1 //===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for AMD hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <functional> 19 #include <libelf.h> 20 #include <list> 21 #include <memory> 22 #include <mutex> 23 #include <shared_mutex> 24 #include <unordered_map> 25 #include <vector> 26 27 #include "interop_hsa.h" 28 #include "impl_runtime.h" 29 30 #include "internal.h" 31 #include "rt.h" 32 33 #include "DeviceEnvironment.h" 34 #include "get_elf_mach_gfx_name.h" 35 #include "omptargetplugin.h" 36 #include "print_tracing.h" 37 38 #include "llvm/Frontend/OpenMP/OMPConstants.h" 39 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 40 41 // hostrpc interface, FIXME: consider moving to its own include these are 42 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 43 // linked as --whole-archive to override the weak symbols that are used to 44 // implement a fallback for toolchains that do not yet have a hostrpc library. 45 extern "C" { 46 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 47 uint32_t device_id); 48 hsa_status_t hostrpc_init(); 49 hsa_status_t hostrpc_terminate(); 50 51 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 52 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 53 return HSA_STATUS_SUCCESS; 54 } 55 __attribute__((weak)) unsigned long 56 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 57 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 58 "missing\n", 59 device_id); 60 return 0; 61 } 62 } 63 64 // Heuristic parameters used for kernel launch 65 // Number of teams per CU to allow scheduling flexibility 66 static const unsigned DefaultTeamsPerCU = 4; 67 68 int print_kernel_trace; 69 70 #ifdef OMPTARGET_DEBUG 71 #define check(msg, status) \ 72 if (status != HSA_STATUS_SUCCESS) { \ 73 DP(#msg " failed\n"); \ 74 } else { \ 75 DP(#msg " succeeded\n"); \ 76 } 77 #else 78 #define check(msg, status) \ 79 {} 80 #endif 81 82 #include "elf_common.h" 83 84 namespace hsa { 85 template <typename C> hsa_status_t iterate_agents(C cb) { 86 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 87 C *unwrapped = static_cast<C *>(data); 88 return (*unwrapped)(agent); 89 }; 90 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 91 } 92 93 template <typename C> 94 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { 95 auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { 96 C *unwrapped = static_cast<C *>(data); 97 return (*unwrapped)(MemoryPool); 98 }; 99 100 return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb)); 101 } 102 103 } // namespace hsa 104 105 /// Keep entries table per device 106 struct FuncOrGblEntryTy { 107 __tgt_target_table Table; 108 std::vector<__tgt_offload_entry> Entries; 109 }; 110 111 struct KernelArgPool { 112 private: 113 static pthread_mutex_t mutex; 114 115 public: 116 uint32_t kernarg_segment_size; 117 void *kernarg_region = nullptr; 118 std::queue<int> free_kernarg_segments; 119 120 uint32_t kernarg_size_including_implicit() { 121 return kernarg_segment_size + sizeof(impl_implicit_args_t); 122 } 123 124 ~KernelArgPool() { 125 if (kernarg_region) { 126 auto r = hsa_amd_memory_pool_free(kernarg_region); 127 if (r != HSA_STATUS_SUCCESS) { 128 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 129 } 130 } 131 } 132 133 // Can't really copy or move a mutex 134 KernelArgPool() = default; 135 KernelArgPool(const KernelArgPool &) = delete; 136 KernelArgPool(KernelArgPool &&) = delete; 137 138 KernelArgPool(uint32_t kernarg_segment_size, 139 hsa_amd_memory_pool_t &memory_pool) 140 : kernarg_segment_size(kernarg_segment_size) { 141 142 // impl uses one pool per kernel for all gpus, with a fixed upper size 143 // preserving that exact scheme here, including the queue<int> 144 145 hsa_status_t err = hsa_amd_memory_pool_allocate( 146 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 147 &kernarg_region); 148 149 if (err != HSA_STATUS_SUCCESS) { 150 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 151 kernarg_region = nullptr; // paranoid 152 return; 153 } 154 155 err = core::allow_access_to_all_gpu_agents(kernarg_region); 156 if (err != HSA_STATUS_SUCCESS) { 157 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 158 get_error_string(err)); 159 auto r = hsa_amd_memory_pool_free(kernarg_region); 160 if (r != HSA_STATUS_SUCCESS) { 161 // if free failed, can't do anything more to resolve it 162 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 163 } 164 kernarg_region = nullptr; 165 return; 166 } 167 168 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 169 free_kernarg_segments.push(i); 170 } 171 } 172 173 void *allocate(uint64_t arg_num) { 174 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 175 lock l(&mutex); 176 void *res = nullptr; 177 if (!free_kernarg_segments.empty()) { 178 179 int free_idx = free_kernarg_segments.front(); 180 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 181 (free_idx * kernarg_size_including_implicit())); 182 assert(free_idx == pointer_to_index(res)); 183 free_kernarg_segments.pop(); 184 } 185 return res; 186 } 187 188 void deallocate(void *ptr) { 189 lock l(&mutex); 190 int idx = pointer_to_index(ptr); 191 free_kernarg_segments.push(idx); 192 } 193 194 private: 195 int pointer_to_index(void *ptr) { 196 ptrdiff_t bytes = 197 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 198 assert(bytes >= 0); 199 assert(bytes % kernarg_size_including_implicit() == 0); 200 return bytes / kernarg_size_including_implicit(); 201 } 202 struct lock { 203 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 204 ~lock() { pthread_mutex_unlock(m); } 205 pthread_mutex_t *m; 206 }; 207 }; 208 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 209 210 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 211 KernelArgPoolMap; 212 213 /// Use a single entity to encode a kernel and a set of flags 214 struct KernelTy { 215 llvm::omp::OMPTgtExecModeFlags ExecutionMode; 216 int16_t ConstWGSize; 217 int32_t device_id; 218 void *CallStackAddr = nullptr; 219 const char *Name; 220 221 KernelTy(llvm::omp::OMPTgtExecModeFlags _ExecutionMode, int16_t _ConstWGSize, 222 int32_t _device_id, void *_CallStackAddr, const char *_Name, 223 uint32_t _kernarg_segment_size, 224 hsa_amd_memory_pool_t &KernArgMemoryPool) 225 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 226 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 227 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 228 229 std::string N(_Name); 230 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 231 KernelArgPoolMap.insert( 232 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 233 _kernarg_segment_size, KernArgMemoryPool)))); 234 } 235 } 236 }; 237 238 /// List that contains all the kernels. 239 /// FIXME: we may need this to be per device and per library. 240 std::list<KernelTy> KernelsList; 241 242 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 243 244 hsa_status_t err = 245 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 246 hsa_device_type_t device_type; 247 // get_info fails iff HSA runtime not yet initialized 248 hsa_status_t err = 249 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 250 251 if (err != HSA_STATUS_SUCCESS) { 252 if (print_kernel_trace > 0) 253 DP("rtl.cpp: err %s\n", get_error_string(err)); 254 255 return err; 256 } 257 258 CB(device_type, agent); 259 return HSA_STATUS_SUCCESS; 260 }); 261 262 // iterate_agents fails iff HSA runtime not yet initialized 263 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 264 DP("rtl.cpp: err %s\n", get_error_string(err)); 265 } 266 267 return err; 268 } 269 270 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 271 void *data) { 272 if (status != HSA_STATUS_SUCCESS) { 273 const char *status_string; 274 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 275 status_string = "unavailable"; 276 } 277 DP("[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, __LINE__, source, 278 status, status_string); 279 abort(); 280 } 281 } 282 283 namespace core { 284 namespace { 285 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 286 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 287 } 288 289 uint16_t create_header() { 290 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 291 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 292 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 293 return header; 294 } 295 296 hsa_status_t isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { 297 bool AllocAllowed = false; 298 hsa_status_t Err = hsa_amd_memory_pool_get_info( 299 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 300 &AllocAllowed); 301 if (Err != HSA_STATUS_SUCCESS) { 302 DP("Alloc allowed in memory pool check failed: %s\n", 303 get_error_string(Err)); 304 return Err; 305 } 306 307 size_t Size = 0; 308 Err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, 309 &Size); 310 if (Err != HSA_STATUS_SUCCESS) { 311 DP("Get memory pool size failed: %s\n", get_error_string(Err)); 312 return Err; 313 } 314 315 return (AllocAllowed && Size > 0) ? HSA_STATUS_SUCCESS : HSA_STATUS_ERROR; 316 } 317 318 hsa_status_t addMemoryPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 319 std::vector<hsa_amd_memory_pool_t> *Result = 320 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 321 322 hsa_status_t err; 323 if ((err = isValidMemoryPool(MemoryPool)) != HSA_STATUS_SUCCESS) { 324 return err; 325 } 326 327 Result->push_back(MemoryPool); 328 return HSA_STATUS_SUCCESS; 329 } 330 331 } // namespace 332 } // namespace core 333 334 struct EnvironmentVariables { 335 int NumTeams; 336 int TeamLimit; 337 int TeamThreadLimit; 338 int MaxTeamsDefault; 339 }; 340 341 template <uint32_t wavesize> 342 static constexpr const llvm::omp::GV &getGridValue() { 343 return llvm::omp::getAMDGPUGridValues<wavesize>(); 344 } 345 346 struct HSALifetime { 347 // Wrapper around HSA used to ensure it is constructed before other types 348 // and destructed after, which means said other types can use raii for 349 // cleanup without risking running outside of the lifetime of HSA 350 const hsa_status_t S; 351 352 bool success() { return S == HSA_STATUS_SUCCESS; } 353 HSALifetime() : S(hsa_init()) {} 354 355 ~HSALifetime() { 356 if (S == HSA_STATUS_SUCCESS) { 357 hsa_status_t Err = hsa_shut_down(); 358 if (Err != HSA_STATUS_SUCCESS) { 359 // Can't call into HSA to get a string from the integer 360 DP("Shutting down HSA failed: %d\n", Err); 361 } 362 } 363 } 364 }; 365 366 /// Class containing all the device information 367 class RTLDeviceInfoTy { 368 HSALifetime HSA; // First field => constructed first and destructed last 369 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 370 371 struct QueueDeleter { 372 void operator()(hsa_queue_t *Q) { 373 if (Q) { 374 hsa_status_t Err = hsa_queue_destroy(Q); 375 if (Err != HSA_STATUS_SUCCESS) { 376 DP("Error destroying hsa queue: %s\n", get_error_string(Err)); 377 } 378 } 379 } 380 }; 381 382 public: 383 bool ConstructionSucceeded = false; 384 385 // load binary populates symbol tables and mutates various global state 386 // run uses those symbol tables 387 std::shared_timed_mutex load_run_lock; 388 389 int NumberOfDevices = 0; 390 391 // GPU devices 392 std::vector<hsa_agent_t> HSAAgents; 393 std::vector<std::unique_ptr<hsa_queue_t, QueueDeleter>> 394 HSAQueues; // one per gpu 395 396 // CPUs 397 std::vector<hsa_agent_t> CPUAgents; 398 399 // Device properties 400 std::vector<int> ComputeUnits; 401 std::vector<int> GroupsPerDevice; 402 std::vector<int> ThreadsPerGroup; 403 std::vector<int> WarpSize; 404 std::vector<std::string> GPUName; 405 406 // OpenMP properties 407 std::vector<int> NumTeams; 408 std::vector<int> NumThreads; 409 410 // OpenMP Environment properties 411 EnvironmentVariables Env; 412 413 // OpenMP Requires Flags 414 int64_t RequiresFlags; 415 416 // Resource pools 417 SignalPoolT FreeSignalPool; 418 419 bool hostcall_required = false; 420 421 std::vector<hsa_executable_t> HSAExecutables; 422 423 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 424 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 425 426 hsa_amd_memory_pool_t KernArgPool; 427 428 // fine grained memory pool for host allocations 429 hsa_amd_memory_pool_t HostFineGrainedMemoryPool; 430 431 // fine and coarse-grained memory pools per offloading device 432 std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools; 433 std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools; 434 435 struct implFreePtrDeletor { 436 void operator()(void *p) { 437 core::Runtime::Memfree(p); // ignore failure to free 438 } 439 }; 440 441 // device_State shared across loaded binaries, error if inconsistent size 442 std::vector<std::pair<std::unique_ptr<void, implFreePtrDeletor>, uint64_t>> 443 deviceStateStore; 444 445 static const unsigned HardTeamLimit = 446 (1 << 16) - 1; // 64K needed to fit in uint16 447 static const int DefaultNumTeams = 128; 448 449 // These need to be per-device since different devices can have different 450 // wave sizes, but are currently the same number for each so that refactor 451 // can be postponed. 452 static_assert(getGridValue<32>().GV_Max_Teams == 453 getGridValue<64>().GV_Max_Teams, 454 ""); 455 static const int Max_Teams = getGridValue<64>().GV_Max_Teams; 456 457 static_assert(getGridValue<32>().GV_Max_WG_Size == 458 getGridValue<64>().GV_Max_WG_Size, 459 ""); 460 static const int Max_WG_Size = getGridValue<64>().GV_Max_WG_Size; 461 462 static_assert(getGridValue<32>().GV_Default_WG_Size == 463 getGridValue<64>().GV_Default_WG_Size, 464 ""); 465 static const int Default_WG_Size = getGridValue<64>().GV_Default_WG_Size; 466 467 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 468 size_t size, hsa_agent_t, 469 hsa_amd_memory_pool_t); 470 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 471 MemcpyFunc Func, int32_t deviceId) { 472 hsa_agent_t agent = HSAAgents[deviceId]; 473 hsa_signal_t s = FreeSignalPool.pop(); 474 if (s.handle == 0) { 475 return HSA_STATUS_ERROR; 476 } 477 hsa_status_t r = Func(s, dest, src, size, agent, HostFineGrainedMemoryPool); 478 FreeSignalPool.push(s); 479 return r; 480 } 481 482 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 483 size_t size, int32_t deviceId) { 484 return freesignalpool_memcpy(dest, src, size, impl_memcpy_d2h, deviceId); 485 } 486 487 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 488 size_t size, int32_t deviceId) { 489 return freesignalpool_memcpy(dest, src, size, impl_memcpy_h2d, deviceId); 490 } 491 492 // Record entry point associated with device 493 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 494 assert(device_id < (int32_t)FuncGblEntries.size() && 495 "Unexpected device id!"); 496 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 497 498 E.Entries.push_back(entry); 499 } 500 501 // Return true if the entry is associated with device 502 bool findOffloadEntry(int32_t device_id, void *addr) { 503 assert(device_id < (int32_t)FuncGblEntries.size() && 504 "Unexpected device id!"); 505 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 506 507 for (auto &it : E.Entries) { 508 if (it.addr == addr) 509 return true; 510 } 511 512 return false; 513 } 514 515 // Return the pointer to the target entries table 516 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 517 assert(device_id < (int32_t)FuncGblEntries.size() && 518 "Unexpected device id!"); 519 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 520 521 int32_t size = E.Entries.size(); 522 523 // Table is empty 524 if (!size) 525 return 0; 526 527 __tgt_offload_entry *begin = &E.Entries[0]; 528 __tgt_offload_entry *end = &E.Entries[size - 1]; 529 530 // Update table info according to the entries and return the pointer 531 E.Table.EntriesBegin = begin; 532 E.Table.EntriesEnd = ++end; 533 534 return &E.Table; 535 } 536 537 // Clear entries table for a device 538 void clearOffloadEntriesTable(int device_id) { 539 assert(device_id < (int32_t)FuncGblEntries.size() && 540 "Unexpected device id!"); 541 FuncGblEntries[device_id].emplace_back(); 542 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 543 // KernelArgPoolMap.clear(); 544 E.Entries.clear(); 545 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 546 } 547 548 hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, 549 int DeviceId) { 550 assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); 551 uint32_t GlobalFlags = 0; 552 hsa_status_t Err = hsa_amd_memory_pool_get_info( 553 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 554 555 if (Err != HSA_STATUS_SUCCESS) { 556 return Err; 557 } 558 559 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 560 DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; 561 } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { 562 DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; 563 } 564 565 return HSA_STATUS_SUCCESS; 566 } 567 568 hsa_status_t setupDevicePools(const std::vector<hsa_agent_t> &Agents) { 569 for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { 570 hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( 571 Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { 572 hsa_status_t ValidStatus = core::isValidMemoryPool(MemoryPool); 573 if (ValidStatus != HSA_STATUS_SUCCESS) { 574 DP("Alloc allowed in memory pool check failed: %s\n", 575 get_error_string(ValidStatus)); 576 return HSA_STATUS_SUCCESS; 577 } 578 return addDeviceMemoryPool(MemoryPool, DeviceId); 579 }); 580 581 if (Err != HSA_STATUS_SUCCESS) { 582 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 583 "Iterate all memory pools", get_error_string(Err)); 584 return Err; 585 } 586 } 587 return HSA_STATUS_SUCCESS; 588 } 589 590 hsa_status_t setupHostMemoryPools(std::vector<hsa_agent_t> &Agents) { 591 std::vector<hsa_amd_memory_pool_t> HostPools; 592 593 // collect all the "valid" pools for all the given agents. 594 for (const auto &Agent : Agents) { 595 hsa_status_t Err = hsa_amd_agent_iterate_memory_pools( 596 Agent, core::addMemoryPool, static_cast<void *>(&HostPools)); 597 if (Err != HSA_STATUS_SUCCESS) { 598 DP("addMemoryPool returned %s, continuing\n", get_error_string(Err)); 599 } 600 } 601 602 // We need two fine-grained pools. 603 // 1. One with kernarg flag set for storing kernel arguments 604 // 2. Second for host allocations 605 bool FineGrainedMemoryPoolSet = false; 606 bool KernArgPoolSet = false; 607 for (const auto &MemoryPool : HostPools) { 608 hsa_status_t Err = HSA_STATUS_SUCCESS; 609 uint32_t GlobalFlags = 0; 610 Err = hsa_amd_memory_pool_get_info( 611 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 612 if (Err != HSA_STATUS_SUCCESS) { 613 DP("Get memory pool info failed: %s\n", get_error_string(Err)); 614 return Err; 615 } 616 617 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 618 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) { 619 KernArgPool = MemoryPool; 620 KernArgPoolSet = true; 621 } 622 HostFineGrainedMemoryPool = MemoryPool; 623 FineGrainedMemoryPoolSet = true; 624 } 625 } 626 627 if (FineGrainedMemoryPoolSet && KernArgPoolSet) 628 return HSA_STATUS_SUCCESS; 629 630 return HSA_STATUS_ERROR; 631 } 632 633 hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { 634 assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && 635 "Invalid device Id"); 636 return DeviceCoarseGrainedMemoryPools[DeviceId]; 637 } 638 639 hsa_amd_memory_pool_t getHostMemoryPool() { 640 return HostFineGrainedMemoryPool; 641 } 642 643 static int readEnvElseMinusOne(const char *Env) { 644 const char *envStr = getenv(Env); 645 int res = -1; 646 if (envStr) { 647 res = std::stoi(envStr); 648 DP("Parsed %s=%d\n", Env, res); 649 } 650 return res; 651 } 652 653 RTLDeviceInfoTy() { 654 DP("Start initializing " GETNAME(TARGET_NAME) "\n"); 655 656 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 657 // anytime. You do not need a debug library build. 658 // 0 => no tracing 659 // 1 => tracing dispatch only 660 // >1 => verbosity increase 661 662 if (!HSA.success()) { 663 DP("Error when initializing HSA in " GETNAME(TARGET_NAME) "\n"); 664 return; 665 } 666 667 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 668 print_kernel_trace = atoi(envStr); 669 else 670 print_kernel_trace = 0; 671 672 hsa_status_t err = core::atl_init_gpu_context(); 673 if (err != HSA_STATUS_SUCCESS) { 674 DP("Error when initializing " GETNAME(TARGET_NAME) "\n"); 675 return; 676 } 677 678 // Init hostcall soon after initializing hsa 679 hostrpc_init(); 680 681 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 682 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 683 CPUAgents.push_back(Agent); 684 } else { 685 HSAAgents.push_back(Agent); 686 } 687 }); 688 if (err != HSA_STATUS_SUCCESS) 689 return; 690 691 NumberOfDevices = (int)HSAAgents.size(); 692 693 if (NumberOfDevices == 0) { 694 DP("There are no devices supporting HSA.\n"); 695 return; 696 } else { 697 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 698 } 699 700 // Init the device info 701 HSAQueues.resize(NumberOfDevices); 702 FuncGblEntries.resize(NumberOfDevices); 703 ThreadsPerGroup.resize(NumberOfDevices); 704 ComputeUnits.resize(NumberOfDevices); 705 GPUName.resize(NumberOfDevices); 706 GroupsPerDevice.resize(NumberOfDevices); 707 WarpSize.resize(NumberOfDevices); 708 NumTeams.resize(NumberOfDevices); 709 NumThreads.resize(NumberOfDevices); 710 deviceStateStore.resize(NumberOfDevices); 711 KernelInfoTable.resize(NumberOfDevices); 712 SymbolInfoTable.resize(NumberOfDevices); 713 DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); 714 DeviceFineGrainedMemoryPools.resize(NumberOfDevices); 715 716 err = setupDevicePools(HSAAgents); 717 if (err != HSA_STATUS_SUCCESS) { 718 DP("Setup for Device Memory Pools failed\n"); 719 return; 720 } 721 722 err = setupHostMemoryPools(CPUAgents); 723 if (err != HSA_STATUS_SUCCESS) { 724 DP("Setup for Host Memory Pools failed\n"); 725 return; 726 } 727 728 for (int i = 0; i < NumberOfDevices; i++) { 729 uint32_t queue_size = 0; 730 { 731 hsa_status_t err = hsa_agent_get_info( 732 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 733 if (err != HSA_STATUS_SUCCESS) { 734 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 735 return; 736 } 737 enum { MaxQueueSize = 4096 }; 738 if (queue_size > MaxQueueSize) { 739 queue_size = MaxQueueSize; 740 } 741 } 742 743 { 744 hsa_queue_t *Q = nullptr; 745 hsa_status_t rc = 746 hsa_queue_create(HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, 747 callbackQueue, NULL, UINT32_MAX, UINT32_MAX, &Q); 748 if (rc != HSA_STATUS_SUCCESS) { 749 DP("Failed to create HSA queue %d\n", i); 750 return; 751 } 752 HSAQueues[i].reset(Q); 753 } 754 755 deviceStateStore[i] = {nullptr, 0}; 756 } 757 758 for (int i = 0; i < NumberOfDevices; i++) { 759 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 760 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 761 ComputeUnits[i] = 1; 762 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 763 GroupsPerDevice[i], ThreadsPerGroup[i]); 764 } 765 766 // Get environment variables regarding teams 767 Env.TeamLimit = readEnvElseMinusOne("OMP_TEAM_LIMIT"); 768 Env.NumTeams = readEnvElseMinusOne("OMP_NUM_TEAMS"); 769 Env.MaxTeamsDefault = readEnvElseMinusOne("OMP_MAX_TEAMS_DEFAULT"); 770 Env.TeamThreadLimit = readEnvElseMinusOne("OMP_TEAMS_THREAD_LIMIT"); 771 772 // Default state. 773 RequiresFlags = OMP_REQ_UNDEFINED; 774 775 ConstructionSucceeded = true; 776 } 777 778 ~RTLDeviceInfoTy() { 779 DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n"); 780 if (!HSA.success()) { 781 // Then none of these can have been set up and they can't be torn down 782 return; 783 } 784 // Run destructors on types that use HSA before 785 // impl_finalize removes access to it 786 deviceStateStore.clear(); 787 KernelArgPoolMap.clear(); 788 // Terminate hostrpc before finalizing hsa 789 hostrpc_terminate(); 790 791 hsa_status_t Err; 792 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 793 Err = hsa_executable_destroy(HSAExecutables[I]); 794 if (Err != HSA_STATUS_SUCCESS) { 795 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 796 "Destroying executable", get_error_string(Err)); 797 } 798 } 799 } 800 }; 801 802 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 803 804 static RTLDeviceInfoTy DeviceInfo; 805 806 namespace { 807 808 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 809 __tgt_async_info *AsyncInfo) { 810 assert(AsyncInfo && "AsyncInfo is nullptr"); 811 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 812 // Return success if we are not copying back to host from target. 813 if (!HstPtr) 814 return OFFLOAD_SUCCESS; 815 hsa_status_t err; 816 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 817 (long long unsigned)(Elf64_Addr)TgtPtr, 818 (long long unsigned)(Elf64_Addr)HstPtr); 819 820 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 821 DeviceId); 822 823 if (err != HSA_STATUS_SUCCESS) { 824 DP("Error when copying data from device to host. Pointers: " 825 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 826 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 827 return OFFLOAD_FAIL; 828 } 829 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 830 (long long unsigned)(Elf64_Addr)TgtPtr, 831 (long long unsigned)(Elf64_Addr)HstPtr); 832 return OFFLOAD_SUCCESS; 833 } 834 835 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 836 __tgt_async_info *AsyncInfo) { 837 assert(AsyncInfo && "AsyncInfo is nullptr"); 838 hsa_status_t err; 839 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 840 // Return success if we are not doing host to target. 841 if (!HstPtr) 842 return OFFLOAD_SUCCESS; 843 844 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 845 (long long unsigned)(Elf64_Addr)HstPtr, 846 (long long unsigned)(Elf64_Addr)TgtPtr); 847 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 848 DeviceId); 849 if (err != HSA_STATUS_SUCCESS) { 850 DP("Error when copying data from host to device. Pointers: " 851 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 852 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 853 return OFFLOAD_FAIL; 854 } 855 return OFFLOAD_SUCCESS; 856 } 857 858 // Async. 859 // The implementation was written with cuda streams in mind. The semantics of 860 // that are to execute kernels on a queue in order of insertion. A synchronise 861 // call then makes writes visible between host and device. This means a series 862 // of N data_submit_async calls are expected to execute serially. HSA offers 863 // various options to run the data copies concurrently. This may require changes 864 // to libomptarget. 865 866 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 867 // there are no outstanding kernels that need to be synchronized. Any async call 868 // may be passed a Queue==0, at which point the cuda implementation will set it 869 // to non-null (see getStream). The cuda streams are per-device. Upstream may 870 // change this interface to explicitly initialize the AsyncInfo_pointer, but 871 // until then hsa lazily initializes it as well. 872 873 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 874 // set non-null while using async calls, return to null to indicate completion 875 assert(AsyncInfo); 876 if (!AsyncInfo->Queue) { 877 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 878 } 879 } 880 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 881 assert(AsyncInfo); 882 assert(AsyncInfo->Queue); 883 AsyncInfo->Queue = 0; 884 } 885 886 // Determine launch values for kernel. 887 struct launchVals { 888 int WorkgroupSize; 889 int GridSize; 890 }; 891 launchVals getLaunchVals(int WarpSize, EnvironmentVariables Env, 892 int ConstWGSize, 893 llvm::omp::OMPTgtExecModeFlags ExecutionMode, 894 int num_teams, int thread_limit, 895 uint64_t loop_tripcount, int DeviceNumTeams) { 896 897 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 898 int num_groups = 0; 899 900 int Max_Teams = 901 Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams; 902 if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit) 903 Max_Teams = RTLDeviceInfoTy::HardTeamLimit; 904 905 if (print_kernel_trace & STARTUP_DETAILS) { 906 DP("RTLDeviceInfoTy::Max_Teams: %d\n", RTLDeviceInfoTy::Max_Teams); 907 DP("Max_Teams: %d\n", Max_Teams); 908 DP("RTLDeviceInfoTy::Warp_Size: %d\n", WarpSize); 909 DP("RTLDeviceInfoTy::Max_WG_Size: %d\n", RTLDeviceInfoTy::Max_WG_Size); 910 DP("RTLDeviceInfoTy::Default_WG_Size: %d\n", 911 RTLDeviceInfoTy::Default_WG_Size); 912 DP("thread_limit: %d\n", thread_limit); 913 DP("threadsPerGroup: %d\n", threadsPerGroup); 914 DP("ConstWGSize: %d\n", ConstWGSize); 915 } 916 // check for thread_limit() clause 917 if (thread_limit > 0) { 918 threadsPerGroup = thread_limit; 919 DP("Setting threads per block to requested %d\n", thread_limit); 920 // Add master warp for GENERIC 921 if (ExecutionMode == 922 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) { 923 threadsPerGroup += WarpSize; 924 DP("Adding master wavefront: +%d threads\n", WarpSize); 925 } 926 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 927 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 928 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 929 } 930 } 931 // check flat_max_work_group_size attr here 932 if (threadsPerGroup > ConstWGSize) { 933 threadsPerGroup = ConstWGSize; 934 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 935 threadsPerGroup); 936 } 937 if (print_kernel_trace & STARTUP_DETAILS) 938 DP("threadsPerGroup: %d\n", threadsPerGroup); 939 DP("Preparing %d threads\n", threadsPerGroup); 940 941 // Set default num_groups (teams) 942 if (Env.TeamLimit > 0) 943 num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit; 944 else 945 num_groups = Max_Teams; 946 DP("Set default num of groups %d\n", num_groups); 947 948 if (print_kernel_trace & STARTUP_DETAILS) { 949 DP("num_groups: %d\n", num_groups); 950 DP("num_teams: %d\n", num_teams); 951 } 952 953 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 954 // This reduction is typical for default case (no thread_limit clause). 955 // or when user goes crazy with num_teams clause. 956 // FIXME: We cant distinguish between a constant or variable thread limit. 957 // So we only handle constant thread_limits. 958 if (threadsPerGroup > 959 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 960 // Should we round threadsPerGroup up to nearest WarpSize 961 // here? 962 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 963 964 // check for num_teams() clause 965 if (num_teams > 0) { 966 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 967 } 968 if (print_kernel_trace & STARTUP_DETAILS) { 969 DP("num_groups: %d\n", num_groups); 970 DP("Env.NumTeams %d\n", Env.NumTeams); 971 DP("Env.TeamLimit %d\n", Env.TeamLimit); 972 } 973 974 if (Env.NumTeams > 0) { 975 num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups; 976 DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams); 977 } else if (Env.TeamLimit > 0) { 978 num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups; 979 DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit); 980 } else { 981 if (num_teams <= 0) { 982 if (loop_tripcount > 0) { 983 if (ExecutionMode == 984 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_SPMD) { 985 // round up to the nearest integer 986 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 987 } else if (ExecutionMode == 988 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) { 989 num_groups = loop_tripcount; 990 } else /* OMP_TGT_EXEC_MODE_GENERIC_SPMD */ { 991 // This is a generic kernel that was transformed to use SPMD-mode 992 // execution but uses Generic-mode semantics for scheduling. 993 num_groups = loop_tripcount; 994 } 995 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 996 "threads per block %d\n", 997 num_groups, loop_tripcount, threadsPerGroup); 998 } 999 } else { 1000 num_groups = num_teams; 1001 } 1002 if (num_groups > Max_Teams) { 1003 num_groups = Max_Teams; 1004 if (print_kernel_trace & STARTUP_DETAILS) 1005 DP("Limiting num_groups %d to Max_Teams %d \n", num_groups, Max_Teams); 1006 } 1007 if (num_groups > num_teams && num_teams > 0) { 1008 num_groups = num_teams; 1009 if (print_kernel_trace & STARTUP_DETAILS) 1010 DP("Limiting num_groups %d to clause num_teams %d \n", num_groups, 1011 num_teams); 1012 } 1013 } 1014 1015 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1016 if (num_teams > 0) { 1017 num_groups = num_teams; 1018 // Cap num_groups to EnvMaxTeamsDefault if set. 1019 if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault) 1020 num_groups = Env.MaxTeamsDefault; 1021 } 1022 if (print_kernel_trace & STARTUP_DETAILS) { 1023 DP("threadsPerGroup: %d\n", threadsPerGroup); 1024 DP("num_groups: %d\n", num_groups); 1025 DP("loop_tripcount: %ld\n", loop_tripcount); 1026 } 1027 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1028 threadsPerGroup); 1029 1030 launchVals res; 1031 res.WorkgroupSize = threadsPerGroup; 1032 res.GridSize = threadsPerGroup * num_groups; 1033 return res; 1034 } 1035 1036 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1037 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1038 bool full = true; 1039 while (full) { 1040 full = 1041 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1042 } 1043 return packet_id; 1044 } 1045 1046 int32_t __tgt_rtl_run_target_team_region_locked( 1047 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1048 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1049 int32_t thread_limit, uint64_t loop_tripcount) { 1050 // Set the context we are using 1051 // update thread limit content in gpu memory if un-initialized or specified 1052 // from host 1053 1054 DP("Run target team region thread_limit %d\n", thread_limit); 1055 1056 // All args are references. 1057 std::vector<void *> args(arg_num); 1058 std::vector<void *> ptrs(arg_num); 1059 1060 DP("Arg_num: %d\n", arg_num); 1061 for (int32_t i = 0; i < arg_num; ++i) { 1062 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1063 args[i] = &ptrs[i]; 1064 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1065 } 1066 1067 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1068 1069 std::string kernel_name = std::string(KernelInfo->Name); 1070 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 1071 if (KernelInfoTable[device_id].find(kernel_name) == 1072 KernelInfoTable[device_id].end()) { 1073 DP("Kernel %s not found\n", kernel_name.c_str()); 1074 return OFFLOAD_FAIL; 1075 } 1076 1077 const atl_kernel_info_t KernelInfoEntry = 1078 KernelInfoTable[device_id][kernel_name]; 1079 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 1080 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 1081 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 1082 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 1083 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 1084 1085 assert(arg_num == (int)KernelInfoEntry.explicit_argument_count); 1086 1087 /* 1088 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1089 */ 1090 launchVals LV = 1091 getLaunchVals(DeviceInfo.WarpSize[device_id], DeviceInfo.Env, 1092 KernelInfo->ConstWGSize, KernelInfo->ExecutionMode, 1093 num_teams, // From run_region arg 1094 thread_limit, // From run_region arg 1095 loop_tripcount, // From run_region arg 1096 DeviceInfo.NumTeams[KernelInfo->device_id]); 1097 const int GridSize = LV.GridSize; 1098 const int WorkgroupSize = LV.WorkgroupSize; 1099 1100 if (print_kernel_trace >= LAUNCH) { 1101 int num_groups = GridSize / WorkgroupSize; 1102 // enum modes are SPMD, GENERIC, NONE 0,1,2 1103 // if doing rtl timing, print to stderr, unless stdout requested. 1104 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1105 fprintf(traceToStdout ? stdout : stderr, 1106 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1107 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 1108 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 1109 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1110 arg_num, num_groups, WorkgroupSize, num_teams, thread_limit, 1111 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 1112 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 1113 } 1114 1115 // Run on the device. 1116 { 1117 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id].get(); 1118 if (!queue) { 1119 return OFFLOAD_FAIL; 1120 } 1121 uint64_t packet_id = acquire_available_packet_id(queue); 1122 1123 const uint32_t mask = queue->size - 1; // size is a power of 2 1124 hsa_kernel_dispatch_packet_t *packet = 1125 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1126 (packet_id & mask); 1127 1128 // packet->header is written last 1129 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1130 packet->workgroup_size_x = WorkgroupSize; 1131 packet->workgroup_size_y = 1; 1132 packet->workgroup_size_z = 1; 1133 packet->reserved0 = 0; 1134 packet->grid_size_x = GridSize; 1135 packet->grid_size_y = 1; 1136 packet->grid_size_z = 1; 1137 packet->private_segment_size = KernelInfoEntry.private_segment_size; 1138 packet->group_segment_size = KernelInfoEntry.group_segment_size; 1139 packet->kernel_object = KernelInfoEntry.kernel_object; 1140 packet->kernarg_address = 0; // use the block allocator 1141 packet->reserved2 = 0; // impl writes id_ here 1142 packet->completion_signal = {0}; // may want a pool of signals 1143 1144 KernelArgPool *ArgPool = nullptr; 1145 void *kernarg = nullptr; 1146 { 1147 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1148 if (it != KernelArgPoolMap.end()) { 1149 ArgPool = (it->second).get(); 1150 } 1151 } 1152 if (!ArgPool) { 1153 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 1154 device_id); 1155 } 1156 { 1157 if (ArgPool) { 1158 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1159 kernarg = ArgPool->allocate(arg_num); 1160 } 1161 if (!kernarg) { 1162 DP("Allocate kernarg failed\n"); 1163 return OFFLOAD_FAIL; 1164 } 1165 1166 // Copy explicit arguments 1167 for (int i = 0; i < arg_num; i++) { 1168 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1169 } 1170 1171 // Initialize implicit arguments. TODO: Which of these can be dropped 1172 impl_implicit_args_t *impl_args = 1173 reinterpret_cast<impl_implicit_args_t *>( 1174 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1175 memset(impl_args, 0, 1176 sizeof(impl_implicit_args_t)); // may not be necessary 1177 impl_args->offset_x = 0; 1178 impl_args->offset_y = 0; 1179 impl_args->offset_z = 0; 1180 1181 // assign a hostcall buffer for the selected Q 1182 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 1183 // hostrpc_assign_buffer is not thread safe, and this function is 1184 // under a multiple reader lock, not a writer lock. 1185 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 1186 pthread_mutex_lock(&hostcall_init_lock); 1187 unsigned long buffer = hostrpc_assign_buffer( 1188 DeviceInfo.HSAAgents[device_id], queue, device_id); 1189 pthread_mutex_unlock(&hostcall_init_lock); 1190 if (!buffer) { 1191 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 1192 "error\n"); 1193 return OFFLOAD_FAIL; 1194 } 1195 1196 if (KernelInfoEntry.implicit_argument_count >= 4) { 1197 // Initialise pointer for implicit_argument_count != 0 ABI 1198 // Guess that the right implicit argument is at offset 24 after 1199 // the explicit arguments. In the future, should be able to read 1200 // the offset from msgpack. Clang is not annotating it at present. 1201 uint64_t Offset = 1202 sizeof(void *) * (KernelInfoEntry.explicit_argument_count + 3); 1203 if ((Offset + 8) > (ArgPool->kernarg_segment_size)) { 1204 DP("Bad offset of hostcall, exceeds kernarg segment size\n"); 1205 } else { 1206 memcpy(static_cast<char *>(kernarg) + Offset, &buffer, 8); 1207 } 1208 } 1209 1210 // initialise pointer for implicit_argument_count == 0 ABI 1211 impl_args->hostcall_ptr = buffer; 1212 } 1213 1214 packet->kernarg_address = kernarg; 1215 } 1216 1217 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1218 if (s.handle == 0) { 1219 DP("Failed to get signal instance\n"); 1220 return OFFLOAD_FAIL; 1221 } 1222 packet->completion_signal = s; 1223 hsa_signal_store_relaxed(packet->completion_signal, 1); 1224 1225 // Publish the packet indicating it is ready to be processed 1226 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 1227 core::create_header(), packet->setup); 1228 1229 // Since the packet is already published, its contents must not be 1230 // accessed any more 1231 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1232 1233 while (hsa_signal_wait_scacquire(s, HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1234 HSA_WAIT_STATE_BLOCKED) != 0) 1235 ; 1236 1237 assert(ArgPool); 1238 ArgPool->deallocate(kernarg); 1239 DeviceInfo.FreeSignalPool.push(s); 1240 } 1241 1242 DP("Kernel completed\n"); 1243 return OFFLOAD_SUCCESS; 1244 } 1245 1246 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 1247 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 1248 int32_t r = elf_check_machine(image, amdgcnMachineID); 1249 if (!r) { 1250 DP("Supported machine ID not found\n"); 1251 } 1252 return r; 1253 } 1254 1255 uint32_t elf_e_flags(__tgt_device_image *image) { 1256 char *img_begin = (char *)image->ImageStart; 1257 size_t img_size = (char *)image->ImageEnd - img_begin; 1258 1259 Elf *e = elf_memory(img_begin, img_size); 1260 if (!e) { 1261 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 1262 return 0; 1263 } 1264 1265 Elf64_Ehdr *eh64 = elf64_getehdr(e); 1266 1267 if (!eh64) { 1268 DP("Unable to get machine ID from ELF file!\n"); 1269 elf_end(e); 1270 return 0; 1271 } 1272 1273 uint32_t Flags = eh64->e_flags; 1274 1275 elf_end(e); 1276 DP("ELF Flags: 0x%x\n", Flags); 1277 return Flags; 1278 } 1279 } // namespace 1280 1281 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 1282 return elf_machine_id_is_amdgcn(image); 1283 } 1284 1285 int __tgt_rtl_number_of_devices() { 1286 // If the construction failed, no methods are safe to call 1287 if (DeviceInfo.ConstructionSucceeded) { 1288 return DeviceInfo.NumberOfDevices; 1289 } else { 1290 DP("AMDGPU plugin construction failed. Zero devices available\n"); 1291 return 0; 1292 } 1293 } 1294 1295 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 1296 DP("Init requires flags to %ld\n", RequiresFlags); 1297 DeviceInfo.RequiresFlags = RequiresFlags; 1298 return RequiresFlags; 1299 } 1300 1301 namespace { 1302 template <typename T> bool enforce_upper_bound(T *value, T upper) { 1303 bool changed = *value > upper; 1304 if (changed) { 1305 *value = upper; 1306 } 1307 return changed; 1308 } 1309 } // namespace 1310 1311 int32_t __tgt_rtl_init_device(int device_id) { 1312 hsa_status_t err; 1313 1314 // this is per device id init 1315 DP("Initialize the device id: %d\n", device_id); 1316 1317 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 1318 1319 // Get number of Compute Unit 1320 uint32_t compute_units = 0; 1321 err = hsa_agent_get_info( 1322 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 1323 &compute_units); 1324 if (err != HSA_STATUS_SUCCESS) { 1325 DeviceInfo.ComputeUnits[device_id] = 1; 1326 DP("Error getting compute units : settiing to 1\n"); 1327 } else { 1328 DeviceInfo.ComputeUnits[device_id] = compute_units; 1329 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 1330 } 1331 1332 char GetInfoName[64]; // 64 max size returned by get info 1333 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 1334 (void *)GetInfoName); 1335 if (err) 1336 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 1337 else { 1338 DeviceInfo.GPUName[device_id] = GetInfoName; 1339 } 1340 1341 if (print_kernel_trace & STARTUP_DETAILS) 1342 DP("Device#%-2d CU's: %2d %s\n", device_id, 1343 DeviceInfo.ComputeUnits[device_id], 1344 DeviceInfo.GPUName[device_id].c_str()); 1345 1346 // Query attributes to determine number of threads/block and blocks/grid. 1347 uint16_t workgroup_max_dim[3]; 1348 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 1349 &workgroup_max_dim); 1350 if (err != HSA_STATUS_SUCCESS) { 1351 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 1352 DP("Error getting grid dims: num groups : %d\n", 1353 RTLDeviceInfoTy::DefaultNumTeams); 1354 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 1355 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 1356 DP("Using %d ROCm blocks per grid\n", 1357 DeviceInfo.GroupsPerDevice[device_id]); 1358 } else { 1359 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 1360 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 1361 "at the hard limit\n", 1362 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 1363 } 1364 1365 // Get thread limit 1366 hsa_dim3_t grid_max_dim; 1367 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 1368 if (err == HSA_STATUS_SUCCESS) { 1369 DeviceInfo.ThreadsPerGroup[device_id] = 1370 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 1371 DeviceInfo.GroupsPerDevice[device_id]; 1372 1373 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 1374 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1375 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1376 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 1377 RTLDeviceInfoTy::Max_WG_Size)) { 1378 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1379 } else { 1380 DP("Using ROCm Queried thread limit: %d\n", 1381 DeviceInfo.ThreadsPerGroup[device_id]); 1382 } 1383 } else { 1384 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1385 DP("Error getting max block dimension, use default:%d \n", 1386 RTLDeviceInfoTy::Max_WG_Size); 1387 } 1388 1389 // Get wavefront size 1390 uint32_t wavefront_size = 0; 1391 err = 1392 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 1393 if (err == HSA_STATUS_SUCCESS) { 1394 DP("Queried wavefront size: %d\n", wavefront_size); 1395 DeviceInfo.WarpSize[device_id] = wavefront_size; 1396 } else { 1397 // TODO: Burn the wavefront size into the code object 1398 DP("Warning: Unknown wavefront size, assuming 64\n"); 1399 DeviceInfo.WarpSize[device_id] = 64; 1400 } 1401 1402 // Adjust teams to the env variables 1403 1404 if (DeviceInfo.Env.TeamLimit > 0 && 1405 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 1406 DeviceInfo.Env.TeamLimit))) { 1407 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 1408 DeviceInfo.Env.TeamLimit); 1409 } 1410 1411 // Set default number of teams 1412 if (DeviceInfo.Env.NumTeams > 0) { 1413 DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams; 1414 DP("Default number of teams set according to environment %d\n", 1415 DeviceInfo.Env.NumTeams); 1416 } else { 1417 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 1418 int TeamsPerCU = DefaultTeamsPerCU; 1419 if (TeamsPerCUEnvStr) { 1420 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 1421 } 1422 1423 DeviceInfo.NumTeams[device_id] = 1424 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 1425 DP("Default number of teams = %d * number of compute units %d\n", 1426 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 1427 } 1428 1429 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 1430 DeviceInfo.GroupsPerDevice[device_id])) { 1431 DP("Default number of teams exceeds device limit, capping at %d\n", 1432 DeviceInfo.GroupsPerDevice[device_id]); 1433 } 1434 1435 // Adjust threads to the env variables 1436 if (DeviceInfo.Env.TeamThreadLimit > 0 && 1437 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1438 DeviceInfo.Env.TeamThreadLimit))) { 1439 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 1440 DeviceInfo.Env.TeamThreadLimit); 1441 } 1442 1443 // Set default number of threads 1444 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 1445 DP("Default number of threads set according to library's default %d\n", 1446 RTLDeviceInfoTy::Default_WG_Size); 1447 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1448 DeviceInfo.ThreadsPerGroup[device_id])) { 1449 DP("Default number of threads exceeds device limit, capping at %d\n", 1450 DeviceInfo.ThreadsPerGroup[device_id]); 1451 } 1452 1453 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 1454 device_id, DeviceInfo.GroupsPerDevice[device_id], 1455 DeviceInfo.ThreadsPerGroup[device_id]); 1456 1457 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 1458 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 1459 DeviceInfo.GroupsPerDevice[device_id], 1460 DeviceInfo.GroupsPerDevice[device_id] * 1461 DeviceInfo.ThreadsPerGroup[device_id]); 1462 1463 return OFFLOAD_SUCCESS; 1464 } 1465 1466 namespace { 1467 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 1468 size_t N; 1469 int rc = elf_getshdrnum(elf, &N); 1470 if (rc != 0) { 1471 return nullptr; 1472 } 1473 1474 Elf64_Shdr *result = nullptr; 1475 for (size_t i = 0; i < N; i++) { 1476 Elf_Scn *scn = elf_getscn(elf, i); 1477 if (scn) { 1478 Elf64_Shdr *shdr = elf64_getshdr(scn); 1479 if (shdr) { 1480 if (shdr->sh_type == SHT_HASH) { 1481 if (result == nullptr) { 1482 result = shdr; 1483 } else { 1484 // multiple SHT_HASH sections not handled 1485 return nullptr; 1486 } 1487 } 1488 } 1489 } 1490 } 1491 return result; 1492 } 1493 1494 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1495 const char *symname) { 1496 1497 assert(section_hash); 1498 size_t section_symtab_index = section_hash->sh_link; 1499 Elf64_Shdr *section_symtab = 1500 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1501 size_t section_strtab_index = section_symtab->sh_link; 1502 1503 const Elf64_Sym *symtab = 1504 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1505 1506 const uint32_t *hashtab = 1507 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1508 1509 // Layout: 1510 // nbucket 1511 // nchain 1512 // bucket[nbucket] 1513 // chain[nchain] 1514 uint32_t nbucket = hashtab[0]; 1515 const uint32_t *bucket = &hashtab[2]; 1516 const uint32_t *chain = &hashtab[nbucket + 2]; 1517 1518 const size_t max = strlen(symname) + 1; 1519 const uint32_t hash = elf_hash(symname); 1520 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1521 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1522 if (strncmp(symname, n, max) == 0) { 1523 return &symtab[i]; 1524 } 1525 } 1526 1527 return nullptr; 1528 } 1529 1530 struct symbol_info { 1531 void *addr = nullptr; 1532 uint32_t size = UINT32_MAX; 1533 uint32_t sh_type = SHT_NULL; 1534 }; 1535 1536 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1537 symbol_info *res) { 1538 if (elf_kind(elf) != ELF_K_ELF) { 1539 return 1; 1540 } 1541 1542 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1543 if (!section_hash) { 1544 return 1; 1545 } 1546 1547 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1548 if (!sym) { 1549 return 1; 1550 } 1551 1552 if (sym->st_size > UINT32_MAX) { 1553 return 1; 1554 } 1555 1556 if (sym->st_shndx == SHN_UNDEF) { 1557 return 1; 1558 } 1559 1560 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1561 if (!section) { 1562 return 1; 1563 } 1564 1565 Elf64_Shdr *header = elf64_getshdr(section); 1566 if (!header) { 1567 return 1; 1568 } 1569 1570 res->addr = sym->st_value + base; 1571 res->size = static_cast<uint32_t>(sym->st_size); 1572 res->sh_type = header->sh_type; 1573 return 0; 1574 } 1575 1576 int get_symbol_info_without_loading(char *base, size_t img_size, 1577 const char *symname, symbol_info *res) { 1578 Elf *elf = elf_memory(base, img_size); 1579 if (elf) { 1580 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1581 elf_end(elf); 1582 return rc; 1583 } 1584 return 1; 1585 } 1586 1587 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1588 const char *symname, void **var_addr, 1589 uint32_t *var_size) { 1590 symbol_info si; 1591 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1592 if (rc == 0) { 1593 *var_addr = si.addr; 1594 *var_size = si.size; 1595 return HSA_STATUS_SUCCESS; 1596 } else { 1597 return HSA_STATUS_ERROR; 1598 } 1599 } 1600 1601 template <typename C> 1602 hsa_status_t module_register_from_memory_to_place( 1603 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1604 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1605 void *module_bytes, size_t module_size, int DeviceId, C cb, 1606 std::vector<hsa_executable_t> &HSAExecutables) { 1607 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1608 C *unwrapped = static_cast<C *>(cb_state); 1609 return (*unwrapped)(data, size); 1610 }; 1611 return core::RegisterModuleFromMemory( 1612 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1613 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1614 HSAExecutables); 1615 } 1616 } // namespace 1617 1618 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1619 uint64_t device_State_bytes = 0; 1620 { 1621 // If this is the deviceRTL, get the state variable size 1622 symbol_info size_si; 1623 int rc = get_symbol_info_without_loading( 1624 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1625 1626 if (rc == 0) { 1627 if (size_si.size != sizeof(uint64_t)) { 1628 DP("Found device_State_size variable with wrong size\n"); 1629 return 0; 1630 } 1631 1632 // Read number of bytes directly from the elf 1633 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1634 } 1635 } 1636 return device_State_bytes; 1637 } 1638 1639 static __tgt_target_table * 1640 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1641 1642 static __tgt_target_table * 1643 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1644 1645 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1646 __tgt_device_image *image) { 1647 DeviceInfo.load_run_lock.lock(); 1648 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1649 DeviceInfo.load_run_lock.unlock(); 1650 return res; 1651 } 1652 1653 struct device_environment { 1654 // initialise an DeviceEnvironmentTy in the deviceRTL 1655 // patches around differences in the deviceRTL between trunk, aomp, 1656 // rocmcc. Over time these differences will tend to zero and this class 1657 // simplified. 1658 // Symbol may be in .data or .bss, and may be missing fields, todo: 1659 // review aomp/trunk/rocm and simplify the following 1660 1661 // The symbol may also have been deadstripped because the device side 1662 // accessors were unused. 1663 1664 // If the symbol is in .data (aomp, rocm) it can be written directly. 1665 // If it is in .bss, we must wait for it to be allocated space on the 1666 // gpu (trunk) and initialize after loading. 1667 const char *sym() { return "omptarget_device_environment"; } 1668 1669 DeviceEnvironmentTy host_device_env; 1670 symbol_info si; 1671 bool valid = false; 1672 1673 __tgt_device_image *image; 1674 const size_t img_size; 1675 1676 device_environment(int device_id, int number_devices, 1677 __tgt_device_image *image, const size_t img_size) 1678 : image(image), img_size(img_size) { 1679 1680 host_device_env.NumDevices = number_devices; 1681 host_device_env.DeviceNum = device_id; 1682 host_device_env.DebugKind = 0; 1683 host_device_env.DynamicMemSize = 0; 1684 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1685 host_device_env.DebugKind = std::stoi(envStr); 1686 } 1687 1688 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1689 img_size, sym(), &si); 1690 if (rc != 0) { 1691 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1692 return; 1693 } 1694 1695 if (si.size > sizeof(host_device_env)) { 1696 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1697 sizeof(host_device_env)); 1698 return; 1699 } 1700 1701 valid = true; 1702 } 1703 1704 bool in_image() { return si.sh_type != SHT_NOBITS; } 1705 1706 hsa_status_t before_loading(void *data, size_t size) { 1707 if (valid) { 1708 if (in_image()) { 1709 DP("Setting global device environment before load (%u bytes)\n", 1710 si.size); 1711 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1712 void *pos = (char *)data + offset; 1713 memcpy(pos, &host_device_env, si.size); 1714 } 1715 } 1716 return HSA_STATUS_SUCCESS; 1717 } 1718 1719 hsa_status_t after_loading() { 1720 if (valid) { 1721 if (!in_image()) { 1722 DP("Setting global device environment after load (%u bytes)\n", 1723 si.size); 1724 int device_id = host_device_env.DeviceNum; 1725 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1726 void *state_ptr; 1727 uint32_t state_ptr_size; 1728 hsa_status_t err = interop_hsa_get_symbol_info( 1729 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1730 if (err != HSA_STATUS_SUCCESS) { 1731 DP("failed to find %s in loaded image\n", sym()); 1732 return err; 1733 } 1734 1735 if (state_ptr_size != si.size) { 1736 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1737 si.size); 1738 return HSA_STATUS_ERROR; 1739 } 1740 1741 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1742 state_ptr_size, device_id); 1743 } 1744 } 1745 return HSA_STATUS_SUCCESS; 1746 } 1747 }; 1748 1749 static hsa_status_t impl_calloc(void **ret_ptr, size_t size, int DeviceId) { 1750 uint64_t rounded = 4 * ((size + 3) / 4); 1751 void *ptr; 1752 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(DeviceId); 1753 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, rounded, 0, &ptr); 1754 if (err != HSA_STATUS_SUCCESS) { 1755 return err; 1756 } 1757 1758 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1759 if (rc != HSA_STATUS_SUCCESS) { 1760 DP("zero fill device_state failed with %u\n", rc); 1761 core::Runtime::Memfree(ptr); 1762 return HSA_STATUS_ERROR; 1763 } 1764 1765 *ret_ptr = ptr; 1766 return HSA_STATUS_SUCCESS; 1767 } 1768 1769 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1770 symbol_info si; 1771 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1772 return (rc == 0) && (si.addr != nullptr); 1773 } 1774 1775 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1776 __tgt_device_image *image) { 1777 // This function loads the device image onto gpu[device_id] and does other 1778 // per-image initialization work. Specifically: 1779 // 1780 // - Initialize an DeviceEnvironmentTy instance embedded in the 1781 // image at the symbol "omptarget_device_environment" 1782 // Fields DebugKind, DeviceNum, NumDevices. Used by the deviceRTL. 1783 // 1784 // - Allocate a large array per-gpu (could be moved to init_device) 1785 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1786 // - Allocate at least that many bytes of gpu memory 1787 // - Zero initialize it 1788 // - Write the pointer to the symbol omptarget_nvptx_device_State 1789 // 1790 // - Pulls some per-kernel information together from various sources and 1791 // records it in the KernelsList for quicker access later 1792 // 1793 // The initialization can be done before or after loading the image onto the 1794 // gpu. This function presently does a mixture. Using the hsa api to get/set 1795 // the information is simpler to implement, in exchange for more complicated 1796 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1797 // back from the gpu vs a hashtable lookup on the host. 1798 1799 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1800 1801 DeviceInfo.clearOffloadEntriesTable(device_id); 1802 1803 // We do not need to set the ELF version because the caller of this function 1804 // had to do that to decide the right runtime to use 1805 1806 if (!elf_machine_id_is_amdgcn(image)) { 1807 return NULL; 1808 } 1809 1810 { 1811 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1812 img_size); 1813 1814 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1815 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1816 hsa_status_t err = module_register_from_memory_to_place( 1817 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1818 [&](void *data, size_t size) { 1819 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1820 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1821 __ATOMIC_RELEASE); 1822 } 1823 return env.before_loading(data, size); 1824 }, 1825 DeviceInfo.HSAExecutables); 1826 1827 check("Module registering", err); 1828 if (err != HSA_STATUS_SUCCESS) { 1829 const char *DeviceName = DeviceInfo.GPUName[device_id].c_str(); 1830 const char *ElfName = get_elf_mach_gfx_name(elf_e_flags(image)); 1831 1832 if (strcmp(DeviceName, ElfName) != 0) { 1833 DP("Possible gpu arch mismatch: device:%s, image:%s please check" 1834 " compiler flag: -march=<gpu>\n", 1835 DeviceName, ElfName); 1836 } else { 1837 DP("Error loading image onto GPU: %s\n", get_error_string(err)); 1838 } 1839 1840 return NULL; 1841 } 1842 1843 err = env.after_loading(); 1844 if (err != HSA_STATUS_SUCCESS) { 1845 return NULL; 1846 } 1847 } 1848 1849 DP("AMDGPU module successfully loaded!\n"); 1850 1851 { 1852 // the device_State array is either large value in bss or a void* that 1853 // needs to be assigned to a pointer to an array of size device_state_bytes 1854 // If absent, it has been deadstripped and needs no setup. 1855 1856 void *state_ptr; 1857 uint32_t state_ptr_size; 1858 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1859 hsa_status_t err = interop_hsa_get_symbol_info( 1860 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1861 &state_ptr_size); 1862 1863 if (err != HSA_STATUS_SUCCESS) { 1864 DP("No device_state symbol found, skipping initialization\n"); 1865 } else { 1866 if (state_ptr_size < sizeof(void *)) { 1867 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1868 sizeof(void *)); 1869 return NULL; 1870 } 1871 1872 // if it's larger than a void*, assume it's a bss array and no further 1873 // initialization is required. Only try to set up a pointer for 1874 // sizeof(void*) 1875 if (state_ptr_size == sizeof(void *)) { 1876 uint64_t device_State_bytes = 1877 get_device_State_bytes((char *)image->ImageStart, img_size); 1878 if (device_State_bytes == 0) { 1879 DP("Can't initialize device_State, missing size information\n"); 1880 return NULL; 1881 } 1882 1883 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1884 if (dss.first.get() == nullptr) { 1885 assert(dss.second == 0); 1886 void *ptr = NULL; 1887 hsa_status_t err = impl_calloc(&ptr, device_State_bytes, device_id); 1888 if (err != HSA_STATUS_SUCCESS) { 1889 DP("Failed to allocate device_state array\n"); 1890 return NULL; 1891 } 1892 dss = { 1893 std::unique_ptr<void, RTLDeviceInfoTy::implFreePtrDeletor>{ptr}, 1894 device_State_bytes, 1895 }; 1896 } 1897 1898 void *ptr = dss.first.get(); 1899 if (device_State_bytes != dss.second) { 1900 DP("Inconsistent sizes of device_State unsupported\n"); 1901 return NULL; 1902 } 1903 1904 // write ptr to device memory so it can be used by later kernels 1905 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1906 sizeof(void *), device_id); 1907 if (err != HSA_STATUS_SUCCESS) { 1908 DP("memcpy install of state_ptr failed\n"); 1909 return NULL; 1910 } 1911 } 1912 } 1913 } 1914 1915 // Here, we take advantage of the data that is appended after img_end to get 1916 // the symbols' name we need to load. This data consist of the host entries 1917 // begin and end as well as the target name (see the offloading linker script 1918 // creation in clang compiler). 1919 1920 // Find the symbols in the module by name. The name can be obtain by 1921 // concatenating the host entry name with the target name 1922 1923 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1924 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1925 1926 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1927 1928 if (!e->addr) { 1929 // The host should have always something in the address to 1930 // uniquely identify the target region. 1931 DP("Analyzing host entry '<null>' (size = %lld)...\n", 1932 (unsigned long long)e->size); 1933 return NULL; 1934 } 1935 1936 if (e->size) { 1937 __tgt_offload_entry entry = *e; 1938 1939 void *varptr; 1940 uint32_t varsize; 1941 1942 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1943 hsa_status_t err = interop_hsa_get_symbol_info( 1944 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1945 1946 if (err != HSA_STATUS_SUCCESS) { 1947 // Inform the user what symbol prevented offloading 1948 DP("Loading global '%s' (Failed)\n", e->name); 1949 return NULL; 1950 } 1951 1952 if (varsize != e->size) { 1953 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1954 varsize, e->size); 1955 return NULL; 1956 } 1957 1958 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1959 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1960 entry.addr = (void *)varptr; 1961 1962 DeviceInfo.addOffloadEntry(device_id, entry); 1963 1964 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1965 e->flags & OMP_DECLARE_TARGET_LINK) { 1966 // If unified memory is present any target link variables 1967 // can access host addresses directly. There is no longer a 1968 // need for device copies. 1969 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1970 sizeof(void *), device_id); 1971 if (err != HSA_STATUS_SUCCESS) 1972 DP("Error when copying USM\n"); 1973 DP("Copy linked variable host address (" DPxMOD ")" 1974 "to device address (" DPxMOD ")\n", 1975 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1976 } 1977 1978 continue; 1979 } 1980 1981 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1982 1983 // errors in kernarg_segment_size previously treated as = 0 (or as undef) 1984 uint32_t kernarg_segment_size = 0; 1985 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1986 hsa_status_t err = HSA_STATUS_SUCCESS; 1987 if (!e->name) { 1988 err = HSA_STATUS_ERROR; 1989 } else { 1990 std::string kernelStr = std::string(e->name); 1991 auto It = KernelInfoMap.find(kernelStr); 1992 if (It != KernelInfoMap.end()) { 1993 atl_kernel_info_t info = It->second; 1994 kernarg_segment_size = info.kernel_segment_size; 1995 } else { 1996 err = HSA_STATUS_ERROR; 1997 } 1998 } 1999 2000 // default value GENERIC (in case symbol is missing from cubin file) 2001 llvm::omp::OMPTgtExecModeFlags ExecModeVal = 2002 llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC; 2003 2004 // get flat group size if present, else Default_WG_Size 2005 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 2006 2007 // get Kernel Descriptor if present. 2008 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 2009 struct KernDescValType { 2010 uint16_t Version; 2011 uint16_t TSize; 2012 uint16_t WG_Size; 2013 }; 2014 struct KernDescValType KernDescVal; 2015 std::string KernDescNameStr(e->name); 2016 KernDescNameStr += "_kern_desc"; 2017 const char *KernDescName = KernDescNameStr.c_str(); 2018 2019 void *KernDescPtr; 2020 uint32_t KernDescSize; 2021 void *CallStackAddr = nullptr; 2022 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 2023 KernDescName, &KernDescPtr, &KernDescSize); 2024 2025 if (err == HSA_STATUS_SUCCESS) { 2026 if ((size_t)KernDescSize != sizeof(KernDescVal)) 2027 DP("Loading global computation properties '%s' - size mismatch (%u != " 2028 "%lu)\n", 2029 KernDescName, KernDescSize, sizeof(KernDescVal)); 2030 2031 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 2032 2033 // Check structure size against recorded size. 2034 if ((size_t)KernDescSize != KernDescVal.TSize) 2035 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 2036 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 2037 2038 DP("After loading global for %s KernDesc \n", KernDescName); 2039 DP("KernDesc: Version: %d\n", KernDescVal.Version); 2040 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 2041 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 2042 2043 if (KernDescVal.WG_Size == 0) { 2044 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 2045 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 2046 } 2047 WGSizeVal = KernDescVal.WG_Size; 2048 DP("WGSizeVal %d\n", WGSizeVal); 2049 check("Loading KernDesc computation property", err); 2050 } else { 2051 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 2052 2053 // Flat group size 2054 std::string WGSizeNameStr(e->name); 2055 WGSizeNameStr += "_wg_size"; 2056 const char *WGSizeName = WGSizeNameStr.c_str(); 2057 2058 void *WGSizePtr; 2059 uint32_t WGSize; 2060 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 2061 WGSizeName, &WGSizePtr, &WGSize); 2062 2063 if (err == HSA_STATUS_SUCCESS) { 2064 if ((size_t)WGSize != sizeof(int16_t)) { 2065 DP("Loading global computation properties '%s' - size mismatch (%u " 2066 "!= " 2067 "%lu)\n", 2068 WGSizeName, WGSize, sizeof(int16_t)); 2069 return NULL; 2070 } 2071 2072 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 2073 2074 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 2075 2076 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 2077 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 2078 DP("Error wrong WGSize value specified in HSA code object file: " 2079 "%d\n", 2080 WGSizeVal); 2081 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 2082 } 2083 } else { 2084 DP("Warning: Loading WGSize '%s' - symbol not found, " 2085 "using default value %d\n", 2086 WGSizeName, WGSizeVal); 2087 } 2088 2089 check("Loading WGSize computation property", err); 2090 } 2091 2092 // Read execution mode from global in binary 2093 std::string ExecModeNameStr(e->name); 2094 ExecModeNameStr += "_exec_mode"; 2095 const char *ExecModeName = ExecModeNameStr.c_str(); 2096 2097 void *ExecModePtr; 2098 uint32_t varsize; 2099 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 2100 ExecModeName, &ExecModePtr, &varsize); 2101 2102 if (err == HSA_STATUS_SUCCESS) { 2103 if ((size_t)varsize != sizeof(llvm::omp::OMPTgtExecModeFlags)) { 2104 DP("Loading global computation properties '%s' - size mismatch(%u != " 2105 "%lu)\n", 2106 ExecModeName, varsize, sizeof(llvm::omp::OMPTgtExecModeFlags)); 2107 return NULL; 2108 } 2109 2110 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 2111 2112 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 2113 ExecModeVal); 2114 2115 if (ExecModeVal < 0 || 2116 ExecModeVal > llvm::omp::OMP_TGT_EXEC_MODE_GENERIC_SPMD) { 2117 DP("Error wrong exec_mode value specified in HSA code object file: " 2118 "%d\n", 2119 ExecModeVal); 2120 return NULL; 2121 } 2122 } else { 2123 DP("Loading global exec_mode '%s' - symbol missing, using default " 2124 "value " 2125 "GENERIC (1)\n", 2126 ExecModeName); 2127 } 2128 check("Loading computation property", err); 2129 2130 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 2131 CallStackAddr, e->name, kernarg_segment_size, 2132 DeviceInfo.KernArgPool)); 2133 __tgt_offload_entry entry = *e; 2134 entry.addr = (void *)&KernelsList.back(); 2135 DeviceInfo.addOffloadEntry(device_id, entry); 2136 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 2137 } 2138 2139 return DeviceInfo.getOffloadEntriesTable(device_id); 2140 } 2141 2142 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 2143 void *ptr = NULL; 2144 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2145 2146 if (kind != TARGET_ALLOC_DEFAULT) { 2147 REPORT("Invalid target data allocation kind or requested allocator not " 2148 "implemented yet\n"); 2149 return NULL; 2150 } 2151 2152 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(device_id); 2153 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, size, 0, &ptr); 2154 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 2155 (long long unsigned)(Elf64_Addr)ptr); 2156 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 2157 return ptr; 2158 } 2159 2160 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 2161 int64_t size) { 2162 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2163 __tgt_async_info AsyncInfo; 2164 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 2165 if (rc != OFFLOAD_SUCCESS) 2166 return OFFLOAD_FAIL; 2167 2168 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 2169 } 2170 2171 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 2172 int64_t size, __tgt_async_info *AsyncInfo) { 2173 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2174 if (AsyncInfo) { 2175 initAsyncInfo(AsyncInfo); 2176 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 2177 } else { 2178 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 2179 } 2180 } 2181 2182 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 2183 int64_t size) { 2184 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2185 __tgt_async_info AsyncInfo; 2186 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 2187 if (rc != OFFLOAD_SUCCESS) 2188 return OFFLOAD_FAIL; 2189 2190 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 2191 } 2192 2193 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 2194 void *tgt_ptr, int64_t size, 2195 __tgt_async_info *AsyncInfo) { 2196 assert(AsyncInfo && "AsyncInfo is nullptr"); 2197 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2198 initAsyncInfo(AsyncInfo); 2199 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 2200 } 2201 2202 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 2203 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 2204 hsa_status_t err; 2205 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 2206 err = core::Runtime::Memfree(tgt_ptr); 2207 if (err != HSA_STATUS_SUCCESS) { 2208 DP("Error when freeing CUDA memory\n"); 2209 return OFFLOAD_FAIL; 2210 } 2211 return OFFLOAD_SUCCESS; 2212 } 2213 2214 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 2215 void **tgt_args, 2216 ptrdiff_t *tgt_offsets, 2217 int32_t arg_num, int32_t num_teams, 2218 int32_t thread_limit, 2219 uint64_t loop_tripcount) { 2220 2221 DeviceInfo.load_run_lock.lock_shared(); 2222 int32_t res = __tgt_rtl_run_target_team_region_locked( 2223 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 2224 thread_limit, loop_tripcount); 2225 2226 DeviceInfo.load_run_lock.unlock_shared(); 2227 return res; 2228 } 2229 2230 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2231 void **tgt_args, ptrdiff_t *tgt_offsets, 2232 int32_t arg_num) { 2233 // use one team and one thread 2234 // fix thread num 2235 int32_t team_num = 1; 2236 int32_t thread_limit = 0; // use default 2237 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2238 tgt_offsets, arg_num, team_num, 2239 thread_limit, 0); 2240 } 2241 2242 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2243 void *tgt_entry_ptr, void **tgt_args, 2244 ptrdiff_t *tgt_offsets, 2245 int32_t arg_num, 2246 __tgt_async_info *AsyncInfo) { 2247 assert(AsyncInfo && "AsyncInfo is nullptr"); 2248 initAsyncInfo(AsyncInfo); 2249 2250 // use one team and one thread 2251 // fix thread num 2252 int32_t team_num = 1; 2253 int32_t thread_limit = 0; // use default 2254 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2255 tgt_offsets, arg_num, team_num, 2256 thread_limit, 0); 2257 } 2258 2259 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2260 assert(AsyncInfo && "AsyncInfo is nullptr"); 2261 2262 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2263 // is not ensured by devices.cpp for amdgcn 2264 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2265 if (AsyncInfo->Queue) { 2266 finiAsyncInfo(AsyncInfo); 2267 } 2268 return OFFLOAD_SUCCESS; 2269 } 2270 2271 namespace core { 2272 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 2273 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 2274 &DeviceInfo.HSAAgents[0], NULL, ptr); 2275 } 2276 2277 } // namespace core 2278