set 620 EnvNumTeams = std::stoi(envStr); 621 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 622 } else { 623 EnvNumTeams = -1; 624 } 625 // Get environment variables regarding expMaxTeams 626 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 627 if (envStr) { 628 EnvMaxTeamsDefault = std::stoi(envStr); 629 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 630 } else { 631 EnvMaxTeamsDefault = -1; 632 } 633 634 // Default state. 635 RequiresFlags = OMP_REQ_UNDEFINED; 636 } 637 638 ~RTLDeviceInfoTy() { 639 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 640 // Run destructors on types that use HSA before 641 // atmi_finalize removes access to it 642 deviceStateStore.clear(); 643 KernelArgPoolMap.clear(); 644 // Terminate hostrpc before finalizing ATMI 645 hostrpc_terminate(); 646 647 hsa_status_t Err; 648 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 649 Err = hsa_executable_destroy(HSAExecutables[I]); 650 if (Err != HSA_STATUS_SUCCESS) { 651 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 652 "Destroying executable", get_error_string(Err)); 653 } 654 } 655 656 Err = hsa_shut_down(); 657 if (Err != HSA_STATUS_SUCCESS) { 658 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA", 659 get_error_string(Err)); 660 } 661 } 662 }; 663 664 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 665 666 // TODO: May need to drop the trailing to fields until deviceRTL is updated 667 struct omptarget_device_environmentTy { 668 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 669 // only useful for Debug build of deviceRTLs 670 int32_t num_devices; // gets number of active offload devices 671 int32_t device_num; // gets a value 0 to num_devices-1 672 }; 673 674 static RTLDeviceInfoTy DeviceInfo; 675 676 namespace { 677 678 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 679 __tgt_async_info *AsyncInfo) { 680 assert(AsyncInfo && "AsyncInfo is nullptr"); 681 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 682 // Return success if we are not copying back to host from target. 683 if (!HstPtr) 684 return OFFLOAD_SUCCESS; 685 hsa_status_t err; 686 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 687 (long long unsigned)(Elf64_Addr)TgtPtr, 688 (long long unsigned)(Elf64_Addr)HstPtr); 689 690 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 691 DeviceId); 692 693 if (err != HSA_STATUS_SUCCESS) { 694 DP("Error when copying data from device to host. Pointers: " 695 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 696 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 697 return OFFLOAD_FAIL; 698 } 699 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 700 (long long unsigned)(Elf64_Addr)TgtPtr, 701 (long long unsigned)(Elf64_Addr)HstPtr); 702 return OFFLOAD_SUCCESS; 703 } 704 705 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 706 __tgt_async_info *AsyncInfo) { 707 assert(AsyncInfo && "AsyncInfo is nullptr"); 708 hsa_status_t err; 709 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 710 // Return success if we are not doing host to target. 711 if (!HstPtr) 712 return OFFLOAD_SUCCESS; 713 714 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 715 (long long unsigned)(Elf64_Addr)HstPtr, 716 (long long unsigned)(Elf64_Addr)TgtPtr); 717 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 718 DeviceId); 719 if (err != HSA_STATUS_SUCCESS) { 720 DP("Error when copying data from host to device. Pointers: " 721 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 722 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 723 return OFFLOAD_FAIL; 724 } 725 return OFFLOAD_SUCCESS; 726 } 727 728 // Async. 729 // The implementation was written with cuda streams in mind. The semantics of 730 // that are to execute kernels on a queue in order of insertion. A synchronise 731 // call then makes writes visible between host and device. This means a series 732 // of N data_submit_async calls are expected to execute serially. HSA offers 733 // various options to run the data copies concurrently. This may require changes 734 // to libomptarget. 735 736 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 737 // there are no outstanding kernels that need to be synchronized. Any async call 738 // may be passed a Queue==0, at which point the cuda implementation will set it 739 // to non-null (see getStream). The cuda streams are per-device. Upstream may 740 // change this interface to explicitly initialize the AsyncInfo_pointer, but 741 // until then hsa lazily initializes it as well. 742 743 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 744 // set non-null while using async calls, return to null to indicate completion 745 assert(AsyncInfo); 746 if (!AsyncInfo->Queue) { 747 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 748 } 749 } 750 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 751 assert(AsyncInfo); 752 assert(AsyncInfo->Queue); 753 AsyncInfo->Queue = 0; 754 } 755 756 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 757 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 758 int32_t r = elf_check_machine(image, amdgcnMachineID); 759 if (!r) { 760 DP("Supported machine ID not found\n"); 761 } 762 return r; 763 } 764 765 uint32_t elf_e_flags(__tgt_device_image *image) { 766 char *img_begin = (char *)image->ImageStart; 767 size_t img_size = (char *)image->ImageEnd - img_begin; 768 769 Elf *e = elf_memory(img_begin, img_size); 770 if (!e) { 771 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 772 return 0; 773 } 774 775 Elf64_Ehdr *eh64 = elf64_getehdr(e); 776 777 if (!eh64) { 778 DP("Unable to get machine ID from ELF file!\n"); 779 elf_end(e); 780 return 0; 781 } 782 783 uint32_t Flags = eh64->e_flags; 784 785 elf_end(e); 786 DP("ELF Flags: 0x%x\n", Flags); 787 return Flags; 788 } 789 } // namespace 790 791 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 792 return elf_machine_id_is_amdgcn(image); 793 } 794 795 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 796 797 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 798 DP("Init requires flags to %ld\n", RequiresFlags); 799 DeviceInfo.RequiresFlags = RequiresFlags; 800 return RequiresFlags; 801 } 802 803 namespace { 804 template <typename T> bool enforce_upper_bound(T *value, T upper) { 805 bool changed = *value > upper; 806 if (changed) { 807 *value = upper; 808 } 809 return changed; 810 } 811 } // namespace 812 813 int32_t __tgt_rtl_init_device(int device_id) { 814 hsa_status_t err; 815 816 // this is per device id init 817 DP("Initialize the device id: %d\n", device_id); 818 819 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 820 821 // Get number of Compute Unit 822 uint32_t compute_units = 0; 823 err = hsa_agent_get_info( 824 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 825 &compute_units); 826 if (err != HSA_STATUS_SUCCESS) { 827 DeviceInfo.ComputeUnits[device_id] = 1; 828 DP("Error getting compute units : settiing to 1\n"); 829 } else { 830 DeviceInfo.ComputeUnits[device_id] = compute_units; 831 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 832 } 833 834 char GetInfoName[64]; // 64 max size returned by get info 835 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 836 (void *)GetInfoName); 837 if (err) 838 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 839 else { 840 DeviceInfo.GPUName[device_id] = GetInfoName; 841 } 842 843 if (print_kernel_trace & STARTUP_DETAILS) 844 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 845 DeviceInfo.ComputeUnits[device_id], 846 DeviceInfo.GPUName[device_id].c_str()); 847 848 // Query attributes to determine number of threads/block and blocks/grid. 849 uint16_t workgroup_max_dim[3]; 850 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 851 &workgroup_max_dim); 852 if (err != HSA_STATUS_SUCCESS) { 853 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 854 DP("Error getting grid dims: num groups : %d\n", 855 RTLDeviceInfoTy::DefaultNumTeams); 856 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 857 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 858 DP("Using %d ROCm blocks per grid\n", 859 DeviceInfo.GroupsPerDevice[device_id]); 860 } else { 861 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 862 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 863 "at the hard limit\n", 864 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 865 } 866 867 // Get thread limit 868 hsa_dim3_t grid_max_dim; 869 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 870 if (err == HSA_STATUS_SUCCESS) { 871 DeviceInfo.ThreadsPerGroup[device_id] = 872 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 873 DeviceInfo.GroupsPerDevice[device_id]; 874 875 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 876 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 877 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 878 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 879 RTLDeviceInfoTy::Max_WG_Size)) { 880 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 881 } else { 882 DP("Using ROCm Queried thread limit: %d\n", 883 DeviceInfo.ThreadsPerGroup[device_id]); 884 } 885 } else { 886 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 887 DP("Error getting max block dimension, use default:%d \n", 888 RTLDeviceInfoTy::Max_WG_Size); 889 } 890 891 // Get wavefront size 892 uint32_t wavefront_size = 0; 893 err = 894 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 895 if (err == HSA_STATUS_SUCCESS) { 896 DP("Queried wavefront size: %d\n", wavefront_size); 897 DeviceInfo.WarpSize[device_id] = wavefront_size; 898 } else { 899 DP("Default wavefront size: %d\n", 900 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 901 DeviceInfo.WarpSize[device_id] = 902 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 903 } 904 905 // Adjust teams to the env variables 906 907 if (DeviceInfo.EnvTeamLimit > 0 && 908 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 909 DeviceInfo.EnvTeamLimit))) { 910 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 911 DeviceInfo.EnvTeamLimit); 912 } 913 914 // Set default number of teams 915 if (DeviceInfo.EnvNumTeams > 0) { 916 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 917 DP("Default number of teams set according to environment %d\n", 918 DeviceInfo.EnvNumTeams); 919 } else { 920 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 921 int TeamsPerCU = 1; // default number of teams per CU is 1 922 if (TeamsPerCUEnvStr) { 923 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 924 } 925 926 DeviceInfo.NumTeams[device_id] = 927 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 928 DP("Default number of teams = %d * number of compute units %d\n", 929 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 930 } 931 932 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 933 DeviceInfo.GroupsPerDevice[device_id])) { 934 DP("Default number of teams exceeds device limit, capping at %d\n", 935 DeviceInfo.GroupsPerDevice[device_id]); 936 } 937 938 // Set default number of threads 939 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 940 DP("Default number of threads set according to library's default %d\n", 941 RTLDeviceInfoTy::Default_WG_Size); 942 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 943 DeviceInfo.ThreadsPerGroup[device_id])) { 944 DP("Default number of threads exceeds device limit, capping at %d\n", 945 DeviceInfo.ThreadsPerGroup[device_id]); 946 } 947 948 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 949 device_id, DeviceInfo.GroupsPerDevice[device_id], 950 DeviceInfo.ThreadsPerGroup[device_id]); 951 952 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 953 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 954 DeviceInfo.GroupsPerDevice[device_id], 955 DeviceInfo.GroupsPerDevice[device_id] * 956 DeviceInfo.ThreadsPerGroup[device_id]); 957 958 return OFFLOAD_SUCCESS; 959 } 960 961 namespace { 962 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 963 size_t N; 964 int rc = elf_getshdrnum(elf, &N); 965 if (rc != 0) { 966 return nullptr; 967 } 968 969 Elf64_Shdr *result = nullptr; 970 for (size_t i = 0; i < N; i++) { 971 Elf_Scn *scn = elf_getscn(elf, i); 972 if (scn) { 973 Elf64_Shdr *shdr = elf64_getshdr(scn); 974 if (shdr) { 975 if (shdr->sh_type == SHT_HASH) { 976 if (result == nullptr) { 977 result = shdr; 978 } else { 979 // multiple SHT_HASH sections not handled 980 return nullptr; 981 } 982 } 983 } 984 } 985 } 986 return result; 987 } 988 989 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 990 const char *symname) { 991 992 assert(section_hash); 993 size_t section_symtab_index = section_hash->sh_link; 994 Elf64_Shdr *section_symtab = 995 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 996 size_t section_strtab_index = section_symtab->sh_link; 997 998 const Elf64_Sym *symtab = 999 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1000 1001 const uint32_t *hashtab = 1002 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1003 1004 // Layout: 1005 // nbucket 1006 // nchain 1007 // bucket[nbucket] 1008 // chain[nchain] 1009 uint32_t nbucket = hashtab[0]; 1010 const uint32_t *bucket = &hashtab[2]; 1011 const uint32_t *chain = &hashtab[nbucket + 2]; 1012 1013 const size_t max = strlen(symname) + 1; 1014 const uint32_t hash = elf_hash(symname); 1015 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1016 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1017 if (strncmp(symname, n, max) == 0) { 1018 return &symtab[i]; 1019 } 1020 } 1021 1022 return nullptr; 1023 } 1024 1025 typedef struct { 1026 void *addr = nullptr; 1027 uint32_t size = UINT32_MAX; 1028 uint32_t sh_type = SHT_NULL; 1029 } symbol_info; 1030 1031 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1032 symbol_info *res) { 1033 if (elf_kind(elf) != ELF_K_ELF) { 1034 return 1; 1035 } 1036 1037 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1038 if (!section_hash) { 1039 return 1; 1040 } 1041 1042 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1043 if (!sym) { 1044 return 1; 1045 } 1046 1047 if (sym->st_size > UINT32_MAX) { 1048 return 1; 1049 } 1050 1051 if (sym->st_shndx == SHN_UNDEF) { 1052 return 1; 1053 } 1054 1055 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1056 if (!section) { 1057 return 1; 1058 } 1059 1060 Elf64_Shdr *header = elf64_getshdr(section); 1061 if (!header) { 1062 return 1; 1063 } 1064 1065 res->addr = sym->st_value + base; 1066 res->size = static_cast<uint32_t>(sym->st_size); 1067 res->sh_type = header->sh_type; 1068 return 0; 1069 } 1070 1071 int get_symbol_info_without_loading(char *base, size_t img_size, 1072 const char *symname, symbol_info *res) { 1073 Elf *elf = elf_memory(base, img_size); 1074 if (elf) { 1075 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1076 elf_end(elf); 1077 return rc; 1078 } 1079 return 1; 1080 } 1081 1082 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1083 const char *symname, void **var_addr, 1084 uint32_t *var_size) { 1085 symbol_info si; 1086 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1087 if (rc == 0) { 1088 *var_addr = si.addr; 1089 *var_size = si.size; 1090 return HSA_STATUS_SUCCESS; 1091 } else { 1092 return HSA_STATUS_ERROR; 1093 } 1094 } 1095 1096 template <typename C> 1097 hsa_status_t module_register_from_memory_to_place( 1098 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1099 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1100 void *module_bytes, size_t module_size, int DeviceId, C cb, 1101 std::vector<hsa_executable_t> &HSAExecutables) { 1102 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1103 C *unwrapped = static_cast<C *>(cb_state); 1104 return (*unwrapped)(data, size); 1105 }; 1106 return core::RegisterModuleFromMemory( 1107 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, DeviceId, L, 1108 static_cast<void *>(&cb), HSAExecutables); 1109 } 1110 } // namespace 1111 1112 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1113 uint64_t device_State_bytes = 0; 1114 { 1115 // If this is the deviceRTL, get the state variable size 1116 symbol_info size_si; 1117 int rc = get_symbol_info_without_loading( 1118 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1119 1120 if (rc == 0) { 1121 if (size_si.size != sizeof(uint64_t)) { 1122 DP("Found device_State_size variable with wrong size\n"); 1123 return 0; 1124 } 1125 1126 // Read number of bytes directly from the elf 1127 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1128 } 1129 } 1130 return device_State_bytes; 1131 } 1132 1133 static __tgt_target_table * 1134 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1135 1136 static __tgt_target_table * 1137 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1138 1139 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1140 __tgt_device_image *image) { 1141 DeviceInfo.load_run_lock.lock(); 1142 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1143 DeviceInfo.load_run_lock.unlock(); 1144 return res; 1145 } 1146 1147 struct device_environment { 1148 // initialise an omptarget_device_environmentTy in the deviceRTL 1149 // patches around differences in the deviceRTL between trunk, aomp, 1150 // rocmcc. Over time these differences will tend to zero and this class 1151 // simplified. 1152 // Symbol may be in .data or .bss, and may be missing fields: 1153 // - aomp has debug_level, num_devices, device_num 1154 // - trunk has debug_level 1155 // - under review in trunk is debug_level, device_num 1156 // - rocmcc matches aomp, patch to swap num_devices and device_num 1157 1158 // The symbol may also have been deadstripped because the device side 1159 // accessors were unused. 1160 1161 // If the symbol is in .data (aomp, rocm) it can be written directly. 1162 // If it is in .bss, we must wait for it to be allocated space on the 1163 // gpu (trunk) and initialize after loading. 1164 const char *sym() { return "omptarget_device_environment"; } 1165 1166 omptarget_device_environmentTy host_device_env; 1167 symbol_info si; 1168 bool valid = false; 1169 1170 __tgt_device_image *image; 1171 const size_t img_size; 1172 1173 device_environment(int device_id, int number_devices, 1174 __tgt_device_image *image, const size_t img_size) 1175 : image(image), img_size(img_size) { 1176 1177 host_device_env.num_devices = number_devices; 1178 host_device_env.device_num = device_id; 1179 host_device_env.debug_level = 0; 1180 #ifdef OMPTARGET_DEBUG 1181 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1182 host_device_env.debug_level = std::stoi(envStr); 1183 } 1184 #endif 1185 1186 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1187 img_size, sym(), &si); 1188 if (rc != 0) { 1189 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1190 return; 1191 } 1192 1193 if (si.size > sizeof(host_device_env)) { 1194 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1195 sizeof(host_device_env)); 1196 return; 1197 } 1198 1199 valid = true; 1200 } 1201 1202 bool in_image() { return si.sh_type != SHT_NOBITS; } 1203 1204 hsa_status_t before_loading(void *data, size_t size) { 1205 if (valid) { 1206 if (in_image()) { 1207 DP("Setting global device environment before load (%u bytes)\n", 1208 si.size); 1209 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1210 void *pos = (char *)data + offset; 1211 memcpy(pos, &host_device_env, si.size); 1212 } 1213 } 1214 return HSA_STATUS_SUCCESS; 1215 } 1216 1217 hsa_status_t after_loading() { 1218 if (valid) { 1219 if (!in_image()) { 1220 DP("Setting global device environment after load (%u bytes)\n", 1221 si.size); 1222 int device_id = host_device_env.device_num; 1223 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1224 void *state_ptr; 1225 uint32_t state_ptr_size; 1226 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1227 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1228 if (err != HSA_STATUS_SUCCESS) { 1229 DP("failed to find %s in loaded image\n", sym()); 1230 return err; 1231 } 1232 1233 if (state_ptr_size != si.size) { 1234 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1235 si.size); 1236 return HSA_STATUS_ERROR; 1237 } 1238 1239 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1240 state_ptr_size, device_id); 1241 } 1242 } 1243 return HSA_STATUS_SUCCESS; 1244 } 1245 }; 1246 1247 static hsa_status_t atmi_calloc(void **ret_ptr, size_t size, int DeviceId) { 1248 uint64_t rounded = 4 * ((size + 3) / 4); 1249 void *ptr; 1250 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, rounded, DeviceId); 1251 if (err != HSA_STATUS_SUCCESS) { 1252 return err; 1253 } 1254 1255 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1256 if (rc != HSA_STATUS_SUCCESS) { 1257 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1258 core::Runtime::Memfree(ptr); 1259 return HSA_STATUS_ERROR; 1260 } 1261 1262 *ret_ptr = ptr; 1263 return HSA_STATUS_SUCCESS; 1264 } 1265 1266 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1267 symbol_info si; 1268 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1269 return (rc == 0) && (si.addr != nullptr); 1270 } 1271 1272 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1273 __tgt_device_image *image) { 1274 // This function loads the device image onto gpu[device_id] and does other 1275 // per-image initialization work. Specifically: 1276 // 1277 // - Initialize an omptarget_device_environmentTy instance embedded in the 1278 // image at the symbol "omptarget_device_environment" 1279 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1280 // 1281 // - Allocate a large array per-gpu (could be moved to init_device) 1282 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1283 // - Allocate at least that many bytes of gpu memory 1284 // - Zero initialize it 1285 // - Write the pointer to the symbol omptarget_nvptx_device_State 1286 // 1287 // - Pulls some per-kernel information together from various sources and 1288 // records it in the KernelsList for quicker access later 1289 // 1290 // The initialization can be done before or after loading the image onto the 1291 // gpu. This function presently does a mixture. Using the hsa api to get/set 1292 // the information is simpler to implement, in exchange for more complicated 1293 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1294 // back from the gpu vs a hashtable lookup on the host. 1295 1296 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1297 1298 DeviceInfo.clearOffloadEntriesTable(device_id); 1299 1300 // We do not need to set the ELF version because the caller of this function 1301 // had to do that to decide the right runtime to use 1302 1303 if (!elf_machine_id_is_amdgcn(image)) { 1304 return NULL; 1305 } 1306 1307 { 1308 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1309 img_size); 1310 1311 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1312 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1313 hsa_status_t err = module_register_from_memory_to_place( 1314 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1315 [&](void *data, size_t size) { 1316 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1317 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1318 __ATOMIC_RELEASE); 1319 } 1320 return env.before_loading(data, size); 1321 }, 1322 DeviceInfo.HSAExecutables); 1323 1324 check("Module registering", err); 1325 if (err != HSA_STATUS_SUCCESS) { 1326 fprintf(stderr, 1327 "Possible gpu arch mismatch: device:%s, image:%s please check" 1328 " compiler flag: -march=<gpu>\n", 1329 DeviceInfo.GPUName[device_id].c_str(), 1330 get_elf_mach_gfx_name(elf_e_flags(image))); 1331 return NULL; 1332 } 1333 1334 err = env.after_loading(); 1335 if (err != HSA_STATUS_SUCCESS) { 1336 return NULL; 1337 } 1338 } 1339 1340 DP("ATMI module successfully loaded!\n"); 1341 1342 { 1343 // the device_State array is either large value in bss or a void* that 1344 // needs to be assigned to a pointer to an array of size device_state_bytes 1345 // If absent, it has been deadstripped and needs no setup. 1346 1347 void *state_ptr; 1348 uint32_t state_ptr_size; 1349 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1350 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1351 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1352 &state_ptr_size); 1353 1354 if (err != HSA_STATUS_SUCCESS) { 1355 DP("No device_state symbol found, skipping initialization\n"); 1356 } else { 1357 if (state_ptr_size < sizeof(void *)) { 1358 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1359 sizeof(void *)); 1360 return NULL; 1361 } 1362 1363 // if it's larger than a void*, assume it's a bss array and no further 1364 // initialization is required. Only try to set up a pointer for 1365 // sizeof(void*) 1366 if (state_ptr_size == sizeof(void *)) { 1367 uint64_t device_State_bytes = 1368 get_device_State_bytes((char *)image->ImageStart, img_size); 1369 if (device_State_bytes == 0) { 1370 DP("Can't initialize device_State, missing size information\n"); 1371 return NULL; 1372 } 1373 1374 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1375 if (dss.first.get() == nullptr) { 1376 assert(dss.second == 0); 1377 void *ptr = NULL; 1378 hsa_status_t err = atmi_calloc(&ptr, device_State_bytes, device_id); 1379 if (err != HSA_STATUS_SUCCESS) { 1380 DP("Failed to allocate device_state array\n"); 1381 return NULL; 1382 } 1383 dss = { 1384 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1385 device_State_bytes, 1386 }; 1387 } 1388 1389 void *ptr = dss.first.get(); 1390 if (device_State_bytes != dss.second) { 1391 DP("Inconsistent sizes of device_State unsupported\n"); 1392 return NULL; 1393 } 1394 1395 // write ptr to device memory so it can be used by later kernels 1396 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1397 sizeof(void *), device_id); 1398 if (err != HSA_STATUS_SUCCESS) { 1399 DP("memcpy install of state_ptr failed\n"); 1400 return NULL; 1401 } 1402 } 1403 } 1404 } 1405 1406 // Here, we take advantage of the data that is appended after img_end to get 1407 // the symbols' name we need to load. This data consist of the host entries 1408 // begin and end as well as the target name (see the offloading linker script 1409 // creation in clang compiler). 1410 1411 // Find the symbols in the module by name. The name can be obtain by 1412 // concatenating the host entry name with the target name 1413 1414 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1415 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1416 1417 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1418 1419 if (!e->addr) { 1420 // The host should have always something in the address to 1421 // uniquely identify the target region. 1422 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1423 (unsigned long long)e->size); 1424 return NULL; 1425 } 1426 1427 if (e->size) { 1428 __tgt_offload_entry entry = *e; 1429 1430 void *varptr; 1431 uint32_t varsize; 1432 1433 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1434 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1435 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1436 1437 if (err != HSA_STATUS_SUCCESS) { 1438 // Inform the user what symbol prevented offloading 1439 DP("Loading global '%s' (Failed)\n", e->name); 1440 return NULL; 1441 } 1442 1443 if (varsize != e->size) { 1444 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1445 varsize, e->size); 1446 return NULL; 1447 } 1448 1449 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1450 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1451 entry.addr = (void *)varptr; 1452 1453 DeviceInfo.addOffloadEntry(device_id, entry); 1454 1455 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1456 e->flags & OMP_DECLARE_TARGET_LINK) { 1457 // If unified memory is present any target link variables 1458 // can access host addresses directly. There is no longer a 1459 // need for device copies. 1460 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1461 sizeof(void *), device_id); 1462 if (err != HSA_STATUS_SUCCESS) 1463 DP("Error when copying USM\n"); 1464 DP("Copy linked variable host address (" DPxMOD ")" 1465 "to device address (" DPxMOD ")\n", 1466 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1467 } 1468 1469 continue; 1470 } 1471 1472 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1473 1474 uint32_t kernarg_segment_size; 1475 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1476 hsa_status_t err = atmi_interop_hsa_get_kernel_info( 1477 KernelInfoMap, device_id, e->name, 1478 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1479 &kernarg_segment_size); 1480 1481 // each arg is a void * in this openmp implementation 1482 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1483 std::vector<size_t> arg_sizes(arg_num); 1484 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1485 it != arg_sizes.end(); it++) { 1486 *it = sizeof(void *); 1487 } 1488 1489 // default value GENERIC (in case symbol is missing from cubin file) 1490 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1491 1492 // get flat group size if present, else Default_WG_Size 1493 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1494 1495 // get Kernel Descriptor if present. 1496 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1497 struct KernDescValType { 1498 uint16_t Version; 1499 uint16_t TSize; 1500 uint16_t WG_Size; 1501 uint8_t Mode; 1502 }; 1503 struct KernDescValType KernDescVal; 1504 std::string KernDescNameStr(e->name); 1505 KernDescNameStr += "_kern_desc"; 1506 const char *KernDescName = KernDescNameStr.c_str(); 1507 1508 void *KernDescPtr; 1509 uint32_t KernDescSize; 1510 void *CallStackAddr = nullptr; 1511 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1512 KernDescName, &KernDescPtr, &KernDescSize); 1513 1514 if (err == HSA_STATUS_SUCCESS) { 1515 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1516 DP("Loading global computation properties '%s' - size mismatch (%u != " 1517 "%lu)\n", 1518 KernDescName, KernDescSize, sizeof(KernDescVal)); 1519 1520 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1521 1522 // Check structure size against recorded size. 1523 if ((size_t)KernDescSize != KernDescVal.TSize) 1524 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1525 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1526 1527 DP("After loading global for %s KernDesc \n", KernDescName); 1528 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1529 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1530 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1531 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1532 1533 // Get ExecMode 1534 ExecModeVal = KernDescVal.Mode; 1535 DP("ExecModeVal %d\n", ExecModeVal); 1536 if (KernDescVal.WG_Size == 0) { 1537 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1538 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1539 } 1540 WGSizeVal = KernDescVal.WG_Size; 1541 DP("WGSizeVal %d\n", WGSizeVal); 1542 check("Loading KernDesc computation property", err); 1543 } else { 1544 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1545 1546 // Generic 1547 std::string ExecModeNameStr(e->name); 1548 ExecModeNameStr += "_exec_mode"; 1549 const char *ExecModeName = ExecModeNameStr.c_str(); 1550 1551 void *ExecModePtr; 1552 uint32_t varsize; 1553 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1554 ExecModeName, &ExecModePtr, &varsize); 1555 1556 if (err == HSA_STATUS_SUCCESS) { 1557 if ((size_t)varsize != sizeof(int8_t)) { 1558 DP("Loading global computation properties '%s' - size mismatch(%u != " 1559 "%lu)\n", 1560 ExecModeName, varsize, sizeof(int8_t)); 1561 return NULL; 1562 } 1563 1564 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1565 1566 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1567 ExecModeVal); 1568 1569 if (ExecModeVal < 0 || ExecModeVal > 1) { 1570 DP("Error wrong exec_mode value specified in HSA code object file: " 1571 "%d\n", 1572 ExecModeVal); 1573 return NULL; 1574 } 1575 } else { 1576 DP("Loading global exec_mode '%s' - symbol missing, using default " 1577 "value " 1578 "GENERIC (1)\n", 1579 ExecModeName); 1580 } 1581 check("Loading computation property", err); 1582 1583 // Flat group size 1584 std::string WGSizeNameStr(e->name); 1585 WGSizeNameStr += "_wg_size"; 1586 const char *WGSizeName = WGSizeNameStr.c_str(); 1587 1588 void *WGSizePtr; 1589 uint32_t WGSize; 1590 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1591 WGSizeName, &WGSizePtr, &WGSize); 1592 1593 if (err == HSA_STATUS_SUCCESS) { 1594 if ((size_t)WGSize != sizeof(int16_t)) { 1595 DP("Loading global computation properties '%s' - size mismatch (%u " 1596 "!= " 1597 "%lu)\n", 1598 WGSizeName, WGSize, sizeof(int16_t)); 1599 return NULL; 1600 } 1601 1602 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1603 1604 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1605 1606 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1607 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1608 DP("Error wrong WGSize value specified in HSA code object file: " 1609 "%d\n", 1610 WGSizeVal); 1611 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1612 } 1613 } else { 1614 DP("Warning: Loading WGSize '%s' - symbol not found, " 1615 "using default value %d\n", 1616 WGSizeName, WGSizeVal); 1617 } 1618 1619 check("Loading WGSize computation property", err); 1620 } 1621 1622 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1623 CallStackAddr, e->name, kernarg_segment_size, 1624 DeviceInfo.KernArgPool)); 1625 __tgt_offload_entry entry = *e; 1626 entry.addr = (void *)&KernelsList.back(); 1627 DeviceInfo.addOffloadEntry(device_id, entry); 1628 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1629 } 1630 1631 return DeviceInfo.getOffloadEntriesTable(device_id); 1632 } 1633 1634 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1635 void *ptr = NULL; 1636 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1637 1638 if (kind != TARGET_ALLOC_DEFAULT) { 1639 REPORT("Invalid target data allocation kind or requested allocator not " 1640 "implemented yet\n"); 1641 return NULL; 1642 } 1643 1644 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, size, device_id); 1645 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1646 (long long unsigned)(Elf64_Addr)ptr); 1647 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1648 return ptr; 1649 } 1650 1651 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1652 int64_t size) { 1653 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1654 __tgt_async_info AsyncInfo; 1655 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1656 if (rc != OFFLOAD_SUCCESS) 1657 return OFFLOAD_FAIL; 1658 1659 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1660 } 1661 1662 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1663 int64_t size, __tgt_async_info *AsyncInfo) { 1664 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1665 if (AsyncInfo) { 1666 initAsyncInfo(AsyncInfo); 1667 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1668 } else { 1669 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1670 } 1671 } 1672 1673 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1674 int64_t size) { 1675 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1676 __tgt_async_info AsyncInfo; 1677 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1678 if (rc != OFFLOAD_SUCCESS) 1679 return OFFLOAD_FAIL; 1680 1681 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1682 } 1683 1684 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1685 void *tgt_ptr, int64_t size, 1686 __tgt_async_info *AsyncInfo) { 1687 assert(AsyncInfo && "AsyncInfo is nullptr"); 1688 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1689 initAsyncInfo(AsyncInfo); 1690 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1691 } 1692 1693 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1694 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1695 hsa_status_t err; 1696 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1697 err = core::Runtime::Memfree(tgt_ptr); 1698 if (err != HSA_STATUS_SUCCESS) { 1699 DP("Error when freeing CUDA memory\n"); 1700 return OFFLOAD_FAIL; 1701 } 1702 return OFFLOAD_SUCCESS; 1703 } 1704 1705 // Determine launch values for threadsPerGroup and num_groups. 1706 // Outputs: treadsPerGroup, num_groups 1707 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1708 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1709 // loop_tripcount. 1710 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1711 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1712 int num_teams, int thread_limit, uint64_t loop_tripcount, 1713 int32_t device_id) { 1714 1715 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1716 ? DeviceInfo.EnvMaxTeamsDefault 1717 : DeviceInfo.NumTeams[device_id]; 1718 if (Max_Teams > DeviceInfo.HardTeamLimit) 1719 Max_Teams = DeviceInfo.HardTeamLimit; 1720 1721 if (print_kernel_trace & STARTUP_DETAILS) { 1722 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1723 RTLDeviceInfoTy::Max_Teams); 1724 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1725 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1726 RTLDeviceInfoTy::Warp_Size); 1727 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1728 RTLDeviceInfoTy::Max_WG_Size); 1729 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1730 RTLDeviceInfoTy::Default_WG_Size); 1731 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1732 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1733 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1734 } 1735 // check for thread_limit() clause 1736 if (thread_limit > 0) { 1737 threadsPerGroup = thread_limit; 1738 DP("Setting threads per block to requested %d\n", thread_limit); 1739 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1740 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1741 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1742 } 1743 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1744 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1745 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1746 } 1747 } 1748 // check flat_max_work_group_size attr here 1749 if (threadsPerGroup > ConstWGSize) { 1750 threadsPerGroup = ConstWGSize; 1751 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1752 threadsPerGroup); 1753 } 1754 if (print_kernel_trace & STARTUP_DETAILS) 1755 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1756 DP("Preparing %d threads\n", threadsPerGroup); 1757 1758 // Set default num_groups (teams) 1759 if (DeviceInfo.EnvTeamLimit > 0) 1760 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1761 ? Max_Teams 1762 : DeviceInfo.EnvTeamLimit; 1763 else 1764 num_groups = Max_Teams; 1765 DP("Set default num of groups %d\n", num_groups); 1766 1767 if (print_kernel_trace & STARTUP_DETAILS) { 1768 fprintf(stderr, "num_groups: %d\n", num_groups); 1769 fprintf(stderr, "num_teams: %d\n", num_teams); 1770 } 1771 1772 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1773 // This reduction is typical for default case (no thread_limit clause). 1774 // or when user goes crazy with num_teams clause. 1775 // FIXME: We cant distinguish between a constant or variable thread limit. 1776 // So we only handle constant thread_limits. 1777 if (threadsPerGroup > 1778 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1779 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1780 // here? 1781 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1782 1783 // check for num_teams() clause 1784 if (num_teams > 0) { 1785 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1786 } 1787 if (print_kernel_trace & STARTUP_DETAILS) { 1788 fprintf(stderr, "num_groups: %d\n", num_groups); 1789 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1790 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1791 } 1792 1793 if (DeviceInfo.EnvNumTeams > 0) { 1794 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1795 : num_groups; 1796 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1797 } else if (DeviceInfo.EnvTeamLimit > 0) { 1798 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1799 ? DeviceInfo.EnvTeamLimit 1800 : num_groups; 1801 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1802 } else { 1803 if (num_teams <= 0) { 1804 if (loop_tripcount > 0) { 1805 if (ExecutionMode == SPMD) { 1806 // round up to the nearest integer 1807 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1808 } else { 1809 num_groups = loop_tripcount; 1810 } 1811 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1812 "threads per block %d\n", 1813 num_groups, loop_tripcount, threadsPerGroup); 1814 } 1815 } else { 1816 num_groups = num_teams; 1817 } 1818 if (num_groups > Max_Teams) { 1819 num_groups = Max_Teams; 1820 if (print_kernel_trace & STARTUP_DETAILS) 1821 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1822 Max_Teams); 1823 } 1824 if (num_groups > num_teams && num_teams > 0) { 1825 num_groups = num_teams; 1826 if (print_kernel_trace & STARTUP_DETAILS) 1827 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1828 num_groups, num_teams); 1829 } 1830 } 1831 1832 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1833 if (num_teams > 0) { 1834 num_groups = num_teams; 1835 // Cap num_groups to EnvMaxTeamsDefault if set. 1836 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1837 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1838 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1839 } 1840 if (print_kernel_trace & STARTUP_DETAILS) { 1841 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1842 fprintf(stderr, "num_groups: %d\n", num_groups); 1843 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1844 } 1845 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1846 threadsPerGroup); 1847 } 1848 1849 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1850 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1851 bool full = true; 1852 while (full) { 1853 full = 1854 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1855 } 1856 return packet_id; 1857 } 1858 1859 static int32_t __tgt_rtl_run_target_team_region_locked( 1860 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1861 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1862 int32_t thread_limit, uint64_t loop_tripcount); 1863 1864 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1865 void **tgt_args, 1866 ptrdiff_t *tgt_offsets, 1867 int32_t arg_num, int32_t num_teams, 1868 int32_t thread_limit, 1869 uint64_t loop_tripcount) { 1870 1871 DeviceInfo.load_run_lock.lock_shared(); 1872 int32_t res = __tgt_rtl_run_target_team_region_locked( 1873 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1874 thread_limit, loop_tripcount); 1875 1876 DeviceInfo.load_run_lock.unlock_shared(); 1877 return res; 1878 } 1879 1880 int32_t __tgt_rtl_run_target_team_region_locked( 1881 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1882 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1883 int32_t thread_limit, uint64_t loop_tripcount) { 1884 // Set the context we are using 1885 // update thread limit content in gpu memory if un-initialized or specified 1886 // from host 1887 1888 DP("Run target team region thread_limit %d\n", thread_limit); 1889 1890 // All args are references. 1891 std::vector<void *> args(arg_num); 1892 std::vector<void *> ptrs(arg_num); 1893 1894 DP("Arg_num: %d\n", arg_num); 1895 for (int32_t i = 0; i < arg_num; ++i) { 1896 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1897 args[i] = &ptrs[i]; 1898 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1899 } 1900 1901 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1902 1903 std::string kernel_name = std::string(KernelInfo->Name); 1904 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 1905 if (KernelInfoTable[device_id].find(kernel_name) == 1906 KernelInfoTable[device_id].end()) { 1907 DP("Kernel %s not found\n", kernel_name.c_str()); 1908 return OFFLOAD_FAIL; 1909 } 1910 1911 const atl_kernel_info_t KernelInfoEntry = 1912 KernelInfoTable[device_id][kernel_name]; 1913 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 1914 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 1915 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 1916 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 1917 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 1918 1919 assert(arg_num == (int)KernelInfoEntry.num_args); 1920 1921 /* 1922 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1923 */ 1924 int num_groups = 0; 1925 1926 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1927 1928 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1929 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1930 DeviceInfo.EnvNumTeams, 1931 num_teams, // From run_region arg 1932 thread_limit, // From run_region arg 1933 loop_tripcount, // From run_region arg 1934 KernelInfo->device_id); 1935 1936 if (print_kernel_trace >= LAUNCH) { 1937 // enum modes are SPMD, GENERIC, NONE 0,1,2 1938 // if doing rtl timing, print to stderr, unless stdout requested. 1939 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1940 fprintf(traceToStdout ? stdout : stderr, 1941 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1942 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 1943 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 1944 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1945 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1946 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 1947 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 1948 } 1949 1950 // Run on the device. 1951 { 1952 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1953 if (!queue) { 1954 return OFFLOAD_FAIL; 1955 } 1956 uint64_t packet_id = acquire_available_packet_id(queue); 1957 1958 const uint32_t mask = queue->size - 1; // size is a power of 2 1959 hsa_kernel_dispatch_packet_t *packet = 1960 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1961 (packet_id & mask); 1962 1963 // packet->header is written last 1964 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1965 packet->workgroup_size_x = threadsPerGroup; 1966 packet->workgroup_size_y = 1; 1967 packet->workgroup_size_z = 1; 1968 packet->reserved0 = 0; 1969 packet->grid_size_x = num_groups * threadsPerGroup; 1970 packet->grid_size_y = 1; 1971 packet->grid_size_z = 1; 1972 packet->private_segment_size = KernelInfoEntry.private_segment_size; 1973 packet->group_segment_size = KernelInfoEntry.group_segment_size; 1974 packet->kernel_object = KernelInfoEntry.kernel_object; 1975 packet->kernarg_address = 0; // use the block allocator 1976 packet->reserved2 = 0; // atmi writes id_ here 1977 packet->completion_signal = {0}; // may want a pool of signals 1978 1979 KernelArgPool *ArgPool = nullptr; 1980 { 1981 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1982 if (it != KernelArgPoolMap.end()) { 1983 ArgPool = (it->second).get(); 1984 } 1985 } 1986 if (!ArgPool) { 1987 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 1988 device_id); 1989 } 1990 { 1991 void *kernarg = nullptr; 1992 if (ArgPool) { 1993 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1994 kernarg = ArgPool->allocate(arg_num); 1995 } 1996 if (!kernarg) { 1997 DP("Allocate kernarg failed\n"); 1998 return OFFLOAD_FAIL; 1999 } 2000 2001 // Copy explicit arguments 2002 for (int i = 0; i < arg_num; i++) { 2003 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 2004 } 2005 2006 // Initialize implicit arguments. ATMI seems to leave most fields 2007 // uninitialized 2008 atmi_implicit_args_t *impl_args = 2009 reinterpret_cast<atmi_implicit_args_t *>( 2010 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 2011 memset(impl_args, 0, 2012 sizeof(atmi_implicit_args_t)); // may not be necessary 2013 impl_args->offset_x = 0; 2014 impl_args->offset_y = 0; 2015 impl_args->offset_z = 0; 2016 2017 // assign a hostcall buffer for the selected Q 2018 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 2019 // hostrpc_assign_buffer is not thread safe, and this function is 2020 // under a multiple reader lock, not a writer lock. 2021 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 2022 pthread_mutex_lock(&hostcall_init_lock); 2023 impl_args->hostcall_ptr = hostrpc_assign_buffer( 2024 DeviceInfo.HSAAgents[device_id], queue, device_id); 2025 pthread_mutex_unlock(&hostcall_init_lock); 2026 if (!impl_args->hostcall_ptr) { 2027 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 2028 "error\n"); 2029 return OFFLOAD_FAIL; 2030 } 2031 } 2032 2033 packet->kernarg_address = kernarg; 2034 } 2035 2036 { 2037 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 2038 if (s.handle == 0) { 2039 DP("Failed to get signal instance\n"); 2040 return OFFLOAD_FAIL; 2041 } 2042 packet->completion_signal = s; 2043 hsa_signal_store_relaxed(packet->completion_signal, 1); 2044 } 2045 2046 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 2047 core::create_header(), packet->setup); 2048 2049 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 2050 2051 while (hsa_signal_wait_scacquire(packet->completion_signal, 2052 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 2053 HSA_WAIT_STATE_BLOCKED) != 0) 2054 ; 2055 2056 assert(ArgPool); 2057 ArgPool->deallocate(packet->kernarg_address); 2058 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 2059 } 2060 2061 DP("Kernel completed\n"); 2062 return OFFLOAD_SUCCESS; 2063 } 2064 2065 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2066 void **tgt_args, ptrdiff_t *tgt_offsets, 2067 int32_t arg_num) { 2068 // use one team and one thread 2069 // fix thread num 2070 int32_t team_num = 1; 2071 int32_t thread_limit = 0; // use default 2072 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2073 tgt_offsets, arg_num, team_num, 2074 thread_limit, 0); 2075 } 2076 2077 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2078 void *tgt_entry_ptr, void **tgt_args, 2079 ptrdiff_t *tgt_offsets, 2080 int32_t arg_num, 2081 __tgt_async_info *AsyncInfo) { 2082 assert(AsyncInfo && "AsyncInfo is nullptr"); 2083 initAsyncInfo(AsyncInfo); 2084 2085 // use one team and one thread 2086 // fix thread num 2087 int32_t team_num = 1; 2088 int32_t thread_limit = 0; // use default 2089 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2090 tgt_offsets, arg_num, team_num, 2091 thread_limit, 0); 2092 } 2093 2094 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2095 assert(AsyncInfo && "AsyncInfo is nullptr"); 2096 2097 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2098 // is not ensured by devices.cpp for amdgcn 2099 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2100 if (AsyncInfo->Queue) { 2101 finiAsyncInfo(AsyncInfo); 2102 } 2103 return OFFLOAD_SUCCESS; 2104 } 2105