1 //===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <functional> 19 #include <libelf.h> 20 #include <list> 21 #include <memory> 22 #include <mutex> 23 #include <shared_mutex> 24 #include <unordered_map> 25 #include <vector> 26 27 #include "interop_hsa.h" 28 #include "impl_runtime.h" 29 30 #include "internal.h" 31 32 #include "Debug.h" 33 #include "get_elf_mach_gfx_name.h" 34 #include "omptargetplugin.h" 35 #include "print_tracing.h" 36 37 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 38 39 #ifndef TARGET_NAME 40 #error "Missing TARGET_NAME macro" 41 #endif 42 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 43 44 // hostrpc interface, FIXME: consider moving to its own include these are 45 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 46 // linked as --whole-archive to override the weak symbols that are used to 47 // implement a fallback for toolchains that do not yet have a hostrpc library. 48 extern "C" { 49 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 50 uint32_t device_id); 51 hsa_status_t hostrpc_init(); 52 hsa_status_t hostrpc_terminate(); 53 54 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 55 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 56 return HSA_STATUS_SUCCESS; 57 } 58 __attribute__((weak)) unsigned long 59 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 60 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 61 "missing\n", 62 device_id); 63 return 0; 64 } 65 } 66 67 // Heuristic parameters used for kernel launch 68 // Number of teams per CU to allow scheduling flexibility 69 static const unsigned DefaultTeamsPerCU = 4; 70 71 int print_kernel_trace; 72 73 #ifdef OMPTARGET_DEBUG 74 #define check(msg, status) \ 75 if (status != HSA_STATUS_SUCCESS) { \ 76 DP(#msg " failed\n"); \ 77 } else { \ 78 DP(#msg " succeeded\n"); \ 79 } 80 #else 81 #define check(msg, status) \ 82 {} 83 #endif 84 85 #include "elf_common.h" 86 87 namespace core { 88 hsa_status_t RegisterModuleFromMemory( 89 std::map<std::string, atl_kernel_info_t> &KernelInfo, 90 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, void *, size_t, 91 hsa_agent_t agent, 92 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 93 void *cb_state), 94 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables); 95 } 96 97 namespace hsa { 98 template <typename C> hsa_status_t iterate_agents(C cb) { 99 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 100 C *unwrapped = static_cast<C *>(data); 101 return (*unwrapped)(agent); 102 }; 103 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 104 } 105 106 template <typename C> 107 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { 108 auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { 109 C *unwrapped = static_cast<C *>(data); 110 return (*unwrapped)(MemoryPool); 111 }; 112 113 return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb)); 114 } 115 116 } // namespace hsa 117 118 /// Keep entries table per device 119 struct FuncOrGblEntryTy { 120 __tgt_target_table Table; 121 std::vector<__tgt_offload_entry> Entries; 122 }; 123 124 enum ExecutionModeType { 125 SPMD, // constructors, destructors, 126 // combined constructs (`teams distribute parallel for [simd]`) 127 GENERIC, // everything else 128 SPMD_GENERIC, // Generic kernel with SPMD execution 129 NONE 130 }; 131 132 struct KernelArgPool { 133 private: 134 static pthread_mutex_t mutex; 135 136 public: 137 uint32_t kernarg_segment_size; 138 void *kernarg_region = nullptr; 139 std::queue<int> free_kernarg_segments; 140 141 uint32_t kernarg_size_including_implicit() { 142 return kernarg_segment_size + sizeof(impl_implicit_args_t); 143 } 144 145 ~KernelArgPool() { 146 if (kernarg_region) { 147 auto r = hsa_amd_memory_pool_free(kernarg_region); 148 if (r != HSA_STATUS_SUCCESS) { 149 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 150 } 151 } 152 } 153 154 // Can't really copy or move a mutex 155 KernelArgPool() = default; 156 KernelArgPool(const KernelArgPool &) = delete; 157 KernelArgPool(KernelArgPool &&) = delete; 158 159 KernelArgPool(uint32_t kernarg_segment_size, 160 hsa_amd_memory_pool_t &memory_pool) 161 : kernarg_segment_size(kernarg_segment_size) { 162 163 // impl uses one pool per kernel for all gpus, with a fixed upper size 164 // preserving that exact scheme here, including the queue<int> 165 166 hsa_status_t err = hsa_amd_memory_pool_allocate( 167 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 168 &kernarg_region); 169 170 if (err != HSA_STATUS_SUCCESS) { 171 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 172 kernarg_region = nullptr; // paranoid 173 return; 174 } 175 176 err = core::allow_access_to_all_gpu_agents(kernarg_region); 177 if (err != HSA_STATUS_SUCCESS) { 178 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 179 get_error_string(err)); 180 auto r = hsa_amd_memory_pool_free(kernarg_region); 181 if (r != HSA_STATUS_SUCCESS) { 182 // if free failed, can't do anything more to resolve it 183 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 184 } 185 kernarg_region = nullptr; 186 return; 187 } 188 189 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 190 free_kernarg_segments.push(i); 191 } 192 } 193 194 void *allocate(uint64_t arg_num) { 195 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 196 lock l(&mutex); 197 void *res = nullptr; 198 if (!free_kernarg_segments.empty()) { 199 200 int free_idx = free_kernarg_segments.front(); 201 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 202 (free_idx * kernarg_size_including_implicit())); 203 assert(free_idx == pointer_to_index(res)); 204 free_kernarg_segments.pop(); 205 } 206 return res; 207 } 208 209 void deallocate(void *ptr) { 210 lock l(&mutex); 211 int idx = pointer_to_index(ptr); 212 free_kernarg_segments.push(idx); 213 } 214 215 private: 216 int pointer_to_index(void *ptr) { 217 ptrdiff_t bytes = 218 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 219 assert(bytes >= 0); 220 assert(bytes % kernarg_size_including_implicit() == 0); 221 return bytes / kernarg_size_including_implicit(); 222 } 223 struct lock { 224 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 225 ~lock() { pthread_mutex_unlock(m); } 226 pthread_mutex_t *m; 227 }; 228 }; 229 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 230 231 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 232 KernelArgPoolMap; 233 234 /// Use a single entity to encode a kernel and a set of flags 235 struct KernelTy { 236 // execution mode of kernel 237 // 0 - SPMD mode (without master warp) 238 // 1 - Generic mode (with master warp) 239 // 2 - SPMD mode execution with Generic mode semantics. 240 int8_t ExecutionMode; 241 int16_t ConstWGSize; 242 int32_t device_id; 243 void *CallStackAddr = nullptr; 244 const char *Name; 245 246 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 247 void *_CallStackAddr, const char *_Name, 248 uint32_t _kernarg_segment_size, 249 hsa_amd_memory_pool_t &KernArgMemoryPool) 250 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 251 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 252 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 253 254 std::string N(_Name); 255 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 256 KernelArgPoolMap.insert( 257 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 258 _kernarg_segment_size, KernArgMemoryPool)))); 259 } 260 } 261 }; 262 263 /// List that contains all the kernels. 264 /// FIXME: we may need this to be per device and per library. 265 std::list<KernelTy> KernelsList; 266 267 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 268 269 hsa_status_t err = 270 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 271 hsa_device_type_t device_type; 272 // get_info fails iff HSA runtime not yet initialized 273 hsa_status_t err = 274 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 275 276 if (err != HSA_STATUS_SUCCESS) { 277 if (print_kernel_trace > 0) 278 DP("rtl.cpp: err %s\n", get_error_string(err)); 279 280 return err; 281 } 282 283 CB(device_type, agent); 284 return HSA_STATUS_SUCCESS; 285 }); 286 287 // iterate_agents fails iff HSA runtime not yet initialized 288 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 289 DP("rtl.cpp: err %s\n", get_error_string(err)); 290 } 291 292 return err; 293 } 294 295 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 296 void *data) { 297 if (status != HSA_STATUS_SUCCESS) { 298 const char *status_string; 299 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 300 status_string = "unavailable"; 301 } 302 DP("[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, __LINE__, source, 303 status, status_string); 304 abort(); 305 } 306 } 307 308 namespace core { 309 namespace { 310 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 311 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 312 } 313 314 uint16_t create_header() { 315 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 316 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 317 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 318 return header; 319 } 320 321 hsa_status_t addKernArgPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 322 std::vector<hsa_amd_memory_pool_t> *Result = 323 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 324 bool AllocAllowed = false; 325 hsa_status_t err = hsa_amd_memory_pool_get_info( 326 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 327 &AllocAllowed); 328 if (err != HSA_STATUS_SUCCESS) { 329 DP("Alloc allowed in memory pool check failed: %s\n", 330 get_error_string(err)); 331 return err; 332 } 333 334 if (!AllocAllowed) { 335 // nothing needs to be done here. 336 return HSA_STATUS_SUCCESS; 337 } 338 339 uint32_t GlobalFlags = 0; 340 err = hsa_amd_memory_pool_get_info( 341 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 342 if (err != HSA_STATUS_SUCCESS) { 343 DP("Get memory pool info failed: %s\n", get_error_string(err)); 344 return err; 345 } 346 347 size_t size = 0; 348 err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, 349 &size); 350 if (err != HSA_STATUS_SUCCESS) { 351 DP("Get memory pool size failed: %s\n", get_error_string(err)); 352 return err; 353 } 354 355 if ((GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) && 356 (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) && 357 size > 0) { 358 Result->push_back(MemoryPool); 359 } 360 361 return HSA_STATUS_SUCCESS; 362 } 363 364 std::pair<hsa_status_t, bool> 365 isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { 366 bool AllocAllowed = false; 367 hsa_status_t Err = hsa_amd_memory_pool_get_info( 368 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 369 &AllocAllowed); 370 if (Err != HSA_STATUS_SUCCESS) { 371 DP("Alloc allowed in memory pool check failed: %s\n", 372 get_error_string(Err)); 373 return {Err, false}; 374 } 375 376 return {HSA_STATUS_SUCCESS, AllocAllowed}; 377 } 378 379 template <typename AccumulatorFunc> 380 hsa_status_t collectMemoryPools(const std::vector<hsa_agent_t> &Agents, 381 AccumulatorFunc Func) { 382 for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { 383 hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( 384 Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { 385 hsa_status_t Err; 386 bool Valid = false; 387 std::tie(Err, Valid) = isValidMemoryPool(MemoryPool); 388 if (Err != HSA_STATUS_SUCCESS) { 389 return Err; 390 } 391 if (Valid) 392 Func(MemoryPool, DeviceId); 393 return HSA_STATUS_SUCCESS; 394 }); 395 396 if (Err != HSA_STATUS_SUCCESS) { 397 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 398 "Iterate all memory pools", get_error_string(Err)); 399 return Err; 400 } 401 } 402 403 return HSA_STATUS_SUCCESS; 404 } 405 406 std::pair<hsa_status_t, hsa_amd_memory_pool_t> 407 FindKernargPool(const std::vector<hsa_agent_t> &HSAAgents) { 408 std::vector<hsa_amd_memory_pool_t> KernArgPools; 409 for (const auto &Agent : HSAAgents) { 410 hsa_status_t err = HSA_STATUS_SUCCESS; 411 err = hsa_amd_agent_iterate_memory_pools( 412 Agent, addKernArgPool, static_cast<void *>(&KernArgPools)); 413 if (err != HSA_STATUS_SUCCESS) { 414 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 415 "Iterate all memory pools", get_error_string(err)); 416 return {err, hsa_amd_memory_pool_t{}}; 417 } 418 } 419 420 if (KernArgPools.empty()) { 421 DP("Unable to find any valid kernarg pool\n"); 422 return {HSA_STATUS_ERROR, hsa_amd_memory_pool_t{}}; 423 } 424 425 return {HSA_STATUS_SUCCESS, KernArgPools[0]}; 426 } 427 428 } // namespace 429 } // namespace core 430 431 struct EnvironmentVariables { 432 int NumTeams; 433 int TeamLimit; 434 int TeamThreadLimit; 435 int MaxTeamsDefault; 436 }; 437 438 template <uint32_t wavesize> 439 static constexpr const llvm::omp::GV &getGridValue() { 440 return llvm::omp::getAMDGPUGridValues<wavesize>(); 441 } 442 443 /// Class containing all the device information 444 class RTLDeviceInfoTy { 445 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 446 bool HSAInitializeSucceeded = false; 447 448 public: 449 // load binary populates symbol tables and mutates various global state 450 // run uses those symbol tables 451 std::shared_timed_mutex load_run_lock; 452 453 int NumberOfDevices = 0; 454 455 // GPU devices 456 std::vector<hsa_agent_t> HSAAgents; 457 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 458 459 // CPUs 460 std::vector<hsa_agent_t> CPUAgents; 461 462 // Device properties 463 std::vector<int> ComputeUnits; 464 std::vector<int> GroupsPerDevice; 465 std::vector<int> ThreadsPerGroup; 466 std::vector<int> WarpSize; 467 std::vector<std::string> GPUName; 468 469 // OpenMP properties 470 std::vector<int> NumTeams; 471 std::vector<int> NumThreads; 472 473 // OpenMP Environment properties 474 EnvironmentVariables Env; 475 476 // OpenMP Requires Flags 477 int64_t RequiresFlags; 478 479 // Resource pools 480 SignalPoolT FreeSignalPool; 481 482 bool hostcall_required = false; 483 484 std::vector<hsa_executable_t> HSAExecutables; 485 486 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 487 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 488 489 hsa_amd_memory_pool_t KernArgPool; 490 491 // fine grained memory pool for host allocations 492 hsa_amd_memory_pool_t HostFineGrainedMemoryPool; 493 494 // fine and coarse-grained memory pools per offloading device 495 std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools; 496 std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools; 497 498 struct implFreePtrDeletor { 499 void operator()(void *p) { 500 core::Runtime::Memfree(p); // ignore failure to free 501 } 502 }; 503 504 // device_State shared across loaded binaries, error if inconsistent size 505 std::vector<std::pair<std::unique_ptr<void, implFreePtrDeletor>, uint64_t>> 506 deviceStateStore; 507 508 static const unsigned HardTeamLimit = 509 (1 << 16) - 1; // 64K needed to fit in uint16 510 static const int DefaultNumTeams = 128; 511 512 // These need to be per-device since different devices can have different 513 // wave sizes, but are currently the same number for each so that refactor 514 // can be postponed. 515 static_assert(getGridValue<32>().GV_Max_Teams == 516 getGridValue<64>().GV_Max_Teams, 517 ""); 518 static const int Max_Teams = getGridValue<64>().GV_Max_Teams; 519 520 static_assert(getGridValue<32>().GV_Max_WG_Size == 521 getGridValue<64>().GV_Max_WG_Size, 522 ""); 523 static const int Max_WG_Size = getGridValue<64>().GV_Max_WG_Size; 524 525 static_assert(getGridValue<32>().GV_Default_WG_Size == 526 getGridValue<64>().GV_Default_WG_Size, 527 ""); 528 static const int Default_WG_Size = getGridValue<64>().GV_Default_WG_Size; 529 530 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 531 size_t size, hsa_agent_t, 532 hsa_amd_memory_pool_t); 533 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 534 MemcpyFunc Func, int32_t deviceId) { 535 hsa_agent_t agent = HSAAgents[deviceId]; 536 hsa_signal_t s = FreeSignalPool.pop(); 537 if (s.handle == 0) { 538 return HSA_STATUS_ERROR; 539 } 540 hsa_status_t r = Func(s, dest, src, size, agent, HostFineGrainedMemoryPool); 541 FreeSignalPool.push(s); 542 return r; 543 } 544 545 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 546 size_t size, int32_t deviceId) { 547 return freesignalpool_memcpy(dest, src, size, impl_memcpy_d2h, deviceId); 548 } 549 550 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 551 size_t size, int32_t deviceId) { 552 return freesignalpool_memcpy(dest, src, size, impl_memcpy_h2d, deviceId); 553 } 554 555 // Record entry point associated with device 556 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 557 assert(device_id < (int32_t)FuncGblEntries.size() && 558 "Unexpected device id!"); 559 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 560 561 E.Entries.push_back(entry); 562 } 563 564 // Return true if the entry is associated with device 565 bool findOffloadEntry(int32_t device_id, void *addr) { 566 assert(device_id < (int32_t)FuncGblEntries.size() && 567 "Unexpected device id!"); 568 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 569 570 for (auto &it : E.Entries) { 571 if (it.addr == addr) 572 return true; 573 } 574 575 return false; 576 } 577 578 // Return the pointer to the target entries table 579 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 580 assert(device_id < (int32_t)FuncGblEntries.size() && 581 "Unexpected device id!"); 582 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 583 584 int32_t size = E.Entries.size(); 585 586 // Table is empty 587 if (!size) 588 return 0; 589 590 __tgt_offload_entry *begin = &E.Entries[0]; 591 __tgt_offload_entry *end = &E.Entries[size - 1]; 592 593 // Update table info according to the entries and return the pointer 594 E.Table.EntriesBegin = begin; 595 E.Table.EntriesEnd = ++end; 596 597 return &E.Table; 598 } 599 600 // Clear entries table for a device 601 void clearOffloadEntriesTable(int device_id) { 602 assert(device_id < (int32_t)FuncGblEntries.size() && 603 "Unexpected device id!"); 604 FuncGblEntries[device_id].emplace_back(); 605 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 606 // KernelArgPoolMap.clear(); 607 E.Entries.clear(); 608 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 609 } 610 611 hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, 612 int DeviceId) { 613 assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); 614 uint32_t GlobalFlags = 0; 615 hsa_status_t Err = hsa_amd_memory_pool_get_info( 616 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 617 618 if (Err != HSA_STATUS_SUCCESS) { 619 return Err; 620 } 621 622 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 623 DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; 624 } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { 625 DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; 626 } 627 628 return HSA_STATUS_SUCCESS; 629 } 630 631 hsa_status_t addHostMemoryPool(hsa_amd_memory_pool_t MemoryPool, 632 int DeviceId) { 633 uint32_t GlobalFlags = 0; 634 hsa_status_t Err = hsa_amd_memory_pool_get_info( 635 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 636 637 if (Err != HSA_STATUS_SUCCESS) { 638 return Err; 639 } 640 641 uint32_t Size; 642 Err = hsa_amd_memory_pool_get_info(MemoryPool, 643 HSA_AMD_MEMORY_POOL_INFO_SIZE, &Size); 644 if (Err != HSA_STATUS_SUCCESS) { 645 return Err; 646 } 647 648 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED && 649 Size > 0) { 650 HostFineGrainedMemoryPool = MemoryPool; 651 } 652 653 return HSA_STATUS_SUCCESS; 654 } 655 656 hsa_status_t setupMemoryPools() { 657 using namespace std::placeholders; 658 hsa_status_t Err; 659 Err = core::collectMemoryPools( 660 CPUAgents, std::bind(&RTLDeviceInfoTy::addHostMemoryPool, this, _1, _2)); 661 if (Err != HSA_STATUS_SUCCESS) { 662 DP("HSA error in collecting memory pools for CPU: %s\n", 663 get_error_string(Err)); 664 return Err; 665 } 666 Err = core::collectMemoryPools( 667 HSAAgents, std::bind(&RTLDeviceInfoTy::addDeviceMemoryPool, this, _1, _2)); 668 if (Err != HSA_STATUS_SUCCESS) { 669 DP("HSA error in collecting memory pools for offload devices: %s\n", 670 get_error_string(Err)); 671 return Err; 672 } 673 return HSA_STATUS_SUCCESS; 674 } 675 676 hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { 677 assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && 678 "Invalid device Id"); 679 return DeviceCoarseGrainedMemoryPools[DeviceId]; 680 } 681 682 hsa_amd_memory_pool_t getHostMemoryPool() { 683 return HostFineGrainedMemoryPool; 684 } 685 686 static int readEnvElseMinusOne(const char *Env) { 687 const char *envStr = getenv(Env); 688 int res = -1; 689 if (envStr) { 690 res = std::stoi(envStr); 691 DP("Parsed %s=%d\n", Env, res); 692 } 693 return res; 694 } 695 696 RTLDeviceInfoTy() { 697 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 698 // anytime. You do not need a debug library build. 699 // 0 => no tracing 700 // 1 => tracing dispatch only 701 // >1 => verbosity increase 702 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 703 print_kernel_trace = atoi(envStr); 704 else 705 print_kernel_trace = 0; 706 707 DP("Start initializing " GETNAME(TARGET_NAME) "\n"); 708 hsa_status_t err = core::atl_init_gpu_context(); 709 if (err == HSA_STATUS_SUCCESS) { 710 HSAInitializeSucceeded = true; 711 } else { 712 DP("Error when initializing " GETNAME(TARGET_NAME) "\n"); 713 return; 714 } 715 716 // Init hostcall soon after initializing ATMI 717 hostrpc_init(); 718 719 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 720 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 721 CPUAgents.push_back(Agent); 722 } else { 723 HSAAgents.push_back(Agent); 724 } 725 }); 726 if (err != HSA_STATUS_SUCCESS) 727 return; 728 729 NumberOfDevices = (int)HSAAgents.size(); 730 731 if (NumberOfDevices == 0) { 732 DP("There are no devices supporting HSA.\n"); 733 return; 734 } else { 735 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 736 } 737 std::tie(err, KernArgPool) = core::FindKernargPool(CPUAgents); 738 if (err != HSA_STATUS_SUCCESS) { 739 DP("Error when reading memory pools\n"); 740 return; 741 } 742 743 // Init the device info 744 HSAQueues.resize(NumberOfDevices); 745 FuncGblEntries.resize(NumberOfDevices); 746 ThreadsPerGroup.resize(NumberOfDevices); 747 ComputeUnits.resize(NumberOfDevices); 748 GPUName.resize(NumberOfDevices); 749 GroupsPerDevice.resize(NumberOfDevices); 750 WarpSize.resize(NumberOfDevices); 751 NumTeams.resize(NumberOfDevices); 752 NumThreads.resize(NumberOfDevices); 753 deviceStateStore.resize(NumberOfDevices); 754 KernelInfoTable.resize(NumberOfDevices); 755 SymbolInfoTable.resize(NumberOfDevices); 756 DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); 757 DeviceFineGrainedMemoryPools.resize(NumberOfDevices); 758 759 err = setupMemoryPools(); 760 if (err != HSA_STATUS_SUCCESS) { 761 DP("Error when setting up memory pools"); 762 return; 763 } 764 765 for (int i = 0; i < NumberOfDevices; i++) { 766 HSAQueues[i] = nullptr; 767 } 768 769 for (int i = 0; i < NumberOfDevices; i++) { 770 uint32_t queue_size = 0; 771 { 772 hsa_status_t err = hsa_agent_get_info( 773 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 774 if (err != HSA_STATUS_SUCCESS) { 775 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 776 return; 777 } 778 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 779 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 780 } 781 } 782 783 hsa_status_t rc = hsa_queue_create( 784 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 785 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 786 if (rc != HSA_STATUS_SUCCESS) { 787 DP("Failed to create HSA queue %d\n", i); 788 return; 789 } 790 791 deviceStateStore[i] = {nullptr, 0}; 792 } 793 794 for (int i = 0; i < NumberOfDevices; i++) { 795 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 796 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 797 ComputeUnits[i] = 1; 798 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 799 GroupsPerDevice[i], ThreadsPerGroup[i]); 800 } 801 802 // Get environment variables regarding teams 803 Env.TeamLimit = readEnvElseMinusOne("OMP_TEAM_LIMIT"); 804 Env.NumTeams = readEnvElseMinusOne("OMP_NUM_TEAMS"); 805 Env.MaxTeamsDefault = readEnvElseMinusOne("OMP_MAX_TEAMS_DEFAULT"); 806 Env.TeamThreadLimit = readEnvElseMinusOne("OMP_TEAMS_THREAD_LIMIT"); 807 808 // Default state. 809 RequiresFlags = OMP_REQ_UNDEFINED; 810 } 811 812 ~RTLDeviceInfoTy() { 813 DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n"); 814 if (!HSAInitializeSucceeded) { 815 // Then none of these can have been set up and they can't be torn down 816 return; 817 } 818 // Run destructors on types that use HSA before 819 // impl_finalize removes access to it 820 deviceStateStore.clear(); 821 KernelArgPoolMap.clear(); 822 // Terminate hostrpc before finalizing ATMI 823 hostrpc_terminate(); 824 825 hsa_status_t Err; 826 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 827 Err = hsa_executable_destroy(HSAExecutables[I]); 828 if (Err != HSA_STATUS_SUCCESS) { 829 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 830 "Destroying executable", get_error_string(Err)); 831 } 832 } 833 834 Err = hsa_shut_down(); 835 if (Err != HSA_STATUS_SUCCESS) { 836 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA", 837 get_error_string(Err)); 838 } 839 } 840 }; 841 842 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 843 844 // TODO: May need to drop the trailing to fields until deviceRTL is updated 845 struct omptarget_device_environmentTy { 846 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 847 // only useful for Debug build of deviceRTLs 848 int32_t num_devices; // gets number of active offload devices 849 int32_t device_num; // gets a value 0 to num_devices-1 850 }; 851 852 static RTLDeviceInfoTy DeviceInfo; 853 854 namespace { 855 856 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 857 __tgt_async_info *AsyncInfo) { 858 assert(AsyncInfo && "AsyncInfo is nullptr"); 859 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 860 // Return success if we are not copying back to host from target. 861 if (!HstPtr) 862 return OFFLOAD_SUCCESS; 863 hsa_status_t err; 864 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 865 (long long unsigned)(Elf64_Addr)TgtPtr, 866 (long long unsigned)(Elf64_Addr)HstPtr); 867 868 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 869 DeviceId); 870 871 if (err != HSA_STATUS_SUCCESS) { 872 DP("Error when copying data from device to host. Pointers: " 873 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 874 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 875 return OFFLOAD_FAIL; 876 } 877 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 878 (long long unsigned)(Elf64_Addr)TgtPtr, 879 (long long unsigned)(Elf64_Addr)HstPtr); 880 return OFFLOAD_SUCCESS; 881 } 882 883 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 884 __tgt_async_info *AsyncInfo) { 885 assert(AsyncInfo && "AsyncInfo is nullptr"); 886 hsa_status_t err; 887 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 888 // Return success if we are not doing host to target. 889 if (!HstPtr) 890 return OFFLOAD_SUCCESS; 891 892 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 893 (long long unsigned)(Elf64_Addr)HstPtr, 894 (long long unsigned)(Elf64_Addr)TgtPtr); 895 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 896 DeviceId); 897 if (err != HSA_STATUS_SUCCESS) { 898 DP("Error when copying data from host to device. Pointers: " 899 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 900 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 901 return OFFLOAD_FAIL; 902 } 903 return OFFLOAD_SUCCESS; 904 } 905 906 // Async. 907 // The implementation was written with cuda streams in mind. The semantics of 908 // that are to execute kernels on a queue in order of insertion. A synchronise 909 // call then makes writes visible between host and device. This means a series 910 // of N data_submit_async calls are expected to execute serially. HSA offers 911 // various options to run the data copies concurrently. This may require changes 912 // to libomptarget. 913 914 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 915 // there are no outstanding kernels that need to be synchronized. Any async call 916 // may be passed a Queue==0, at which point the cuda implementation will set it 917 // to non-null (see getStream). The cuda streams are per-device. Upstream may 918 // change this interface to explicitly initialize the AsyncInfo_pointer, but 919 // until then hsa lazily initializes it as well. 920 921 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 922 // set non-null while using async calls, return to null to indicate completion 923 assert(AsyncInfo); 924 if (!AsyncInfo->Queue) { 925 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 926 } 927 } 928 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 929 assert(AsyncInfo); 930 assert(AsyncInfo->Queue); 931 AsyncInfo->Queue = 0; 932 } 933 934 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 935 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 936 int32_t r = elf_check_machine(image, amdgcnMachineID); 937 if (!r) { 938 DP("Supported machine ID not found\n"); 939 } 940 return r; 941 } 942 943 uint32_t elf_e_flags(__tgt_device_image *image) { 944 char *img_begin = (char *)image->ImageStart; 945 size_t img_size = (char *)image->ImageEnd - img_begin; 946 947 Elf *e = elf_memory(img_begin, img_size); 948 if (!e) { 949 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 950 return 0; 951 } 952 953 Elf64_Ehdr *eh64 = elf64_getehdr(e); 954 955 if (!eh64) { 956 DP("Unable to get machine ID from ELF file!\n"); 957 elf_end(e); 958 return 0; 959 } 960 961 uint32_t Flags = eh64->e_flags; 962 963 elf_end(e); 964 DP("ELF Flags: 0x%x\n", Flags); 965 return Flags; 966 } 967 } // namespace 968 969 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 970 return elf_machine_id_is_amdgcn(image); 971 } 972 973 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 974 975 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 976 DP("Init requires flags to %ld\n", RequiresFlags); 977 DeviceInfo.RequiresFlags = RequiresFlags; 978 return RequiresFlags; 979 } 980 981 namespace { 982 template <typename T> bool enforce_upper_bound(T *value, T upper) { 983 bool changed = *value > upper; 984 if (changed) { 985 *value = upper; 986 } 987 return changed; 988 } 989 } // namespace 990 991 int32_t __tgt_rtl_init_device(int device_id) { 992 hsa_status_t err; 993 994 // this is per device id init 995 DP("Initialize the device id: %d\n", device_id); 996 997 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 998 999 // Get number of Compute Unit 1000 uint32_t compute_units = 0; 1001 err = hsa_agent_get_info( 1002 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 1003 &compute_units); 1004 if (err != HSA_STATUS_SUCCESS) { 1005 DeviceInfo.ComputeUnits[device_id] = 1; 1006 DP("Error getting compute units : settiing to 1\n"); 1007 } else { 1008 DeviceInfo.ComputeUnits[device_id] = compute_units; 1009 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 1010 } 1011 1012 char GetInfoName[64]; // 64 max size returned by get info 1013 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 1014 (void *)GetInfoName); 1015 if (err) 1016 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 1017 else { 1018 DeviceInfo.GPUName[device_id] = GetInfoName; 1019 } 1020 1021 if (print_kernel_trace & STARTUP_DETAILS) 1022 DP("Device#%-2d CU's: %2d %s\n", device_id, 1023 DeviceInfo.ComputeUnits[device_id], 1024 DeviceInfo.GPUName[device_id].c_str()); 1025 1026 // Query attributes to determine number of threads/block and blocks/grid. 1027 uint16_t workgroup_max_dim[3]; 1028 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 1029 &workgroup_max_dim); 1030 if (err != HSA_STATUS_SUCCESS) { 1031 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 1032 DP("Error getting grid dims: num groups : %d\n", 1033 RTLDeviceInfoTy::DefaultNumTeams); 1034 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 1035 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 1036 DP("Using %d ROCm blocks per grid\n", 1037 DeviceInfo.GroupsPerDevice[device_id]); 1038 } else { 1039 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 1040 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 1041 "at the hard limit\n", 1042 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 1043 } 1044 1045 // Get thread limit 1046 hsa_dim3_t grid_max_dim; 1047 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 1048 if (err == HSA_STATUS_SUCCESS) { 1049 DeviceInfo.ThreadsPerGroup[device_id] = 1050 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 1051 DeviceInfo.GroupsPerDevice[device_id]; 1052 1053 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 1054 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1055 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1056 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 1057 RTLDeviceInfoTy::Max_WG_Size)) { 1058 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1059 } else { 1060 DP("Using ROCm Queried thread limit: %d\n", 1061 DeviceInfo.ThreadsPerGroup[device_id]); 1062 } 1063 } else { 1064 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1065 DP("Error getting max block dimension, use default:%d \n", 1066 RTLDeviceInfoTy::Max_WG_Size); 1067 } 1068 1069 // Get wavefront size 1070 uint32_t wavefront_size = 0; 1071 err = 1072 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 1073 if (err == HSA_STATUS_SUCCESS) { 1074 DP("Queried wavefront size: %d\n", wavefront_size); 1075 DeviceInfo.WarpSize[device_id] = wavefront_size; 1076 } else { 1077 // TODO: Burn the wavefront size into the code object 1078 DP("Warning: Unknown wavefront size, assuming 64\n"); 1079 DeviceInfo.WarpSize[device_id] = 64; 1080 } 1081 1082 // Adjust teams to the env variables 1083 1084 if (DeviceInfo.Env.TeamLimit > 0 && 1085 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 1086 DeviceInfo.Env.TeamLimit))) { 1087 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 1088 DeviceInfo.Env.TeamLimit); 1089 } 1090 1091 // Set default number of teams 1092 if (DeviceInfo.Env.NumTeams > 0) { 1093 DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams; 1094 DP("Default number of teams set according to environment %d\n", 1095 DeviceInfo.Env.NumTeams); 1096 } else { 1097 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 1098 int TeamsPerCU = DefaultTeamsPerCU; 1099 if (TeamsPerCUEnvStr) { 1100 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 1101 } 1102 1103 DeviceInfo.NumTeams[device_id] = 1104 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 1105 DP("Default number of teams = %d * number of compute units %d\n", 1106 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 1107 } 1108 1109 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 1110 DeviceInfo.GroupsPerDevice[device_id])) { 1111 DP("Default number of teams exceeds device limit, capping at %d\n", 1112 DeviceInfo.GroupsPerDevice[device_id]); 1113 } 1114 1115 // Adjust threads to the env variables 1116 if (DeviceInfo.Env.TeamThreadLimit > 0 && 1117 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1118 DeviceInfo.Env.TeamThreadLimit))) { 1119 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 1120 DeviceInfo.Env.TeamThreadLimit); 1121 } 1122 1123 // Set default number of threads 1124 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 1125 DP("Default number of threads set according to library's default %d\n", 1126 RTLDeviceInfoTy::Default_WG_Size); 1127 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1128 DeviceInfo.ThreadsPerGroup[device_id])) { 1129 DP("Default number of threads exceeds device limit, capping at %d\n", 1130 DeviceInfo.ThreadsPerGroup[device_id]); 1131 } 1132 1133 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 1134 device_id, DeviceInfo.GroupsPerDevice[device_id], 1135 DeviceInfo.ThreadsPerGroup[device_id]); 1136 1137 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 1138 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 1139 DeviceInfo.GroupsPerDevice[device_id], 1140 DeviceInfo.GroupsPerDevice[device_id] * 1141 DeviceInfo.ThreadsPerGroup[device_id]); 1142 1143 return OFFLOAD_SUCCESS; 1144 } 1145 1146 namespace { 1147 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 1148 size_t N; 1149 int rc = elf_getshdrnum(elf, &N); 1150 if (rc != 0) { 1151 return nullptr; 1152 } 1153 1154 Elf64_Shdr *result = nullptr; 1155 for (size_t i = 0; i < N; i++) { 1156 Elf_Scn *scn = elf_getscn(elf, i); 1157 if (scn) { 1158 Elf64_Shdr *shdr = elf64_getshdr(scn); 1159 if (shdr) { 1160 if (shdr->sh_type == SHT_HASH) { 1161 if (result == nullptr) { 1162 result = shdr; 1163 } else { 1164 // multiple SHT_HASH sections not handled 1165 return nullptr; 1166 } 1167 } 1168 } 1169 } 1170 } 1171 return result; 1172 } 1173 1174 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1175 const char *symname) { 1176 1177 assert(section_hash); 1178 size_t section_symtab_index = section_hash->sh_link; 1179 Elf64_Shdr *section_symtab = 1180 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1181 size_t section_strtab_index = section_symtab->sh_link; 1182 1183 const Elf64_Sym *symtab = 1184 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1185 1186 const uint32_t *hashtab = 1187 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1188 1189 // Layout: 1190 // nbucket 1191 // nchain 1192 // bucket[nbucket] 1193 // chain[nchain] 1194 uint32_t nbucket = hashtab[0]; 1195 const uint32_t *bucket = &hashtab[2]; 1196 const uint32_t *chain = &hashtab[nbucket + 2]; 1197 1198 const size_t max = strlen(symname) + 1; 1199 const uint32_t hash = elf_hash(symname); 1200 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1201 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1202 if (strncmp(symname, n, max) == 0) { 1203 return &symtab[i]; 1204 } 1205 } 1206 1207 return nullptr; 1208 } 1209 1210 struct symbol_info { 1211 void *addr = nullptr; 1212 uint32_t size = UINT32_MAX; 1213 uint32_t sh_type = SHT_NULL; 1214 }; 1215 1216 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1217 symbol_info *res) { 1218 if (elf_kind(elf) != ELF_K_ELF) { 1219 return 1; 1220 } 1221 1222 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1223 if (!section_hash) { 1224 return 1; 1225 } 1226 1227 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1228 if (!sym) { 1229 return 1; 1230 } 1231 1232 if (sym->st_size > UINT32_MAX) { 1233 return 1; 1234 } 1235 1236 if (sym->st_shndx == SHN_UNDEF) { 1237 return 1; 1238 } 1239 1240 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1241 if (!section) { 1242 return 1; 1243 } 1244 1245 Elf64_Shdr *header = elf64_getshdr(section); 1246 if (!header) { 1247 return 1; 1248 } 1249 1250 res->addr = sym->st_value + base; 1251 res->size = static_cast<uint32_t>(sym->st_size); 1252 res->sh_type = header->sh_type; 1253 return 0; 1254 } 1255 1256 int get_symbol_info_without_loading(char *base, size_t img_size, 1257 const char *symname, symbol_info *res) { 1258 Elf *elf = elf_memory(base, img_size); 1259 if (elf) { 1260 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1261 elf_end(elf); 1262 return rc; 1263 } 1264 return 1; 1265 } 1266 1267 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1268 const char *symname, void **var_addr, 1269 uint32_t *var_size) { 1270 symbol_info si; 1271 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1272 if (rc == 0) { 1273 *var_addr = si.addr; 1274 *var_size = si.size; 1275 return HSA_STATUS_SUCCESS; 1276 } else { 1277 return HSA_STATUS_ERROR; 1278 } 1279 } 1280 1281 template <typename C> 1282 hsa_status_t module_register_from_memory_to_place( 1283 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1284 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1285 void *module_bytes, size_t module_size, int DeviceId, C cb, 1286 std::vector<hsa_executable_t> &HSAExecutables) { 1287 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1288 C *unwrapped = static_cast<C *>(cb_state); 1289 return (*unwrapped)(data, size); 1290 }; 1291 return core::RegisterModuleFromMemory( 1292 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1293 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1294 HSAExecutables); 1295 } 1296 } // namespace 1297 1298 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1299 uint64_t device_State_bytes = 0; 1300 { 1301 // If this is the deviceRTL, get the state variable size 1302 symbol_info size_si; 1303 int rc = get_symbol_info_without_loading( 1304 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1305 1306 if (rc == 0) { 1307 if (size_si.size != sizeof(uint64_t)) { 1308 DP("Found device_State_size variable with wrong size\n"); 1309 return 0; 1310 } 1311 1312 // Read number of bytes directly from the elf 1313 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1314 } 1315 } 1316 return device_State_bytes; 1317 } 1318 1319 static __tgt_target_table * 1320 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1321 1322 static __tgt_target_table * 1323 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1324 1325 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1326 __tgt_device_image *image) { 1327 DeviceInfo.load_run_lock.lock(); 1328 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1329 DeviceInfo.load_run_lock.unlock(); 1330 return res; 1331 } 1332 1333 struct device_environment { 1334 // initialise an omptarget_device_environmentTy in the deviceRTL 1335 // patches around differences in the deviceRTL between trunk, aomp, 1336 // rocmcc. Over time these differences will tend to zero and this class 1337 // simplified. 1338 // Symbol may be in .data or .bss, and may be missing fields: 1339 // - aomp has debug_level, num_devices, device_num 1340 // - trunk has debug_level 1341 // - under review in trunk is debug_level, device_num 1342 // - rocmcc matches aomp, patch to swap num_devices and device_num 1343 1344 // The symbol may also have been deadstripped because the device side 1345 // accessors were unused. 1346 1347 // If the symbol is in .data (aomp, rocm) it can be written directly. 1348 // If it is in .bss, we must wait for it to be allocated space on the 1349 // gpu (trunk) and initialize after loading. 1350 const char *sym() { return "omptarget_device_environment"; } 1351 1352 omptarget_device_environmentTy host_device_env; 1353 symbol_info si; 1354 bool valid = false; 1355 1356 __tgt_device_image *image; 1357 const size_t img_size; 1358 1359 device_environment(int device_id, int number_devices, 1360 __tgt_device_image *image, const size_t img_size) 1361 : image(image), img_size(img_size) { 1362 1363 host_device_env.num_devices = number_devices; 1364 host_device_env.device_num = device_id; 1365 host_device_env.debug_level = 0; 1366 #ifdef OMPTARGET_DEBUG 1367 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1368 host_device_env.debug_level = std::stoi(envStr); 1369 } 1370 #endif 1371 1372 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1373 img_size, sym(), &si); 1374 if (rc != 0) { 1375 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1376 return; 1377 } 1378 1379 if (si.size > sizeof(host_device_env)) { 1380 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1381 sizeof(host_device_env)); 1382 return; 1383 } 1384 1385 valid = true; 1386 } 1387 1388 bool in_image() { return si.sh_type != SHT_NOBITS; } 1389 1390 hsa_status_t before_loading(void *data, size_t size) { 1391 if (valid) { 1392 if (in_image()) { 1393 DP("Setting global device environment before load (%u bytes)\n", 1394 si.size); 1395 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1396 void *pos = (char *)data + offset; 1397 memcpy(pos, &host_device_env, si.size); 1398 } 1399 } 1400 return HSA_STATUS_SUCCESS; 1401 } 1402 1403 hsa_status_t after_loading() { 1404 if (valid) { 1405 if (!in_image()) { 1406 DP("Setting global device environment after load (%u bytes)\n", 1407 si.size); 1408 int device_id = host_device_env.device_num; 1409 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1410 void *state_ptr; 1411 uint32_t state_ptr_size; 1412 hsa_status_t err = interop_hsa_get_symbol_info( 1413 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1414 if (err != HSA_STATUS_SUCCESS) { 1415 DP("failed to find %s in loaded image\n", sym()); 1416 return err; 1417 } 1418 1419 if (state_ptr_size != si.size) { 1420 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1421 si.size); 1422 return HSA_STATUS_ERROR; 1423 } 1424 1425 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1426 state_ptr_size, device_id); 1427 } 1428 } 1429 return HSA_STATUS_SUCCESS; 1430 } 1431 }; 1432 1433 static hsa_status_t impl_calloc(void **ret_ptr, size_t size, int DeviceId) { 1434 uint64_t rounded = 4 * ((size + 3) / 4); 1435 void *ptr; 1436 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(DeviceId); 1437 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, rounded, 0, &ptr); 1438 if (err != HSA_STATUS_SUCCESS) { 1439 return err; 1440 } 1441 1442 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1443 if (rc != HSA_STATUS_SUCCESS) { 1444 DP("zero fill device_state failed with %u\n", rc); 1445 core::Runtime::Memfree(ptr); 1446 return HSA_STATUS_ERROR; 1447 } 1448 1449 *ret_ptr = ptr; 1450 return HSA_STATUS_SUCCESS; 1451 } 1452 1453 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1454 symbol_info si; 1455 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1456 return (rc == 0) && (si.addr != nullptr); 1457 } 1458 1459 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1460 __tgt_device_image *image) { 1461 // This function loads the device image onto gpu[device_id] and does other 1462 // per-image initialization work. Specifically: 1463 // 1464 // - Initialize an omptarget_device_environmentTy instance embedded in the 1465 // image at the symbol "omptarget_device_environment" 1466 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1467 // 1468 // - Allocate a large array per-gpu (could be moved to init_device) 1469 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1470 // - Allocate at least that many bytes of gpu memory 1471 // - Zero initialize it 1472 // - Write the pointer to the symbol omptarget_nvptx_device_State 1473 // 1474 // - Pulls some per-kernel information together from various sources and 1475 // records it in the KernelsList for quicker access later 1476 // 1477 // The initialization can be done before or after loading the image onto the 1478 // gpu. This function presently does a mixture. Using the hsa api to get/set 1479 // the information is simpler to implement, in exchange for more complicated 1480 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1481 // back from the gpu vs a hashtable lookup on the host. 1482 1483 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1484 1485 DeviceInfo.clearOffloadEntriesTable(device_id); 1486 1487 // We do not need to set the ELF version because the caller of this function 1488 // had to do that to decide the right runtime to use 1489 1490 if (!elf_machine_id_is_amdgcn(image)) { 1491 return NULL; 1492 } 1493 1494 { 1495 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1496 img_size); 1497 1498 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1499 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1500 hsa_status_t err = module_register_from_memory_to_place( 1501 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1502 [&](void *data, size_t size) { 1503 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1504 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1505 __ATOMIC_RELEASE); 1506 } 1507 return env.before_loading(data, size); 1508 }, 1509 DeviceInfo.HSAExecutables); 1510 1511 check("Module registering", err); 1512 if (err != HSA_STATUS_SUCCESS) { 1513 const char *DeviceName = DeviceInfo.GPUName[device_id].c_str(); 1514 const char *ElfName = get_elf_mach_gfx_name(elf_e_flags(image)); 1515 1516 if (strcmp(DeviceName, ElfName) != 0) { 1517 DP("Possible gpu arch mismatch: device:%s, image:%s please check" 1518 " compiler flag: -march=<gpu>\n", 1519 DeviceName, ElfName); 1520 } else { 1521 DP("Error loading image onto GPU: %s\n", get_error_string(err)); 1522 } 1523 1524 return NULL; 1525 } 1526 1527 err = env.after_loading(); 1528 if (err != HSA_STATUS_SUCCESS) { 1529 return NULL; 1530 } 1531 } 1532 1533 DP("ATMI module successfully loaded!\n"); 1534 1535 { 1536 // the device_State array is either large value in bss or a void* that 1537 // needs to be assigned to a pointer to an array of size device_state_bytes 1538 // If absent, it has been deadstripped and needs no setup. 1539 1540 void *state_ptr; 1541 uint32_t state_ptr_size; 1542 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1543 hsa_status_t err = interop_hsa_get_symbol_info( 1544 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1545 &state_ptr_size); 1546 1547 if (err != HSA_STATUS_SUCCESS) { 1548 DP("No device_state symbol found, skipping initialization\n"); 1549 } else { 1550 if (state_ptr_size < sizeof(void *)) { 1551 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1552 sizeof(void *)); 1553 return NULL; 1554 } 1555 1556 // if it's larger than a void*, assume it's a bss array and no further 1557 // initialization is required. Only try to set up a pointer for 1558 // sizeof(void*) 1559 if (state_ptr_size == sizeof(void *)) { 1560 uint64_t device_State_bytes = 1561 get_device_State_bytes((char *)image->ImageStart, img_size); 1562 if (device_State_bytes == 0) { 1563 DP("Can't initialize device_State, missing size information\n"); 1564 return NULL; 1565 } 1566 1567 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1568 if (dss.first.get() == nullptr) { 1569 assert(dss.second == 0); 1570 void *ptr = NULL; 1571 hsa_status_t err = impl_calloc(&ptr, device_State_bytes, device_id); 1572 if (err != HSA_STATUS_SUCCESS) { 1573 DP("Failed to allocate device_state array\n"); 1574 return NULL; 1575 } 1576 dss = { 1577 std::unique_ptr<void, RTLDeviceInfoTy::implFreePtrDeletor>{ptr}, 1578 device_State_bytes, 1579 }; 1580 } 1581 1582 void *ptr = dss.first.get(); 1583 if (device_State_bytes != dss.second) { 1584 DP("Inconsistent sizes of device_State unsupported\n"); 1585 return NULL; 1586 } 1587 1588 // write ptr to device memory so it can be used by later kernels 1589 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1590 sizeof(void *), device_id); 1591 if (err != HSA_STATUS_SUCCESS) { 1592 DP("memcpy install of state_ptr failed\n"); 1593 return NULL; 1594 } 1595 } 1596 } 1597 } 1598 1599 // Here, we take advantage of the data that is appended after img_end to get 1600 // the symbols' name we need to load. This data consist of the host entries 1601 // begin and end as well as the target name (see the offloading linker script 1602 // creation in clang compiler). 1603 1604 // Find the symbols in the module by name. The name can be obtain by 1605 // concatenating the host entry name with the target name 1606 1607 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1608 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1609 1610 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1611 1612 if (!e->addr) { 1613 // The host should have always something in the address to 1614 // uniquely identify the target region. 1615 DP("Analyzing host entry '<null>' (size = %lld)...\n", 1616 (unsigned long long)e->size); 1617 return NULL; 1618 } 1619 1620 if (e->size) { 1621 __tgt_offload_entry entry = *e; 1622 1623 void *varptr; 1624 uint32_t varsize; 1625 1626 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1627 hsa_status_t err = interop_hsa_get_symbol_info( 1628 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1629 1630 if (err != HSA_STATUS_SUCCESS) { 1631 // Inform the user what symbol prevented offloading 1632 DP("Loading global '%s' (Failed)\n", e->name); 1633 return NULL; 1634 } 1635 1636 if (varsize != e->size) { 1637 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1638 varsize, e->size); 1639 return NULL; 1640 } 1641 1642 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1643 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1644 entry.addr = (void *)varptr; 1645 1646 DeviceInfo.addOffloadEntry(device_id, entry); 1647 1648 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1649 e->flags & OMP_DECLARE_TARGET_LINK) { 1650 // If unified memory is present any target link variables 1651 // can access host addresses directly. There is no longer a 1652 // need for device copies. 1653 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1654 sizeof(void *), device_id); 1655 if (err != HSA_STATUS_SUCCESS) 1656 DP("Error when copying USM\n"); 1657 DP("Copy linked variable host address (" DPxMOD ")" 1658 "to device address (" DPxMOD ")\n", 1659 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1660 } 1661 1662 continue; 1663 } 1664 1665 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1666 1667 uint32_t kernarg_segment_size; 1668 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1669 hsa_status_t err = interop_hsa_get_kernel_info( 1670 KernelInfoMap, device_id, e->name, 1671 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1672 &kernarg_segment_size); 1673 1674 // each arg is a void * in this openmp implementation 1675 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1676 std::vector<size_t> arg_sizes(arg_num); 1677 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1678 it != arg_sizes.end(); it++) { 1679 *it = sizeof(void *); 1680 } 1681 1682 // default value GENERIC (in case symbol is missing from cubin file) 1683 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1684 1685 // get flat group size if present, else Default_WG_Size 1686 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1687 1688 // get Kernel Descriptor if present. 1689 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1690 struct KernDescValType { 1691 uint16_t Version; 1692 uint16_t TSize; 1693 uint16_t WG_Size; 1694 uint8_t Mode; 1695 }; 1696 struct KernDescValType KernDescVal; 1697 std::string KernDescNameStr(e->name); 1698 KernDescNameStr += "_kern_desc"; 1699 const char *KernDescName = KernDescNameStr.c_str(); 1700 1701 void *KernDescPtr; 1702 uint32_t KernDescSize; 1703 void *CallStackAddr = nullptr; 1704 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1705 KernDescName, &KernDescPtr, &KernDescSize); 1706 1707 if (err == HSA_STATUS_SUCCESS) { 1708 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1709 DP("Loading global computation properties '%s' - size mismatch (%u != " 1710 "%lu)\n", 1711 KernDescName, KernDescSize, sizeof(KernDescVal)); 1712 1713 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1714 1715 // Check structure size against recorded size. 1716 if ((size_t)KernDescSize != KernDescVal.TSize) 1717 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1718 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1719 1720 DP("After loading global for %s KernDesc \n", KernDescName); 1721 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1722 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1723 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1724 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1725 1726 // Get ExecMode 1727 ExecModeVal = KernDescVal.Mode; 1728 DP("ExecModeVal %d\n", ExecModeVal); 1729 if (KernDescVal.WG_Size == 0) { 1730 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1731 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1732 } 1733 WGSizeVal = KernDescVal.WG_Size; 1734 DP("WGSizeVal %d\n", WGSizeVal); 1735 check("Loading KernDesc computation property", err); 1736 } else { 1737 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1738 1739 // Generic 1740 std::string ExecModeNameStr(e->name); 1741 ExecModeNameStr += "_exec_mode"; 1742 const char *ExecModeName = ExecModeNameStr.c_str(); 1743 1744 void *ExecModePtr; 1745 uint32_t varsize; 1746 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1747 ExecModeName, &ExecModePtr, &varsize); 1748 1749 if (err == HSA_STATUS_SUCCESS) { 1750 if ((size_t)varsize != sizeof(int8_t)) { 1751 DP("Loading global computation properties '%s' - size mismatch(%u != " 1752 "%lu)\n", 1753 ExecModeName, varsize, sizeof(int8_t)); 1754 return NULL; 1755 } 1756 1757 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1758 1759 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1760 ExecModeVal); 1761 1762 if (ExecModeVal < 0 || ExecModeVal > 2) { 1763 DP("Error wrong exec_mode value specified in HSA code object file: " 1764 "%d\n", 1765 ExecModeVal); 1766 return NULL; 1767 } 1768 } else { 1769 DP("Loading global exec_mode '%s' - symbol missing, using default " 1770 "value " 1771 "GENERIC (1)\n", 1772 ExecModeName); 1773 } 1774 check("Loading computation property", err); 1775 1776 // Flat group size 1777 std::string WGSizeNameStr(e->name); 1778 WGSizeNameStr += "_wg_size"; 1779 const char *WGSizeName = WGSizeNameStr.c_str(); 1780 1781 void *WGSizePtr; 1782 uint32_t WGSize; 1783 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1784 WGSizeName, &WGSizePtr, &WGSize); 1785 1786 if (err == HSA_STATUS_SUCCESS) { 1787 if ((size_t)WGSize != sizeof(int16_t)) { 1788 DP("Loading global computation properties '%s' - size mismatch (%u " 1789 "!= " 1790 "%lu)\n", 1791 WGSizeName, WGSize, sizeof(int16_t)); 1792 return NULL; 1793 } 1794 1795 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1796 1797 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1798 1799 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1800 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1801 DP("Error wrong WGSize value specified in HSA code object file: " 1802 "%d\n", 1803 WGSizeVal); 1804 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1805 } 1806 } else { 1807 DP("Warning: Loading WGSize '%s' - symbol not found, " 1808 "using default value %d\n", 1809 WGSizeName, WGSizeVal); 1810 } 1811 1812 check("Loading WGSize computation property", err); 1813 } 1814 1815 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1816 CallStackAddr, e->name, kernarg_segment_size, 1817 DeviceInfo.KernArgPool)); 1818 __tgt_offload_entry entry = *e; 1819 entry.addr = (void *)&KernelsList.back(); 1820 DeviceInfo.addOffloadEntry(device_id, entry); 1821 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1822 } 1823 1824 return DeviceInfo.getOffloadEntriesTable(device_id); 1825 } 1826 1827 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1828 void *ptr = NULL; 1829 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1830 1831 if (kind != TARGET_ALLOC_DEFAULT) { 1832 REPORT("Invalid target data allocation kind or requested allocator not " 1833 "implemented yet\n"); 1834 return NULL; 1835 } 1836 1837 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(device_id); 1838 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, size, 0, &ptr); 1839 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1840 (long long unsigned)(Elf64_Addr)ptr); 1841 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1842 return ptr; 1843 } 1844 1845 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1846 int64_t size) { 1847 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1848 __tgt_async_info AsyncInfo; 1849 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1850 if (rc != OFFLOAD_SUCCESS) 1851 return OFFLOAD_FAIL; 1852 1853 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1854 } 1855 1856 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1857 int64_t size, __tgt_async_info *AsyncInfo) { 1858 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1859 if (AsyncInfo) { 1860 initAsyncInfo(AsyncInfo); 1861 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1862 } else { 1863 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1864 } 1865 } 1866 1867 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1868 int64_t size) { 1869 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1870 __tgt_async_info AsyncInfo; 1871 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1872 if (rc != OFFLOAD_SUCCESS) 1873 return OFFLOAD_FAIL; 1874 1875 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1876 } 1877 1878 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1879 void *tgt_ptr, int64_t size, 1880 __tgt_async_info *AsyncInfo) { 1881 assert(AsyncInfo && "AsyncInfo is nullptr"); 1882 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1883 initAsyncInfo(AsyncInfo); 1884 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1885 } 1886 1887 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1888 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1889 hsa_status_t err; 1890 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1891 err = core::Runtime::Memfree(tgt_ptr); 1892 if (err != HSA_STATUS_SUCCESS) { 1893 DP("Error when freeing CUDA memory\n"); 1894 return OFFLOAD_FAIL; 1895 } 1896 return OFFLOAD_SUCCESS; 1897 } 1898 1899 // Determine launch values for kernel. 1900 struct launchVals { 1901 int WorkgroupSize; 1902 int GridSize; 1903 }; 1904 launchVals getLaunchVals(int WarpSize, EnvironmentVariables Env, 1905 int ConstWGSize, int ExecutionMode, int num_teams, 1906 int thread_limit, uint64_t loop_tripcount, 1907 int DeviceNumTeams) { 1908 1909 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1910 int num_groups = 0; 1911 1912 int Max_Teams = 1913 Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams; 1914 if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit) 1915 Max_Teams = RTLDeviceInfoTy::HardTeamLimit; 1916 1917 if (print_kernel_trace & STARTUP_DETAILS) { 1918 DP("RTLDeviceInfoTy::Max_Teams: %d\n", RTLDeviceInfoTy::Max_Teams); 1919 DP("Max_Teams: %d\n", Max_Teams); 1920 DP("RTLDeviceInfoTy::Warp_Size: %d\n", WarpSize); 1921 DP("RTLDeviceInfoTy::Max_WG_Size: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1922 DP("RTLDeviceInfoTy::Default_WG_Size: %d\n", 1923 RTLDeviceInfoTy::Default_WG_Size); 1924 DP("thread_limit: %d\n", thread_limit); 1925 DP("threadsPerGroup: %d\n", threadsPerGroup); 1926 DP("ConstWGSize: %d\n", ConstWGSize); 1927 } 1928 // check for thread_limit() clause 1929 if (thread_limit > 0) { 1930 threadsPerGroup = thread_limit; 1931 DP("Setting threads per block to requested %d\n", thread_limit); 1932 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1933 threadsPerGroup += WarpSize; 1934 DP("Adding master wavefront: +%d threads\n", WarpSize); 1935 } 1936 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1937 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1938 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1939 } 1940 } 1941 // check flat_max_work_group_size attr here 1942 if (threadsPerGroup > ConstWGSize) { 1943 threadsPerGroup = ConstWGSize; 1944 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1945 threadsPerGroup); 1946 } 1947 if (print_kernel_trace & STARTUP_DETAILS) 1948 DP("threadsPerGroup: %d\n", threadsPerGroup); 1949 DP("Preparing %d threads\n", threadsPerGroup); 1950 1951 // Set default num_groups (teams) 1952 if (Env.TeamLimit > 0) 1953 num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit; 1954 else 1955 num_groups = Max_Teams; 1956 DP("Set default num of groups %d\n", num_groups); 1957 1958 if (print_kernel_trace & STARTUP_DETAILS) { 1959 DP("num_groups: %d\n", num_groups); 1960 DP("num_teams: %d\n", num_teams); 1961 } 1962 1963 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1964 // This reduction is typical for default case (no thread_limit clause). 1965 // or when user goes crazy with num_teams clause. 1966 // FIXME: We cant distinguish between a constant or variable thread limit. 1967 // So we only handle constant thread_limits. 1968 if (threadsPerGroup > 1969 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1970 // Should we round threadsPerGroup up to nearest WarpSize 1971 // here? 1972 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1973 1974 // check for num_teams() clause 1975 if (num_teams > 0) { 1976 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1977 } 1978 if (print_kernel_trace & STARTUP_DETAILS) { 1979 DP("num_groups: %d\n", num_groups); 1980 DP("Env.NumTeams %d\n", Env.NumTeams); 1981 DP("Env.TeamLimit %d\n", Env.TeamLimit); 1982 } 1983 1984 if (Env.NumTeams > 0) { 1985 num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups; 1986 DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams); 1987 } else if (Env.TeamLimit > 0) { 1988 num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups; 1989 DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit); 1990 } else { 1991 if (num_teams <= 0) { 1992 if (loop_tripcount > 0) { 1993 if (ExecutionMode == SPMD) { 1994 // round up to the nearest integer 1995 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1996 } else if (ExecutionMode == GENERIC) { 1997 num_groups = loop_tripcount; 1998 } else /* ExecutionMode == SPMD_GENERIC */ { 1999 // This is a generic kernel that was transformed to use SPMD-mode 2000 // execution but uses Generic-mode semantics for scheduling. 2001 num_groups = loop_tripcount; 2002 } 2003 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 2004 "threads per block %d\n", 2005 num_groups, loop_tripcount, threadsPerGroup); 2006 } 2007 } else { 2008 num_groups = num_teams; 2009 } 2010 if (num_groups > Max_Teams) { 2011 num_groups = Max_Teams; 2012 if (print_kernel_trace & STARTUP_DETAILS) 2013 DP("Limiting num_groups %d to Max_Teams %d \n", num_groups, Max_Teams); 2014 } 2015 if (num_groups > num_teams && num_teams > 0) { 2016 num_groups = num_teams; 2017 if (print_kernel_trace & STARTUP_DETAILS) 2018 DP("Limiting num_groups %d to clause num_teams %d \n", num_groups, 2019 num_teams); 2020 } 2021 } 2022 2023 // num_teams clause always honored, no matter what, unless DEFAULT is active. 2024 if (num_teams > 0) { 2025 num_groups = num_teams; 2026 // Cap num_groups to EnvMaxTeamsDefault if set. 2027 if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault) 2028 num_groups = Env.MaxTeamsDefault; 2029 } 2030 if (print_kernel_trace & STARTUP_DETAILS) { 2031 DP("threadsPerGroup: %d\n", threadsPerGroup); 2032 DP("num_groups: %d\n", num_groups); 2033 DP("loop_tripcount: %ld\n", loop_tripcount); 2034 } 2035 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 2036 threadsPerGroup); 2037 2038 launchVals res; 2039 res.WorkgroupSize = threadsPerGroup; 2040 res.GridSize = threadsPerGroup * num_groups; 2041 return res; 2042 } 2043 2044 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 2045 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 2046 bool full = true; 2047 while (full) { 2048 full = 2049 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 2050 } 2051 return packet_id; 2052 } 2053 2054 static int32_t __tgt_rtl_run_target_team_region_locked( 2055 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2056 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2057 int32_t thread_limit, uint64_t loop_tripcount); 2058 2059 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 2060 void **tgt_args, 2061 ptrdiff_t *tgt_offsets, 2062 int32_t arg_num, int32_t num_teams, 2063 int32_t thread_limit, 2064 uint64_t loop_tripcount) { 2065 2066 DeviceInfo.load_run_lock.lock_shared(); 2067 int32_t res = __tgt_rtl_run_target_team_region_locked( 2068 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 2069 thread_limit, loop_tripcount); 2070 2071 DeviceInfo.load_run_lock.unlock_shared(); 2072 return res; 2073 } 2074 2075 int32_t __tgt_rtl_run_target_team_region_locked( 2076 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2077 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2078 int32_t thread_limit, uint64_t loop_tripcount) { 2079 // Set the context we are using 2080 // update thread limit content in gpu memory if un-initialized or specified 2081 // from host 2082 2083 DP("Run target team region thread_limit %d\n", thread_limit); 2084 2085 // All args are references. 2086 std::vector<void *> args(arg_num); 2087 std::vector<void *> ptrs(arg_num); 2088 2089 DP("Arg_num: %d\n", arg_num); 2090 for (int32_t i = 0; i < arg_num; ++i) { 2091 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 2092 args[i] = &ptrs[i]; 2093 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 2094 } 2095 2096 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 2097 2098 std::string kernel_name = std::string(KernelInfo->Name); 2099 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 2100 if (KernelInfoTable[device_id].find(kernel_name) == 2101 KernelInfoTable[device_id].end()) { 2102 DP("Kernel %s not found\n", kernel_name.c_str()); 2103 return OFFLOAD_FAIL; 2104 } 2105 2106 const atl_kernel_info_t KernelInfoEntry = 2107 KernelInfoTable[device_id][kernel_name]; 2108 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 2109 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 2110 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 2111 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 2112 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 2113 2114 assert(arg_num == (int)KernelInfoEntry.num_args); 2115 2116 /* 2117 * Set limit based on ThreadsPerGroup and GroupsPerDevice 2118 */ 2119 launchVals LV = 2120 getLaunchVals(DeviceInfo.WarpSize[device_id], DeviceInfo.Env, 2121 KernelInfo->ConstWGSize, KernelInfo->ExecutionMode, 2122 num_teams, // From run_region arg 2123 thread_limit, // From run_region arg 2124 loop_tripcount, // From run_region arg 2125 DeviceInfo.NumTeams[KernelInfo->device_id]); 2126 const int GridSize = LV.GridSize; 2127 const int WorkgroupSize = LV.WorkgroupSize; 2128 2129 if (print_kernel_trace >= LAUNCH) { 2130 int num_groups = GridSize / WorkgroupSize; 2131 // enum modes are SPMD, GENERIC, NONE 0,1,2 2132 // if doing rtl timing, print to stderr, unless stdout requested. 2133 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 2134 fprintf(traceToStdout ? stdout : stderr, 2135 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 2136 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 2137 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 2138 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 2139 arg_num, num_groups, WorkgroupSize, num_teams, thread_limit, 2140 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 2141 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 2142 } 2143 2144 // Run on the device. 2145 { 2146 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 2147 if (!queue) { 2148 return OFFLOAD_FAIL; 2149 } 2150 uint64_t packet_id = acquire_available_packet_id(queue); 2151 2152 const uint32_t mask = queue->size - 1; // size is a power of 2 2153 hsa_kernel_dispatch_packet_t *packet = 2154 (hsa_kernel_dispatch_packet_t *)queue->base_address + 2155 (packet_id & mask); 2156 2157 // packet->header is written last 2158 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 2159 packet->workgroup_size_x = WorkgroupSize; 2160 packet->workgroup_size_y = 1; 2161 packet->workgroup_size_z = 1; 2162 packet->reserved0 = 0; 2163 packet->grid_size_x = GridSize; 2164 packet->grid_size_y = 1; 2165 packet->grid_size_z = 1; 2166 packet->private_segment_size = KernelInfoEntry.private_segment_size; 2167 packet->group_segment_size = KernelInfoEntry.group_segment_size; 2168 packet->kernel_object = KernelInfoEntry.kernel_object; 2169 packet->kernarg_address = 0; // use the block allocator 2170 packet->reserved2 = 0; // impl writes id_ here 2171 packet->completion_signal = {0}; // may want a pool of signals 2172 2173 KernelArgPool *ArgPool = nullptr; 2174 { 2175 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 2176 if (it != KernelArgPoolMap.end()) { 2177 ArgPool = (it->second).get(); 2178 } 2179 } 2180 if (!ArgPool) { 2181 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 2182 device_id); 2183 } 2184 { 2185 void *kernarg = nullptr; 2186 if (ArgPool) { 2187 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 2188 kernarg = ArgPool->allocate(arg_num); 2189 } 2190 if (!kernarg) { 2191 DP("Allocate kernarg failed\n"); 2192 return OFFLOAD_FAIL; 2193 } 2194 2195 // Copy explicit arguments 2196 for (int i = 0; i < arg_num; i++) { 2197 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 2198 } 2199 2200 // Initialize implicit arguments. ATMI seems to leave most fields 2201 // uninitialized 2202 impl_implicit_args_t *impl_args = 2203 reinterpret_cast<impl_implicit_args_t *>( 2204 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 2205 memset(impl_args, 0, 2206 sizeof(impl_implicit_args_t)); // may not be necessary 2207 impl_args->offset_x = 0; 2208 impl_args->offset_y = 0; 2209 impl_args->offset_z = 0; 2210 2211 // assign a hostcall buffer for the selected Q 2212 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 2213 // hostrpc_assign_buffer is not thread safe, and this function is 2214 // under a multiple reader lock, not a writer lock. 2215 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 2216 pthread_mutex_lock(&hostcall_init_lock); 2217 impl_args->hostcall_ptr = hostrpc_assign_buffer( 2218 DeviceInfo.HSAAgents[device_id], queue, device_id); 2219 pthread_mutex_unlock(&hostcall_init_lock); 2220 if (!impl_args->hostcall_ptr) { 2221 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 2222 "error\n"); 2223 return OFFLOAD_FAIL; 2224 } 2225 } 2226 2227 packet->kernarg_address = kernarg; 2228 } 2229 2230 { 2231 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 2232 if (s.handle == 0) { 2233 DP("Failed to get signal instance\n"); 2234 return OFFLOAD_FAIL; 2235 } 2236 packet->completion_signal = s; 2237 hsa_signal_store_relaxed(packet->completion_signal, 1); 2238 } 2239 2240 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 2241 core::create_header(), packet->setup); 2242 2243 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 2244 2245 while (hsa_signal_wait_scacquire(packet->completion_signal, 2246 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 2247 HSA_WAIT_STATE_BLOCKED) != 0) 2248 ; 2249 2250 assert(ArgPool); 2251 ArgPool->deallocate(packet->kernarg_address); 2252 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 2253 } 2254 2255 DP("Kernel completed\n"); 2256 return OFFLOAD_SUCCESS; 2257 } 2258 2259 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2260 void **tgt_args, ptrdiff_t *tgt_offsets, 2261 int32_t arg_num) { 2262 // use one team and one thread 2263 // fix thread num 2264 int32_t team_num = 1; 2265 int32_t thread_limit = 0; // use default 2266 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2267 tgt_offsets, arg_num, team_num, 2268 thread_limit, 0); 2269 } 2270 2271 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2272 void *tgt_entry_ptr, void **tgt_args, 2273 ptrdiff_t *tgt_offsets, 2274 int32_t arg_num, 2275 __tgt_async_info *AsyncInfo) { 2276 assert(AsyncInfo && "AsyncInfo is nullptr"); 2277 initAsyncInfo(AsyncInfo); 2278 2279 // use one team and one thread 2280 // fix thread num 2281 int32_t team_num = 1; 2282 int32_t thread_limit = 0; // use default 2283 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2284 tgt_offsets, arg_num, team_num, 2285 thread_limit, 0); 2286 } 2287 2288 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2289 assert(AsyncInfo && "AsyncInfo is nullptr"); 2290 2291 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2292 // is not ensured by devices.cpp for amdgcn 2293 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2294 if (AsyncInfo->Queue) { 2295 finiAsyncInfo(AsyncInfo); 2296 } 2297 return OFFLOAD_SUCCESS; 2298 } 2299 2300 namespace core { 2301 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 2302 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 2303 &DeviceInfo.HSAAgents[0], NULL, ptr); 2304 } 2305 2306 } // namespace core 2307