1 //===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <functional> 19 #include <libelf.h> 20 #include <list> 21 #include <memory> 22 #include <mutex> 23 #include <shared_mutex> 24 #include <unordered_map> 25 #include <vector> 26 27 // Header from ATMI interface 28 #include "atmi_interop_hsa.h" 29 #include "atmi_runtime.h" 30 31 #include "internal.h" 32 33 #include "Debug.h" 34 #include "get_elf_mach_gfx_name.h" 35 #include "machine.h" 36 #include "omptargetplugin.h" 37 #include "print_tracing.h" 38 39 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 40 41 #ifndef TARGET_NAME 42 #error "Missing TARGET_NAME macro" 43 #endif 44 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 45 46 // hostrpc interface, FIXME: consider moving to its own include these are 47 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 48 // linked as --whole-archive to override the weak symbols that are used to 49 // implement a fallback for toolchains that do not yet have a hostrpc library. 50 extern "C" { 51 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 52 uint32_t device_id); 53 hsa_status_t hostrpc_init(); 54 hsa_status_t hostrpc_terminate(); 55 56 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 57 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 58 return HSA_STATUS_SUCCESS; 59 } 60 __attribute__((weak)) unsigned long 61 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 62 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 63 "missing\n", 64 device_id); 65 return 0; 66 } 67 } 68 69 // Heuristic parameters used for kernel launch 70 // Number of teams per CU to allow scheduling flexibility 71 static const unsigned DefaultTeamsPerCU = 4; 72 73 int print_kernel_trace; 74 75 #ifdef OMPTARGET_DEBUG 76 #define check(msg, status) \ 77 if (status != HSA_STATUS_SUCCESS) { \ 78 DP(#msg " failed\n"); \ 79 } else { \ 80 DP(#msg " succeeded\n"); \ 81 } 82 #else 83 #define check(msg, status) \ 84 {} 85 #endif 86 87 #include "elf_common.h" 88 89 namespace core { 90 hsa_status_t RegisterModuleFromMemory( 91 std::map<std::string, atl_kernel_info_t> &KernelInfo, 92 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, void *, size_t, 93 hsa_agent_t agent, 94 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 95 void *cb_state), 96 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables); 97 } 98 99 namespace hsa { 100 template <typename C> hsa_status_t iterate_agents(C cb) { 101 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 102 C *unwrapped = static_cast<C *>(data); 103 return (*unwrapped)(agent); 104 }; 105 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 106 } 107 108 template <typename C> 109 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { 110 auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { 111 C *unwrapped = static_cast<C *>(data); 112 return (*unwrapped)(MemoryPool); 113 }; 114 115 return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb)); 116 } 117 118 } // namespace hsa 119 120 /// Keep entries table per device 121 struct FuncOrGblEntryTy { 122 __tgt_target_table Table; 123 std::vector<__tgt_offload_entry> Entries; 124 }; 125 126 enum ExecutionModeType { 127 SPMD, // constructors, destructors, 128 // combined constructs (`teams distribute parallel for [simd]`) 129 GENERIC, // everything else 130 SPMD_GENERIC, // Generic kernel with SPMD execution 131 NONE 132 }; 133 134 struct KernelArgPool { 135 private: 136 static pthread_mutex_t mutex; 137 138 public: 139 uint32_t kernarg_segment_size; 140 void *kernarg_region = nullptr; 141 std::queue<int> free_kernarg_segments; 142 143 uint32_t kernarg_size_including_implicit() { 144 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 145 } 146 147 ~KernelArgPool() { 148 if (kernarg_region) { 149 auto r = hsa_amd_memory_pool_free(kernarg_region); 150 if (r != HSA_STATUS_SUCCESS) { 151 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 152 } 153 } 154 } 155 156 // Can't really copy or move a mutex 157 KernelArgPool() = default; 158 KernelArgPool(const KernelArgPool &) = delete; 159 KernelArgPool(KernelArgPool &&) = delete; 160 161 KernelArgPool(uint32_t kernarg_segment_size, 162 hsa_amd_memory_pool_t &memory_pool) 163 : kernarg_segment_size(kernarg_segment_size) { 164 165 // atmi uses one pool per kernel for all gpus, with a fixed upper size 166 // preserving that exact scheme here, including the queue<int> 167 168 hsa_status_t err = hsa_amd_memory_pool_allocate( 169 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 170 &kernarg_region); 171 172 if (err != HSA_STATUS_SUCCESS) { 173 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 174 kernarg_region = nullptr; // paranoid 175 return; 176 } 177 178 err = core::allow_access_to_all_gpu_agents(kernarg_region); 179 if (err != HSA_STATUS_SUCCESS) { 180 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 181 get_error_string(err)); 182 auto r = hsa_amd_memory_pool_free(kernarg_region); 183 if (r != HSA_STATUS_SUCCESS) { 184 // if free failed, can't do anything more to resolve it 185 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 186 } 187 kernarg_region = nullptr; 188 return; 189 } 190 191 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 192 free_kernarg_segments.push(i); 193 } 194 } 195 196 void *allocate(uint64_t arg_num) { 197 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 198 lock l(&mutex); 199 void *res = nullptr; 200 if (!free_kernarg_segments.empty()) { 201 202 int free_idx = free_kernarg_segments.front(); 203 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 204 (free_idx * kernarg_size_including_implicit())); 205 assert(free_idx == pointer_to_index(res)); 206 free_kernarg_segments.pop(); 207 } 208 return res; 209 } 210 211 void deallocate(void *ptr) { 212 lock l(&mutex); 213 int idx = pointer_to_index(ptr); 214 free_kernarg_segments.push(idx); 215 } 216 217 private: 218 int pointer_to_index(void *ptr) { 219 ptrdiff_t bytes = 220 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 221 assert(bytes >= 0); 222 assert(bytes % kernarg_size_including_implicit() == 0); 223 return bytes / kernarg_size_including_implicit(); 224 } 225 struct lock { 226 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 227 ~lock() { pthread_mutex_unlock(m); } 228 pthread_mutex_t *m; 229 }; 230 }; 231 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 232 233 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 234 KernelArgPoolMap; 235 236 /// Use a single entity to encode a kernel and a set of flags 237 struct KernelTy { 238 // execution mode of kernel 239 // 0 - SPMD mode (without master warp) 240 // 1 - Generic mode (with master warp) 241 // 2 - SPMD mode execution with Generic mode semantics. 242 int8_t ExecutionMode; 243 int16_t ConstWGSize; 244 int32_t device_id; 245 void *CallStackAddr = nullptr; 246 const char *Name; 247 248 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 249 void *_CallStackAddr, const char *_Name, 250 uint32_t _kernarg_segment_size, 251 hsa_amd_memory_pool_t &KernArgMemoryPool) 252 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 253 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 254 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 255 256 std::string N(_Name); 257 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 258 KernelArgPoolMap.insert( 259 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 260 _kernarg_segment_size, KernArgMemoryPool)))); 261 } 262 } 263 }; 264 265 /// List that contains all the kernels. 266 /// FIXME: we may need this to be per device and per library. 267 std::list<KernelTy> KernelsList; 268 269 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 270 271 hsa_status_t err = 272 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 273 hsa_device_type_t device_type; 274 // get_info fails iff HSA runtime not yet initialized 275 hsa_status_t err = 276 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 277 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 278 printf("rtl.cpp: err %d\n", err); 279 assert(err == HSA_STATUS_SUCCESS); 280 281 CB(device_type, agent); 282 return HSA_STATUS_SUCCESS; 283 }); 284 285 // iterate_agents fails iff HSA runtime not yet initialized 286 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 287 printf("rtl.cpp: err %d\n", err); 288 } 289 290 return err; 291 } 292 293 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 294 void *data) { 295 if (status != HSA_STATUS_SUCCESS) { 296 const char *status_string; 297 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 298 status_string = "unavailable"; 299 } 300 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 301 __LINE__, source, status, status_string); 302 abort(); 303 } 304 } 305 306 namespace core { 307 namespace { 308 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 309 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 310 } 311 312 uint16_t create_header() { 313 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 314 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 315 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 316 return header; 317 } 318 319 hsa_status_t addKernArgPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 320 std::vector<hsa_amd_memory_pool_t> *Result = 321 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 322 bool AllocAllowed = false; 323 hsa_status_t err = hsa_amd_memory_pool_get_info( 324 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 325 &AllocAllowed); 326 if (err != HSA_STATUS_SUCCESS) { 327 fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n", 328 get_error_string(err)); 329 return err; 330 } 331 332 if (!AllocAllowed) { 333 // nothing needs to be done here. 334 return HSA_STATUS_SUCCESS; 335 } 336 337 uint32_t GlobalFlags = 0; 338 err = hsa_amd_memory_pool_get_info( 339 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 340 if (err != HSA_STATUS_SUCCESS) { 341 fprintf(stderr, "Get memory pool info failed: %s\n", get_error_string(err)); 342 return err; 343 } 344 345 size_t size = 0; 346 err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, 347 &size); 348 if (err != HSA_STATUS_SUCCESS) { 349 fprintf(stderr, "Get memory pool size failed: %s\n", get_error_string(err)); 350 return err; 351 } 352 353 if ((GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) && 354 (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) && 355 size > 0) { 356 Result->push_back(MemoryPool); 357 } 358 359 return HSA_STATUS_SUCCESS; 360 } 361 362 std::pair<hsa_status_t, bool> 363 isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { 364 bool AllocAllowed = false; 365 hsa_status_t Err = hsa_amd_memory_pool_get_info( 366 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 367 &AllocAllowed); 368 if (Err != HSA_STATUS_SUCCESS) { 369 fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n", 370 get_error_string(Err)); 371 return {Err, false}; 372 } 373 374 return {HSA_STATUS_SUCCESS, AllocAllowed}; 375 } 376 377 template <typename AccumulatorFunc> 378 hsa_status_t collectMemoryPools(const std::vector<hsa_agent_t> &Agents, 379 AccumulatorFunc Func) { 380 for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { 381 hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( 382 Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { 383 hsa_status_t Err; 384 bool Valid = false; 385 std::tie(Err, Valid) = isValidMemoryPool(MemoryPool); 386 if (Err != HSA_STATUS_SUCCESS) { 387 return Err; 388 } 389 if (Valid) 390 Func(MemoryPool, DeviceId); 391 return HSA_STATUS_SUCCESS; 392 }); 393 394 if (Err != HSA_STATUS_SUCCESS) { 395 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 396 "Iterate all memory pools", get_error_string(Err)); 397 return Err; 398 } 399 } 400 401 return HSA_STATUS_SUCCESS; 402 } 403 404 std::pair<hsa_status_t, hsa_amd_memory_pool_t> 405 FindKernargPool(const std::vector<hsa_agent_t> &HSAAgents) { 406 std::vector<hsa_amd_memory_pool_t> KernArgPools; 407 for (const auto &Agent : HSAAgents) { 408 hsa_status_t err = HSA_STATUS_SUCCESS; 409 err = hsa_amd_agent_iterate_memory_pools( 410 Agent, addKernArgPool, static_cast<void *>(&KernArgPools)); 411 if (err != HSA_STATUS_SUCCESS) { 412 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 413 "Iterate all memory pools", get_error_string(err)); 414 return {err, hsa_amd_memory_pool_t{}}; 415 } 416 } 417 418 if (KernArgPools.empty()) { 419 fprintf(stderr, "Unable to find any valid kernarg pool\n"); 420 return {HSA_STATUS_ERROR, hsa_amd_memory_pool_t{}}; 421 } 422 423 return {HSA_STATUS_SUCCESS, KernArgPools[0]}; 424 } 425 426 } // namespace 427 } // namespace core 428 429 struct EnvironmentVariables { 430 int NumTeams; 431 int TeamLimit; 432 int TeamThreadLimit; 433 int MaxTeamsDefault; 434 }; 435 436 /// Class containing all the device information 437 class RTLDeviceInfoTy { 438 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 439 bool HSAInitializeSucceeded = false; 440 441 public: 442 // load binary populates symbol tables and mutates various global state 443 // run uses those symbol tables 444 std::shared_timed_mutex load_run_lock; 445 446 int NumberOfDevices = 0; 447 448 // GPU devices 449 std::vector<hsa_agent_t> HSAAgents; 450 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 451 452 // CPUs 453 std::vector<hsa_agent_t> CPUAgents; 454 455 // Device properties 456 std::vector<int> ComputeUnits; 457 std::vector<int> GroupsPerDevice; 458 std::vector<int> ThreadsPerGroup; 459 std::vector<int> WarpSize; 460 std::vector<std::string> GPUName; 461 462 // OpenMP properties 463 std::vector<int> NumTeams; 464 std::vector<int> NumThreads; 465 466 // OpenMP Environment properties 467 EnvironmentVariables Env; 468 469 // OpenMP Requires Flags 470 int64_t RequiresFlags; 471 472 // Resource pools 473 SignalPoolT FreeSignalPool; 474 475 bool hostcall_required = false; 476 477 std::vector<hsa_executable_t> HSAExecutables; 478 479 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 480 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 481 482 hsa_amd_memory_pool_t KernArgPool; 483 484 // fine grained memory pool for host allocations 485 hsa_amd_memory_pool_t HostFineGrainedMemoryPool; 486 487 // fine and coarse-grained memory pools per offloading device 488 std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools; 489 std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools; 490 491 struct atmiFreePtrDeletor { 492 void operator()(void *p) { 493 core::Runtime::Memfree(p); // ignore failure to free 494 } 495 }; 496 497 // device_State shared across loaded binaries, error if inconsistent size 498 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 499 deviceStateStore; 500 501 static const unsigned HardTeamLimit = 502 (1 << 16) - 1; // 64K needed to fit in uint16 503 static const int DefaultNumTeams = 128; 504 static const int Max_Teams = llvm::omp::AMDGPUGridValues.GV_Max_Teams; 505 static const int Warp_Size = llvm::omp::AMDGPUGridValues.GV_Warp_Size; 506 static const int Max_WG_Size = llvm::omp::AMDGPUGridValues.GV_Max_WG_Size; 507 static const int Default_WG_Size = 508 llvm::omp::AMDGPUGridValues.GV_Default_WG_Size; 509 510 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 511 size_t size, hsa_agent_t); 512 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 513 MemcpyFunc Func, int32_t deviceId) { 514 hsa_agent_t agent = HSAAgents[deviceId]; 515 hsa_signal_t s = FreeSignalPool.pop(); 516 if (s.handle == 0) { 517 return HSA_STATUS_ERROR; 518 } 519 hsa_status_t r = Func(s, dest, src, size, agent); 520 FreeSignalPool.push(s); 521 return r; 522 } 523 524 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 525 size_t size, int32_t deviceId) { 526 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 527 } 528 529 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 530 size_t size, int32_t deviceId) { 531 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 532 } 533 534 // Record entry point associated with device 535 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 536 assert(device_id < (int32_t)FuncGblEntries.size() && 537 "Unexpected device id!"); 538 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 539 540 E.Entries.push_back(entry); 541 } 542 543 // Return true if the entry is associated with device 544 bool findOffloadEntry(int32_t device_id, void *addr) { 545 assert(device_id < (int32_t)FuncGblEntries.size() && 546 "Unexpected device id!"); 547 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 548 549 for (auto &it : E.Entries) { 550 if (it.addr == addr) 551 return true; 552 } 553 554 return false; 555 } 556 557 // Return the pointer to the target entries table 558 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 559 assert(device_id < (int32_t)FuncGblEntries.size() && 560 "Unexpected device id!"); 561 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 562 563 int32_t size = E.Entries.size(); 564 565 // Table is empty 566 if (!size) 567 return 0; 568 569 __tgt_offload_entry *begin = &E.Entries[0]; 570 __tgt_offload_entry *end = &E.Entries[size - 1]; 571 572 // Update table info according to the entries and return the pointer 573 E.Table.EntriesBegin = begin; 574 E.Table.EntriesEnd = ++end; 575 576 return &E.Table; 577 } 578 579 // Clear entries table for a device 580 void clearOffloadEntriesTable(int device_id) { 581 assert(device_id < (int32_t)FuncGblEntries.size() && 582 "Unexpected device id!"); 583 FuncGblEntries[device_id].emplace_back(); 584 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 585 // KernelArgPoolMap.clear(); 586 E.Entries.clear(); 587 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 588 } 589 590 hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, 591 int DeviceId) { 592 assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); 593 uint32_t GlobalFlags = 0; 594 hsa_status_t Err = hsa_amd_memory_pool_get_info( 595 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 596 597 if (Err != HSA_STATUS_SUCCESS) { 598 return Err; 599 } 600 601 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 602 DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; 603 } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { 604 DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; 605 } 606 607 return HSA_STATUS_SUCCESS; 608 } 609 610 hsa_status_t addHostMemoryPool(hsa_amd_memory_pool_t MemoryPool, 611 int DeviceId) { 612 uint32_t GlobalFlags = 0; 613 hsa_status_t Err = hsa_amd_memory_pool_get_info( 614 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 615 616 if (Err != HSA_STATUS_SUCCESS) { 617 return Err; 618 } 619 620 uint32_t Size; 621 Err = hsa_amd_memory_pool_get_info(MemoryPool, 622 HSA_AMD_MEMORY_POOL_INFO_SIZE, &Size); 623 if (Err != HSA_STATUS_SUCCESS) { 624 return Err; 625 } 626 627 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED && 628 Size > 0) { 629 HostFineGrainedMemoryPool = MemoryPool; 630 } 631 632 return HSA_STATUS_SUCCESS; 633 } 634 635 hsa_status_t setupMemoryPools() { 636 using namespace std::placeholders; 637 hsa_status_t Err; 638 Err = core::collectMemoryPools( 639 CPUAgents, std::bind(&RTLDeviceInfoTy::addHostMemoryPool, this, _1, _2)); 640 if (Err != HSA_STATUS_SUCCESS) { 641 fprintf(stderr, "HSA error in collecting memory pools for CPU: %s\n", 642 get_error_string(Err)); 643 return Err; 644 } 645 Err = core::collectMemoryPools( 646 HSAAgents, std::bind(&RTLDeviceInfoTy::addDeviceMemoryPool, this, _1, _2)); 647 if (Err != HSA_STATUS_SUCCESS) { 648 fprintf(stderr, 649 "HSA error in collecting memory pools for offload devices: %s\n", 650 get_error_string(Err)); 651 return Err; 652 } 653 return HSA_STATUS_SUCCESS; 654 } 655 656 hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { 657 assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && 658 "Invalid device Id"); 659 return DeviceCoarseGrainedMemoryPools[DeviceId]; 660 } 661 662 hsa_amd_memory_pool_t getHostMemoryPool() { 663 return HostFineGrainedMemoryPool; 664 } 665 666 static int readEnvElseMinusOne(const char *Env) { 667 const char *envStr = getenv(Env); 668 int res = -1; 669 if (envStr) { 670 res = std::stoi(envStr); 671 DP("Parsed %s=%d\n", Env, res); 672 } 673 return res; 674 } 675 676 RTLDeviceInfoTy() { 677 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 678 // anytime. You do not need a debug library build. 679 // 0 => no tracing 680 // 1 => tracing dispatch only 681 // >1 => verbosity increase 682 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 683 print_kernel_trace = atoi(envStr); 684 else 685 print_kernel_trace = 0; 686 687 DP("Start initializing " GETNAME(TARGET_NAME) "\n"); 688 hsa_status_t err = core::atl_init_gpu_context(); 689 if (err == HSA_STATUS_SUCCESS) { 690 HSAInitializeSucceeded = true; 691 } else { 692 DP("Error when initializing " GETNAME(TARGET_NAME) "\n"); 693 return; 694 } 695 696 // Init hostcall soon after initializing ATMI 697 hostrpc_init(); 698 699 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 700 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 701 CPUAgents.push_back(Agent); 702 } else { 703 HSAAgents.push_back(Agent); 704 } 705 }); 706 if (err != HSA_STATUS_SUCCESS) 707 return; 708 709 NumberOfDevices = (int)HSAAgents.size(); 710 711 if (NumberOfDevices == 0) { 712 DP("There are no devices supporting HSA.\n"); 713 return; 714 } else { 715 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 716 } 717 std::tie(err, KernArgPool) = core::FindKernargPool(CPUAgents); 718 if (err != HSA_STATUS_SUCCESS) { 719 DP("Error when reading memory pools\n"); 720 return; 721 } 722 723 // Init the device info 724 HSAQueues.resize(NumberOfDevices); 725 FuncGblEntries.resize(NumberOfDevices); 726 ThreadsPerGroup.resize(NumberOfDevices); 727 ComputeUnits.resize(NumberOfDevices); 728 GPUName.resize(NumberOfDevices); 729 GroupsPerDevice.resize(NumberOfDevices); 730 WarpSize.resize(NumberOfDevices); 731 NumTeams.resize(NumberOfDevices); 732 NumThreads.resize(NumberOfDevices); 733 deviceStateStore.resize(NumberOfDevices); 734 KernelInfoTable.resize(NumberOfDevices); 735 SymbolInfoTable.resize(NumberOfDevices); 736 DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); 737 DeviceFineGrainedMemoryPools.resize(NumberOfDevices); 738 739 err = setupMemoryPools(); 740 if (err != HSA_STATUS_SUCCESS) { 741 DP("Error when setting up memory pools"); 742 return; 743 } 744 745 for (int i = 0; i < NumberOfDevices; i++) { 746 HSAQueues[i] = nullptr; 747 } 748 749 for (int i = 0; i < NumberOfDevices; i++) { 750 uint32_t queue_size = 0; 751 { 752 hsa_status_t err = hsa_agent_get_info( 753 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 754 if (err != HSA_STATUS_SUCCESS) { 755 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 756 return; 757 } 758 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 759 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 760 } 761 } 762 763 hsa_status_t rc = hsa_queue_create( 764 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 765 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 766 if (rc != HSA_STATUS_SUCCESS) { 767 DP("Failed to create HSA queue %d\n", i); 768 return; 769 } 770 771 deviceStateStore[i] = {nullptr, 0}; 772 } 773 774 for (int i = 0; i < NumberOfDevices; i++) { 775 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 776 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 777 ComputeUnits[i] = 1; 778 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 779 GroupsPerDevice[i], ThreadsPerGroup[i]); 780 } 781 782 // Get environment variables regarding teams 783 Env.TeamLimit = readEnvElseMinusOne("OMP_TEAM_LIMIT"); 784 Env.NumTeams = readEnvElseMinusOne("OMP_NUM_TEAMS"); 785 Env.MaxTeamsDefault = readEnvElseMinusOne("OMP_MAX_TEAMS_DEFAULT"); 786 Env.TeamThreadLimit = readEnvElseMinusOne("OMP_TEAMS_THREAD_LIMIT"); 787 788 // Default state. 789 RequiresFlags = OMP_REQ_UNDEFINED; 790 } 791 792 ~RTLDeviceInfoTy() { 793 DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n"); 794 if (!HSAInitializeSucceeded) { 795 // Then none of these can have been set up and they can't be torn down 796 return; 797 } 798 // Run destructors on types that use HSA before 799 // atmi_finalize removes access to it 800 deviceStateStore.clear(); 801 KernelArgPoolMap.clear(); 802 // Terminate hostrpc before finalizing ATMI 803 hostrpc_terminate(); 804 805 hsa_status_t Err; 806 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 807 Err = hsa_executable_destroy(HSAExecutables[I]); 808 if (Err != HSA_STATUS_SUCCESS) { 809 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 810 "Destroying executable", get_error_string(Err)); 811 } 812 } 813 814 Err = hsa_shut_down(); 815 if (Err != HSA_STATUS_SUCCESS) { 816 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA", 817 get_error_string(Err)); 818 } 819 } 820 }; 821 822 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 823 824 // TODO: May need to drop the trailing to fields until deviceRTL is updated 825 struct omptarget_device_environmentTy { 826 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 827 // only useful for Debug build of deviceRTLs 828 int32_t num_devices; // gets number of active offload devices 829 int32_t device_num; // gets a value 0 to num_devices-1 830 }; 831 832 static RTLDeviceInfoTy DeviceInfo; 833 834 namespace { 835 836 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 837 __tgt_async_info *AsyncInfo) { 838 assert(AsyncInfo && "AsyncInfo is nullptr"); 839 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 840 // Return success if we are not copying back to host from target. 841 if (!HstPtr) 842 return OFFLOAD_SUCCESS; 843 hsa_status_t err; 844 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 845 (long long unsigned)(Elf64_Addr)TgtPtr, 846 (long long unsigned)(Elf64_Addr)HstPtr); 847 848 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 849 DeviceId); 850 851 if (err != HSA_STATUS_SUCCESS) { 852 DP("Error when copying data from device to host. Pointers: " 853 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 854 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 855 return OFFLOAD_FAIL; 856 } 857 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 858 (long long unsigned)(Elf64_Addr)TgtPtr, 859 (long long unsigned)(Elf64_Addr)HstPtr); 860 return OFFLOAD_SUCCESS; 861 } 862 863 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 864 __tgt_async_info *AsyncInfo) { 865 assert(AsyncInfo && "AsyncInfo is nullptr"); 866 hsa_status_t err; 867 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 868 // Return success if we are not doing host to target. 869 if (!HstPtr) 870 return OFFLOAD_SUCCESS; 871 872 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 873 (long long unsigned)(Elf64_Addr)HstPtr, 874 (long long unsigned)(Elf64_Addr)TgtPtr); 875 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 876 DeviceId); 877 if (err != HSA_STATUS_SUCCESS) { 878 DP("Error when copying data from host to device. Pointers: " 879 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 880 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 881 return OFFLOAD_FAIL; 882 } 883 return OFFLOAD_SUCCESS; 884 } 885 886 // Async. 887 // The implementation was written with cuda streams in mind. The semantics of 888 // that are to execute kernels on a queue in order of insertion. A synchronise 889 // call then makes writes visible between host and device. This means a series 890 // of N data_submit_async calls are expected to execute serially. HSA offers 891 // various options to run the data copies concurrently. This may require changes 892 // to libomptarget. 893 894 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 895 // there are no outstanding kernels that need to be synchronized. Any async call 896 // may be passed a Queue==0, at which point the cuda implementation will set it 897 // to non-null (see getStream). The cuda streams are per-device. Upstream may 898 // change this interface to explicitly initialize the AsyncInfo_pointer, but 899 // until then hsa lazily initializes it as well. 900 901 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 902 // set non-null while using async calls, return to null to indicate completion 903 assert(AsyncInfo); 904 if (!AsyncInfo->Queue) { 905 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 906 } 907 } 908 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 909 assert(AsyncInfo); 910 assert(AsyncInfo->Queue); 911 AsyncInfo->Queue = 0; 912 } 913 914 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 915 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 916 int32_t r = elf_check_machine(image, amdgcnMachineID); 917 if (!r) { 918 DP("Supported machine ID not found\n"); 919 } 920 return r; 921 } 922 923 uint32_t elf_e_flags(__tgt_device_image *image) { 924 char *img_begin = (char *)image->ImageStart; 925 size_t img_size = (char *)image->ImageEnd - img_begin; 926 927 Elf *e = elf_memory(img_begin, img_size); 928 if (!e) { 929 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 930 return 0; 931 } 932 933 Elf64_Ehdr *eh64 = elf64_getehdr(e); 934 935 if (!eh64) { 936 DP("Unable to get machine ID from ELF file!\n"); 937 elf_end(e); 938 return 0; 939 } 940 941 uint32_t Flags = eh64->e_flags; 942 943 elf_end(e); 944 DP("ELF Flags: 0x%x\n", Flags); 945 return Flags; 946 } 947 } // namespace 948 949 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 950 return elf_machine_id_is_amdgcn(image); 951 } 952 953 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 954 955 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 956 DP("Init requires flags to %ld\n", RequiresFlags); 957 DeviceInfo.RequiresFlags = RequiresFlags; 958 return RequiresFlags; 959 } 960 961 namespace { 962 template <typename T> bool enforce_upper_bound(T *value, T upper) { 963 bool changed = *value > upper; 964 if (changed) { 965 *value = upper; 966 } 967 return changed; 968 } 969 } // namespace 970 971 int32_t __tgt_rtl_init_device(int device_id) { 972 hsa_status_t err; 973 974 // this is per device id init 975 DP("Initialize the device id: %d\n", device_id); 976 977 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 978 979 // Get number of Compute Unit 980 uint32_t compute_units = 0; 981 err = hsa_agent_get_info( 982 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 983 &compute_units); 984 if (err != HSA_STATUS_SUCCESS) { 985 DeviceInfo.ComputeUnits[device_id] = 1; 986 DP("Error getting compute units : settiing to 1\n"); 987 } else { 988 DeviceInfo.ComputeUnits[device_id] = compute_units; 989 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 990 } 991 992 char GetInfoName[64]; // 64 max size returned by get info 993 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 994 (void *)GetInfoName); 995 if (err) 996 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 997 else { 998 DeviceInfo.GPUName[device_id] = GetInfoName; 999 } 1000 1001 if (print_kernel_trace & STARTUP_DETAILS) 1002 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 1003 DeviceInfo.ComputeUnits[device_id], 1004 DeviceInfo.GPUName[device_id].c_str()); 1005 1006 // Query attributes to determine number of threads/block and blocks/grid. 1007 uint16_t workgroup_max_dim[3]; 1008 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 1009 &workgroup_max_dim); 1010 if (err != HSA_STATUS_SUCCESS) { 1011 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 1012 DP("Error getting grid dims: num groups : %d\n", 1013 RTLDeviceInfoTy::DefaultNumTeams); 1014 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 1015 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 1016 DP("Using %d ROCm blocks per grid\n", 1017 DeviceInfo.GroupsPerDevice[device_id]); 1018 } else { 1019 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 1020 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 1021 "at the hard limit\n", 1022 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 1023 } 1024 1025 // Get thread limit 1026 hsa_dim3_t grid_max_dim; 1027 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 1028 if (err == HSA_STATUS_SUCCESS) { 1029 DeviceInfo.ThreadsPerGroup[device_id] = 1030 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 1031 DeviceInfo.GroupsPerDevice[device_id]; 1032 1033 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 1034 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1035 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1036 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 1037 RTLDeviceInfoTy::Max_WG_Size)) { 1038 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1039 } else { 1040 DP("Using ROCm Queried thread limit: %d\n", 1041 DeviceInfo.ThreadsPerGroup[device_id]); 1042 } 1043 } else { 1044 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1045 DP("Error getting max block dimension, use default:%d \n", 1046 RTLDeviceInfoTy::Max_WG_Size); 1047 } 1048 1049 // Get wavefront size 1050 uint32_t wavefront_size = 0; 1051 err = 1052 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 1053 if (err == HSA_STATUS_SUCCESS) { 1054 DP("Queried wavefront size: %d\n", wavefront_size); 1055 DeviceInfo.WarpSize[device_id] = wavefront_size; 1056 } else { 1057 DP("Default wavefront size: %d\n", 1058 llvm::omp::AMDGPUGridValues.GV_Warp_Size); 1059 DeviceInfo.WarpSize[device_id] = llvm::omp::AMDGPUGridValues.GV_Warp_Size; 1060 } 1061 1062 // Adjust teams to the env variables 1063 1064 if (DeviceInfo.Env.TeamLimit > 0 && 1065 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 1066 DeviceInfo.Env.TeamLimit))) { 1067 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 1068 DeviceInfo.Env.TeamLimit); 1069 } 1070 1071 // Set default number of teams 1072 if (DeviceInfo.Env.NumTeams > 0) { 1073 DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams; 1074 DP("Default number of teams set according to environment %d\n", 1075 DeviceInfo.Env.NumTeams); 1076 } else { 1077 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 1078 int TeamsPerCU = DefaultTeamsPerCU; 1079 if (TeamsPerCUEnvStr) { 1080 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 1081 } 1082 1083 DeviceInfo.NumTeams[device_id] = 1084 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 1085 DP("Default number of teams = %d * number of compute units %d\n", 1086 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 1087 } 1088 1089 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 1090 DeviceInfo.GroupsPerDevice[device_id])) { 1091 DP("Default number of teams exceeds device limit, capping at %d\n", 1092 DeviceInfo.GroupsPerDevice[device_id]); 1093 } 1094 1095 // Adjust threads to the env variables 1096 if (DeviceInfo.Env.TeamThreadLimit > 0 && 1097 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1098 DeviceInfo.Env.TeamThreadLimit))) { 1099 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 1100 DeviceInfo.Env.TeamThreadLimit); 1101 } 1102 1103 // Set default number of threads 1104 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 1105 DP("Default number of threads set according to library's default %d\n", 1106 RTLDeviceInfoTy::Default_WG_Size); 1107 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1108 DeviceInfo.ThreadsPerGroup[device_id])) { 1109 DP("Default number of threads exceeds device limit, capping at %d\n", 1110 DeviceInfo.ThreadsPerGroup[device_id]); 1111 } 1112 1113 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 1114 device_id, DeviceInfo.GroupsPerDevice[device_id], 1115 DeviceInfo.ThreadsPerGroup[device_id]); 1116 1117 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 1118 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 1119 DeviceInfo.GroupsPerDevice[device_id], 1120 DeviceInfo.GroupsPerDevice[device_id] * 1121 DeviceInfo.ThreadsPerGroup[device_id]); 1122 1123 return OFFLOAD_SUCCESS; 1124 } 1125 1126 namespace { 1127 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 1128 size_t N; 1129 int rc = elf_getshdrnum(elf, &N); 1130 if (rc != 0) { 1131 return nullptr; 1132 } 1133 1134 Elf64_Shdr *result = nullptr; 1135 for (size_t i = 0; i < N; i++) { 1136 Elf_Scn *scn = elf_getscn(elf, i); 1137 if (scn) { 1138 Elf64_Shdr *shdr = elf64_getshdr(scn); 1139 if (shdr) { 1140 if (shdr->sh_type == SHT_HASH) { 1141 if (result == nullptr) { 1142 result = shdr; 1143 } else { 1144 // multiple SHT_HASH sections not handled 1145 return nullptr; 1146 } 1147 } 1148 } 1149 } 1150 } 1151 return result; 1152 } 1153 1154 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1155 const char *symname) { 1156 1157 assert(section_hash); 1158 size_t section_symtab_index = section_hash->sh_link; 1159 Elf64_Shdr *section_symtab = 1160 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1161 size_t section_strtab_index = section_symtab->sh_link; 1162 1163 const Elf64_Sym *symtab = 1164 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1165 1166 const uint32_t *hashtab = 1167 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1168 1169 // Layout: 1170 // nbucket 1171 // nchain 1172 // bucket[nbucket] 1173 // chain[nchain] 1174 uint32_t nbucket = hashtab[0]; 1175 const uint32_t *bucket = &hashtab[2]; 1176 const uint32_t *chain = &hashtab[nbucket + 2]; 1177 1178 const size_t max = strlen(symname) + 1; 1179 const uint32_t hash = elf_hash(symname); 1180 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1181 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1182 if (strncmp(symname, n, max) == 0) { 1183 return &symtab[i]; 1184 } 1185 } 1186 1187 return nullptr; 1188 } 1189 1190 struct symbol_info { 1191 void *addr = nullptr; 1192 uint32_t size = UINT32_MAX; 1193 uint32_t sh_type = SHT_NULL; 1194 }; 1195 1196 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1197 symbol_info *res) { 1198 if (elf_kind(elf) != ELF_K_ELF) { 1199 return 1; 1200 } 1201 1202 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1203 if (!section_hash) { 1204 return 1; 1205 } 1206 1207 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1208 if (!sym) { 1209 return 1; 1210 } 1211 1212 if (sym->st_size > UINT32_MAX) { 1213 return 1; 1214 } 1215 1216 if (sym->st_shndx == SHN_UNDEF) { 1217 return 1; 1218 } 1219 1220 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1221 if (!section) { 1222 return 1; 1223 } 1224 1225 Elf64_Shdr *header = elf64_getshdr(section); 1226 if (!header) { 1227 return 1; 1228 } 1229 1230 res->addr = sym->st_value + base; 1231 res->size = static_cast<uint32_t>(sym->st_size); 1232 res->sh_type = header->sh_type; 1233 return 0; 1234 } 1235 1236 int get_symbol_info_without_loading(char *base, size_t img_size, 1237 const char *symname, symbol_info *res) { 1238 Elf *elf = elf_memory(base, img_size); 1239 if (elf) { 1240 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1241 elf_end(elf); 1242 return rc; 1243 } 1244 return 1; 1245 } 1246 1247 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1248 const char *symname, void **var_addr, 1249 uint32_t *var_size) { 1250 symbol_info si; 1251 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1252 if (rc == 0) { 1253 *var_addr = si.addr; 1254 *var_size = si.size; 1255 return HSA_STATUS_SUCCESS; 1256 } else { 1257 return HSA_STATUS_ERROR; 1258 } 1259 } 1260 1261 template <typename C> 1262 hsa_status_t module_register_from_memory_to_place( 1263 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1264 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1265 void *module_bytes, size_t module_size, int DeviceId, C cb, 1266 std::vector<hsa_executable_t> &HSAExecutables) { 1267 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1268 C *unwrapped = static_cast<C *>(cb_state); 1269 return (*unwrapped)(data, size); 1270 }; 1271 return core::RegisterModuleFromMemory( 1272 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1273 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1274 HSAExecutables); 1275 } 1276 } // namespace 1277 1278 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1279 uint64_t device_State_bytes = 0; 1280 { 1281 // If this is the deviceRTL, get the state variable size 1282 symbol_info size_si; 1283 int rc = get_symbol_info_without_loading( 1284 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1285 1286 if (rc == 0) { 1287 if (size_si.size != sizeof(uint64_t)) { 1288 DP("Found device_State_size variable with wrong size\n"); 1289 return 0; 1290 } 1291 1292 // Read number of bytes directly from the elf 1293 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1294 } 1295 } 1296 return device_State_bytes; 1297 } 1298 1299 static __tgt_target_table * 1300 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1301 1302 static __tgt_target_table * 1303 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1304 1305 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1306 __tgt_device_image *image) { 1307 DeviceInfo.load_run_lock.lock(); 1308 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1309 DeviceInfo.load_run_lock.unlock(); 1310 return res; 1311 } 1312 1313 struct device_environment { 1314 // initialise an omptarget_device_environmentTy in the deviceRTL 1315 // patches around differences in the deviceRTL between trunk, aomp, 1316 // rocmcc. Over time these differences will tend to zero and this class 1317 // simplified. 1318 // Symbol may be in .data or .bss, and may be missing fields: 1319 // - aomp has debug_level, num_devices, device_num 1320 // - trunk has debug_level 1321 // - under review in trunk is debug_level, device_num 1322 // - rocmcc matches aomp, patch to swap num_devices and device_num 1323 1324 // The symbol may also have been deadstripped because the device side 1325 // accessors were unused. 1326 1327 // If the symbol is in .data (aomp, rocm) it can be written directly. 1328 // If it is in .bss, we must wait for it to be allocated space on the 1329 // gpu (trunk) and initialize after loading. 1330 const char *sym() { return "omptarget_device_environment"; } 1331 1332 omptarget_device_environmentTy host_device_env; 1333 symbol_info si; 1334 bool valid = false; 1335 1336 __tgt_device_image *image; 1337 const size_t img_size; 1338 1339 device_environment(int device_id, int number_devices, 1340 __tgt_device_image *image, const size_t img_size) 1341 : image(image), img_size(img_size) { 1342 1343 host_device_env.num_devices = number_devices; 1344 host_device_env.device_num = device_id; 1345 host_device_env.debug_level = 0; 1346 #ifdef OMPTARGET_DEBUG 1347 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1348 host_device_env.debug_level = std::stoi(envStr); 1349 } 1350 #endif 1351 1352 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1353 img_size, sym(), &si); 1354 if (rc != 0) { 1355 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1356 return; 1357 } 1358 1359 if (si.size > sizeof(host_device_env)) { 1360 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1361 sizeof(host_device_env)); 1362 return; 1363 } 1364 1365 valid = true; 1366 } 1367 1368 bool in_image() { return si.sh_type != SHT_NOBITS; } 1369 1370 hsa_status_t before_loading(void *data, size_t size) { 1371 if (valid) { 1372 if (in_image()) { 1373 DP("Setting global device environment before load (%u bytes)\n", 1374 si.size); 1375 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1376 void *pos = (char *)data + offset; 1377 memcpy(pos, &host_device_env, si.size); 1378 } 1379 } 1380 return HSA_STATUS_SUCCESS; 1381 } 1382 1383 hsa_status_t after_loading() { 1384 if (valid) { 1385 if (!in_image()) { 1386 DP("Setting global device environment after load (%u bytes)\n", 1387 si.size); 1388 int device_id = host_device_env.device_num; 1389 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1390 void *state_ptr; 1391 uint32_t state_ptr_size; 1392 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1393 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1394 if (err != HSA_STATUS_SUCCESS) { 1395 DP("failed to find %s in loaded image\n", sym()); 1396 return err; 1397 } 1398 1399 if (state_ptr_size != si.size) { 1400 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1401 si.size); 1402 return HSA_STATUS_ERROR; 1403 } 1404 1405 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1406 state_ptr_size, device_id); 1407 } 1408 } 1409 return HSA_STATUS_SUCCESS; 1410 } 1411 }; 1412 1413 static hsa_status_t atmi_calloc(void **ret_ptr, size_t size, int DeviceId) { 1414 uint64_t rounded = 4 * ((size + 3) / 4); 1415 void *ptr; 1416 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, rounded, DeviceId); 1417 if (err != HSA_STATUS_SUCCESS) { 1418 return err; 1419 } 1420 1421 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1422 if (rc != HSA_STATUS_SUCCESS) { 1423 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1424 core::Runtime::Memfree(ptr); 1425 return HSA_STATUS_ERROR; 1426 } 1427 1428 *ret_ptr = ptr; 1429 return HSA_STATUS_SUCCESS; 1430 } 1431 1432 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1433 symbol_info si; 1434 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1435 return (rc == 0) && (si.addr != nullptr); 1436 } 1437 1438 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1439 __tgt_device_image *image) { 1440 // This function loads the device image onto gpu[device_id] and does other 1441 // per-image initialization work. Specifically: 1442 // 1443 // - Initialize an omptarget_device_environmentTy instance embedded in the 1444 // image at the symbol "omptarget_device_environment" 1445 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1446 // 1447 // - Allocate a large array per-gpu (could be moved to init_device) 1448 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1449 // - Allocate at least that many bytes of gpu memory 1450 // - Zero initialize it 1451 // - Write the pointer to the symbol omptarget_nvptx_device_State 1452 // 1453 // - Pulls some per-kernel information together from various sources and 1454 // records it in the KernelsList for quicker access later 1455 // 1456 // The initialization can be done before or after loading the image onto the 1457 // gpu. This function presently does a mixture. Using the hsa api to get/set 1458 // the information is simpler to implement, in exchange for more complicated 1459 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1460 // back from the gpu vs a hashtable lookup on the host. 1461 1462 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1463 1464 DeviceInfo.clearOffloadEntriesTable(device_id); 1465 1466 // We do not need to set the ELF version because the caller of this function 1467 // had to do that to decide the right runtime to use 1468 1469 if (!elf_machine_id_is_amdgcn(image)) { 1470 return NULL; 1471 } 1472 1473 { 1474 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1475 img_size); 1476 1477 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1478 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1479 hsa_status_t err = module_register_from_memory_to_place( 1480 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1481 [&](void *data, size_t size) { 1482 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1483 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1484 __ATOMIC_RELEASE); 1485 } 1486 return env.before_loading(data, size); 1487 }, 1488 DeviceInfo.HSAExecutables); 1489 1490 check("Module registering", err); 1491 if (err != HSA_STATUS_SUCCESS) { 1492 fprintf(stderr, 1493 "Possible gpu arch mismatch: device:%s, image:%s please check" 1494 " compiler flag: -march=<gpu>\n", 1495 DeviceInfo.GPUName[device_id].c_str(), 1496 get_elf_mach_gfx_name(elf_e_flags(image))); 1497 return NULL; 1498 } 1499 1500 err = env.after_loading(); 1501 if (err != HSA_STATUS_SUCCESS) { 1502 return NULL; 1503 } 1504 } 1505 1506 DP("ATMI module successfully loaded!\n"); 1507 1508 { 1509 // the device_State array is either large value in bss or a void* that 1510 // needs to be assigned to a pointer to an array of size device_state_bytes 1511 // If absent, it has been deadstripped and needs no setup. 1512 1513 void *state_ptr; 1514 uint32_t state_ptr_size; 1515 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1516 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1517 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1518 &state_ptr_size); 1519 1520 if (err != HSA_STATUS_SUCCESS) { 1521 DP("No device_state symbol found, skipping initialization\n"); 1522 } else { 1523 if (state_ptr_size < sizeof(void *)) { 1524 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1525 sizeof(void *)); 1526 return NULL; 1527 } 1528 1529 // if it's larger than a void*, assume it's a bss array and no further 1530 // initialization is required. Only try to set up a pointer for 1531 // sizeof(void*) 1532 if (state_ptr_size == sizeof(void *)) { 1533 uint64_t device_State_bytes = 1534 get_device_State_bytes((char *)image->ImageStart, img_size); 1535 if (device_State_bytes == 0) { 1536 DP("Can't initialize device_State, missing size information\n"); 1537 return NULL; 1538 } 1539 1540 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1541 if (dss.first.get() == nullptr) { 1542 assert(dss.second == 0); 1543 void *ptr = NULL; 1544 hsa_status_t err = atmi_calloc(&ptr, device_State_bytes, device_id); 1545 if (err != HSA_STATUS_SUCCESS) { 1546 DP("Failed to allocate device_state array\n"); 1547 return NULL; 1548 } 1549 dss = { 1550 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1551 device_State_bytes, 1552 }; 1553 } 1554 1555 void *ptr = dss.first.get(); 1556 if (device_State_bytes != dss.second) { 1557 DP("Inconsistent sizes of device_State unsupported\n"); 1558 return NULL; 1559 } 1560 1561 // write ptr to device memory so it can be used by later kernels 1562 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1563 sizeof(void *), device_id); 1564 if (err != HSA_STATUS_SUCCESS) { 1565 DP("memcpy install of state_ptr failed\n"); 1566 return NULL; 1567 } 1568 } 1569 } 1570 } 1571 1572 // Here, we take advantage of the data that is appended after img_end to get 1573 // the symbols' name we need to load. This data consist of the host entries 1574 // begin and end as well as the target name (see the offloading linker script 1575 // creation in clang compiler). 1576 1577 // Find the symbols in the module by name. The name can be obtain by 1578 // concatenating the host entry name with the target name 1579 1580 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1581 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1582 1583 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1584 1585 if (!e->addr) { 1586 // The host should have always something in the address to 1587 // uniquely identify the target region. 1588 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1589 (unsigned long long)e->size); 1590 return NULL; 1591 } 1592 1593 if (e->size) { 1594 __tgt_offload_entry entry = *e; 1595 1596 void *varptr; 1597 uint32_t varsize; 1598 1599 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1600 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1601 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1602 1603 if (err != HSA_STATUS_SUCCESS) { 1604 // Inform the user what symbol prevented offloading 1605 DP("Loading global '%s' (Failed)\n", e->name); 1606 return NULL; 1607 } 1608 1609 if (varsize != e->size) { 1610 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1611 varsize, e->size); 1612 return NULL; 1613 } 1614 1615 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1616 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1617 entry.addr = (void *)varptr; 1618 1619 DeviceInfo.addOffloadEntry(device_id, entry); 1620 1621 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1622 e->flags & OMP_DECLARE_TARGET_LINK) { 1623 // If unified memory is present any target link variables 1624 // can access host addresses directly. There is no longer a 1625 // need for device copies. 1626 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1627 sizeof(void *), device_id); 1628 if (err != HSA_STATUS_SUCCESS) 1629 DP("Error when copying USM\n"); 1630 DP("Copy linked variable host address (" DPxMOD ")" 1631 "to device address (" DPxMOD ")\n", 1632 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1633 } 1634 1635 continue; 1636 } 1637 1638 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1639 1640 uint32_t kernarg_segment_size; 1641 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1642 hsa_status_t err = atmi_interop_hsa_get_kernel_info( 1643 KernelInfoMap, device_id, e->name, 1644 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1645 &kernarg_segment_size); 1646 1647 // each arg is a void * in this openmp implementation 1648 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1649 std::vector<size_t> arg_sizes(arg_num); 1650 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1651 it != arg_sizes.end(); it++) { 1652 *it = sizeof(void *); 1653 } 1654 1655 // default value GENERIC (in case symbol is missing from cubin file) 1656 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1657 1658 // get flat group size if present, else Default_WG_Size 1659 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1660 1661 // get Kernel Descriptor if present. 1662 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1663 struct KernDescValType { 1664 uint16_t Version; 1665 uint16_t TSize; 1666 uint16_t WG_Size; 1667 uint8_t Mode; 1668 }; 1669 struct KernDescValType KernDescVal; 1670 std::string KernDescNameStr(e->name); 1671 KernDescNameStr += "_kern_desc"; 1672 const char *KernDescName = KernDescNameStr.c_str(); 1673 1674 void *KernDescPtr; 1675 uint32_t KernDescSize; 1676 void *CallStackAddr = nullptr; 1677 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1678 KernDescName, &KernDescPtr, &KernDescSize); 1679 1680 if (err == HSA_STATUS_SUCCESS) { 1681 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1682 DP("Loading global computation properties '%s' - size mismatch (%u != " 1683 "%lu)\n", 1684 KernDescName, KernDescSize, sizeof(KernDescVal)); 1685 1686 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1687 1688 // Check structure size against recorded size. 1689 if ((size_t)KernDescSize != KernDescVal.TSize) 1690 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1691 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1692 1693 DP("After loading global for %s KernDesc \n", KernDescName); 1694 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1695 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1696 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1697 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1698 1699 // Get ExecMode 1700 ExecModeVal = KernDescVal.Mode; 1701 DP("ExecModeVal %d\n", ExecModeVal); 1702 if (KernDescVal.WG_Size == 0) { 1703 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1704 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1705 } 1706 WGSizeVal = KernDescVal.WG_Size; 1707 DP("WGSizeVal %d\n", WGSizeVal); 1708 check("Loading KernDesc computation property", err); 1709 } else { 1710 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1711 1712 // Generic 1713 std::string ExecModeNameStr(e->name); 1714 ExecModeNameStr += "_exec_mode"; 1715 const char *ExecModeName = ExecModeNameStr.c_str(); 1716 1717 void *ExecModePtr; 1718 uint32_t varsize; 1719 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1720 ExecModeName, &ExecModePtr, &varsize); 1721 1722 if (err == HSA_STATUS_SUCCESS) { 1723 if ((size_t)varsize != sizeof(int8_t)) { 1724 DP("Loading global computation properties '%s' - size mismatch(%u != " 1725 "%lu)\n", 1726 ExecModeName, varsize, sizeof(int8_t)); 1727 return NULL; 1728 } 1729 1730 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1731 1732 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1733 ExecModeVal); 1734 1735 if (ExecModeVal < 0 || ExecModeVal > 2) { 1736 DP("Error wrong exec_mode value specified in HSA code object file: " 1737 "%d\n", 1738 ExecModeVal); 1739 return NULL; 1740 } 1741 } else { 1742 DP("Loading global exec_mode '%s' - symbol missing, using default " 1743 "value " 1744 "GENERIC (1)\n", 1745 ExecModeName); 1746 } 1747 check("Loading computation property", err); 1748 1749 // Flat group size 1750 std::string WGSizeNameStr(e->name); 1751 WGSizeNameStr += "_wg_size"; 1752 const char *WGSizeName = WGSizeNameStr.c_str(); 1753 1754 void *WGSizePtr; 1755 uint32_t WGSize; 1756 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1757 WGSizeName, &WGSizePtr, &WGSize); 1758 1759 if (err == HSA_STATUS_SUCCESS) { 1760 if ((size_t)WGSize != sizeof(int16_t)) { 1761 DP("Loading global computation properties '%s' - size mismatch (%u " 1762 "!= " 1763 "%lu)\n", 1764 WGSizeName, WGSize, sizeof(int16_t)); 1765 return NULL; 1766 } 1767 1768 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1769 1770 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1771 1772 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1773 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1774 DP("Error wrong WGSize value specified in HSA code object file: " 1775 "%d\n", 1776 WGSizeVal); 1777 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1778 } 1779 } else { 1780 DP("Warning: Loading WGSize '%s' - symbol not found, " 1781 "using default value %d\n", 1782 WGSizeName, WGSizeVal); 1783 } 1784 1785 check("Loading WGSize computation property", err); 1786 } 1787 1788 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1789 CallStackAddr, e->name, kernarg_segment_size, 1790 DeviceInfo.KernArgPool)); 1791 __tgt_offload_entry entry = *e; 1792 entry.addr = (void *)&KernelsList.back(); 1793 DeviceInfo.addOffloadEntry(device_id, entry); 1794 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1795 } 1796 1797 return DeviceInfo.getOffloadEntriesTable(device_id); 1798 } 1799 1800 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1801 void *ptr = NULL; 1802 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1803 1804 if (kind != TARGET_ALLOC_DEFAULT) { 1805 REPORT("Invalid target data allocation kind or requested allocator not " 1806 "implemented yet\n"); 1807 return NULL; 1808 } 1809 1810 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, size, device_id); 1811 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1812 (long long unsigned)(Elf64_Addr)ptr); 1813 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1814 return ptr; 1815 } 1816 1817 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1818 int64_t size) { 1819 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1820 __tgt_async_info AsyncInfo; 1821 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1822 if (rc != OFFLOAD_SUCCESS) 1823 return OFFLOAD_FAIL; 1824 1825 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1826 } 1827 1828 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1829 int64_t size, __tgt_async_info *AsyncInfo) { 1830 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1831 if (AsyncInfo) { 1832 initAsyncInfo(AsyncInfo); 1833 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1834 } else { 1835 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1836 } 1837 } 1838 1839 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1840 int64_t size) { 1841 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1842 __tgt_async_info AsyncInfo; 1843 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1844 if (rc != OFFLOAD_SUCCESS) 1845 return OFFLOAD_FAIL; 1846 1847 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1848 } 1849 1850 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1851 void *tgt_ptr, int64_t size, 1852 __tgt_async_info *AsyncInfo) { 1853 assert(AsyncInfo && "AsyncInfo is nullptr"); 1854 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1855 initAsyncInfo(AsyncInfo); 1856 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1857 } 1858 1859 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1860 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1861 hsa_status_t err; 1862 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1863 err = core::Runtime::Memfree(tgt_ptr); 1864 if (err != HSA_STATUS_SUCCESS) { 1865 DP("Error when freeing CUDA memory\n"); 1866 return OFFLOAD_FAIL; 1867 } 1868 return OFFLOAD_SUCCESS; 1869 } 1870 1871 // Determine launch values for kernel. 1872 struct launchVals { 1873 int WorkgroupSize; 1874 int GridSize; 1875 }; 1876 launchVals getLaunchVals(EnvironmentVariables Env, int ConstWGSize, 1877 int ExecutionMode, int num_teams, int thread_limit, 1878 uint64_t loop_tripcount, int DeviceNumTeams) { 1879 1880 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1881 int num_groups = 0; 1882 1883 int Max_Teams = 1884 Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams; 1885 if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit) 1886 Max_Teams = RTLDeviceInfoTy::HardTeamLimit; 1887 1888 if (print_kernel_trace & STARTUP_DETAILS) { 1889 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1890 RTLDeviceInfoTy::Max_Teams); 1891 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1892 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1893 RTLDeviceInfoTy::Warp_Size); 1894 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1895 RTLDeviceInfoTy::Max_WG_Size); 1896 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1897 RTLDeviceInfoTy::Default_WG_Size); 1898 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1899 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1900 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1901 } 1902 // check for thread_limit() clause 1903 if (thread_limit > 0) { 1904 threadsPerGroup = thread_limit; 1905 DP("Setting threads per block to requested %d\n", thread_limit); 1906 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1907 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1908 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1909 } 1910 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1911 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1912 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1913 } 1914 } 1915 // check flat_max_work_group_size attr here 1916 if (threadsPerGroup > ConstWGSize) { 1917 threadsPerGroup = ConstWGSize; 1918 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1919 threadsPerGroup); 1920 } 1921 if (print_kernel_trace & STARTUP_DETAILS) 1922 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1923 DP("Preparing %d threads\n", threadsPerGroup); 1924 1925 // Set default num_groups (teams) 1926 if (Env.TeamLimit > 0) 1927 num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit; 1928 else 1929 num_groups = Max_Teams; 1930 DP("Set default num of groups %d\n", num_groups); 1931 1932 if (print_kernel_trace & STARTUP_DETAILS) { 1933 fprintf(stderr, "num_groups: %d\n", num_groups); 1934 fprintf(stderr, "num_teams: %d\n", num_teams); 1935 } 1936 1937 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1938 // This reduction is typical for default case (no thread_limit clause). 1939 // or when user goes crazy with num_teams clause. 1940 // FIXME: We cant distinguish between a constant or variable thread limit. 1941 // So we only handle constant thread_limits. 1942 if (threadsPerGroup > 1943 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1944 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1945 // here? 1946 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1947 1948 // check for num_teams() clause 1949 if (num_teams > 0) { 1950 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1951 } 1952 if (print_kernel_trace & STARTUP_DETAILS) { 1953 fprintf(stderr, "num_groups: %d\n", num_groups); 1954 fprintf(stderr, "Env.NumTeams %d\n", Env.NumTeams); 1955 fprintf(stderr, "Env.TeamLimit %d\n", Env.TeamLimit); 1956 } 1957 1958 if (Env.NumTeams > 0) { 1959 num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups; 1960 DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams); 1961 } else if (Env.TeamLimit > 0) { 1962 num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups; 1963 DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit); 1964 } else { 1965 if (num_teams <= 0) { 1966 if (loop_tripcount > 0) { 1967 if (ExecutionMode == SPMD) { 1968 // round up to the nearest integer 1969 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1970 } else if (ExecutionMode == GENERIC) { 1971 num_groups = loop_tripcount; 1972 } else /* ExecutionMode == SPMD_GENERIC */ { 1973 // This is a generic kernel that was transformed to use SPMD-mode 1974 // execution but uses Generic-mode semantics for scheduling. 1975 num_groups = loop_tripcount; 1976 } 1977 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1978 "threads per block %d\n", 1979 num_groups, loop_tripcount, threadsPerGroup); 1980 } 1981 } else { 1982 num_groups = num_teams; 1983 } 1984 if (num_groups > Max_Teams) { 1985 num_groups = Max_Teams; 1986 if (print_kernel_trace & STARTUP_DETAILS) 1987 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1988 Max_Teams); 1989 } 1990 if (num_groups > num_teams && num_teams > 0) { 1991 num_groups = num_teams; 1992 if (print_kernel_trace & STARTUP_DETAILS) 1993 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1994 num_groups, num_teams); 1995 } 1996 } 1997 1998 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1999 if (num_teams > 0) { 2000 num_groups = num_teams; 2001 // Cap num_groups to EnvMaxTeamsDefault if set. 2002 if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault) 2003 num_groups = Env.MaxTeamsDefault; 2004 } 2005 if (print_kernel_trace & STARTUP_DETAILS) { 2006 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 2007 fprintf(stderr, "num_groups: %d\n", num_groups); 2008 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 2009 } 2010 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 2011 threadsPerGroup); 2012 2013 launchVals res; 2014 res.WorkgroupSize = threadsPerGroup; 2015 res.GridSize = threadsPerGroup * num_groups; 2016 return res; 2017 } 2018 2019 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 2020 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 2021 bool full = true; 2022 while (full) { 2023 full = 2024 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 2025 } 2026 return packet_id; 2027 } 2028 2029 static int32_t __tgt_rtl_run_target_team_region_locked( 2030 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2031 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2032 int32_t thread_limit, uint64_t loop_tripcount); 2033 2034 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 2035 void **tgt_args, 2036 ptrdiff_t *tgt_offsets, 2037 int32_t arg_num, int32_t num_teams, 2038 int32_t thread_limit, 2039 uint64_t loop_tripcount) { 2040 2041 DeviceInfo.load_run_lock.lock_shared(); 2042 int32_t res = __tgt_rtl_run_target_team_region_locked( 2043 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 2044 thread_limit, loop_tripcount); 2045 2046 DeviceInfo.load_run_lock.unlock_shared(); 2047 return res; 2048 } 2049 2050 int32_t __tgt_rtl_run_target_team_region_locked( 2051 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2052 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2053 int32_t thread_limit, uint64_t loop_tripcount) { 2054 // Set the context we are using 2055 // update thread limit content in gpu memory if un-initialized or specified 2056 // from host 2057 2058 DP("Run target team region thread_limit %d\n", thread_limit); 2059 2060 // All args are references. 2061 std::vector<void *> args(arg_num); 2062 std::vector<void *> ptrs(arg_num); 2063 2064 DP("Arg_num: %d\n", arg_num); 2065 for (int32_t i = 0; i < arg_num; ++i) { 2066 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 2067 args[i] = &ptrs[i]; 2068 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 2069 } 2070 2071 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 2072 2073 std::string kernel_name = std::string(KernelInfo->Name); 2074 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 2075 if (KernelInfoTable[device_id].find(kernel_name) == 2076 KernelInfoTable[device_id].end()) { 2077 DP("Kernel %s not found\n", kernel_name.c_str()); 2078 return OFFLOAD_FAIL; 2079 } 2080 2081 const atl_kernel_info_t KernelInfoEntry = 2082 KernelInfoTable[device_id][kernel_name]; 2083 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 2084 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 2085 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 2086 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 2087 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 2088 2089 assert(arg_num == (int)KernelInfoEntry.num_args); 2090 2091 /* 2092 * Set limit based on ThreadsPerGroup and GroupsPerDevice 2093 */ 2094 launchVals LV = getLaunchVals(DeviceInfo.Env, KernelInfo->ConstWGSize, 2095 KernelInfo->ExecutionMode, 2096 num_teams, // From run_region arg 2097 thread_limit, // From run_region arg 2098 loop_tripcount, // From run_region arg 2099 DeviceInfo.NumTeams[KernelInfo->device_id]); 2100 const int GridSize = LV.GridSize; 2101 const int WorkgroupSize = LV.WorkgroupSize; 2102 2103 if (print_kernel_trace >= LAUNCH) { 2104 int num_groups = GridSize / WorkgroupSize; 2105 // enum modes are SPMD, GENERIC, NONE 0,1,2 2106 // if doing rtl timing, print to stderr, unless stdout requested. 2107 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 2108 fprintf(traceToStdout ? stdout : stderr, 2109 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 2110 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 2111 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 2112 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 2113 arg_num, num_groups, WorkgroupSize, num_teams, thread_limit, 2114 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 2115 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 2116 } 2117 2118 // Run on the device. 2119 { 2120 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 2121 if (!queue) { 2122 return OFFLOAD_FAIL; 2123 } 2124 uint64_t packet_id = acquire_available_packet_id(queue); 2125 2126 const uint32_t mask = queue->size - 1; // size is a power of 2 2127 hsa_kernel_dispatch_packet_t *packet = 2128 (hsa_kernel_dispatch_packet_t *)queue->base_address + 2129 (packet_id & mask); 2130 2131 // packet->header is written last 2132 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 2133 packet->workgroup_size_x = WorkgroupSize; 2134 packet->workgroup_size_y = 1; 2135 packet->workgroup_size_z = 1; 2136 packet->reserved0 = 0; 2137 packet->grid_size_x = GridSize; 2138 packet->grid_size_y = 1; 2139 packet->grid_size_z = 1; 2140 packet->private_segment_size = KernelInfoEntry.private_segment_size; 2141 packet->group_segment_size = KernelInfoEntry.group_segment_size; 2142 packet->kernel_object = KernelInfoEntry.kernel_object; 2143 packet->kernarg_address = 0; // use the block allocator 2144 packet->reserved2 = 0; // atmi writes id_ here 2145 packet->completion_signal = {0}; // may want a pool of signals 2146 2147 KernelArgPool *ArgPool = nullptr; 2148 { 2149 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 2150 if (it != KernelArgPoolMap.end()) { 2151 ArgPool = (it->second).get(); 2152 } 2153 } 2154 if (!ArgPool) { 2155 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 2156 device_id); 2157 } 2158 { 2159 void *kernarg = nullptr; 2160 if (ArgPool) { 2161 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 2162 kernarg = ArgPool->allocate(arg_num); 2163 } 2164 if (!kernarg) { 2165 DP("Allocate kernarg failed\n"); 2166 return OFFLOAD_FAIL; 2167 } 2168 2169 // Copy explicit arguments 2170 for (int i = 0; i < arg_num; i++) { 2171 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 2172 } 2173 2174 // Initialize implicit arguments. ATMI seems to leave most fields 2175 // uninitialized 2176 atmi_implicit_args_t *impl_args = 2177 reinterpret_cast<atmi_implicit_args_t *>( 2178 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 2179 memset(impl_args, 0, 2180 sizeof(atmi_implicit_args_t)); // may not be necessary 2181 impl_args->offset_x = 0; 2182 impl_args->offset_y = 0; 2183 impl_args->offset_z = 0; 2184 2185 // assign a hostcall buffer for the selected Q 2186 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 2187 // hostrpc_assign_buffer is not thread safe, and this function is 2188 // under a multiple reader lock, not a writer lock. 2189 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 2190 pthread_mutex_lock(&hostcall_init_lock); 2191 impl_args->hostcall_ptr = hostrpc_assign_buffer( 2192 DeviceInfo.HSAAgents[device_id], queue, device_id); 2193 pthread_mutex_unlock(&hostcall_init_lock); 2194 if (!impl_args->hostcall_ptr) { 2195 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 2196 "error\n"); 2197 return OFFLOAD_FAIL; 2198 } 2199 } 2200 2201 packet->kernarg_address = kernarg; 2202 } 2203 2204 { 2205 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 2206 if (s.handle == 0) { 2207 DP("Failed to get signal instance\n"); 2208 return OFFLOAD_FAIL; 2209 } 2210 packet->completion_signal = s; 2211 hsa_signal_store_relaxed(packet->completion_signal, 1); 2212 } 2213 2214 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 2215 core::create_header(), packet->setup); 2216 2217 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 2218 2219 while (hsa_signal_wait_scacquire(packet->completion_signal, 2220 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 2221 HSA_WAIT_STATE_BLOCKED) != 0) 2222 ; 2223 2224 assert(ArgPool); 2225 ArgPool->deallocate(packet->kernarg_address); 2226 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 2227 } 2228 2229 DP("Kernel completed\n"); 2230 return OFFLOAD_SUCCESS; 2231 } 2232 2233 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2234 void **tgt_args, ptrdiff_t *tgt_offsets, 2235 int32_t arg_num) { 2236 // use one team and one thread 2237 // fix thread num 2238 int32_t team_num = 1; 2239 int32_t thread_limit = 0; // use default 2240 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2241 tgt_offsets, arg_num, team_num, 2242 thread_limit, 0); 2243 } 2244 2245 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2246 void *tgt_entry_ptr, void **tgt_args, 2247 ptrdiff_t *tgt_offsets, 2248 int32_t arg_num, 2249 __tgt_async_info *AsyncInfo) { 2250 assert(AsyncInfo && "AsyncInfo is nullptr"); 2251 initAsyncInfo(AsyncInfo); 2252 2253 // use one team and one thread 2254 // fix thread num 2255 int32_t team_num = 1; 2256 int32_t thread_limit = 0; // use default 2257 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2258 tgt_offsets, arg_num, team_num, 2259 thread_limit, 0); 2260 } 2261 2262 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2263 assert(AsyncInfo && "AsyncInfo is nullptr"); 2264 2265 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2266 // is not ensured by devices.cpp for amdgcn 2267 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2268 if (AsyncInfo->Queue) { 2269 finiAsyncInfo(AsyncInfo); 2270 } 2271 return OFFLOAD_SUCCESS; 2272 } 2273 2274 namespace core { 2275 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 2276 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 2277 &DeviceInfo.HSAAgents[0], NULL, ptr); 2278 } 2279 2280 } // namespace core 2281