1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <mutex> 27 #include <shared_mutex> 28 #include <thread> 29 #include <unordered_map> 30 #include <vector> 31 32 // Header from ATMI interface 33 #include "atmi_interop_hsa.h" 34 #include "atmi_runtime.h" 35 36 #include "internal.h" 37 38 #include "Debug.h" 39 #include "get_elf_mach_gfx_name.h" 40 #include "omptargetplugin.h" 41 #include "print_tracing.h" 42 43 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 44 45 #ifndef TARGET_NAME 46 #define TARGET_NAME AMDHSA 47 #endif 48 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 49 50 // hostrpc interface, FIXME: consider moving to its own include these are 51 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 52 // linked as --whole-archive to override the weak symbols that are used to 53 // implement a fallback for toolchains that do not yet have a hostrpc library. 54 extern "C" { 55 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 56 uint32_t device_id); 57 hsa_status_t hostrpc_init(); 58 hsa_status_t hostrpc_terminate(); 59 60 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 61 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 62 return HSA_STATUS_SUCCESS; 63 } 64 __attribute__((weak)) unsigned long 65 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 66 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 67 "missing\n", 68 device_id); 69 return 0; 70 } 71 } 72 73 int print_kernel_trace; 74 75 #ifdef OMPTARGET_DEBUG 76 #define check(msg, status) \ 77 if (status != HSA_STATUS_SUCCESS) { \ 78 DP(#msg " failed\n"); \ 79 } else { \ 80 DP(#msg " succeeded\n"); \ 81 } 82 #else 83 #define check(msg, status) \ 84 {} 85 #endif 86 87 #include "elf_common.h" 88 89 namespace core { 90 hsa_status_t RegisterModuleFromMemory( 91 std::map<std::string, atl_kernel_info_t> &KernelInfo, 92 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, void *, size_t, 93 atmi_place_t, 94 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 95 void *cb_state), 96 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables); 97 } 98 99 /// Keep entries table per device 100 struct FuncOrGblEntryTy { 101 __tgt_target_table Table; 102 std::vector<__tgt_offload_entry> Entries; 103 }; 104 105 enum ExecutionModeType { 106 SPMD, // constructors, destructors, 107 // combined constructs (`teams distribute parallel for [simd]`) 108 GENERIC, // everything else 109 NONE 110 }; 111 112 struct KernelArgPool { 113 private: 114 static pthread_mutex_t mutex; 115 116 public: 117 uint32_t kernarg_segment_size; 118 void *kernarg_region = nullptr; 119 std::queue<int> free_kernarg_segments; 120 121 uint32_t kernarg_size_including_implicit() { 122 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 123 } 124 125 ~KernelArgPool() { 126 if (kernarg_region) { 127 auto r = hsa_amd_memory_pool_free(kernarg_region); 128 if (r != HSA_STATUS_SUCCESS) { 129 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 130 } 131 } 132 } 133 134 // Can't really copy or move a mutex 135 KernelArgPool() = default; 136 KernelArgPool(const KernelArgPool &) = delete; 137 KernelArgPool(KernelArgPool &&) = delete; 138 139 KernelArgPool(uint32_t kernarg_segment_size) 140 : kernarg_segment_size(kernarg_segment_size) { 141 142 // atmi uses one pool per kernel for all gpus, with a fixed upper size 143 // preserving that exact scheme here, including the queue<int> 144 145 hsa_status_t err = hsa_amd_memory_pool_allocate( 146 atl_gpu_kernarg_pools[0], 147 kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 148 &kernarg_region); 149 150 if (err != HSA_STATUS_SUCCESS) { 151 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 152 kernarg_region = nullptr; // paranoid 153 return; 154 } 155 156 err = core::allow_access_to_all_gpu_agents(kernarg_region); 157 if (err != HSA_STATUS_SUCCESS) { 158 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 159 get_error_string(err)); 160 auto r = hsa_amd_memory_pool_free(kernarg_region); 161 if (r != HSA_STATUS_SUCCESS) { 162 // if free failed, can't do anything more to resolve it 163 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 164 } 165 kernarg_region = nullptr; 166 return; 167 } 168 169 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 170 free_kernarg_segments.push(i); 171 } 172 } 173 174 void *allocate(uint64_t arg_num) { 175 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 176 lock l(&mutex); 177 void *res = nullptr; 178 if (!free_kernarg_segments.empty()) { 179 180 int free_idx = free_kernarg_segments.front(); 181 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 182 (free_idx * kernarg_size_including_implicit())); 183 assert(free_idx == pointer_to_index(res)); 184 free_kernarg_segments.pop(); 185 } 186 return res; 187 } 188 189 void deallocate(void *ptr) { 190 lock l(&mutex); 191 int idx = pointer_to_index(ptr); 192 free_kernarg_segments.push(idx); 193 } 194 195 private: 196 int pointer_to_index(void *ptr) { 197 ptrdiff_t bytes = 198 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 199 assert(bytes >= 0); 200 assert(bytes % kernarg_size_including_implicit() == 0); 201 return bytes / kernarg_size_including_implicit(); 202 } 203 struct lock { 204 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 205 ~lock() { pthread_mutex_unlock(m); } 206 pthread_mutex_t *m; 207 }; 208 }; 209 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 210 211 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 212 KernelArgPoolMap; 213 214 /// Use a single entity to encode a kernel and a set of flags 215 struct KernelTy { 216 // execution mode of kernel 217 // 0 - SPMD mode (without master warp) 218 // 1 - Generic mode (with master warp) 219 int8_t ExecutionMode; 220 int16_t ConstWGSize; 221 int32_t device_id; 222 void *CallStackAddr = nullptr; 223 const char *Name; 224 225 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 226 void *_CallStackAddr, const char *_Name, 227 uint32_t _kernarg_segment_size) 228 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 229 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 230 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 231 232 std::string N(_Name); 233 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 234 KernelArgPoolMap.insert( 235 std::make_pair(N, std::unique_ptr<KernelArgPool>( 236 new KernelArgPool(_kernarg_segment_size)))); 237 } 238 } 239 }; 240 241 /// List that contains all the kernels. 242 /// FIXME: we may need this to be per device and per library. 243 std::list<KernelTy> KernelsList; 244 245 // ATMI API to get gpu and gpu memory place 246 static atmi_place_t get_gpu_place(int device_id) { 247 return ATMI_PLACE_GPU(0, device_id); 248 } 249 static atmi_mem_place_t get_gpu_mem_place(int device_id) { 250 return ATMI_MEM_PLACE_GPU_MEM(0, device_id, 0); 251 } 252 253 static std::vector<hsa_agent_t> find_gpu_agents() { 254 std::vector<hsa_agent_t> res; 255 256 hsa_status_t err = hsa_iterate_agents( 257 [](hsa_agent_t agent, void *data) -> hsa_status_t { 258 std::vector<hsa_agent_t> *res = 259 static_cast<std::vector<hsa_agent_t> *>(data); 260 261 hsa_device_type_t device_type; 262 // get_info fails iff HSA runtime not yet initialized 263 hsa_status_t err = 264 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 265 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 266 printf("rtl.cpp: err %d\n", err); 267 assert(err == HSA_STATUS_SUCCESS); 268 269 if (device_type == HSA_DEVICE_TYPE_GPU) { 270 res->push_back(agent); 271 } 272 return HSA_STATUS_SUCCESS; 273 }, 274 &res); 275 276 // iterate_agents fails iff HSA runtime not yet initialized 277 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 278 printf("rtl.cpp: err %d\n", err); 279 assert(err == HSA_STATUS_SUCCESS); 280 return res; 281 } 282 283 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 284 void *data) { 285 if (status != HSA_STATUS_SUCCESS) { 286 const char *status_string; 287 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 288 status_string = "unavailable"; 289 } 290 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 291 __LINE__, source, status, status_string); 292 abort(); 293 } 294 } 295 296 namespace core { 297 namespace { 298 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 299 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 300 } 301 302 uint16_t create_header() { 303 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 304 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 305 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 306 return header; 307 } 308 } // namespace 309 } // namespace core 310 311 /// Class containing all the device information 312 class RTLDeviceInfoTy { 313 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 314 315 public: 316 // load binary populates symbol tables and mutates various global state 317 // run uses those symbol tables 318 std::shared_timed_mutex load_run_lock; 319 320 int NumberOfDevices; 321 322 // GPU devices 323 std::vector<hsa_agent_t> HSAAgents; 324 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 325 326 // Device properties 327 std::vector<int> ComputeUnits; 328 std::vector<int> GroupsPerDevice; 329 std::vector<int> ThreadsPerGroup; 330 std::vector<int> WarpSize; 331 std::vector<std::string> GPUName; 332 333 // OpenMP properties 334 std::vector<int> NumTeams; 335 std::vector<int> NumThreads; 336 337 // OpenMP Environment properties 338 int EnvNumTeams; 339 int EnvTeamLimit; 340 int EnvMaxTeamsDefault; 341 342 // OpenMP Requires Flags 343 int64_t RequiresFlags; 344 345 // Resource pools 346 SignalPoolT FreeSignalPool; 347 348 bool hostcall_required = false; 349 350 std::vector<hsa_executable_t> HSAExecutables; 351 352 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 353 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 354 355 struct atmiFreePtrDeletor { 356 void operator()(void *p) { 357 atmi_free(p); // ignore failure to free 358 } 359 }; 360 361 // device_State shared across loaded binaries, error if inconsistent size 362 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 363 deviceStateStore; 364 365 static const unsigned HardTeamLimit = 366 (1 << 16) - 1; // 64K needed to fit in uint16 367 static const int DefaultNumTeams = 128; 368 static const int Max_Teams = 369 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 370 static const int Warp_Size = 371 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 372 static const int Max_WG_Size = 373 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 374 static const int Default_WG_Size = 375 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 376 377 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 378 size_t size, hsa_agent_t); 379 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 380 MemcpyFunc Func, int32_t deviceId) { 381 hsa_agent_t agent = HSAAgents[deviceId]; 382 hsa_signal_t s = FreeSignalPool.pop(); 383 if (s.handle == 0) { 384 return HSA_STATUS_ERROR; 385 } 386 hsa_status_t r = Func(s, dest, src, size, agent); 387 FreeSignalPool.push(s); 388 return r; 389 } 390 391 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 392 size_t size, int32_t deviceId) { 393 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 394 } 395 396 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 397 size_t size, int32_t deviceId) { 398 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 399 } 400 401 // Record entry point associated with device 402 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 403 assert(device_id < (int32_t)FuncGblEntries.size() && 404 "Unexpected device id!"); 405 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 406 407 E.Entries.push_back(entry); 408 } 409 410 // Return true if the entry is associated with device 411 bool findOffloadEntry(int32_t device_id, void *addr) { 412 assert(device_id < (int32_t)FuncGblEntries.size() && 413 "Unexpected device id!"); 414 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 415 416 for (auto &it : E.Entries) { 417 if (it.addr == addr) 418 return true; 419 } 420 421 return false; 422 } 423 424 // Return the pointer to the target entries table 425 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 426 assert(device_id < (int32_t)FuncGblEntries.size() && 427 "Unexpected device id!"); 428 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 429 430 int32_t size = E.Entries.size(); 431 432 // Table is empty 433 if (!size) 434 return 0; 435 436 __tgt_offload_entry *begin = &E.Entries[0]; 437 __tgt_offload_entry *end = &E.Entries[size - 1]; 438 439 // Update table info according to the entries and return the pointer 440 E.Table.EntriesBegin = begin; 441 E.Table.EntriesEnd = ++end; 442 443 return &E.Table; 444 } 445 446 // Clear entries table for a device 447 void clearOffloadEntriesTable(int device_id) { 448 assert(device_id < (int32_t)FuncGblEntries.size() && 449 "Unexpected device id!"); 450 FuncGblEntries[device_id].emplace_back(); 451 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 452 // KernelArgPoolMap.clear(); 453 E.Entries.clear(); 454 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 455 } 456 457 RTLDeviceInfoTy() { 458 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 459 // anytime. You do not need a debug library build. 460 // 0 => no tracing 461 // 1 => tracing dispatch only 462 // >1 => verbosity increase 463 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 464 print_kernel_trace = atoi(envStr); 465 else 466 print_kernel_trace = 0; 467 468 DP("Start initializing HSA-ATMI\n"); 469 hsa_status_t err = core::atl_init_gpu_context(); 470 if (err != HSA_STATUS_SUCCESS) { 471 DP("Error when initializing HSA-ATMI\n"); 472 return; 473 } 474 475 // Init hostcall soon after initializing ATMI 476 hostrpc_init(); 477 478 HSAAgents = find_gpu_agents(); 479 NumberOfDevices = (int)HSAAgents.size(); 480 481 if (NumberOfDevices == 0) { 482 DP("There are no devices supporting HSA.\n"); 483 return; 484 } else { 485 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 486 } 487 488 // Init the device info 489 HSAQueues.resize(NumberOfDevices); 490 FuncGblEntries.resize(NumberOfDevices); 491 ThreadsPerGroup.resize(NumberOfDevices); 492 ComputeUnits.resize(NumberOfDevices); 493 GPUName.resize(NumberOfDevices); 494 GroupsPerDevice.resize(NumberOfDevices); 495 WarpSize.resize(NumberOfDevices); 496 NumTeams.resize(NumberOfDevices); 497 NumThreads.resize(NumberOfDevices); 498 deviceStateStore.resize(NumberOfDevices); 499 KernelInfoTable.resize(NumberOfDevices); 500 SymbolInfoTable.resize(NumberOfDevices); 501 502 for (int i = 0; i < NumberOfDevices; i++) { 503 HSAQueues[i] = nullptr; 504 } 505 506 for (int i = 0; i < NumberOfDevices; i++) { 507 uint32_t queue_size = 0; 508 { 509 hsa_status_t err = hsa_agent_get_info( 510 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 511 if (err != HSA_STATUS_SUCCESS) { 512 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 513 return; 514 } 515 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 516 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 517 } 518 } 519 520 hsa_status_t rc = hsa_queue_create( 521 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 522 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 523 if (rc != HSA_STATUS_SUCCESS) { 524 DP("Failed to create HSA queue %d\n", i); 525 return; 526 } 527 528 deviceStateStore[i] = {nullptr, 0}; 529 } 530 531 for (int i = 0; i < NumberOfDevices; i++) { 532 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 533 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 534 ComputeUnits[i] = 1; 535 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 536 GroupsPerDevice[i], ThreadsPerGroup[i]); 537 } 538 539 // Get environment variables regarding teams 540 char *envStr = getenv("OMP_TEAM_LIMIT"); 541 if (envStr) { 542 // OMP_TEAM_LIMIT has been set 543 EnvTeamLimit = std::stoi(envStr); 544 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 545 } else { 546 EnvTeamLimit = -1; 547 } 548 envStr = getenv("OMP_NUM_TEAMS"); 549 if (envStr) { 550 // OMP_NUM_TEAMS has been set 551 EnvNumTeams = std::stoi(envStr); 552 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 553 } else { 554 EnvNumTeams = -1; 555 } 556 // Get environment variables regarding expMaxTeams 557 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 558 if (envStr) { 559 EnvMaxTeamsDefault = std::stoi(envStr); 560 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 561 } else { 562 EnvMaxTeamsDefault = -1; 563 } 564 565 // Default state. 566 RequiresFlags = OMP_REQ_UNDEFINED; 567 } 568 569 ~RTLDeviceInfoTy() { 570 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 571 // Run destructors on types that use HSA before 572 // atmi_finalize removes access to it 573 deviceStateStore.clear(); 574 KernelArgPoolMap.clear(); 575 // Terminate hostrpc before finalizing ATMI 576 hostrpc_terminate(); 577 578 hsa_status_t Err; 579 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 580 Err = hsa_executable_destroy(HSAExecutables[I]); 581 if (Err != HSA_STATUS_SUCCESS) { 582 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 583 "Destroying executable", get_error_string(Err)); 584 } 585 } 586 587 Err = hsa_shut_down(); 588 if (Err != HSA_STATUS_SUCCESS) { 589 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA", 590 get_error_string(Err)); 591 } 592 } 593 }; 594 595 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 596 597 // TODO: May need to drop the trailing to fields until deviceRTL is updated 598 struct omptarget_device_environmentTy { 599 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 600 // only useful for Debug build of deviceRTLs 601 int32_t num_devices; // gets number of active offload devices 602 int32_t device_num; // gets a value 0 to num_devices-1 603 }; 604 605 static RTLDeviceInfoTy DeviceInfo; 606 607 namespace { 608 609 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 610 __tgt_async_info *AsyncInfo) { 611 assert(AsyncInfo && "AsyncInfo is nullptr"); 612 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 613 // Return success if we are not copying back to host from target. 614 if (!HstPtr) 615 return OFFLOAD_SUCCESS; 616 hsa_status_t err; 617 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 618 (long long unsigned)(Elf64_Addr)TgtPtr, 619 (long long unsigned)(Elf64_Addr)HstPtr); 620 621 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 622 DeviceId); 623 624 if (err != HSA_STATUS_SUCCESS) { 625 DP("Error when copying data from device to host. Pointers: " 626 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 627 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 628 return OFFLOAD_FAIL; 629 } 630 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 631 (long long unsigned)(Elf64_Addr)TgtPtr, 632 (long long unsigned)(Elf64_Addr)HstPtr); 633 return OFFLOAD_SUCCESS; 634 } 635 636 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 637 __tgt_async_info *AsyncInfo) { 638 assert(AsyncInfo && "AsyncInfo is nullptr"); 639 hsa_status_t err; 640 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 641 // Return success if we are not doing host to target. 642 if (!HstPtr) 643 return OFFLOAD_SUCCESS; 644 645 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 646 (long long unsigned)(Elf64_Addr)HstPtr, 647 (long long unsigned)(Elf64_Addr)TgtPtr); 648 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 649 DeviceId); 650 if (err != HSA_STATUS_SUCCESS) { 651 DP("Error when copying data from host to device. Pointers: " 652 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 653 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 654 return OFFLOAD_FAIL; 655 } 656 return OFFLOAD_SUCCESS; 657 } 658 659 // Async. 660 // The implementation was written with cuda streams in mind. The semantics of 661 // that are to execute kernels on a queue in order of insertion. A synchronise 662 // call then makes writes visible between host and device. This means a series 663 // of N data_submit_async calls are expected to execute serially. HSA offers 664 // various options to run the data copies concurrently. This may require changes 665 // to libomptarget. 666 667 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 668 // there are no outstanding kernels that need to be synchronized. Any async call 669 // may be passed a Queue==0, at which point the cuda implementation will set it 670 // to non-null (see getStream). The cuda streams are per-device. Upstream may 671 // change this interface to explicitly initialize the AsyncInfo_pointer, but 672 // until then hsa lazily initializes it as well. 673 674 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 675 // set non-null while using async calls, return to null to indicate completion 676 assert(AsyncInfo); 677 if (!AsyncInfo->Queue) { 678 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 679 } 680 } 681 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 682 assert(AsyncInfo); 683 assert(AsyncInfo->Queue); 684 AsyncInfo->Queue = 0; 685 } 686 687 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 688 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 689 int32_t r = elf_check_machine(image, amdgcnMachineID); 690 if (!r) { 691 DP("Supported machine ID not found\n"); 692 } 693 return r; 694 } 695 696 uint32_t elf_e_flags(__tgt_device_image *image) { 697 char *img_begin = (char *)image->ImageStart; 698 size_t img_size = (char *)image->ImageEnd - img_begin; 699 700 Elf *e = elf_memory(img_begin, img_size); 701 if (!e) { 702 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 703 return 0; 704 } 705 706 Elf64_Ehdr *eh64 = elf64_getehdr(e); 707 708 if (!eh64) { 709 DP("Unable to get machine ID from ELF file!\n"); 710 elf_end(e); 711 return 0; 712 } 713 714 uint32_t Flags = eh64->e_flags; 715 716 elf_end(e); 717 DP("ELF Flags: 0x%x\n", Flags); 718 return Flags; 719 } 720 } // namespace 721 722 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 723 return elf_machine_id_is_amdgcn(image); 724 } 725 726 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 727 728 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 729 DP("Init requires flags to %ld\n", RequiresFlags); 730 DeviceInfo.RequiresFlags = RequiresFlags; 731 return RequiresFlags; 732 } 733 734 namespace { 735 template <typename T> bool enforce_upper_bound(T *value, T upper) { 736 bool changed = *value > upper; 737 if (changed) { 738 *value = upper; 739 } 740 return changed; 741 } 742 } // namespace 743 744 int32_t __tgt_rtl_init_device(int device_id) { 745 hsa_status_t err; 746 747 // this is per device id init 748 DP("Initialize the device id: %d\n", device_id); 749 750 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 751 752 // Get number of Compute Unit 753 uint32_t compute_units = 0; 754 err = hsa_agent_get_info( 755 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 756 &compute_units); 757 if (err != HSA_STATUS_SUCCESS) { 758 DeviceInfo.ComputeUnits[device_id] = 1; 759 DP("Error getting compute units : settiing to 1\n"); 760 } else { 761 DeviceInfo.ComputeUnits[device_id] = compute_units; 762 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 763 } 764 765 char GetInfoName[64]; // 64 max size returned by get info 766 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 767 (void *)GetInfoName); 768 if (err) 769 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 770 else { 771 DeviceInfo.GPUName[device_id] = GetInfoName; 772 } 773 774 if (print_kernel_trace & STARTUP_DETAILS) 775 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 776 DeviceInfo.ComputeUnits[device_id], 777 DeviceInfo.GPUName[device_id].c_str()); 778 779 // Query attributes to determine number of threads/block and blocks/grid. 780 uint16_t workgroup_max_dim[3]; 781 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 782 &workgroup_max_dim); 783 if (err != HSA_STATUS_SUCCESS) { 784 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 785 DP("Error getting grid dims: num groups : %d\n", 786 RTLDeviceInfoTy::DefaultNumTeams); 787 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 788 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 789 DP("Using %d ROCm blocks per grid\n", 790 DeviceInfo.GroupsPerDevice[device_id]); 791 } else { 792 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 793 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 794 "at the hard limit\n", 795 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 796 } 797 798 // Get thread limit 799 hsa_dim3_t grid_max_dim; 800 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 801 if (err == HSA_STATUS_SUCCESS) { 802 DeviceInfo.ThreadsPerGroup[device_id] = 803 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 804 DeviceInfo.GroupsPerDevice[device_id]; 805 806 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 807 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 808 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 809 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 810 RTLDeviceInfoTy::Max_WG_Size)) { 811 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 812 } else { 813 DP("Using ROCm Queried thread limit: %d\n", 814 DeviceInfo.ThreadsPerGroup[device_id]); 815 } 816 } else { 817 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 818 DP("Error getting max block dimension, use default:%d \n", 819 RTLDeviceInfoTy::Max_WG_Size); 820 } 821 822 // Get wavefront size 823 uint32_t wavefront_size = 0; 824 err = 825 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 826 if (err == HSA_STATUS_SUCCESS) { 827 DP("Queried wavefront size: %d\n", wavefront_size); 828 DeviceInfo.WarpSize[device_id] = wavefront_size; 829 } else { 830 DP("Default wavefront size: %d\n", 831 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 832 DeviceInfo.WarpSize[device_id] = 833 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 834 } 835 836 // Adjust teams to the env variables 837 838 if (DeviceInfo.EnvTeamLimit > 0 && 839 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 840 DeviceInfo.EnvTeamLimit))) { 841 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 842 DeviceInfo.EnvTeamLimit); 843 } 844 845 // Set default number of teams 846 if (DeviceInfo.EnvNumTeams > 0) { 847 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 848 DP("Default number of teams set according to environment %d\n", 849 DeviceInfo.EnvNumTeams); 850 } else { 851 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 852 int TeamsPerCU = 1; // default number of teams per CU is 1 853 if (TeamsPerCUEnvStr) { 854 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 855 } 856 857 DeviceInfo.NumTeams[device_id] = 858 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 859 DP("Default number of teams = %d * number of compute units %d\n", 860 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 861 } 862 863 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 864 DeviceInfo.GroupsPerDevice[device_id])) { 865 DP("Default number of teams exceeds device limit, capping at %d\n", 866 DeviceInfo.GroupsPerDevice[device_id]); 867 } 868 869 // Set default number of threads 870 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 871 DP("Default number of threads set according to library's default %d\n", 872 RTLDeviceInfoTy::Default_WG_Size); 873 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 874 DeviceInfo.ThreadsPerGroup[device_id])) { 875 DP("Default number of threads exceeds device limit, capping at %d\n", 876 DeviceInfo.ThreadsPerGroup[device_id]); 877 } 878 879 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 880 device_id, DeviceInfo.GroupsPerDevice[device_id], 881 DeviceInfo.ThreadsPerGroup[device_id]); 882 883 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 884 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 885 DeviceInfo.GroupsPerDevice[device_id], 886 DeviceInfo.GroupsPerDevice[device_id] * 887 DeviceInfo.ThreadsPerGroup[device_id]); 888 889 return OFFLOAD_SUCCESS; 890 } 891 892 namespace { 893 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 894 size_t N; 895 int rc = elf_getshdrnum(elf, &N); 896 if (rc != 0) { 897 return nullptr; 898 } 899 900 Elf64_Shdr *result = nullptr; 901 for (size_t i = 0; i < N; i++) { 902 Elf_Scn *scn = elf_getscn(elf, i); 903 if (scn) { 904 Elf64_Shdr *shdr = elf64_getshdr(scn); 905 if (shdr) { 906 if (shdr->sh_type == SHT_HASH) { 907 if (result == nullptr) { 908 result = shdr; 909 } else { 910 // multiple SHT_HASH sections not handled 911 return nullptr; 912 } 913 } 914 } 915 } 916 } 917 return result; 918 } 919 920 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 921 const char *symname) { 922 923 assert(section_hash); 924 size_t section_symtab_index = section_hash->sh_link; 925 Elf64_Shdr *section_symtab = 926 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 927 size_t section_strtab_index = section_symtab->sh_link; 928 929 const Elf64_Sym *symtab = 930 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 931 932 const uint32_t *hashtab = 933 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 934 935 // Layout: 936 // nbucket 937 // nchain 938 // bucket[nbucket] 939 // chain[nchain] 940 uint32_t nbucket = hashtab[0]; 941 const uint32_t *bucket = &hashtab[2]; 942 const uint32_t *chain = &hashtab[nbucket + 2]; 943 944 const size_t max = strlen(symname) + 1; 945 const uint32_t hash = elf_hash(symname); 946 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 947 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 948 if (strncmp(symname, n, max) == 0) { 949 return &symtab[i]; 950 } 951 } 952 953 return nullptr; 954 } 955 956 typedef struct { 957 void *addr = nullptr; 958 uint32_t size = UINT32_MAX; 959 uint32_t sh_type = SHT_NULL; 960 } symbol_info; 961 962 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 963 symbol_info *res) { 964 if (elf_kind(elf) != ELF_K_ELF) { 965 return 1; 966 } 967 968 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 969 if (!section_hash) { 970 return 1; 971 } 972 973 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 974 if (!sym) { 975 return 1; 976 } 977 978 if (sym->st_size > UINT32_MAX) { 979 return 1; 980 } 981 982 if (sym->st_shndx == SHN_UNDEF) { 983 return 1; 984 } 985 986 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 987 if (!section) { 988 return 1; 989 } 990 991 Elf64_Shdr *header = elf64_getshdr(section); 992 if (!header) { 993 return 1; 994 } 995 996 res->addr = sym->st_value + base; 997 res->size = static_cast<uint32_t>(sym->st_size); 998 res->sh_type = header->sh_type; 999 return 0; 1000 } 1001 1002 int get_symbol_info_without_loading(char *base, size_t img_size, 1003 const char *symname, symbol_info *res) { 1004 Elf *elf = elf_memory(base, img_size); 1005 if (elf) { 1006 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1007 elf_end(elf); 1008 return rc; 1009 } 1010 return 1; 1011 } 1012 1013 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1014 const char *symname, void **var_addr, 1015 uint32_t *var_size) { 1016 symbol_info si; 1017 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1018 if (rc == 0) { 1019 *var_addr = si.addr; 1020 *var_size = si.size; 1021 return HSA_STATUS_SUCCESS; 1022 } else { 1023 return HSA_STATUS_ERROR; 1024 } 1025 } 1026 1027 template <typename C> 1028 hsa_status_t module_register_from_memory_to_place( 1029 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1030 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1031 void *module_bytes, size_t module_size, atmi_place_t place, C cb, 1032 std::vector<hsa_executable_t> &HSAExecutables) { 1033 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1034 C *unwrapped = static_cast<C *>(cb_state); 1035 return (*unwrapped)(data, size); 1036 }; 1037 return core::RegisterModuleFromMemory( 1038 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, place, L, 1039 static_cast<void *>(&cb), HSAExecutables); 1040 } 1041 } // namespace 1042 1043 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1044 uint64_t device_State_bytes = 0; 1045 { 1046 // If this is the deviceRTL, get the state variable size 1047 symbol_info size_si; 1048 int rc = get_symbol_info_without_loading( 1049 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1050 1051 if (rc == 0) { 1052 if (size_si.size != sizeof(uint64_t)) { 1053 DP("Found device_State_size variable with wrong size\n"); 1054 return 0; 1055 } 1056 1057 // Read number of bytes directly from the elf 1058 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1059 } 1060 } 1061 return device_State_bytes; 1062 } 1063 1064 static __tgt_target_table * 1065 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1066 1067 static __tgt_target_table * 1068 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1069 1070 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1071 __tgt_device_image *image) { 1072 DeviceInfo.load_run_lock.lock(); 1073 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1074 DeviceInfo.load_run_lock.unlock(); 1075 return res; 1076 } 1077 1078 struct device_environment { 1079 // initialise an omptarget_device_environmentTy in the deviceRTL 1080 // patches around differences in the deviceRTL between trunk, aomp, 1081 // rocmcc. Over time these differences will tend to zero and this class 1082 // simplified. 1083 // Symbol may be in .data or .bss, and may be missing fields: 1084 // - aomp has debug_level, num_devices, device_num 1085 // - trunk has debug_level 1086 // - under review in trunk is debug_level, device_num 1087 // - rocmcc matches aomp, patch to swap num_devices and device_num 1088 1089 // The symbol may also have been deadstripped because the device side 1090 // accessors were unused. 1091 1092 // If the symbol is in .data (aomp, rocm) it can be written directly. 1093 // If it is in .bss, we must wait for it to be allocated space on the 1094 // gpu (trunk) and initialize after loading. 1095 const char *sym() { return "omptarget_device_environment"; } 1096 1097 omptarget_device_environmentTy host_device_env; 1098 symbol_info si; 1099 bool valid = false; 1100 1101 __tgt_device_image *image; 1102 const size_t img_size; 1103 1104 device_environment(int device_id, int number_devices, 1105 __tgt_device_image *image, const size_t img_size) 1106 : image(image), img_size(img_size) { 1107 1108 host_device_env.num_devices = number_devices; 1109 host_device_env.device_num = device_id; 1110 host_device_env.debug_level = 0; 1111 #ifdef OMPTARGET_DEBUG 1112 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1113 host_device_env.debug_level = std::stoi(envStr); 1114 } 1115 #endif 1116 1117 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1118 img_size, sym(), &si); 1119 if (rc != 0) { 1120 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1121 return; 1122 } 1123 1124 if (si.size > sizeof(host_device_env)) { 1125 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1126 sizeof(host_device_env)); 1127 return; 1128 } 1129 1130 valid = true; 1131 } 1132 1133 bool in_image() { return si.sh_type != SHT_NOBITS; } 1134 1135 hsa_status_t before_loading(void *data, size_t size) { 1136 if (valid) { 1137 if (in_image()) { 1138 DP("Setting global device environment before load (%u bytes)\n", 1139 si.size); 1140 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1141 void *pos = (char *)data + offset; 1142 memcpy(pos, &host_device_env, si.size); 1143 } 1144 } 1145 return HSA_STATUS_SUCCESS; 1146 } 1147 1148 hsa_status_t after_loading() { 1149 if (valid) { 1150 if (!in_image()) { 1151 DP("Setting global device environment after load (%u bytes)\n", 1152 si.size); 1153 int device_id = host_device_env.device_num; 1154 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1155 void *state_ptr; 1156 uint32_t state_ptr_size; 1157 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1158 SymbolInfo, get_gpu_mem_place(device_id), sym(), &state_ptr, 1159 &state_ptr_size); 1160 if (err != HSA_STATUS_SUCCESS) { 1161 DP("failed to find %s in loaded image\n", sym()); 1162 return err; 1163 } 1164 1165 if (state_ptr_size != si.size) { 1166 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1167 si.size); 1168 return HSA_STATUS_ERROR; 1169 } 1170 1171 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1172 state_ptr_size, device_id); 1173 } 1174 } 1175 return HSA_STATUS_SUCCESS; 1176 } 1177 }; 1178 1179 static hsa_status_t atmi_calloc(void **ret_ptr, size_t size, 1180 atmi_mem_place_t place) { 1181 uint64_t rounded = 4 * ((size + 3) / 4); 1182 void *ptr; 1183 hsa_status_t err = atmi_malloc(&ptr, rounded, place); 1184 if (err != HSA_STATUS_SUCCESS) { 1185 return err; 1186 } 1187 1188 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1189 if (rc != HSA_STATUS_SUCCESS) { 1190 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1191 atmi_free(ptr); 1192 return HSA_STATUS_ERROR; 1193 } 1194 1195 *ret_ptr = ptr; 1196 return HSA_STATUS_SUCCESS; 1197 } 1198 1199 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1200 symbol_info si; 1201 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1202 return (rc == 0) && (si.addr != nullptr); 1203 } 1204 1205 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1206 __tgt_device_image *image) { 1207 // This function loads the device image onto gpu[device_id] and does other 1208 // per-image initialization work. Specifically: 1209 // 1210 // - Initialize an omptarget_device_environmentTy instance embedded in the 1211 // image at the symbol "omptarget_device_environment" 1212 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1213 // 1214 // - Allocate a large array per-gpu (could be moved to init_device) 1215 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1216 // - Allocate at least that many bytes of gpu memory 1217 // - Zero initialize it 1218 // - Write the pointer to the symbol omptarget_nvptx_device_State 1219 // 1220 // - Pulls some per-kernel information together from various sources and 1221 // records it in the KernelsList for quicker access later 1222 // 1223 // The initialization can be done before or after loading the image onto the 1224 // gpu. This function presently does a mixture. Using the hsa api to get/set 1225 // the information is simpler to implement, in exchange for more complicated 1226 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1227 // back from the gpu vs a hashtable lookup on the host. 1228 1229 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1230 1231 DeviceInfo.clearOffloadEntriesTable(device_id); 1232 1233 // We do not need to set the ELF version because the caller of this function 1234 // had to do that to decide the right runtime to use 1235 1236 if (!elf_machine_id_is_amdgcn(image)) { 1237 return NULL; 1238 } 1239 1240 { 1241 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1242 img_size); 1243 1244 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1245 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1246 hsa_status_t err = module_register_from_memory_to_place( 1247 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, 1248 get_gpu_place(device_id), 1249 [&](void *data, size_t size) { 1250 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1251 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1252 __ATOMIC_RELEASE); 1253 } 1254 return env.before_loading(data, size); 1255 }, 1256 DeviceInfo.HSAExecutables); 1257 1258 check("Module registering", err); 1259 if (err != HSA_STATUS_SUCCESS) { 1260 fprintf(stderr, 1261 "Possible gpu arch mismatch: device:%s, image:%s please check" 1262 " compiler flag: -march=<gpu>\n", 1263 DeviceInfo.GPUName[device_id].c_str(), 1264 get_elf_mach_gfx_name(elf_e_flags(image))); 1265 return NULL; 1266 } 1267 1268 err = env.after_loading(); 1269 if (err != HSA_STATUS_SUCCESS) { 1270 return NULL; 1271 } 1272 } 1273 1274 DP("ATMI module successfully loaded!\n"); 1275 1276 { 1277 // the device_State array is either large value in bss or a void* that 1278 // needs to be assigned to a pointer to an array of size device_state_bytes 1279 // If absent, it has been deadstripped and needs no setup. 1280 1281 void *state_ptr; 1282 uint32_t state_ptr_size; 1283 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1284 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1285 SymbolInfoMap, get_gpu_mem_place(device_id), 1286 "omptarget_nvptx_device_State", &state_ptr, &state_ptr_size); 1287 1288 if (err != HSA_STATUS_SUCCESS) { 1289 DP("No device_state symbol found, skipping initialization\n"); 1290 } else { 1291 if (state_ptr_size < sizeof(void *)) { 1292 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1293 sizeof(void *)); 1294 return NULL; 1295 } 1296 1297 // if it's larger than a void*, assume it's a bss array and no further 1298 // initialization is required. Only try to set up a pointer for 1299 // sizeof(void*) 1300 if (state_ptr_size == sizeof(void *)) { 1301 uint64_t device_State_bytes = 1302 get_device_State_bytes((char *)image->ImageStart, img_size); 1303 if (device_State_bytes == 0) { 1304 DP("Can't initialize device_State, missing size information\n"); 1305 return NULL; 1306 } 1307 1308 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1309 if (dss.first.get() == nullptr) { 1310 assert(dss.second == 0); 1311 void *ptr = NULL; 1312 hsa_status_t err = atmi_calloc(&ptr, device_State_bytes, 1313 get_gpu_mem_place(device_id)); 1314 if (err != HSA_STATUS_SUCCESS) { 1315 DP("Failed to allocate device_state array\n"); 1316 return NULL; 1317 } 1318 dss = { 1319 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1320 device_State_bytes, 1321 }; 1322 } 1323 1324 void *ptr = dss.first.get(); 1325 if (device_State_bytes != dss.second) { 1326 DP("Inconsistent sizes of device_State unsupported\n"); 1327 return NULL; 1328 } 1329 1330 // write ptr to device memory so it can be used by later kernels 1331 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1332 sizeof(void *), device_id); 1333 if (err != HSA_STATUS_SUCCESS) { 1334 DP("memcpy install of state_ptr failed\n"); 1335 return NULL; 1336 } 1337 } 1338 } 1339 } 1340 1341 // Here, we take advantage of the data that is appended after img_end to get 1342 // the symbols' name we need to load. This data consist of the host entries 1343 // begin and end as well as the target name (see the offloading linker script 1344 // creation in clang compiler). 1345 1346 // Find the symbols in the module by name. The name can be obtain by 1347 // concatenating the host entry name with the target name 1348 1349 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1350 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1351 1352 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1353 1354 if (!e->addr) { 1355 // The host should have always something in the address to 1356 // uniquely identify the target region. 1357 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1358 (unsigned long long)e->size); 1359 return NULL; 1360 } 1361 1362 if (e->size) { 1363 __tgt_offload_entry entry = *e; 1364 1365 void *varptr; 1366 uint32_t varsize; 1367 1368 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1369 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1370 SymbolInfoMap, get_gpu_mem_place(device_id), e->name, &varptr, 1371 &varsize); 1372 1373 if (err != HSA_STATUS_SUCCESS) { 1374 // Inform the user what symbol prevented offloading 1375 DP("Loading global '%s' (Failed)\n", e->name); 1376 return NULL; 1377 } 1378 1379 if (varsize != e->size) { 1380 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1381 varsize, e->size); 1382 return NULL; 1383 } 1384 1385 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1386 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1387 entry.addr = (void *)varptr; 1388 1389 DeviceInfo.addOffloadEntry(device_id, entry); 1390 1391 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1392 e->flags & OMP_DECLARE_TARGET_LINK) { 1393 // If unified memory is present any target link variables 1394 // can access host addresses directly. There is no longer a 1395 // need for device copies. 1396 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1397 sizeof(void *), device_id); 1398 if (err != HSA_STATUS_SUCCESS) 1399 DP("Error when copying USM\n"); 1400 DP("Copy linked variable host address (" DPxMOD ")" 1401 "to device address (" DPxMOD ")\n", 1402 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1403 } 1404 1405 continue; 1406 } 1407 1408 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1409 1410 atmi_mem_place_t place = get_gpu_mem_place(device_id); 1411 uint32_t kernarg_segment_size; 1412 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1413 hsa_status_t err = atmi_interop_hsa_get_kernel_info( 1414 KernelInfoMap, place, e->name, 1415 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1416 &kernarg_segment_size); 1417 1418 // each arg is a void * in this openmp implementation 1419 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1420 std::vector<size_t> arg_sizes(arg_num); 1421 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1422 it != arg_sizes.end(); it++) { 1423 *it = sizeof(void *); 1424 } 1425 1426 // default value GENERIC (in case symbol is missing from cubin file) 1427 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1428 1429 // get flat group size if present, else Default_WG_Size 1430 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1431 1432 // get Kernel Descriptor if present. 1433 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1434 struct KernDescValType { 1435 uint16_t Version; 1436 uint16_t TSize; 1437 uint16_t WG_Size; 1438 uint8_t Mode; 1439 }; 1440 struct KernDescValType KernDescVal; 1441 std::string KernDescNameStr(e->name); 1442 KernDescNameStr += "_kern_desc"; 1443 const char *KernDescName = KernDescNameStr.c_str(); 1444 1445 void *KernDescPtr; 1446 uint32_t KernDescSize; 1447 void *CallStackAddr = nullptr; 1448 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1449 KernDescName, &KernDescPtr, &KernDescSize); 1450 1451 if (err == HSA_STATUS_SUCCESS) { 1452 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1453 DP("Loading global computation properties '%s' - size mismatch (%u != " 1454 "%lu)\n", 1455 KernDescName, KernDescSize, sizeof(KernDescVal)); 1456 1457 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1458 1459 // Check structure size against recorded size. 1460 if ((size_t)KernDescSize != KernDescVal.TSize) 1461 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1462 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1463 1464 DP("After loading global for %s KernDesc \n", KernDescName); 1465 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1466 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1467 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1468 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1469 1470 // Get ExecMode 1471 ExecModeVal = KernDescVal.Mode; 1472 DP("ExecModeVal %d\n", ExecModeVal); 1473 if (KernDescVal.WG_Size == 0) { 1474 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1475 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1476 } 1477 WGSizeVal = KernDescVal.WG_Size; 1478 DP("WGSizeVal %d\n", WGSizeVal); 1479 check("Loading KernDesc computation property", err); 1480 } else { 1481 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1482 1483 // Generic 1484 std::string ExecModeNameStr(e->name); 1485 ExecModeNameStr += "_exec_mode"; 1486 const char *ExecModeName = ExecModeNameStr.c_str(); 1487 1488 void *ExecModePtr; 1489 uint32_t varsize; 1490 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1491 ExecModeName, &ExecModePtr, &varsize); 1492 1493 if (err == HSA_STATUS_SUCCESS) { 1494 if ((size_t)varsize != sizeof(int8_t)) { 1495 DP("Loading global computation properties '%s' - size mismatch(%u != " 1496 "%lu)\n", 1497 ExecModeName, varsize, sizeof(int8_t)); 1498 return NULL; 1499 } 1500 1501 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1502 1503 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1504 ExecModeVal); 1505 1506 if (ExecModeVal < 0 || ExecModeVal > 1) { 1507 DP("Error wrong exec_mode value specified in HSA code object file: " 1508 "%d\n", 1509 ExecModeVal); 1510 return NULL; 1511 } 1512 } else { 1513 DP("Loading global exec_mode '%s' - symbol missing, using default " 1514 "value " 1515 "GENERIC (1)\n", 1516 ExecModeName); 1517 } 1518 check("Loading computation property", err); 1519 1520 // Flat group size 1521 std::string WGSizeNameStr(e->name); 1522 WGSizeNameStr += "_wg_size"; 1523 const char *WGSizeName = WGSizeNameStr.c_str(); 1524 1525 void *WGSizePtr; 1526 uint32_t WGSize; 1527 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1528 WGSizeName, &WGSizePtr, &WGSize); 1529 1530 if (err == HSA_STATUS_SUCCESS) { 1531 if ((size_t)WGSize != sizeof(int16_t)) { 1532 DP("Loading global computation properties '%s' - size mismatch (%u " 1533 "!= " 1534 "%lu)\n", 1535 WGSizeName, WGSize, sizeof(int16_t)); 1536 return NULL; 1537 } 1538 1539 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1540 1541 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1542 1543 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1544 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1545 DP("Error wrong WGSize value specified in HSA code object file: " 1546 "%d\n", 1547 WGSizeVal); 1548 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1549 } 1550 } else { 1551 DP("Warning: Loading WGSize '%s' - symbol not found, " 1552 "using default value %d\n", 1553 WGSizeName, WGSizeVal); 1554 } 1555 1556 check("Loading WGSize computation property", err); 1557 } 1558 1559 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1560 CallStackAddr, e->name, 1561 kernarg_segment_size)); 1562 __tgt_offload_entry entry = *e; 1563 entry.addr = (void *)&KernelsList.back(); 1564 DeviceInfo.addOffloadEntry(device_id, entry); 1565 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1566 } 1567 1568 return DeviceInfo.getOffloadEntriesTable(device_id); 1569 } 1570 1571 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1572 void *ptr = NULL; 1573 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1574 1575 if (kind != TARGET_ALLOC_DEFAULT) { 1576 REPORT("Invalid target data allocation kind or requested allocator not " 1577 "implemented yet\n"); 1578 return NULL; 1579 } 1580 1581 hsa_status_t err = atmi_malloc(&ptr, size, get_gpu_mem_place(device_id)); 1582 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1583 (long long unsigned)(Elf64_Addr)ptr); 1584 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1585 return ptr; 1586 } 1587 1588 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1589 int64_t size) { 1590 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1591 __tgt_async_info AsyncInfo; 1592 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1593 if (rc != OFFLOAD_SUCCESS) 1594 return OFFLOAD_FAIL; 1595 1596 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1597 } 1598 1599 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1600 int64_t size, __tgt_async_info *AsyncInfo) { 1601 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1602 if (AsyncInfo) { 1603 initAsyncInfo(AsyncInfo); 1604 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1605 } else { 1606 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1607 } 1608 } 1609 1610 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1611 int64_t size) { 1612 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1613 __tgt_async_info AsyncInfo; 1614 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1615 if (rc != OFFLOAD_SUCCESS) 1616 return OFFLOAD_FAIL; 1617 1618 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1619 } 1620 1621 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1622 void *tgt_ptr, int64_t size, 1623 __tgt_async_info *AsyncInfo) { 1624 assert(AsyncInfo && "AsyncInfo is nullptr"); 1625 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1626 initAsyncInfo(AsyncInfo); 1627 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1628 } 1629 1630 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1631 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1632 hsa_status_t err; 1633 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1634 err = atmi_free(tgt_ptr); 1635 if (err != HSA_STATUS_SUCCESS) { 1636 DP("Error when freeing CUDA memory\n"); 1637 return OFFLOAD_FAIL; 1638 } 1639 return OFFLOAD_SUCCESS; 1640 } 1641 1642 // Determine launch values for threadsPerGroup and num_groups. 1643 // Outputs: treadsPerGroup, num_groups 1644 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1645 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1646 // loop_tripcount. 1647 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1648 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1649 int num_teams, int thread_limit, uint64_t loop_tripcount, 1650 int32_t device_id) { 1651 1652 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1653 ? DeviceInfo.EnvMaxTeamsDefault 1654 : DeviceInfo.NumTeams[device_id]; 1655 if (Max_Teams > DeviceInfo.HardTeamLimit) 1656 Max_Teams = DeviceInfo.HardTeamLimit; 1657 1658 if (print_kernel_trace & STARTUP_DETAILS) { 1659 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1660 RTLDeviceInfoTy::Max_Teams); 1661 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1662 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1663 RTLDeviceInfoTy::Warp_Size); 1664 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1665 RTLDeviceInfoTy::Max_WG_Size); 1666 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1667 RTLDeviceInfoTy::Default_WG_Size); 1668 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1669 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1670 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1671 } 1672 // check for thread_limit() clause 1673 if (thread_limit > 0) { 1674 threadsPerGroup = thread_limit; 1675 DP("Setting threads per block to requested %d\n", thread_limit); 1676 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1677 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1678 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1679 } 1680 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1681 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1682 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1683 } 1684 } 1685 // check flat_max_work_group_size attr here 1686 if (threadsPerGroup > ConstWGSize) { 1687 threadsPerGroup = ConstWGSize; 1688 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1689 threadsPerGroup); 1690 } 1691 if (print_kernel_trace & STARTUP_DETAILS) 1692 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1693 DP("Preparing %d threads\n", threadsPerGroup); 1694 1695 // Set default num_groups (teams) 1696 if (DeviceInfo.EnvTeamLimit > 0) 1697 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1698 ? Max_Teams 1699 : DeviceInfo.EnvTeamLimit; 1700 else 1701 num_groups = Max_Teams; 1702 DP("Set default num of groups %d\n", num_groups); 1703 1704 if (print_kernel_trace & STARTUP_DETAILS) { 1705 fprintf(stderr, "num_groups: %d\n", num_groups); 1706 fprintf(stderr, "num_teams: %d\n", num_teams); 1707 } 1708 1709 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1710 // This reduction is typical for default case (no thread_limit clause). 1711 // or when user goes crazy with num_teams clause. 1712 // FIXME: We cant distinguish between a constant or variable thread limit. 1713 // So we only handle constant thread_limits. 1714 if (threadsPerGroup > 1715 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1716 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1717 // here? 1718 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1719 1720 // check for num_teams() clause 1721 if (num_teams > 0) { 1722 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1723 } 1724 if (print_kernel_trace & STARTUP_DETAILS) { 1725 fprintf(stderr, "num_groups: %d\n", num_groups); 1726 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1727 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1728 } 1729 1730 if (DeviceInfo.EnvNumTeams > 0) { 1731 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1732 : num_groups; 1733 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1734 } else if (DeviceInfo.EnvTeamLimit > 0) { 1735 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1736 ? DeviceInfo.EnvTeamLimit 1737 : num_groups; 1738 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1739 } else { 1740 if (num_teams <= 0) { 1741 if (loop_tripcount > 0) { 1742 if (ExecutionMode == SPMD) { 1743 // round up to the nearest integer 1744 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1745 } else { 1746 num_groups = loop_tripcount; 1747 } 1748 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1749 "threads per block %d\n", 1750 num_groups, loop_tripcount, threadsPerGroup); 1751 } 1752 } else { 1753 num_groups = num_teams; 1754 } 1755 if (num_groups > Max_Teams) { 1756 num_groups = Max_Teams; 1757 if (print_kernel_trace & STARTUP_DETAILS) 1758 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1759 Max_Teams); 1760 } 1761 if (num_groups > num_teams && num_teams > 0) { 1762 num_groups = num_teams; 1763 if (print_kernel_trace & STARTUP_DETAILS) 1764 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1765 num_groups, num_teams); 1766 } 1767 } 1768 1769 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1770 if (num_teams > 0) { 1771 num_groups = num_teams; 1772 // Cap num_groups to EnvMaxTeamsDefault if set. 1773 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1774 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1775 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1776 } 1777 if (print_kernel_trace & STARTUP_DETAILS) { 1778 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1779 fprintf(stderr, "num_groups: %d\n", num_groups); 1780 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1781 } 1782 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1783 threadsPerGroup); 1784 } 1785 1786 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1787 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1788 bool full = true; 1789 while (full) { 1790 full = 1791 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1792 } 1793 return packet_id; 1794 } 1795 1796 static int32_t __tgt_rtl_run_target_team_region_locked( 1797 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1798 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1799 int32_t thread_limit, uint64_t loop_tripcount); 1800 1801 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1802 void **tgt_args, 1803 ptrdiff_t *tgt_offsets, 1804 int32_t arg_num, int32_t num_teams, 1805 int32_t thread_limit, 1806 uint64_t loop_tripcount) { 1807 1808 DeviceInfo.load_run_lock.lock_shared(); 1809 int32_t res = __tgt_rtl_run_target_team_region_locked( 1810 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1811 thread_limit, loop_tripcount); 1812 1813 DeviceInfo.load_run_lock.unlock_shared(); 1814 return res; 1815 } 1816 1817 int32_t __tgt_rtl_run_target_team_region_locked( 1818 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1819 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1820 int32_t thread_limit, uint64_t loop_tripcount) { 1821 // Set the context we are using 1822 // update thread limit content in gpu memory if un-initialized or specified 1823 // from host 1824 1825 DP("Run target team region thread_limit %d\n", thread_limit); 1826 1827 // All args are references. 1828 std::vector<void *> args(arg_num); 1829 std::vector<void *> ptrs(arg_num); 1830 1831 DP("Arg_num: %d\n", arg_num); 1832 for (int32_t i = 0; i < arg_num; ++i) { 1833 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1834 args[i] = &ptrs[i]; 1835 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1836 } 1837 1838 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1839 1840 std::string kernel_name = std::string(KernelInfo->Name); 1841 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 1842 if (KernelInfoTable[device_id].find(kernel_name) == 1843 KernelInfoTable[device_id].end()) { 1844 DP("Kernel %s not found\n", kernel_name.c_str()); 1845 return OFFLOAD_FAIL; 1846 } 1847 1848 const atl_kernel_info_t KernelInfoEntry = 1849 KernelInfoTable[device_id][kernel_name]; 1850 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 1851 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 1852 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 1853 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 1854 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 1855 1856 assert(arg_num == (int)KernelInfoEntry.num_args); 1857 1858 /* 1859 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1860 */ 1861 int num_groups = 0; 1862 1863 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1864 1865 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1866 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1867 DeviceInfo.EnvNumTeams, 1868 num_teams, // From run_region arg 1869 thread_limit, // From run_region arg 1870 loop_tripcount, // From run_region arg 1871 KernelInfo->device_id); 1872 1873 if (print_kernel_trace >= LAUNCH) { 1874 // enum modes are SPMD, GENERIC, NONE 0,1,2 1875 // if doing rtl timing, print to stderr, unless stdout requested. 1876 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1877 fprintf(traceToStdout ? stdout : stderr, 1878 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1879 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 1880 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 1881 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1882 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1883 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 1884 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 1885 } 1886 1887 // Run on the device. 1888 { 1889 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1890 if (!queue) { 1891 return OFFLOAD_FAIL; 1892 } 1893 uint64_t packet_id = acquire_available_packet_id(queue); 1894 1895 const uint32_t mask = queue->size - 1; // size is a power of 2 1896 hsa_kernel_dispatch_packet_t *packet = 1897 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1898 (packet_id & mask); 1899 1900 // packet->header is written last 1901 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1902 packet->workgroup_size_x = threadsPerGroup; 1903 packet->workgroup_size_y = 1; 1904 packet->workgroup_size_z = 1; 1905 packet->reserved0 = 0; 1906 packet->grid_size_x = num_groups * threadsPerGroup; 1907 packet->grid_size_y = 1; 1908 packet->grid_size_z = 1; 1909 packet->private_segment_size = KernelInfoEntry.private_segment_size; 1910 packet->group_segment_size = KernelInfoEntry.group_segment_size; 1911 packet->kernel_object = KernelInfoEntry.kernel_object; 1912 packet->kernarg_address = 0; // use the block allocator 1913 packet->reserved2 = 0; // atmi writes id_ here 1914 packet->completion_signal = {0}; // may want a pool of signals 1915 1916 KernelArgPool *ArgPool = nullptr; 1917 { 1918 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1919 if (it != KernelArgPoolMap.end()) { 1920 ArgPool = (it->second).get(); 1921 } 1922 } 1923 if (!ArgPool) { 1924 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 1925 device_id); 1926 } 1927 { 1928 void *kernarg = nullptr; 1929 if (ArgPool) { 1930 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1931 kernarg = ArgPool->allocate(arg_num); 1932 } 1933 if (!kernarg) { 1934 DP("Allocate kernarg failed\n"); 1935 return OFFLOAD_FAIL; 1936 } 1937 1938 // Copy explicit arguments 1939 for (int i = 0; i < arg_num; i++) { 1940 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1941 } 1942 1943 // Initialize implicit arguments. ATMI seems to leave most fields 1944 // uninitialized 1945 atmi_implicit_args_t *impl_args = 1946 reinterpret_cast<atmi_implicit_args_t *>( 1947 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1948 memset(impl_args, 0, 1949 sizeof(atmi_implicit_args_t)); // may not be necessary 1950 impl_args->offset_x = 0; 1951 impl_args->offset_y = 0; 1952 impl_args->offset_z = 0; 1953 1954 // assign a hostcall buffer for the selected Q 1955 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 1956 // hostrpc_assign_buffer is not thread safe, and this function is 1957 // under a multiple reader lock, not a writer lock. 1958 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 1959 pthread_mutex_lock(&hostcall_init_lock); 1960 impl_args->hostcall_ptr = hostrpc_assign_buffer( 1961 DeviceInfo.HSAAgents[device_id], queue, device_id); 1962 pthread_mutex_unlock(&hostcall_init_lock); 1963 if (!impl_args->hostcall_ptr) { 1964 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 1965 "error\n"); 1966 return OFFLOAD_FAIL; 1967 } 1968 } 1969 1970 packet->kernarg_address = kernarg; 1971 } 1972 1973 { 1974 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1975 if (s.handle == 0) { 1976 DP("Failed to get signal instance\n"); 1977 return OFFLOAD_FAIL; 1978 } 1979 packet->completion_signal = s; 1980 hsa_signal_store_relaxed(packet->completion_signal, 1); 1981 } 1982 1983 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 1984 core::create_header(), packet->setup); 1985 1986 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1987 1988 while (hsa_signal_wait_scacquire(packet->completion_signal, 1989 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1990 HSA_WAIT_STATE_BLOCKED) != 0) 1991 ; 1992 1993 assert(ArgPool); 1994 ArgPool->deallocate(packet->kernarg_address); 1995 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 1996 } 1997 1998 DP("Kernel completed\n"); 1999 return OFFLOAD_SUCCESS; 2000 } 2001 2002 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2003 void **tgt_args, ptrdiff_t *tgt_offsets, 2004 int32_t arg_num) { 2005 // use one team and one thread 2006 // fix thread num 2007 int32_t team_num = 1; 2008 int32_t thread_limit = 0; // use default 2009 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2010 tgt_offsets, arg_num, team_num, 2011 thread_limit, 0); 2012 } 2013 2014 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2015 void *tgt_entry_ptr, void **tgt_args, 2016 ptrdiff_t *tgt_offsets, 2017 int32_t arg_num, 2018 __tgt_async_info *AsyncInfo) { 2019 assert(AsyncInfo && "AsyncInfo is nullptr"); 2020 initAsyncInfo(AsyncInfo); 2021 2022 // use one team and one thread 2023 // fix thread num 2024 int32_t team_num = 1; 2025 int32_t thread_limit = 0; // use default 2026 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2027 tgt_offsets, arg_num, team_num, 2028 thread_limit, 0); 2029 } 2030 2031 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2032 assert(AsyncInfo && "AsyncInfo is nullptr"); 2033 2034 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2035 // is not ensured by devices.cpp for amdgcn 2036 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2037 if (AsyncInfo->Queue) { 2038 finiAsyncInfo(AsyncInfo); 2039 } 2040 return OFFLOAD_SUCCESS; 2041 } 2042