1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <mutex> 27 #include <shared_mutex> 28 #include <thread> 29 #include <unordered_map> 30 #include <vector> 31 32 // Header from ATMI interface 33 #include "atmi_interop_hsa.h" 34 #include "atmi_runtime.h" 35 36 #include "internal.h" 37 38 #include "Debug.h" 39 #include "get_elf_mach_gfx_name.h" 40 #include "omptargetplugin.h" 41 #include "print_tracing.h" 42 43 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 44 45 #ifndef TARGET_NAME 46 #define TARGET_NAME AMDHSA 47 #endif 48 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 49 50 // hostrpc interface, FIXME: consider moving to its own include these are 51 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 52 // linked as --whole-archive to override the weak symbols that are used to 53 // implement a fallback for toolchains that do not yet have a hostrpc library. 54 extern "C" { 55 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 56 uint32_t device_id); 57 hsa_status_t hostrpc_init(); 58 hsa_status_t hostrpc_terminate(); 59 60 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 61 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 62 return HSA_STATUS_SUCCESS; 63 } 64 __attribute__((weak)) unsigned long 65 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 66 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 67 "missing\n", 68 device_id); 69 return 0; 70 } 71 } 72 73 int print_kernel_trace; 74 75 // Size of the target call stack struture 76 uint32_t TgtStackItemSize = 0; 77 78 #undef check // Drop definition from internal.h 79 #ifdef OMPTARGET_DEBUG 80 #define check(msg, status) \ 81 if (status != ATMI_STATUS_SUCCESS) { \ 82 /* fprintf(stderr, "[%s:%d] %s failed.\n", __FILE__, __LINE__, #msg);*/ \ 83 DP(#msg " failed\n"); \ 84 /*assert(0);*/ \ 85 } else { \ 86 /* fprintf(stderr, "[%s:%d] %s succeeded.\n", __FILE__, __LINE__, #msg); \ 87 */ \ 88 DP(#msg " succeeded\n"); \ 89 } 90 #else 91 #define check(msg, status) \ 92 {} 93 #endif 94 95 #include "elf_common.h" 96 97 /// Keep entries table per device 98 struct FuncOrGblEntryTy { 99 __tgt_target_table Table; 100 std::vector<__tgt_offload_entry> Entries; 101 }; 102 103 enum ExecutionModeType { 104 SPMD, // constructors, destructors, 105 // combined constructs (`teams distribute parallel for [simd]`) 106 GENERIC, // everything else 107 NONE 108 }; 109 110 struct KernelArgPool { 111 private: 112 static pthread_mutex_t mutex; 113 114 public: 115 uint32_t kernarg_segment_size; 116 void *kernarg_region = nullptr; 117 std::queue<int> free_kernarg_segments; 118 119 uint32_t kernarg_size_including_implicit() { 120 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 121 } 122 123 ~KernelArgPool() { 124 if (kernarg_region) { 125 auto r = hsa_amd_memory_pool_free(kernarg_region); 126 assert(r == HSA_STATUS_SUCCESS); 127 ErrorCheck(Memory pool free, r); 128 } 129 } 130 131 // Can't really copy or move a mutex 132 KernelArgPool() = default; 133 KernelArgPool(const KernelArgPool &) = delete; 134 KernelArgPool(KernelArgPool &&) = delete; 135 136 KernelArgPool(uint32_t kernarg_segment_size) 137 : kernarg_segment_size(kernarg_segment_size) { 138 139 // atmi uses one pool per kernel for all gpus, with a fixed upper size 140 // preserving that exact scheme here, including the queue<int> 141 { 142 hsa_status_t err = hsa_amd_memory_pool_allocate( 143 atl_gpu_kernarg_pools[0], 144 kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 145 &kernarg_region); 146 ErrorCheck(Allocating memory for the executable-kernel, err); 147 core::allow_access_to_all_gpu_agents(kernarg_region); 148 149 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 150 free_kernarg_segments.push(i); 151 } 152 } 153 } 154 155 void *allocate(uint64_t arg_num) { 156 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 157 lock l(&mutex); 158 void *res = nullptr; 159 if (!free_kernarg_segments.empty()) { 160 161 int free_idx = free_kernarg_segments.front(); 162 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 163 (free_idx * kernarg_size_including_implicit())); 164 assert(free_idx == pointer_to_index(res)); 165 free_kernarg_segments.pop(); 166 } 167 return res; 168 } 169 170 void deallocate(void *ptr) { 171 lock l(&mutex); 172 int idx = pointer_to_index(ptr); 173 free_kernarg_segments.push(idx); 174 } 175 176 private: 177 int pointer_to_index(void *ptr) { 178 ptrdiff_t bytes = 179 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 180 assert(bytes >= 0); 181 assert(bytes % kernarg_size_including_implicit() == 0); 182 return bytes / kernarg_size_including_implicit(); 183 } 184 struct lock { 185 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 186 ~lock() { pthread_mutex_unlock(m); } 187 pthread_mutex_t *m; 188 }; 189 }; 190 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 191 192 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 193 KernelArgPoolMap; 194 195 /// Use a single entity to encode a kernel and a set of flags 196 struct KernelTy { 197 // execution mode of kernel 198 // 0 - SPMD mode (without master warp) 199 // 1 - Generic mode (with master warp) 200 int8_t ExecutionMode; 201 int16_t ConstWGSize; 202 int32_t device_id; 203 void *CallStackAddr = nullptr; 204 const char *Name; 205 206 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 207 void *_CallStackAddr, const char *_Name, 208 uint32_t _kernarg_segment_size) 209 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 210 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 211 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 212 213 std::string N(_Name); 214 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 215 KernelArgPoolMap.insert( 216 std::make_pair(N, std::unique_ptr<KernelArgPool>( 217 new KernelArgPool(_kernarg_segment_size)))); 218 } 219 } 220 }; 221 222 /// List that contains all the kernels. 223 /// FIXME: we may need this to be per device and per library. 224 std::list<KernelTy> KernelsList; 225 226 // ATMI API to get gpu and gpu memory place 227 static atmi_place_t get_gpu_place(int device_id) { 228 return ATMI_PLACE_GPU(0, device_id); 229 } 230 static atmi_mem_place_t get_gpu_mem_place(int device_id) { 231 return ATMI_MEM_PLACE_GPU_MEM(0, device_id, 0); 232 } 233 234 static std::vector<hsa_agent_t> find_gpu_agents() { 235 std::vector<hsa_agent_t> res; 236 237 hsa_status_t err = hsa_iterate_agents( 238 [](hsa_agent_t agent, void *data) -> hsa_status_t { 239 std::vector<hsa_agent_t> *res = 240 static_cast<std::vector<hsa_agent_t> *>(data); 241 242 hsa_device_type_t device_type; 243 // get_info fails iff HSA runtime not yet initialized 244 hsa_status_t err = 245 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 246 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 247 printf("rtl.cpp: err %d\n", err); 248 assert(err == HSA_STATUS_SUCCESS); 249 250 if (device_type == HSA_DEVICE_TYPE_GPU) { 251 res->push_back(agent); 252 } 253 return HSA_STATUS_SUCCESS; 254 }, 255 &res); 256 257 // iterate_agents fails iff HSA runtime not yet initialized 258 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 259 printf("rtl.cpp: err %d\n", err); 260 assert(err == HSA_STATUS_SUCCESS); 261 return res; 262 } 263 264 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 265 void *data) { 266 if (status != HSA_STATUS_SUCCESS) { 267 const char *status_string; 268 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 269 status_string = "unavailable"; 270 } 271 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 272 __LINE__, source, status, status_string); 273 abort(); 274 } 275 } 276 277 namespace core { 278 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 279 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 280 } 281 282 uint16_t create_header(hsa_packet_type_t type, int barrier, 283 atmi_task_fence_scope_t acq_fence, 284 atmi_task_fence_scope_t rel_fence) { 285 uint16_t header = type << HSA_PACKET_HEADER_TYPE; 286 header |= barrier << HSA_PACKET_HEADER_BARRIER; 287 header |= (hsa_fence_scope_t) static_cast<int>( 288 acq_fence << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE); 289 header |= (hsa_fence_scope_t) static_cast<int>( 290 rel_fence << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE); 291 return header; 292 } 293 } // namespace core 294 295 /// Class containing all the device information 296 class RTLDeviceInfoTy { 297 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 298 299 public: 300 // load binary populates symbol tables and mutates various global state 301 // run uses those symbol tables 302 std::shared_timed_mutex load_run_lock; 303 304 int NumberOfDevices; 305 306 // GPU devices 307 std::vector<hsa_agent_t> HSAAgents; 308 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 309 310 // Device properties 311 std::vector<int> ComputeUnits; 312 std::vector<int> GroupsPerDevice; 313 std::vector<int> ThreadsPerGroup; 314 std::vector<int> WarpSize; 315 std::vector<std::string> GPUName; 316 317 // OpenMP properties 318 std::vector<int> NumTeams; 319 std::vector<int> NumThreads; 320 321 // OpenMP Environment properties 322 int EnvNumTeams; 323 int EnvTeamLimit; 324 int EnvMaxTeamsDefault; 325 326 // OpenMP Requires Flags 327 int64_t RequiresFlags; 328 329 // Resource pools 330 SignalPoolT FreeSignalPool; 331 332 struct atmiFreePtrDeletor { 333 void operator()(void *p) { 334 atmi_free(p); // ignore failure to free 335 } 336 }; 337 338 // device_State shared across loaded binaries, error if inconsistent size 339 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 340 deviceStateStore; 341 342 static const unsigned HardTeamLimit = 343 (1 << 16) - 1; // 64K needed to fit in uint16 344 static const int DefaultNumTeams = 128; 345 static const int Max_Teams = 346 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 347 static const int Warp_Size = 348 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 349 static const int Max_WG_Size = 350 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 351 static const int Default_WG_Size = 352 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 353 354 using MemcpyFunc = atmi_status_t (*)(hsa_signal_t, void *, const void *, 355 size_t size, hsa_agent_t); 356 atmi_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 357 MemcpyFunc Func, int32_t deviceId) { 358 hsa_agent_t agent = HSAAgents[deviceId]; 359 hsa_signal_t s = FreeSignalPool.pop(); 360 if (s.handle == 0) { 361 return ATMI_STATUS_ERROR; 362 } 363 atmi_status_t r = Func(s, dest, src, size, agent); 364 FreeSignalPool.push(s); 365 return r; 366 } 367 368 atmi_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 369 size_t size, int32_t deviceId) { 370 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 371 } 372 373 atmi_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 374 size_t size, int32_t deviceId) { 375 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 376 } 377 378 // Record entry point associated with device 379 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 380 assert(device_id < (int32_t)FuncGblEntries.size() && 381 "Unexpected device id!"); 382 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 383 384 E.Entries.push_back(entry); 385 } 386 387 // Return true if the entry is associated with device 388 bool findOffloadEntry(int32_t device_id, void *addr) { 389 assert(device_id < (int32_t)FuncGblEntries.size() && 390 "Unexpected device id!"); 391 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 392 393 for (auto &it : E.Entries) { 394 if (it.addr == addr) 395 return true; 396 } 397 398 return false; 399 } 400 401 // Return the pointer to the target entries table 402 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 403 assert(device_id < (int32_t)FuncGblEntries.size() && 404 "Unexpected device id!"); 405 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 406 407 int32_t size = E.Entries.size(); 408 409 // Table is empty 410 if (!size) 411 return 0; 412 413 __tgt_offload_entry *begin = &E.Entries[0]; 414 __tgt_offload_entry *end = &E.Entries[size - 1]; 415 416 // Update table info according to the entries and return the pointer 417 E.Table.EntriesBegin = begin; 418 E.Table.EntriesEnd = ++end; 419 420 return &E.Table; 421 } 422 423 // Clear entries table for a device 424 void clearOffloadEntriesTable(int device_id) { 425 assert(device_id < (int32_t)FuncGblEntries.size() && 426 "Unexpected device id!"); 427 FuncGblEntries[device_id].emplace_back(); 428 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 429 // KernelArgPoolMap.clear(); 430 E.Entries.clear(); 431 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 432 } 433 434 RTLDeviceInfoTy() { 435 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 436 // anytime. You do not need a debug library build. 437 // 0 => no tracing 438 // 1 => tracing dispatch only 439 // >1 => verbosity increase 440 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 441 print_kernel_trace = atoi(envStr); 442 else 443 print_kernel_trace = 0; 444 445 DP("Start initializing HSA-ATMI\n"); 446 atmi_status_t err = atmi_init(); 447 if (err != ATMI_STATUS_SUCCESS) { 448 DP("Error when initializing HSA-ATMI\n"); 449 return; 450 } 451 // Init hostcall soon after initializing ATMI 452 hostrpc_init(); 453 454 HSAAgents = find_gpu_agents(); 455 NumberOfDevices = (int)HSAAgents.size(); 456 457 if (NumberOfDevices == 0) { 458 DP("There are no devices supporting HSA.\n"); 459 return; 460 } else { 461 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 462 } 463 464 // Init the device info 465 HSAQueues.resize(NumberOfDevices); 466 FuncGblEntries.resize(NumberOfDevices); 467 ThreadsPerGroup.resize(NumberOfDevices); 468 ComputeUnits.resize(NumberOfDevices); 469 GPUName.resize(NumberOfDevices); 470 GroupsPerDevice.resize(NumberOfDevices); 471 WarpSize.resize(NumberOfDevices); 472 NumTeams.resize(NumberOfDevices); 473 NumThreads.resize(NumberOfDevices); 474 deviceStateStore.resize(NumberOfDevices); 475 476 for (int i = 0; i < NumberOfDevices; i++) { 477 uint32_t queue_size = 0; 478 { 479 hsa_status_t err; 480 err = hsa_agent_get_info(HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, 481 &queue_size); 482 ErrorCheck(Querying the agent maximum queue size, err); 483 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 484 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 485 } 486 } 487 488 hsa_status_t rc = hsa_queue_create( 489 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 490 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 491 if (rc != HSA_STATUS_SUCCESS) { 492 DP("Failed to create HSA queues\n"); 493 return; 494 } 495 496 deviceStateStore[i] = {nullptr, 0}; 497 } 498 499 for (int i = 0; i < NumberOfDevices; i++) { 500 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 501 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 502 ComputeUnits[i] = 1; 503 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 504 GroupsPerDevice[i], ThreadsPerGroup[i]); 505 } 506 507 // Get environment variables regarding teams 508 char *envStr = getenv("OMP_TEAM_LIMIT"); 509 if (envStr) { 510 // OMP_TEAM_LIMIT has been set 511 EnvTeamLimit = std::stoi(envStr); 512 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 513 } else { 514 EnvTeamLimit = -1; 515 } 516 envStr = getenv("OMP_NUM_TEAMS"); 517 if (envStr) { 518 // OMP_NUM_TEAMS has been set 519 EnvNumTeams = std::stoi(envStr); 520 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 521 } else { 522 EnvNumTeams = -1; 523 } 524 // Get environment variables regarding expMaxTeams 525 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 526 if (envStr) { 527 EnvMaxTeamsDefault = std::stoi(envStr); 528 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 529 } else { 530 EnvMaxTeamsDefault = -1; 531 } 532 533 // Default state. 534 RequiresFlags = OMP_REQ_UNDEFINED; 535 } 536 537 ~RTLDeviceInfoTy() { 538 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 539 // Run destructors on types that use HSA before 540 // atmi_finalize removes access to it 541 deviceStateStore.clear(); 542 KernelArgPoolMap.clear(); 543 // Terminate hostrpc before finalizing ATMI 544 hostrpc_terminate(); 545 atmi_finalize(); 546 } 547 }; 548 549 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 550 551 // TODO: May need to drop the trailing to fields until deviceRTL is updated 552 struct omptarget_device_environmentTy { 553 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 554 // only useful for Debug build of deviceRTLs 555 int32_t num_devices; // gets number of active offload devices 556 int32_t device_num; // gets a value 0 to num_devices-1 557 }; 558 559 static RTLDeviceInfoTy DeviceInfo; 560 561 namespace { 562 563 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 564 __tgt_async_info *AsyncInfo) { 565 assert(AsyncInfo && "AsyncInfo is nullptr"); 566 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 567 // Return success if we are not copying back to host from target. 568 if (!HstPtr) 569 return OFFLOAD_SUCCESS; 570 atmi_status_t err; 571 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 572 (long long unsigned)(Elf64_Addr)TgtPtr, 573 (long long unsigned)(Elf64_Addr)HstPtr); 574 575 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 576 DeviceId); 577 578 if (err != ATMI_STATUS_SUCCESS) { 579 DP("Error when copying data from device to host. Pointers: " 580 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 581 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 582 return OFFLOAD_FAIL; 583 } 584 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 585 (long long unsigned)(Elf64_Addr)TgtPtr, 586 (long long unsigned)(Elf64_Addr)HstPtr); 587 return OFFLOAD_SUCCESS; 588 } 589 590 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 591 __tgt_async_info *AsyncInfo) { 592 assert(AsyncInfo && "AsyncInfo is nullptr"); 593 atmi_status_t err; 594 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 595 // Return success if we are not doing host to target. 596 if (!HstPtr) 597 return OFFLOAD_SUCCESS; 598 599 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 600 (long long unsigned)(Elf64_Addr)HstPtr, 601 (long long unsigned)(Elf64_Addr)TgtPtr); 602 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 603 DeviceId); 604 if (err != ATMI_STATUS_SUCCESS) { 605 DP("Error when copying data from host to device. Pointers: " 606 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 607 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 608 return OFFLOAD_FAIL; 609 } 610 return OFFLOAD_SUCCESS; 611 } 612 613 // Async. 614 // The implementation was written with cuda streams in mind. The semantics of 615 // that are to execute kernels on a queue in order of insertion. A synchronise 616 // call then makes writes visible between host and device. This means a series 617 // of N data_submit_async calls are expected to execute serially. HSA offers 618 // various options to run the data copies concurrently. This may require changes 619 // to libomptarget. 620 621 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 622 // there are no outstanding kernels that need to be synchronized. Any async call 623 // may be passed a Queue==0, at which point the cuda implementation will set it 624 // to non-null (see getStream). The cuda streams are per-device. Upstream may 625 // change this interface to explicitly initialize the AsyncInfo_pointer, but 626 // until then hsa lazily initializes it as well. 627 628 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 629 // set non-null while using async calls, return to null to indicate completion 630 assert(AsyncInfo); 631 if (!AsyncInfo->Queue) { 632 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 633 } 634 } 635 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 636 assert(AsyncInfo); 637 assert(AsyncInfo->Queue); 638 AsyncInfo->Queue = 0; 639 } 640 641 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 642 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 643 int32_t r = elf_check_machine(image, amdgcnMachineID); 644 if (!r) { 645 DP("Supported machine ID not found\n"); 646 } 647 return r; 648 } 649 650 uint32_t elf_e_flags(__tgt_device_image *image) { 651 char *img_begin = (char *)image->ImageStart; 652 size_t img_size = (char *)image->ImageEnd - img_begin; 653 654 Elf *e = elf_memory(img_begin, img_size); 655 if (!e) { 656 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 657 return 0; 658 } 659 660 Elf64_Ehdr *eh64 = elf64_getehdr(e); 661 662 if (!eh64) { 663 DP("Unable to get machine ID from ELF file!\n"); 664 elf_end(e); 665 return 0; 666 } 667 668 uint32_t Flags = eh64->e_flags; 669 670 elf_end(e); 671 DP("ELF Flags: 0x%x\n", Flags); 672 return Flags; 673 } 674 } // namespace 675 676 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 677 return elf_machine_id_is_amdgcn(image); 678 } 679 680 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 681 682 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 683 DP("Init requires flags to %ld\n", RequiresFlags); 684 DeviceInfo.RequiresFlags = RequiresFlags; 685 return RequiresFlags; 686 } 687 688 int32_t __tgt_rtl_init_device(int device_id) { 689 hsa_status_t err; 690 691 // this is per device id init 692 DP("Initialize the device id: %d\n", device_id); 693 694 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 695 696 // Get number of Compute Unit 697 uint32_t compute_units = 0; 698 err = hsa_agent_get_info( 699 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 700 &compute_units); 701 if (err != HSA_STATUS_SUCCESS) { 702 DeviceInfo.ComputeUnits[device_id] = 1; 703 DP("Error getting compute units : settiing to 1\n"); 704 } else { 705 DeviceInfo.ComputeUnits[device_id] = compute_units; 706 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 707 } 708 709 char GetInfoName[64]; // 64 max size returned by get info 710 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 711 (void *)GetInfoName); 712 if (err) 713 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 714 else { 715 DeviceInfo.GPUName[device_id] = GetInfoName; 716 } 717 718 if (print_kernel_trace & STARTUP_DETAILS) 719 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 720 DeviceInfo.ComputeUnits[device_id], 721 DeviceInfo.GPUName[device_id].c_str()); 722 723 // Query attributes to determine number of threads/block and blocks/grid. 724 uint16_t workgroup_max_dim[3]; 725 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 726 &workgroup_max_dim); 727 if (err != HSA_STATUS_SUCCESS) { 728 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 729 DP("Error getting grid dims: num groups : %d\n", 730 RTLDeviceInfoTy::DefaultNumTeams); 731 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 732 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 733 DP("Using %d ROCm blocks per grid\n", 734 DeviceInfo.GroupsPerDevice[device_id]); 735 } else { 736 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 737 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 738 "at the hard limit\n", 739 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 740 } 741 742 // Get thread limit 743 hsa_dim3_t grid_max_dim; 744 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 745 if (err == HSA_STATUS_SUCCESS) { 746 DeviceInfo.ThreadsPerGroup[device_id] = 747 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 748 DeviceInfo.GroupsPerDevice[device_id]; 749 if ((DeviceInfo.ThreadsPerGroup[device_id] > 750 RTLDeviceInfoTy::Max_WG_Size) || 751 DeviceInfo.ThreadsPerGroup[device_id] == 0) { 752 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 753 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 754 } else { 755 DP("Using ROCm Queried thread limit: %d\n", 756 DeviceInfo.ThreadsPerGroup[device_id]); 757 } 758 } else { 759 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 760 DP("Error getting max block dimension, use default:%d \n", 761 RTLDeviceInfoTy::Max_WG_Size); 762 } 763 764 // Get wavefront size 765 uint32_t wavefront_size = 0; 766 err = 767 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 768 if (err == HSA_STATUS_SUCCESS) { 769 DP("Queried wavefront size: %d\n", wavefront_size); 770 DeviceInfo.WarpSize[device_id] = wavefront_size; 771 } else { 772 DP("Default wavefront size: %d\n", 773 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 774 DeviceInfo.WarpSize[device_id] = 775 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 776 } 777 778 // Adjust teams to the env variables 779 if (DeviceInfo.EnvTeamLimit > 0 && 780 DeviceInfo.GroupsPerDevice[device_id] > DeviceInfo.EnvTeamLimit) { 781 DeviceInfo.GroupsPerDevice[device_id] = DeviceInfo.EnvTeamLimit; 782 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 783 DeviceInfo.EnvTeamLimit); 784 } 785 786 // Set default number of teams 787 if (DeviceInfo.EnvNumTeams > 0) { 788 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 789 DP("Default number of teams set according to environment %d\n", 790 DeviceInfo.EnvNumTeams); 791 } else { 792 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 793 int TeamsPerCU = 1; // default number of teams per CU is 1 794 if (TeamsPerCUEnvStr) { 795 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 796 } 797 798 DeviceInfo.NumTeams[device_id] = 799 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 800 DP("Default number of teams = %d * number of compute units %d\n", 801 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 802 } 803 804 if (DeviceInfo.NumTeams[device_id] > DeviceInfo.GroupsPerDevice[device_id]) { 805 DeviceInfo.NumTeams[device_id] = DeviceInfo.GroupsPerDevice[device_id]; 806 DP("Default number of teams exceeds device limit, capping at %d\n", 807 DeviceInfo.GroupsPerDevice[device_id]); 808 } 809 810 // Set default number of threads 811 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 812 DP("Default number of threads set according to library's default %d\n", 813 RTLDeviceInfoTy::Default_WG_Size); 814 if (DeviceInfo.NumThreads[device_id] > 815 DeviceInfo.ThreadsPerGroup[device_id]) { 816 DeviceInfo.NumTeams[device_id] = DeviceInfo.ThreadsPerGroup[device_id]; 817 DP("Default number of threads exceeds device limit, capping at %d\n", 818 DeviceInfo.ThreadsPerGroup[device_id]); 819 } 820 821 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 822 device_id, DeviceInfo.GroupsPerDevice[device_id], 823 DeviceInfo.ThreadsPerGroup[device_id]); 824 825 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 826 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 827 DeviceInfo.GroupsPerDevice[device_id], 828 DeviceInfo.GroupsPerDevice[device_id] * 829 DeviceInfo.ThreadsPerGroup[device_id]); 830 831 return OFFLOAD_SUCCESS; 832 } 833 834 namespace { 835 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 836 size_t N; 837 int rc = elf_getshdrnum(elf, &N); 838 if (rc != 0) { 839 return nullptr; 840 } 841 842 Elf64_Shdr *result = nullptr; 843 for (size_t i = 0; i < N; i++) { 844 Elf_Scn *scn = elf_getscn(elf, i); 845 if (scn) { 846 Elf64_Shdr *shdr = elf64_getshdr(scn); 847 if (shdr) { 848 if (shdr->sh_type == SHT_HASH) { 849 if (result == nullptr) { 850 result = shdr; 851 } else { 852 // multiple SHT_HASH sections not handled 853 return nullptr; 854 } 855 } 856 } 857 } 858 } 859 return result; 860 } 861 862 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 863 const char *symname) { 864 865 assert(section_hash); 866 size_t section_symtab_index = section_hash->sh_link; 867 Elf64_Shdr *section_symtab = 868 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 869 size_t section_strtab_index = section_symtab->sh_link; 870 871 const Elf64_Sym *symtab = 872 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 873 874 const uint32_t *hashtab = 875 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 876 877 // Layout: 878 // nbucket 879 // nchain 880 // bucket[nbucket] 881 // chain[nchain] 882 uint32_t nbucket = hashtab[0]; 883 const uint32_t *bucket = &hashtab[2]; 884 const uint32_t *chain = &hashtab[nbucket + 2]; 885 886 const size_t max = strlen(symname) + 1; 887 const uint32_t hash = elf_hash(symname); 888 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 889 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 890 if (strncmp(symname, n, max) == 0) { 891 return &symtab[i]; 892 } 893 } 894 895 return nullptr; 896 } 897 898 typedef struct { 899 void *addr = nullptr; 900 uint32_t size = UINT32_MAX; 901 uint32_t sh_type = SHT_NULL; 902 } symbol_info; 903 904 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 905 symbol_info *res) { 906 if (elf_kind(elf) != ELF_K_ELF) { 907 return 1; 908 } 909 910 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 911 if (!section_hash) { 912 return 1; 913 } 914 915 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 916 if (!sym) { 917 return 1; 918 } 919 920 if (sym->st_size > UINT32_MAX) { 921 return 1; 922 } 923 924 if (sym->st_shndx == SHN_UNDEF) { 925 return 1; 926 } 927 928 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 929 if (!section) { 930 return 1; 931 } 932 933 Elf64_Shdr *header = elf64_getshdr(section); 934 if (!header) { 935 return 1; 936 } 937 938 res->addr = sym->st_value + base; 939 res->size = static_cast<uint32_t>(sym->st_size); 940 res->sh_type = header->sh_type; 941 return 0; 942 } 943 944 int get_symbol_info_without_loading(char *base, size_t img_size, 945 const char *symname, symbol_info *res) { 946 Elf *elf = elf_memory(base, img_size); 947 if (elf) { 948 int rc = get_symbol_info_without_loading(elf, base, symname, res); 949 elf_end(elf); 950 return rc; 951 } 952 return 1; 953 } 954 955 atmi_status_t interop_get_symbol_info(char *base, size_t img_size, 956 const char *symname, void **var_addr, 957 uint32_t *var_size) { 958 symbol_info si; 959 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 960 if (rc == 0) { 961 *var_addr = si.addr; 962 *var_size = si.size; 963 return ATMI_STATUS_SUCCESS; 964 } else { 965 return ATMI_STATUS_ERROR; 966 } 967 } 968 969 template <typename C> 970 atmi_status_t module_register_from_memory_to_place(void *module_bytes, 971 size_t module_size, 972 atmi_place_t place, C cb) { 973 auto L = [](void *data, size_t size, void *cb_state) -> atmi_status_t { 974 C *unwrapped = static_cast<C *>(cb_state); 975 return (*unwrapped)(data, size); 976 }; 977 return atmi_module_register_from_memory_to_place( 978 module_bytes, module_size, place, L, static_cast<void *>(&cb)); 979 } 980 } // namespace 981 982 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 983 uint64_t device_State_bytes = 0; 984 { 985 // If this is the deviceRTL, get the state variable size 986 symbol_info size_si; 987 int rc = get_symbol_info_without_loading( 988 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 989 990 if (rc == 0) { 991 if (size_si.size != sizeof(uint64_t)) { 992 fprintf(stderr, 993 "Found device_State_size variable with wrong size, aborting\n"); 994 exit(1); 995 } 996 997 // Read number of bytes directly from the elf 998 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 999 } 1000 } 1001 return device_State_bytes; 1002 } 1003 1004 static __tgt_target_table * 1005 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1006 1007 static __tgt_target_table * 1008 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1009 1010 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1011 __tgt_device_image *image) { 1012 DeviceInfo.load_run_lock.lock(); 1013 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1014 DeviceInfo.load_run_lock.unlock(); 1015 return res; 1016 } 1017 1018 struct device_environment { 1019 // initialise an omptarget_device_environmentTy in the deviceRTL 1020 // patches around differences in the deviceRTL between trunk, aomp, 1021 // rocmcc. Over time these differences will tend to zero and this class 1022 // simplified. 1023 // Symbol may be in .data or .bss, and may be missing fields: 1024 // - aomp has debug_level, num_devices, device_num 1025 // - trunk has debug_level 1026 // - under review in trunk is debug_level, device_num 1027 // - rocmcc matches aomp, patch to swap num_devices and device_num 1028 1029 // The symbol may also have been deadstripped because the device side 1030 // accessors were unused. 1031 1032 // If the symbol is in .data (aomp, rocm) it can be written directly. 1033 // If it is in .bss, we must wait for it to be allocated space on the 1034 // gpu (trunk) and initialize after loading. 1035 const char *sym() { return "omptarget_device_environment"; } 1036 1037 omptarget_device_environmentTy host_device_env; 1038 symbol_info si; 1039 bool valid = false; 1040 1041 __tgt_device_image *image; 1042 const size_t img_size; 1043 1044 device_environment(int device_id, int number_devices, 1045 __tgt_device_image *image, const size_t img_size) 1046 : image(image), img_size(img_size) { 1047 1048 host_device_env.num_devices = number_devices; 1049 host_device_env.device_num = device_id; 1050 host_device_env.debug_level = 0; 1051 #ifdef OMPTARGET_DEBUG 1052 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1053 host_device_env.debug_level = std::stoi(envStr); 1054 } 1055 #endif 1056 1057 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1058 img_size, sym(), &si); 1059 if (rc != 0) { 1060 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1061 return; 1062 } 1063 1064 if (si.size > sizeof(host_device_env)) { 1065 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1066 sizeof(host_device_env)); 1067 return; 1068 } 1069 1070 valid = true; 1071 } 1072 1073 bool in_image() { return si.sh_type != SHT_NOBITS; } 1074 1075 atmi_status_t before_loading(void *data, size_t size) { 1076 if (valid) { 1077 if (in_image()) { 1078 DP("Setting global device environment before load (%u bytes)\n", 1079 si.size); 1080 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1081 void *pos = (char *)data + offset; 1082 memcpy(pos, &host_device_env, si.size); 1083 } 1084 } 1085 return ATMI_STATUS_SUCCESS; 1086 } 1087 1088 atmi_status_t after_loading() { 1089 if (valid) { 1090 if (!in_image()) { 1091 DP("Setting global device environment after load (%u bytes)\n", 1092 si.size); 1093 int device_id = host_device_env.device_num; 1094 1095 void *state_ptr; 1096 uint32_t state_ptr_size; 1097 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1098 get_gpu_mem_place(device_id), sym(), &state_ptr, &state_ptr_size); 1099 if (err != ATMI_STATUS_SUCCESS) { 1100 DP("failed to find %s in loaded image\n", sym()); 1101 return err; 1102 } 1103 1104 if (state_ptr_size != si.size) { 1105 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1106 si.size); 1107 return ATMI_STATUS_ERROR; 1108 } 1109 1110 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1111 state_ptr_size, device_id); 1112 } 1113 } 1114 return ATMI_STATUS_SUCCESS; 1115 } 1116 }; 1117 1118 static atmi_status_t atmi_calloc(void **ret_ptr, size_t size, 1119 atmi_mem_place_t place) { 1120 uint64_t rounded = 4 * ((size + 3) / 4); 1121 void *ptr; 1122 atmi_status_t err = atmi_malloc(&ptr, rounded, place); 1123 if (err != ATMI_STATUS_SUCCESS) { 1124 return err; 1125 } 1126 1127 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1128 if (rc != HSA_STATUS_SUCCESS) { 1129 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1130 atmi_free(ptr); 1131 return ATMI_STATUS_ERROR; 1132 } 1133 1134 *ret_ptr = ptr; 1135 return ATMI_STATUS_SUCCESS; 1136 } 1137 1138 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1139 __tgt_device_image *image) { 1140 // This function loads the device image onto gpu[device_id] and does other 1141 // per-image initialization work. Specifically: 1142 // 1143 // - Initialize an omptarget_device_environmentTy instance embedded in the 1144 // image at the symbol "omptarget_device_environment" 1145 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1146 // 1147 // - Allocate a large array per-gpu (could be moved to init_device) 1148 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1149 // - Allocate at least that many bytes of gpu memory 1150 // - Zero initialize it 1151 // - Write the pointer to the symbol omptarget_nvptx_device_State 1152 // 1153 // - Pulls some per-kernel information together from various sources and 1154 // records it in the KernelsList for quicker access later 1155 // 1156 // The initialization can be done before or after loading the image onto the 1157 // gpu. This function presently does a mixture. Using the hsa api to get/set 1158 // the information is simpler to implement, in exchange for more complicated 1159 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1160 // back from the gpu vs a hashtable lookup on the host. 1161 1162 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1163 1164 DeviceInfo.clearOffloadEntriesTable(device_id); 1165 1166 // We do not need to set the ELF version because the caller of this function 1167 // had to do that to decide the right runtime to use 1168 1169 if (!elf_machine_id_is_amdgcn(image)) { 1170 return NULL; 1171 } 1172 1173 { 1174 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1175 img_size); 1176 1177 atmi_status_t err = module_register_from_memory_to_place( 1178 (void *)image->ImageStart, img_size, get_gpu_place(device_id), 1179 [&](void *data, size_t size) { 1180 return env.before_loading(data, size); 1181 }); 1182 1183 check("Module registering", err); 1184 if (err != ATMI_STATUS_SUCCESS) { 1185 fprintf(stderr, 1186 "Possible gpu arch mismatch: device:%s, image:%s please check" 1187 " compiler flag: -march=<gpu>\n", 1188 DeviceInfo.GPUName[device_id].c_str(), 1189 get_elf_mach_gfx_name(elf_e_flags(image))); 1190 return NULL; 1191 } 1192 1193 err = env.after_loading(); 1194 if (err != ATMI_STATUS_SUCCESS) { 1195 return NULL; 1196 } 1197 } 1198 1199 DP("ATMI module successfully loaded!\n"); 1200 1201 { 1202 // the device_State array is either large value in bss or a void* that 1203 // needs to be assigned to a pointer to an array of size device_state_bytes 1204 // If absent, it has been deadstripped and needs no setup. 1205 1206 void *state_ptr; 1207 uint32_t state_ptr_size; 1208 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1209 get_gpu_mem_place(device_id), "omptarget_nvptx_device_State", 1210 &state_ptr, &state_ptr_size); 1211 1212 if (err != ATMI_STATUS_SUCCESS) { 1213 DP("No device_state symbol found, skipping initialization\n"); 1214 } else { 1215 if (state_ptr_size < sizeof(void *)) { 1216 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1217 sizeof(void *)); 1218 return NULL; 1219 } 1220 1221 // if it's larger than a void*, assume it's a bss array and no further 1222 // initialization is required. Only try to set up a pointer for 1223 // sizeof(void*) 1224 if (state_ptr_size == sizeof(void *)) { 1225 uint64_t device_State_bytes = 1226 get_device_State_bytes((char *)image->ImageStart, img_size); 1227 if (device_State_bytes == 0) { 1228 DP("Can't initialize device_State, missing size information\n"); 1229 return NULL; 1230 } 1231 1232 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1233 if (dss.first.get() == nullptr) { 1234 assert(dss.second == 0); 1235 void *ptr = NULL; 1236 atmi_status_t err = atmi_calloc(&ptr, device_State_bytes, 1237 get_gpu_mem_place(device_id)); 1238 if (err != ATMI_STATUS_SUCCESS) { 1239 DP("Failed to allocate device_state array\n"); 1240 return NULL; 1241 } 1242 dss = { 1243 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1244 device_State_bytes, 1245 }; 1246 } 1247 1248 void *ptr = dss.first.get(); 1249 if (device_State_bytes != dss.second) { 1250 DP("Inconsistent sizes of device_State unsupported\n"); 1251 return NULL; 1252 } 1253 1254 // write ptr to device memory so it can be used by later kernels 1255 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1256 sizeof(void *), device_id); 1257 if (err != ATMI_STATUS_SUCCESS) { 1258 DP("memcpy install of state_ptr failed\n"); 1259 return NULL; 1260 } 1261 } 1262 } 1263 } 1264 1265 // Here, we take advantage of the data that is appended after img_end to get 1266 // the symbols' name we need to load. This data consist of the host entries 1267 // begin and end as well as the target name (see the offloading linker script 1268 // creation in clang compiler). 1269 1270 // Find the symbols in the module by name. The name can be obtain by 1271 // concatenating the host entry name with the target name 1272 1273 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1274 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1275 1276 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1277 1278 if (!e->addr) { 1279 // The host should have always something in the address to 1280 // uniquely identify the target region. 1281 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1282 (unsigned long long)e->size); 1283 return NULL; 1284 } 1285 1286 if (e->size) { 1287 __tgt_offload_entry entry = *e; 1288 1289 void *varptr; 1290 uint32_t varsize; 1291 1292 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1293 get_gpu_mem_place(device_id), e->name, &varptr, &varsize); 1294 1295 if (err != ATMI_STATUS_SUCCESS) { 1296 // Inform the user what symbol prevented offloading 1297 DP("Loading global '%s' (Failed)\n", e->name); 1298 return NULL; 1299 } 1300 1301 if (varsize != e->size) { 1302 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1303 varsize, e->size); 1304 return NULL; 1305 } 1306 1307 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1308 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1309 entry.addr = (void *)varptr; 1310 1311 DeviceInfo.addOffloadEntry(device_id, entry); 1312 1313 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1314 e->flags & OMP_DECLARE_TARGET_LINK) { 1315 // If unified memory is present any target link variables 1316 // can access host addresses directly. There is no longer a 1317 // need for device copies. 1318 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1319 sizeof(void *), device_id); 1320 if (err != ATMI_STATUS_SUCCESS) 1321 DP("Error when copying USM\n"); 1322 DP("Copy linked variable host address (" DPxMOD ")" 1323 "to device address (" DPxMOD ")\n", 1324 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1325 } 1326 1327 continue; 1328 } 1329 1330 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1331 1332 atmi_mem_place_t place = get_gpu_mem_place(device_id); 1333 uint32_t kernarg_segment_size; 1334 atmi_status_t err = atmi_interop_hsa_get_kernel_info( 1335 place, e->name, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1336 &kernarg_segment_size); 1337 1338 // each arg is a void * in this openmp implementation 1339 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1340 std::vector<size_t> arg_sizes(arg_num); 1341 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1342 it != arg_sizes.end(); it++) { 1343 *it = sizeof(void *); 1344 } 1345 1346 // default value GENERIC (in case symbol is missing from cubin file) 1347 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1348 1349 // get flat group size if present, else Default_WG_Size 1350 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1351 1352 // get Kernel Descriptor if present. 1353 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1354 struct KernDescValType { 1355 uint16_t Version; 1356 uint16_t TSize; 1357 uint16_t WG_Size; 1358 uint8_t Mode; 1359 }; 1360 struct KernDescValType KernDescVal; 1361 std::string KernDescNameStr(e->name); 1362 KernDescNameStr += "_kern_desc"; 1363 const char *KernDescName = KernDescNameStr.c_str(); 1364 1365 void *KernDescPtr; 1366 uint32_t KernDescSize; 1367 void *CallStackAddr = nullptr; 1368 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1369 KernDescName, &KernDescPtr, &KernDescSize); 1370 1371 if (err == ATMI_STATUS_SUCCESS) { 1372 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1373 DP("Loading global computation properties '%s' - size mismatch (%u != " 1374 "%lu)\n", 1375 KernDescName, KernDescSize, sizeof(KernDescVal)); 1376 1377 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1378 1379 // Check structure size against recorded size. 1380 if ((size_t)KernDescSize != KernDescVal.TSize) 1381 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1382 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1383 1384 DP("After loading global for %s KernDesc \n", KernDescName); 1385 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1386 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1387 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1388 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1389 1390 // Get ExecMode 1391 ExecModeVal = KernDescVal.Mode; 1392 DP("ExecModeVal %d\n", ExecModeVal); 1393 if (KernDescVal.WG_Size == 0) { 1394 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1395 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1396 } 1397 WGSizeVal = KernDescVal.WG_Size; 1398 DP("WGSizeVal %d\n", WGSizeVal); 1399 check("Loading KernDesc computation property", err); 1400 } else { 1401 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1402 1403 // Generic 1404 std::string ExecModeNameStr(e->name); 1405 ExecModeNameStr += "_exec_mode"; 1406 const char *ExecModeName = ExecModeNameStr.c_str(); 1407 1408 void *ExecModePtr; 1409 uint32_t varsize; 1410 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1411 ExecModeName, &ExecModePtr, &varsize); 1412 1413 if (err == ATMI_STATUS_SUCCESS) { 1414 if ((size_t)varsize != sizeof(int8_t)) { 1415 DP("Loading global computation properties '%s' - size mismatch(%u != " 1416 "%lu)\n", 1417 ExecModeName, varsize, sizeof(int8_t)); 1418 return NULL; 1419 } 1420 1421 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1422 1423 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1424 ExecModeVal); 1425 1426 if (ExecModeVal < 0 || ExecModeVal > 1) { 1427 DP("Error wrong exec_mode value specified in HSA code object file: " 1428 "%d\n", 1429 ExecModeVal); 1430 return NULL; 1431 } 1432 } else { 1433 DP("Loading global exec_mode '%s' - symbol missing, using default " 1434 "value " 1435 "GENERIC (1)\n", 1436 ExecModeName); 1437 } 1438 check("Loading computation property", err); 1439 1440 // Flat group size 1441 std::string WGSizeNameStr(e->name); 1442 WGSizeNameStr += "_wg_size"; 1443 const char *WGSizeName = WGSizeNameStr.c_str(); 1444 1445 void *WGSizePtr; 1446 uint32_t WGSize; 1447 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1448 WGSizeName, &WGSizePtr, &WGSize); 1449 1450 if (err == ATMI_STATUS_SUCCESS) { 1451 if ((size_t)WGSize != sizeof(int16_t)) { 1452 DP("Loading global computation properties '%s' - size mismatch (%u " 1453 "!= " 1454 "%lu)\n", 1455 WGSizeName, WGSize, sizeof(int16_t)); 1456 return NULL; 1457 } 1458 1459 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1460 1461 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1462 1463 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1464 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1465 DP("Error wrong WGSize value specified in HSA code object file: " 1466 "%d\n", 1467 WGSizeVal); 1468 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1469 } 1470 } else { 1471 DP("Warning: Loading WGSize '%s' - symbol not found, " 1472 "using default value %d\n", 1473 WGSizeName, WGSizeVal); 1474 } 1475 1476 check("Loading WGSize computation property", err); 1477 } 1478 1479 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1480 CallStackAddr, e->name, 1481 kernarg_segment_size)); 1482 __tgt_offload_entry entry = *e; 1483 entry.addr = (void *)&KernelsList.back(); 1484 DeviceInfo.addOffloadEntry(device_id, entry); 1485 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1486 } 1487 1488 return DeviceInfo.getOffloadEntriesTable(device_id); 1489 } 1490 1491 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1492 void *ptr = NULL; 1493 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1494 1495 if (kind != TARGET_ALLOC_DEFAULT) { 1496 REPORT("Invalid target data allocation kind or requested allocator not " 1497 "implemented yet\n"); 1498 return NULL; 1499 } 1500 1501 atmi_status_t err = atmi_malloc(&ptr, size, get_gpu_mem_place(device_id)); 1502 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1503 (long long unsigned)(Elf64_Addr)ptr); 1504 ptr = (err == ATMI_STATUS_SUCCESS) ? ptr : NULL; 1505 return ptr; 1506 } 1507 1508 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1509 int64_t size) { 1510 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1511 __tgt_async_info AsyncInfo; 1512 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1513 if (rc != OFFLOAD_SUCCESS) 1514 return OFFLOAD_FAIL; 1515 1516 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1517 } 1518 1519 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1520 int64_t size, __tgt_async_info *AsyncInfo) { 1521 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1522 if (AsyncInfo) { 1523 initAsyncInfo(AsyncInfo); 1524 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1525 } else { 1526 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1527 } 1528 } 1529 1530 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1531 int64_t size) { 1532 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1533 __tgt_async_info AsyncInfo; 1534 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1535 if (rc != OFFLOAD_SUCCESS) 1536 return OFFLOAD_FAIL; 1537 1538 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1539 } 1540 1541 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1542 void *tgt_ptr, int64_t size, 1543 __tgt_async_info *AsyncInfo) { 1544 assert(AsyncInfo && "AsyncInfo is nullptr"); 1545 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1546 initAsyncInfo(AsyncInfo); 1547 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1548 } 1549 1550 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1551 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1552 atmi_status_t err; 1553 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1554 err = atmi_free(tgt_ptr); 1555 if (err != ATMI_STATUS_SUCCESS) { 1556 DP("Error when freeing CUDA memory\n"); 1557 return OFFLOAD_FAIL; 1558 } 1559 return OFFLOAD_SUCCESS; 1560 } 1561 1562 // Determine launch values for threadsPerGroup and num_groups. 1563 // Outputs: treadsPerGroup, num_groups 1564 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1565 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1566 // loop_tripcount. 1567 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1568 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1569 int num_teams, int thread_limit, uint64_t loop_tripcount, 1570 int32_t device_id) { 1571 1572 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1573 ? DeviceInfo.EnvMaxTeamsDefault 1574 : DeviceInfo.NumTeams[device_id]; 1575 if (Max_Teams > DeviceInfo.HardTeamLimit) 1576 Max_Teams = DeviceInfo.HardTeamLimit; 1577 1578 if (print_kernel_trace & STARTUP_DETAILS) { 1579 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1580 RTLDeviceInfoTy::Max_Teams); 1581 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1582 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1583 RTLDeviceInfoTy::Warp_Size); 1584 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1585 RTLDeviceInfoTy::Max_WG_Size); 1586 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1587 RTLDeviceInfoTy::Default_WG_Size); 1588 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1589 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1590 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1591 } 1592 // check for thread_limit() clause 1593 if (thread_limit > 0) { 1594 threadsPerGroup = thread_limit; 1595 DP("Setting threads per block to requested %d\n", thread_limit); 1596 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1597 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1598 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1599 } 1600 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1601 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1602 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1603 } 1604 } 1605 // check flat_max_work_group_size attr here 1606 if (threadsPerGroup > ConstWGSize) { 1607 threadsPerGroup = ConstWGSize; 1608 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1609 threadsPerGroup); 1610 } 1611 if (print_kernel_trace & STARTUP_DETAILS) 1612 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1613 DP("Preparing %d threads\n", threadsPerGroup); 1614 1615 // Set default num_groups (teams) 1616 if (DeviceInfo.EnvTeamLimit > 0) 1617 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1618 ? Max_Teams 1619 : DeviceInfo.EnvTeamLimit; 1620 else 1621 num_groups = Max_Teams; 1622 DP("Set default num of groups %d\n", num_groups); 1623 1624 if (print_kernel_trace & STARTUP_DETAILS) { 1625 fprintf(stderr, "num_groups: %d\n", num_groups); 1626 fprintf(stderr, "num_teams: %d\n", num_teams); 1627 } 1628 1629 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1630 // This reduction is typical for default case (no thread_limit clause). 1631 // or when user goes crazy with num_teams clause. 1632 // FIXME: We cant distinguish between a constant or variable thread limit. 1633 // So we only handle constant thread_limits. 1634 if (threadsPerGroup > 1635 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1636 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1637 // here? 1638 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1639 1640 // check for num_teams() clause 1641 if (num_teams > 0) { 1642 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1643 } 1644 if (print_kernel_trace & STARTUP_DETAILS) { 1645 fprintf(stderr, "num_groups: %d\n", num_groups); 1646 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1647 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1648 } 1649 1650 if (DeviceInfo.EnvNumTeams > 0) { 1651 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1652 : num_groups; 1653 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1654 } else if (DeviceInfo.EnvTeamLimit > 0) { 1655 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1656 ? DeviceInfo.EnvTeamLimit 1657 : num_groups; 1658 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1659 } else { 1660 if (num_teams <= 0) { 1661 if (loop_tripcount > 0) { 1662 if (ExecutionMode == SPMD) { 1663 // round up to the nearest integer 1664 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1665 } else { 1666 num_groups = loop_tripcount; 1667 } 1668 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1669 "threads per block %d\n", 1670 num_groups, loop_tripcount, threadsPerGroup); 1671 } 1672 } else { 1673 num_groups = num_teams; 1674 } 1675 if (num_groups > Max_Teams) { 1676 num_groups = Max_Teams; 1677 if (print_kernel_trace & STARTUP_DETAILS) 1678 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1679 Max_Teams); 1680 } 1681 if (num_groups > num_teams && num_teams > 0) { 1682 num_groups = num_teams; 1683 if (print_kernel_trace & STARTUP_DETAILS) 1684 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1685 num_groups, num_teams); 1686 } 1687 } 1688 1689 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1690 if (num_teams > 0) { 1691 num_groups = num_teams; 1692 // Cap num_groups to EnvMaxTeamsDefault if set. 1693 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1694 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1695 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1696 } 1697 if (print_kernel_trace & STARTUP_DETAILS) { 1698 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1699 fprintf(stderr, "num_groups: %d\n", num_groups); 1700 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1701 } 1702 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1703 threadsPerGroup); 1704 } 1705 1706 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1707 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1708 bool full = true; 1709 while (full) { 1710 full = 1711 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1712 } 1713 return packet_id; 1714 } 1715 1716 extern bool g_atmi_hostcall_required; // declared without header by atmi 1717 1718 static int32_t __tgt_rtl_run_target_team_region_locked( 1719 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1720 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1721 int32_t thread_limit, uint64_t loop_tripcount); 1722 1723 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1724 void **tgt_args, 1725 ptrdiff_t *tgt_offsets, 1726 int32_t arg_num, int32_t num_teams, 1727 int32_t thread_limit, 1728 uint64_t loop_tripcount) { 1729 1730 DeviceInfo.load_run_lock.lock_shared(); 1731 int32_t res = __tgt_rtl_run_target_team_region_locked( 1732 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1733 thread_limit, loop_tripcount); 1734 1735 DeviceInfo.load_run_lock.unlock_shared(); 1736 return res; 1737 } 1738 1739 int32_t __tgt_rtl_run_target_team_region_locked( 1740 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1741 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1742 int32_t thread_limit, uint64_t loop_tripcount) { 1743 // Set the context we are using 1744 // update thread limit content in gpu memory if un-initialized or specified 1745 // from host 1746 1747 DP("Run target team region thread_limit %d\n", thread_limit); 1748 1749 // All args are references. 1750 std::vector<void *> args(arg_num); 1751 std::vector<void *> ptrs(arg_num); 1752 1753 DP("Arg_num: %d\n", arg_num); 1754 for (int32_t i = 0; i < arg_num; ++i) { 1755 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1756 args[i] = &ptrs[i]; 1757 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1758 } 1759 1760 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1761 1762 std::string kernel_name = std::string(KernelInfo->Name); 1763 uint32_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count; 1764 1765 { 1766 assert(KernelInfoTable[device_id].find(kernel_name) != 1767 KernelInfoTable[device_id].end()); 1768 auto it = KernelInfoTable[device_id][kernel_name]; 1769 sgpr_count = it.sgpr_count; 1770 vgpr_count = it.vgpr_count; 1771 sgpr_spill_count = it.sgpr_spill_count; 1772 vgpr_spill_count = it.vgpr_spill_count; 1773 } 1774 1775 /* 1776 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1777 */ 1778 int num_groups = 0; 1779 1780 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1781 1782 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1783 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1784 DeviceInfo.EnvNumTeams, 1785 num_teams, // From run_region arg 1786 thread_limit, // From run_region arg 1787 loop_tripcount, // From run_region arg 1788 KernelInfo->device_id); 1789 1790 if (print_kernel_trace >= LAUNCH) { 1791 // enum modes are SPMD, GENERIC, NONE 0,1,2 1792 // if doing rtl timing, print to stderr, unless stdout requested. 1793 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1794 fprintf(traceToStdout ? stdout : stderr, 1795 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1796 "reqd:(%4dX%4d) sgpr_count:%u vgpr_count:%u sgpr_spill_count:%u " 1797 "vgpr_spill_count:%u tripcount:%lu n:%s\n", 1798 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1799 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1800 sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count, 1801 loop_tripcount, KernelInfo->Name); 1802 } 1803 1804 // Run on the device. 1805 { 1806 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1807 uint64_t packet_id = acquire_available_packet_id(queue); 1808 1809 const uint32_t mask = queue->size - 1; // size is a power of 2 1810 hsa_kernel_dispatch_packet_t *packet = 1811 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1812 (packet_id & mask); 1813 1814 // packet->header is written last 1815 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1816 packet->workgroup_size_x = threadsPerGroup; 1817 packet->workgroup_size_y = 1; 1818 packet->workgroup_size_z = 1; 1819 packet->reserved0 = 0; 1820 packet->grid_size_x = num_groups * threadsPerGroup; 1821 packet->grid_size_y = 1; 1822 packet->grid_size_z = 1; 1823 packet->private_segment_size = 0; 1824 packet->group_segment_size = 0; 1825 packet->kernel_object = 0; 1826 packet->kernarg_address = 0; // use the block allocator 1827 packet->reserved2 = 0; // atmi writes id_ here 1828 packet->completion_signal = {0}; // may want a pool of signals 1829 1830 { 1831 assert(KernelInfoTable[device_id].find(kernel_name) != 1832 KernelInfoTable[device_id].end()); 1833 auto it = KernelInfoTable[device_id][kernel_name]; 1834 packet->kernel_object = it.kernel_object; 1835 packet->private_segment_size = it.private_segment_size; 1836 packet->group_segment_size = it.group_segment_size; 1837 assert(arg_num == (int)it.num_args); 1838 } 1839 1840 KernelArgPool *ArgPool = nullptr; 1841 { 1842 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1843 if (it != KernelArgPoolMap.end()) { 1844 ArgPool = (it->second).get(); 1845 } 1846 } 1847 if (!ArgPool) { 1848 fprintf(stderr, "Warning: No ArgPool for %s on device %d\n", 1849 KernelInfo->Name, device_id); 1850 } 1851 { 1852 void *kernarg = nullptr; 1853 if (ArgPool) { 1854 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1855 kernarg = ArgPool->allocate(arg_num); 1856 } 1857 if (!kernarg) { 1858 printf("Allocate kernarg failed\n"); 1859 exit(1); 1860 } 1861 1862 // Copy explicit arguments 1863 for (int i = 0; i < arg_num; i++) { 1864 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1865 } 1866 1867 // Initialize implicit arguments. ATMI seems to leave most fields 1868 // uninitialized 1869 atmi_implicit_args_t *impl_args = 1870 reinterpret_cast<atmi_implicit_args_t *>( 1871 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1872 memset(impl_args, 0, 1873 sizeof(atmi_implicit_args_t)); // may not be necessary 1874 impl_args->offset_x = 0; 1875 impl_args->offset_y = 0; 1876 impl_args->offset_z = 0; 1877 1878 // assign a hostcall buffer for the selected Q 1879 if (g_atmi_hostcall_required) { 1880 // hostrpc_assign_buffer is not thread safe, and this function is 1881 // under a multiple reader lock, not a writer lock. 1882 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 1883 pthread_mutex_lock(&hostcall_init_lock); 1884 impl_args->hostcall_ptr = hostrpc_assign_buffer( 1885 DeviceInfo.HSAAgents[device_id], queue, device_id); 1886 pthread_mutex_unlock(&hostcall_init_lock); 1887 if (!impl_args->hostcall_ptr) { 1888 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 1889 "error\n"); 1890 return OFFLOAD_FAIL; 1891 } 1892 } 1893 1894 packet->kernarg_address = kernarg; 1895 } 1896 1897 { 1898 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1899 if (s.handle == 0) { 1900 printf("Failed to get signal instance\n"); 1901 exit(1); 1902 } 1903 packet->completion_signal = s; 1904 hsa_signal_store_relaxed(packet->completion_signal, 1); 1905 } 1906 1907 core::packet_store_release( 1908 reinterpret_cast<uint32_t *>(packet), 1909 core::create_header(HSA_PACKET_TYPE_KERNEL_DISPATCH, 0, 1910 ATMI_FENCE_SCOPE_SYSTEM, ATMI_FENCE_SCOPE_SYSTEM), 1911 packet->setup); 1912 1913 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1914 1915 while (hsa_signal_wait_scacquire(packet->completion_signal, 1916 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1917 HSA_WAIT_STATE_BLOCKED) != 0) 1918 ; 1919 1920 assert(ArgPool); 1921 ArgPool->deallocate(packet->kernarg_address); 1922 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 1923 } 1924 1925 DP("Kernel completed\n"); 1926 return OFFLOAD_SUCCESS; 1927 } 1928 1929 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 1930 void **tgt_args, ptrdiff_t *tgt_offsets, 1931 int32_t arg_num) { 1932 // use one team and one thread 1933 // fix thread num 1934 int32_t team_num = 1; 1935 int32_t thread_limit = 0; // use default 1936 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1937 tgt_offsets, arg_num, team_num, 1938 thread_limit, 0); 1939 } 1940 1941 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 1942 void *tgt_entry_ptr, void **tgt_args, 1943 ptrdiff_t *tgt_offsets, 1944 int32_t arg_num, 1945 __tgt_async_info *AsyncInfo) { 1946 assert(AsyncInfo && "AsyncInfo is nullptr"); 1947 initAsyncInfo(AsyncInfo); 1948 1949 // use one team and one thread 1950 // fix thread num 1951 int32_t team_num = 1; 1952 int32_t thread_limit = 0; // use default 1953 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1954 tgt_offsets, arg_num, team_num, 1955 thread_limit, 0); 1956 } 1957 1958 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 1959 assert(AsyncInfo && "AsyncInfo is nullptr"); 1960 1961 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 1962 // is not ensured by devices.cpp for amdgcn 1963 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 1964 if (AsyncInfo->Queue) { 1965 finiAsyncInfo(AsyncInfo); 1966 } 1967 return OFFLOAD_SUCCESS; 1968 } 1969