1 //===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <functional> 19 #include <libelf.h> 20 #include <list> 21 #include <memory> 22 #include <mutex> 23 #include <shared_mutex> 24 #include <unordered_map> 25 #include <vector> 26 27 #include "interop_hsa.h" 28 #include "impl_runtime.h" 29 30 #include "internal.h" 31 #include "rt.h" 32 33 #include "get_elf_mach_gfx_name.h" 34 #include "omptargetplugin.h" 35 #include "print_tracing.h" 36 37 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 38 39 40 // hostrpc interface, FIXME: consider moving to its own include these are 41 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 42 // linked as --whole-archive to override the weak symbols that are used to 43 // implement a fallback for toolchains that do not yet have a hostrpc library. 44 extern "C" { 45 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 46 uint32_t device_id); 47 hsa_status_t hostrpc_init(); 48 hsa_status_t hostrpc_terminate(); 49 50 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 51 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 52 return HSA_STATUS_SUCCESS; 53 } 54 __attribute__((weak)) unsigned long 55 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 56 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 57 "missing\n", 58 device_id); 59 return 0; 60 } 61 } 62 63 // Heuristic parameters used for kernel launch 64 // Number of teams per CU to allow scheduling flexibility 65 static const unsigned DefaultTeamsPerCU = 4; 66 67 int print_kernel_trace; 68 69 #ifdef OMPTARGET_DEBUG 70 #define check(msg, status) \ 71 if (status != HSA_STATUS_SUCCESS) { \ 72 DP(#msg " failed\n"); \ 73 } else { \ 74 DP(#msg " succeeded\n"); \ 75 } 76 #else 77 #define check(msg, status) \ 78 {} 79 #endif 80 81 #include "elf_common.h" 82 83 namespace hsa { 84 template <typename C> hsa_status_t iterate_agents(C cb) { 85 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 86 C *unwrapped = static_cast<C *>(data); 87 return (*unwrapped)(agent); 88 }; 89 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 90 } 91 92 template <typename C> 93 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { 94 auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { 95 C *unwrapped = static_cast<C *>(data); 96 return (*unwrapped)(MemoryPool); 97 }; 98 99 return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb)); 100 } 101 102 } // namespace hsa 103 104 /// Keep entries table per device 105 struct FuncOrGblEntryTy { 106 __tgt_target_table Table; 107 std::vector<__tgt_offload_entry> Entries; 108 }; 109 110 enum ExecutionModeType { 111 SPMD, // constructors, destructors, 112 // combined constructs (`teams distribute parallel for [simd]`) 113 GENERIC, // everything else 114 SPMD_GENERIC, // Generic kernel with SPMD execution 115 NONE 116 }; 117 118 struct KernelArgPool { 119 private: 120 static pthread_mutex_t mutex; 121 122 public: 123 uint32_t kernarg_segment_size; 124 void *kernarg_region = nullptr; 125 std::queue<int> free_kernarg_segments; 126 127 uint32_t kernarg_size_including_implicit() { 128 return kernarg_segment_size + sizeof(impl_implicit_args_t); 129 } 130 131 ~KernelArgPool() { 132 if (kernarg_region) { 133 auto r = hsa_amd_memory_pool_free(kernarg_region); 134 if (r != HSA_STATUS_SUCCESS) { 135 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 136 } 137 } 138 } 139 140 // Can't really copy or move a mutex 141 KernelArgPool() = default; 142 KernelArgPool(const KernelArgPool &) = delete; 143 KernelArgPool(KernelArgPool &&) = delete; 144 145 KernelArgPool(uint32_t kernarg_segment_size, 146 hsa_amd_memory_pool_t &memory_pool) 147 : kernarg_segment_size(kernarg_segment_size) { 148 149 // impl uses one pool per kernel for all gpus, with a fixed upper size 150 // preserving that exact scheme here, including the queue<int> 151 152 hsa_status_t err = hsa_amd_memory_pool_allocate( 153 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 154 &kernarg_region); 155 156 if (err != HSA_STATUS_SUCCESS) { 157 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 158 kernarg_region = nullptr; // paranoid 159 return; 160 } 161 162 err = core::allow_access_to_all_gpu_agents(kernarg_region); 163 if (err != HSA_STATUS_SUCCESS) { 164 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 165 get_error_string(err)); 166 auto r = hsa_amd_memory_pool_free(kernarg_region); 167 if (r != HSA_STATUS_SUCCESS) { 168 // if free failed, can't do anything more to resolve it 169 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 170 } 171 kernarg_region = nullptr; 172 return; 173 } 174 175 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 176 free_kernarg_segments.push(i); 177 } 178 } 179 180 void *allocate(uint64_t arg_num) { 181 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 182 lock l(&mutex); 183 void *res = nullptr; 184 if (!free_kernarg_segments.empty()) { 185 186 int free_idx = free_kernarg_segments.front(); 187 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 188 (free_idx * kernarg_size_including_implicit())); 189 assert(free_idx == pointer_to_index(res)); 190 free_kernarg_segments.pop(); 191 } 192 return res; 193 } 194 195 void deallocate(void *ptr) { 196 lock l(&mutex); 197 int idx = pointer_to_index(ptr); 198 free_kernarg_segments.push(idx); 199 } 200 201 private: 202 int pointer_to_index(void *ptr) { 203 ptrdiff_t bytes = 204 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 205 assert(bytes >= 0); 206 assert(bytes % kernarg_size_including_implicit() == 0); 207 return bytes / kernarg_size_including_implicit(); 208 } 209 struct lock { 210 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 211 ~lock() { pthread_mutex_unlock(m); } 212 pthread_mutex_t *m; 213 }; 214 }; 215 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 216 217 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 218 KernelArgPoolMap; 219 220 /// Use a single entity to encode a kernel and a set of flags 221 struct KernelTy { 222 // execution mode of kernel 223 // 0 - SPMD mode (without master warp) 224 // 1 - Generic mode (with master warp) 225 // 2 - SPMD mode execution with Generic mode semantics. 226 int8_t ExecutionMode; 227 int16_t ConstWGSize; 228 int32_t device_id; 229 void *CallStackAddr = nullptr; 230 const char *Name; 231 232 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 233 void *_CallStackAddr, const char *_Name, 234 uint32_t _kernarg_segment_size, 235 hsa_amd_memory_pool_t &KernArgMemoryPool) 236 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 237 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 238 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 239 240 std::string N(_Name); 241 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 242 KernelArgPoolMap.insert( 243 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 244 _kernarg_segment_size, KernArgMemoryPool)))); 245 } 246 } 247 }; 248 249 /// List that contains all the kernels. 250 /// FIXME: we may need this to be per device and per library. 251 std::list<KernelTy> KernelsList; 252 253 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 254 255 hsa_status_t err = 256 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 257 hsa_device_type_t device_type; 258 // get_info fails iff HSA runtime not yet initialized 259 hsa_status_t err = 260 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 261 262 if (err != HSA_STATUS_SUCCESS) { 263 if (print_kernel_trace > 0) 264 DP("rtl.cpp: err %s\n", get_error_string(err)); 265 266 return err; 267 } 268 269 CB(device_type, agent); 270 return HSA_STATUS_SUCCESS; 271 }); 272 273 // iterate_agents fails iff HSA runtime not yet initialized 274 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 275 DP("rtl.cpp: err %s\n", get_error_string(err)); 276 } 277 278 return err; 279 } 280 281 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 282 void *data) { 283 if (status != HSA_STATUS_SUCCESS) { 284 const char *status_string; 285 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 286 status_string = "unavailable"; 287 } 288 DP("[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, __LINE__, source, 289 status, status_string); 290 abort(); 291 } 292 } 293 294 namespace core { 295 namespace { 296 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 297 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 298 } 299 300 uint16_t create_header() { 301 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 302 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 303 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 304 return header; 305 } 306 307 hsa_status_t isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { 308 bool AllocAllowed = false; 309 hsa_status_t Err = hsa_amd_memory_pool_get_info( 310 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 311 &AllocAllowed); 312 if (Err != HSA_STATUS_SUCCESS) { 313 DP("Alloc allowed in memory pool check failed: %s\n", 314 get_error_string(Err)); 315 return Err; 316 } 317 318 size_t Size = 0; 319 Err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, 320 &Size); 321 if (Err != HSA_STATUS_SUCCESS) { 322 DP("Get memory pool size failed: %s\n", get_error_string(Err)); 323 return Err; 324 } 325 326 return (AllocAllowed && Size > 0) ? HSA_STATUS_SUCCESS : HSA_STATUS_ERROR; 327 } 328 329 hsa_status_t addKernArgPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 330 std::vector<hsa_amd_memory_pool_t> *Result = 331 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 332 333 hsa_status_t err; 334 if ((err = isValidMemoryPool(MemoryPool)) != HSA_STATUS_SUCCESS) { 335 return err; 336 } 337 338 uint32_t GlobalFlags = 0; 339 err = hsa_amd_memory_pool_get_info( 340 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 341 if (err != HSA_STATUS_SUCCESS) { 342 DP("Get memory pool info failed: %s\n", get_error_string(err)); 343 return err; 344 } 345 346 if ((GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) && 347 (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT)) { 348 Result->push_back(MemoryPool); 349 } 350 351 return HSA_STATUS_SUCCESS; 352 } 353 354 template <typename AccumulatorFunc> 355 hsa_status_t collectMemoryPools(const std::vector<hsa_agent_t> &Agents, 356 AccumulatorFunc Func) { 357 for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { 358 hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( 359 Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { 360 hsa_status_t Err; 361 if ((Err = isValidMemoryPool(MemoryPool)) != HSA_STATUS_SUCCESS) { 362 DP("Skipping memory pool: %s\n", get_error_string(Err)); 363 } else 364 Func(MemoryPool, DeviceId); 365 return HSA_STATUS_SUCCESS; 366 }); 367 368 if (Err != HSA_STATUS_SUCCESS) { 369 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 370 "Iterate all memory pools", get_error_string(Err)); 371 return Err; 372 } 373 } 374 375 return HSA_STATUS_SUCCESS; 376 } 377 378 std::pair<hsa_status_t, hsa_amd_memory_pool_t> 379 FindKernargPool(const std::vector<hsa_agent_t> &HSAAgents) { 380 std::vector<hsa_amd_memory_pool_t> KernArgPools; 381 for (const auto &Agent : HSAAgents) { 382 hsa_status_t err = HSA_STATUS_SUCCESS; 383 err = hsa_amd_agent_iterate_memory_pools( 384 Agent, addKernArgPool, static_cast<void *>(&KernArgPools)); 385 if (err != HSA_STATUS_SUCCESS) { 386 DP("addKernArgPool returned %s, continuing\n", get_error_string(err)); 387 } 388 } 389 390 if (KernArgPools.empty()) { 391 DP("Unable to find any valid kernarg pool\n"); 392 return {HSA_STATUS_ERROR, hsa_amd_memory_pool_t{}}; 393 } 394 395 return {HSA_STATUS_SUCCESS, KernArgPools[0]}; 396 } 397 398 } // namespace 399 } // namespace core 400 401 struct EnvironmentVariables { 402 int NumTeams; 403 int TeamLimit; 404 int TeamThreadLimit; 405 int MaxTeamsDefault; 406 }; 407 408 template <uint32_t wavesize> 409 static constexpr const llvm::omp::GV &getGridValue() { 410 return llvm::omp::getAMDGPUGridValues<wavesize>(); 411 } 412 413 struct HSALifetime { 414 // Wrapper around HSA used to ensure it is constructed before other types 415 // and destructed after, which means said other types can use raii for 416 // cleanup without risking running outside of the lifetime of HSA 417 const hsa_status_t S; 418 419 bool success() { return S == HSA_STATUS_SUCCESS; } 420 HSALifetime() : S(hsa_init()) {} 421 422 ~HSALifetime() { 423 if (S == HSA_STATUS_SUCCESS) { 424 hsa_status_t Err = hsa_shut_down(); 425 if (Err != HSA_STATUS_SUCCESS) { 426 // Can't call into HSA to get a string from the integer 427 DP("Shutting down HSA failed: %d\n", Err); 428 } 429 } 430 } 431 }; 432 433 /// Class containing all the device information 434 class RTLDeviceInfoTy { 435 HSALifetime HSA; // First field => constructed first and destructed last 436 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 437 438 struct QueueDeleter { 439 void operator()(hsa_queue_t *Q) { 440 if (Q) { 441 hsa_status_t Err = hsa_queue_destroy(Q); 442 if (Err != HSA_STATUS_SUCCESS) { 443 DP("Error destroying hsa queue: %s\n", get_error_string(Err)); 444 } 445 } 446 } 447 }; 448 449 public: 450 bool ConstructionSucceeded = false; 451 452 // load binary populates symbol tables and mutates various global state 453 // run uses those symbol tables 454 std::shared_timed_mutex load_run_lock; 455 456 int NumberOfDevices = 0; 457 458 // GPU devices 459 std::vector<hsa_agent_t> HSAAgents; 460 std::vector<std::unique_ptr<hsa_queue_t, QueueDeleter>> 461 HSAQueues; // one per gpu 462 463 // CPUs 464 std::vector<hsa_agent_t> CPUAgents; 465 466 // Device properties 467 std::vector<int> ComputeUnits; 468 std::vector<int> GroupsPerDevice; 469 std::vector<int> ThreadsPerGroup; 470 std::vector<int> WarpSize; 471 std::vector<std::string> GPUName; 472 473 // OpenMP properties 474 std::vector<int> NumTeams; 475 std::vector<int> NumThreads; 476 477 // OpenMP Environment properties 478 EnvironmentVariables Env; 479 480 // OpenMP Requires Flags 481 int64_t RequiresFlags; 482 483 // Resource pools 484 SignalPoolT FreeSignalPool; 485 486 bool hostcall_required = false; 487 488 std::vector<hsa_executable_t> HSAExecutables; 489 490 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 491 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 492 493 hsa_amd_memory_pool_t KernArgPool; 494 495 // fine grained memory pool for host allocations 496 hsa_amd_memory_pool_t HostFineGrainedMemoryPool; 497 498 // fine and coarse-grained memory pools per offloading device 499 std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools; 500 std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools; 501 502 struct implFreePtrDeletor { 503 void operator()(void *p) { 504 core::Runtime::Memfree(p); // ignore failure to free 505 } 506 }; 507 508 // device_State shared across loaded binaries, error if inconsistent size 509 std::vector<std::pair<std::unique_ptr<void, implFreePtrDeletor>, uint64_t>> 510 deviceStateStore; 511 512 static const unsigned HardTeamLimit = 513 (1 << 16) - 1; // 64K needed to fit in uint16 514 static const int DefaultNumTeams = 128; 515 516 // These need to be per-device since different devices can have different 517 // wave sizes, but are currently the same number for each so that refactor 518 // can be postponed. 519 static_assert(getGridValue<32>().GV_Max_Teams == 520 getGridValue<64>().GV_Max_Teams, 521 ""); 522 static const int Max_Teams = getGridValue<64>().GV_Max_Teams; 523 524 static_assert(getGridValue<32>().GV_Max_WG_Size == 525 getGridValue<64>().GV_Max_WG_Size, 526 ""); 527 static const int Max_WG_Size = getGridValue<64>().GV_Max_WG_Size; 528 529 static_assert(getGridValue<32>().GV_Default_WG_Size == 530 getGridValue<64>().GV_Default_WG_Size, 531 ""); 532 static const int Default_WG_Size = getGridValue<64>().GV_Default_WG_Size; 533 534 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 535 size_t size, hsa_agent_t, 536 hsa_amd_memory_pool_t); 537 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 538 MemcpyFunc Func, int32_t deviceId) { 539 hsa_agent_t agent = HSAAgents[deviceId]; 540 hsa_signal_t s = FreeSignalPool.pop(); 541 if (s.handle == 0) { 542 return HSA_STATUS_ERROR; 543 } 544 hsa_status_t r = Func(s, dest, src, size, agent, HostFineGrainedMemoryPool); 545 FreeSignalPool.push(s); 546 return r; 547 } 548 549 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 550 size_t size, int32_t deviceId) { 551 return freesignalpool_memcpy(dest, src, size, impl_memcpy_d2h, deviceId); 552 } 553 554 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 555 size_t size, int32_t deviceId) { 556 return freesignalpool_memcpy(dest, src, size, impl_memcpy_h2d, deviceId); 557 } 558 559 // Record entry point associated with device 560 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 561 assert(device_id < (int32_t)FuncGblEntries.size() && 562 "Unexpected device id!"); 563 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 564 565 E.Entries.push_back(entry); 566 } 567 568 // Return true if the entry is associated with device 569 bool findOffloadEntry(int32_t device_id, void *addr) { 570 assert(device_id < (int32_t)FuncGblEntries.size() && 571 "Unexpected device id!"); 572 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 573 574 for (auto &it : E.Entries) { 575 if (it.addr == addr) 576 return true; 577 } 578 579 return false; 580 } 581 582 // Return the pointer to the target entries table 583 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 584 assert(device_id < (int32_t)FuncGblEntries.size() && 585 "Unexpected device id!"); 586 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 587 588 int32_t size = E.Entries.size(); 589 590 // Table is empty 591 if (!size) 592 return 0; 593 594 __tgt_offload_entry *begin = &E.Entries[0]; 595 __tgt_offload_entry *end = &E.Entries[size - 1]; 596 597 // Update table info according to the entries and return the pointer 598 E.Table.EntriesBegin = begin; 599 E.Table.EntriesEnd = ++end; 600 601 return &E.Table; 602 } 603 604 // Clear entries table for a device 605 void clearOffloadEntriesTable(int device_id) { 606 assert(device_id < (int32_t)FuncGblEntries.size() && 607 "Unexpected device id!"); 608 FuncGblEntries[device_id].emplace_back(); 609 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 610 // KernelArgPoolMap.clear(); 611 E.Entries.clear(); 612 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 613 } 614 615 hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, 616 int DeviceId) { 617 assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); 618 uint32_t GlobalFlags = 0; 619 hsa_status_t Err = hsa_amd_memory_pool_get_info( 620 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 621 622 if (Err != HSA_STATUS_SUCCESS) { 623 return Err; 624 } 625 626 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 627 DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; 628 } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { 629 DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; 630 } 631 632 return HSA_STATUS_SUCCESS; 633 } 634 635 hsa_status_t addHostMemoryPool(hsa_amd_memory_pool_t MemoryPool, 636 int DeviceId) { 637 uint32_t GlobalFlags = 0; 638 hsa_status_t Err = hsa_amd_memory_pool_get_info( 639 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 640 641 if (Err != HSA_STATUS_SUCCESS) { 642 return Err; 643 } 644 645 uint32_t Size; 646 Err = hsa_amd_memory_pool_get_info(MemoryPool, 647 HSA_AMD_MEMORY_POOL_INFO_SIZE, &Size); 648 if (Err != HSA_STATUS_SUCCESS) { 649 return Err; 650 } 651 652 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED && 653 Size > 0) { 654 HostFineGrainedMemoryPool = MemoryPool; 655 } 656 657 return HSA_STATUS_SUCCESS; 658 } 659 660 hsa_status_t setupMemoryPools() { 661 using namespace std::placeholders; 662 hsa_status_t Err; 663 Err = core::collectMemoryPools( 664 CPUAgents, std::bind(&RTLDeviceInfoTy::addHostMemoryPool, this, _1, _2)); 665 if (Err != HSA_STATUS_SUCCESS) { 666 DP("HSA error in collecting memory pools for CPU: %s\n", 667 get_error_string(Err)); 668 return Err; 669 } 670 Err = core::collectMemoryPools( 671 HSAAgents, std::bind(&RTLDeviceInfoTy::addDeviceMemoryPool, this, _1, _2)); 672 if (Err != HSA_STATUS_SUCCESS) { 673 DP("HSA error in collecting memory pools for offload devices: %s\n", 674 get_error_string(Err)); 675 return Err; 676 } 677 return HSA_STATUS_SUCCESS; 678 } 679 680 hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { 681 assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && 682 "Invalid device Id"); 683 return DeviceCoarseGrainedMemoryPools[DeviceId]; 684 } 685 686 hsa_amd_memory_pool_t getHostMemoryPool() { 687 return HostFineGrainedMemoryPool; 688 } 689 690 static int readEnvElseMinusOne(const char *Env) { 691 const char *envStr = getenv(Env); 692 int res = -1; 693 if (envStr) { 694 res = std::stoi(envStr); 695 DP("Parsed %s=%d\n", Env, res); 696 } 697 return res; 698 } 699 700 RTLDeviceInfoTy() { 701 DP("Start initializing " GETNAME(TARGET_NAME) "\n"); 702 703 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 704 // anytime. You do not need a debug library build. 705 // 0 => no tracing 706 // 1 => tracing dispatch only 707 // >1 => verbosity increase 708 709 if (!HSA.success()) { 710 DP("Error when initializing HSA in " GETNAME(TARGET_NAME) "\n"); 711 return; 712 } 713 714 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 715 print_kernel_trace = atoi(envStr); 716 else 717 print_kernel_trace = 0; 718 719 hsa_status_t err = core::atl_init_gpu_context(); 720 if (err != HSA_STATUS_SUCCESS) { 721 DP("Error when initializing " GETNAME(TARGET_NAME) "\n"); 722 return; 723 } 724 725 // Init hostcall soon after initializing hsa 726 hostrpc_init(); 727 728 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 729 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 730 CPUAgents.push_back(Agent); 731 } else { 732 HSAAgents.push_back(Agent); 733 } 734 }); 735 if (err != HSA_STATUS_SUCCESS) 736 return; 737 738 NumberOfDevices = (int)HSAAgents.size(); 739 740 if (NumberOfDevices == 0) { 741 DP("There are no devices supporting HSA.\n"); 742 return; 743 } else { 744 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 745 } 746 std::tie(err, KernArgPool) = core::FindKernargPool(CPUAgents); 747 if (err != HSA_STATUS_SUCCESS) { 748 DP("Error when reading memory pools\n"); 749 return; 750 } 751 752 // Init the device info 753 HSAQueues.resize(NumberOfDevices); 754 FuncGblEntries.resize(NumberOfDevices); 755 ThreadsPerGroup.resize(NumberOfDevices); 756 ComputeUnits.resize(NumberOfDevices); 757 GPUName.resize(NumberOfDevices); 758 GroupsPerDevice.resize(NumberOfDevices); 759 WarpSize.resize(NumberOfDevices); 760 NumTeams.resize(NumberOfDevices); 761 NumThreads.resize(NumberOfDevices); 762 deviceStateStore.resize(NumberOfDevices); 763 KernelInfoTable.resize(NumberOfDevices); 764 SymbolInfoTable.resize(NumberOfDevices); 765 DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); 766 DeviceFineGrainedMemoryPools.resize(NumberOfDevices); 767 768 err = setupMemoryPools(); 769 if (err != HSA_STATUS_SUCCESS) { 770 DP("Error when setting up memory pools"); 771 return; 772 } 773 774 for (int i = 0; i < NumberOfDevices; i++) { 775 uint32_t queue_size = 0; 776 { 777 hsa_status_t err = hsa_agent_get_info( 778 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 779 if (err != HSA_STATUS_SUCCESS) { 780 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 781 return; 782 } 783 enum { MaxQueueSize = 4096 }; 784 if (queue_size > MaxQueueSize) { 785 queue_size = MaxQueueSize; 786 } 787 } 788 789 { 790 hsa_queue_t *Q = nullptr; 791 hsa_status_t rc = 792 hsa_queue_create(HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, 793 callbackQueue, NULL, UINT32_MAX, UINT32_MAX, &Q); 794 if (rc != HSA_STATUS_SUCCESS) { 795 DP("Failed to create HSA queue %d\n", i); 796 return; 797 } 798 HSAQueues[i].reset(Q); 799 } 800 801 deviceStateStore[i] = {nullptr, 0}; 802 } 803 804 for (int i = 0; i < NumberOfDevices; i++) { 805 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 806 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 807 ComputeUnits[i] = 1; 808 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 809 GroupsPerDevice[i], ThreadsPerGroup[i]); 810 } 811 812 // Get environment variables regarding teams 813 Env.TeamLimit = readEnvElseMinusOne("OMP_TEAM_LIMIT"); 814 Env.NumTeams = readEnvElseMinusOne("OMP_NUM_TEAMS"); 815 Env.MaxTeamsDefault = readEnvElseMinusOne("OMP_MAX_TEAMS_DEFAULT"); 816 Env.TeamThreadLimit = readEnvElseMinusOne("OMP_TEAMS_THREAD_LIMIT"); 817 818 // Default state. 819 RequiresFlags = OMP_REQ_UNDEFINED; 820 821 ConstructionSucceeded = true; 822 } 823 824 ~RTLDeviceInfoTy() { 825 DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n"); 826 if (!HSA.success()) { 827 // Then none of these can have been set up and they can't be torn down 828 return; 829 } 830 // Run destructors on types that use HSA before 831 // impl_finalize removes access to it 832 deviceStateStore.clear(); 833 KernelArgPoolMap.clear(); 834 // Terminate hostrpc before finalizing hsa 835 hostrpc_terminate(); 836 837 hsa_status_t Err; 838 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 839 Err = hsa_executable_destroy(HSAExecutables[I]); 840 if (Err != HSA_STATUS_SUCCESS) { 841 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 842 "Destroying executable", get_error_string(Err)); 843 } 844 } 845 } 846 }; 847 848 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 849 850 // TODO: May need to drop the trailing to fields until deviceRTL is updated 851 struct omptarget_device_environmentTy { 852 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 853 // only useful for Debug build of deviceRTLs 854 int32_t num_devices; // gets number of active offload devices 855 int32_t device_num; // gets a value 0 to num_devices-1 856 }; 857 858 static RTLDeviceInfoTy DeviceInfo; 859 860 namespace { 861 862 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 863 __tgt_async_info *AsyncInfo) { 864 assert(AsyncInfo && "AsyncInfo is nullptr"); 865 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 866 // Return success if we are not copying back to host from target. 867 if (!HstPtr) 868 return OFFLOAD_SUCCESS; 869 hsa_status_t err; 870 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 871 (long long unsigned)(Elf64_Addr)TgtPtr, 872 (long long unsigned)(Elf64_Addr)HstPtr); 873 874 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 875 DeviceId); 876 877 if (err != HSA_STATUS_SUCCESS) { 878 DP("Error when copying data from device to host. Pointers: " 879 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 880 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 881 return OFFLOAD_FAIL; 882 } 883 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 884 (long long unsigned)(Elf64_Addr)TgtPtr, 885 (long long unsigned)(Elf64_Addr)HstPtr); 886 return OFFLOAD_SUCCESS; 887 } 888 889 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 890 __tgt_async_info *AsyncInfo) { 891 assert(AsyncInfo && "AsyncInfo is nullptr"); 892 hsa_status_t err; 893 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 894 // Return success if we are not doing host to target. 895 if (!HstPtr) 896 return OFFLOAD_SUCCESS; 897 898 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 899 (long long unsigned)(Elf64_Addr)HstPtr, 900 (long long unsigned)(Elf64_Addr)TgtPtr); 901 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 902 DeviceId); 903 if (err != HSA_STATUS_SUCCESS) { 904 DP("Error when copying data from host to device. Pointers: " 905 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 906 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 907 return OFFLOAD_FAIL; 908 } 909 return OFFLOAD_SUCCESS; 910 } 911 912 // Async. 913 // The implementation was written with cuda streams in mind. The semantics of 914 // that are to execute kernels on a queue in order of insertion. A synchronise 915 // call then makes writes visible between host and device. This means a series 916 // of N data_submit_async calls are expected to execute serially. HSA offers 917 // various options to run the data copies concurrently. This may require changes 918 // to libomptarget. 919 920 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 921 // there are no outstanding kernels that need to be synchronized. Any async call 922 // may be passed a Queue==0, at which point the cuda implementation will set it 923 // to non-null (see getStream). The cuda streams are per-device. Upstream may 924 // change this interface to explicitly initialize the AsyncInfo_pointer, but 925 // until then hsa lazily initializes it as well. 926 927 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 928 // set non-null while using async calls, return to null to indicate completion 929 assert(AsyncInfo); 930 if (!AsyncInfo->Queue) { 931 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 932 } 933 } 934 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 935 assert(AsyncInfo); 936 assert(AsyncInfo->Queue); 937 AsyncInfo->Queue = 0; 938 } 939 940 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 941 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 942 int32_t r = elf_check_machine(image, amdgcnMachineID); 943 if (!r) { 944 DP("Supported machine ID not found\n"); 945 } 946 return r; 947 } 948 949 uint32_t elf_e_flags(__tgt_device_image *image) { 950 char *img_begin = (char *)image->ImageStart; 951 size_t img_size = (char *)image->ImageEnd - img_begin; 952 953 Elf *e = elf_memory(img_begin, img_size); 954 if (!e) { 955 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 956 return 0; 957 } 958 959 Elf64_Ehdr *eh64 = elf64_getehdr(e); 960 961 if (!eh64) { 962 DP("Unable to get machine ID from ELF file!\n"); 963 elf_end(e); 964 return 0; 965 } 966 967 uint32_t Flags = eh64->e_flags; 968 969 elf_end(e); 970 DP("ELF Flags: 0x%x\n", Flags); 971 return Flags; 972 } 973 } // namespace 974 975 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 976 return elf_machine_id_is_amdgcn(image); 977 } 978 979 int __tgt_rtl_number_of_devices() { 980 // If the construction failed, no methods are safe to call 981 if (DeviceInfo.ConstructionSucceeded) { 982 return DeviceInfo.NumberOfDevices; 983 } else { 984 DP("AMDGPU plugin construction failed. Zero devices available\n"); 985 return 0; 986 } 987 } 988 989 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 990 DP("Init requires flags to %ld\n", RequiresFlags); 991 DeviceInfo.RequiresFlags = RequiresFlags; 992 return RequiresFlags; 993 } 994 995 namespace { 996 template <typename T> bool enforce_upper_bound(T *value, T upper) { 997 bool changed = *value > upper; 998 if (changed) { 999 *value = upper; 1000 } 1001 return changed; 1002 } 1003 } // namespace 1004 1005 int32_t __tgt_rtl_init_device(int device_id) { 1006 hsa_status_t err; 1007 1008 // this is per device id init 1009 DP("Initialize the device id: %d\n", device_id); 1010 1011 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 1012 1013 // Get number of Compute Unit 1014 uint32_t compute_units = 0; 1015 err = hsa_agent_get_info( 1016 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 1017 &compute_units); 1018 if (err != HSA_STATUS_SUCCESS) { 1019 DeviceInfo.ComputeUnits[device_id] = 1; 1020 DP("Error getting compute units : settiing to 1\n"); 1021 } else { 1022 DeviceInfo.ComputeUnits[device_id] = compute_units; 1023 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 1024 } 1025 1026 char GetInfoName[64]; // 64 max size returned by get info 1027 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 1028 (void *)GetInfoName); 1029 if (err) 1030 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 1031 else { 1032 DeviceInfo.GPUName[device_id] = GetInfoName; 1033 } 1034 1035 if (print_kernel_trace & STARTUP_DETAILS) 1036 DP("Device#%-2d CU's: %2d %s\n", device_id, 1037 DeviceInfo.ComputeUnits[device_id], 1038 DeviceInfo.GPUName[device_id].c_str()); 1039 1040 // Query attributes to determine number of threads/block and blocks/grid. 1041 uint16_t workgroup_max_dim[3]; 1042 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 1043 &workgroup_max_dim); 1044 if (err != HSA_STATUS_SUCCESS) { 1045 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 1046 DP("Error getting grid dims: num groups : %d\n", 1047 RTLDeviceInfoTy::DefaultNumTeams); 1048 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 1049 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 1050 DP("Using %d ROCm blocks per grid\n", 1051 DeviceInfo.GroupsPerDevice[device_id]); 1052 } else { 1053 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 1054 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 1055 "at the hard limit\n", 1056 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 1057 } 1058 1059 // Get thread limit 1060 hsa_dim3_t grid_max_dim; 1061 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 1062 if (err == HSA_STATUS_SUCCESS) { 1063 DeviceInfo.ThreadsPerGroup[device_id] = 1064 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 1065 DeviceInfo.GroupsPerDevice[device_id]; 1066 1067 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 1068 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1069 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1070 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 1071 RTLDeviceInfoTy::Max_WG_Size)) { 1072 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1073 } else { 1074 DP("Using ROCm Queried thread limit: %d\n", 1075 DeviceInfo.ThreadsPerGroup[device_id]); 1076 } 1077 } else { 1078 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1079 DP("Error getting max block dimension, use default:%d \n", 1080 RTLDeviceInfoTy::Max_WG_Size); 1081 } 1082 1083 // Get wavefront size 1084 uint32_t wavefront_size = 0; 1085 err = 1086 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 1087 if (err == HSA_STATUS_SUCCESS) { 1088 DP("Queried wavefront size: %d\n", wavefront_size); 1089 DeviceInfo.WarpSize[device_id] = wavefront_size; 1090 } else { 1091 // TODO: Burn the wavefront size into the code object 1092 DP("Warning: Unknown wavefront size, assuming 64\n"); 1093 DeviceInfo.WarpSize[device_id] = 64; 1094 } 1095 1096 // Adjust teams to the env variables 1097 1098 if (DeviceInfo.Env.TeamLimit > 0 && 1099 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 1100 DeviceInfo.Env.TeamLimit))) { 1101 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 1102 DeviceInfo.Env.TeamLimit); 1103 } 1104 1105 // Set default number of teams 1106 if (DeviceInfo.Env.NumTeams > 0) { 1107 DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams; 1108 DP("Default number of teams set according to environment %d\n", 1109 DeviceInfo.Env.NumTeams); 1110 } else { 1111 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 1112 int TeamsPerCU = DefaultTeamsPerCU; 1113 if (TeamsPerCUEnvStr) { 1114 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 1115 } 1116 1117 DeviceInfo.NumTeams[device_id] = 1118 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 1119 DP("Default number of teams = %d * number of compute units %d\n", 1120 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 1121 } 1122 1123 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 1124 DeviceInfo.GroupsPerDevice[device_id])) { 1125 DP("Default number of teams exceeds device limit, capping at %d\n", 1126 DeviceInfo.GroupsPerDevice[device_id]); 1127 } 1128 1129 // Adjust threads to the env variables 1130 if (DeviceInfo.Env.TeamThreadLimit > 0 && 1131 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1132 DeviceInfo.Env.TeamThreadLimit))) { 1133 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 1134 DeviceInfo.Env.TeamThreadLimit); 1135 } 1136 1137 // Set default number of threads 1138 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 1139 DP("Default number of threads set according to library's default %d\n", 1140 RTLDeviceInfoTy::Default_WG_Size); 1141 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1142 DeviceInfo.ThreadsPerGroup[device_id])) { 1143 DP("Default number of threads exceeds device limit, capping at %d\n", 1144 DeviceInfo.ThreadsPerGroup[device_id]); 1145 } 1146 1147 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 1148 device_id, DeviceInfo.GroupsPerDevice[device_id], 1149 DeviceInfo.ThreadsPerGroup[device_id]); 1150 1151 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 1152 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 1153 DeviceInfo.GroupsPerDevice[device_id], 1154 DeviceInfo.GroupsPerDevice[device_id] * 1155 DeviceInfo.ThreadsPerGroup[device_id]); 1156 1157 return OFFLOAD_SUCCESS; 1158 } 1159 1160 namespace { 1161 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 1162 size_t N; 1163 int rc = elf_getshdrnum(elf, &N); 1164 if (rc != 0) { 1165 return nullptr; 1166 } 1167 1168 Elf64_Shdr *result = nullptr; 1169 for (size_t i = 0; i < N; i++) { 1170 Elf_Scn *scn = elf_getscn(elf, i); 1171 if (scn) { 1172 Elf64_Shdr *shdr = elf64_getshdr(scn); 1173 if (shdr) { 1174 if (shdr->sh_type == SHT_HASH) { 1175 if (result == nullptr) { 1176 result = shdr; 1177 } else { 1178 // multiple SHT_HASH sections not handled 1179 return nullptr; 1180 } 1181 } 1182 } 1183 } 1184 } 1185 return result; 1186 } 1187 1188 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1189 const char *symname) { 1190 1191 assert(section_hash); 1192 size_t section_symtab_index = section_hash->sh_link; 1193 Elf64_Shdr *section_symtab = 1194 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1195 size_t section_strtab_index = section_symtab->sh_link; 1196 1197 const Elf64_Sym *symtab = 1198 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1199 1200 const uint32_t *hashtab = 1201 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1202 1203 // Layout: 1204 // nbucket 1205 // nchain 1206 // bucket[nbucket] 1207 // chain[nchain] 1208 uint32_t nbucket = hashtab[0]; 1209 const uint32_t *bucket = &hashtab[2]; 1210 const uint32_t *chain = &hashtab[nbucket + 2]; 1211 1212 const size_t max = strlen(symname) + 1; 1213 const uint32_t hash = elf_hash(symname); 1214 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1215 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1216 if (strncmp(symname, n, max) == 0) { 1217 return &symtab[i]; 1218 } 1219 } 1220 1221 return nullptr; 1222 } 1223 1224 struct symbol_info { 1225 void *addr = nullptr; 1226 uint32_t size = UINT32_MAX; 1227 uint32_t sh_type = SHT_NULL; 1228 }; 1229 1230 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1231 symbol_info *res) { 1232 if (elf_kind(elf) != ELF_K_ELF) { 1233 return 1; 1234 } 1235 1236 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1237 if (!section_hash) { 1238 return 1; 1239 } 1240 1241 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1242 if (!sym) { 1243 return 1; 1244 } 1245 1246 if (sym->st_size > UINT32_MAX) { 1247 return 1; 1248 } 1249 1250 if (sym->st_shndx == SHN_UNDEF) { 1251 return 1; 1252 } 1253 1254 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1255 if (!section) { 1256 return 1; 1257 } 1258 1259 Elf64_Shdr *header = elf64_getshdr(section); 1260 if (!header) { 1261 return 1; 1262 } 1263 1264 res->addr = sym->st_value + base; 1265 res->size = static_cast<uint32_t>(sym->st_size); 1266 res->sh_type = header->sh_type; 1267 return 0; 1268 } 1269 1270 int get_symbol_info_without_loading(char *base, size_t img_size, 1271 const char *symname, symbol_info *res) { 1272 Elf *elf = elf_memory(base, img_size); 1273 if (elf) { 1274 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1275 elf_end(elf); 1276 return rc; 1277 } 1278 return 1; 1279 } 1280 1281 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1282 const char *symname, void **var_addr, 1283 uint32_t *var_size) { 1284 symbol_info si; 1285 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1286 if (rc == 0) { 1287 *var_addr = si.addr; 1288 *var_size = si.size; 1289 return HSA_STATUS_SUCCESS; 1290 } else { 1291 return HSA_STATUS_ERROR; 1292 } 1293 } 1294 1295 template <typename C> 1296 hsa_status_t module_register_from_memory_to_place( 1297 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1298 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1299 void *module_bytes, size_t module_size, int DeviceId, C cb, 1300 std::vector<hsa_executable_t> &HSAExecutables) { 1301 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1302 C *unwrapped = static_cast<C *>(cb_state); 1303 return (*unwrapped)(data, size); 1304 }; 1305 return core::RegisterModuleFromMemory( 1306 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1307 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1308 HSAExecutables); 1309 } 1310 } // namespace 1311 1312 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1313 uint64_t device_State_bytes = 0; 1314 { 1315 // If this is the deviceRTL, get the state variable size 1316 symbol_info size_si; 1317 int rc = get_symbol_info_without_loading( 1318 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1319 1320 if (rc == 0) { 1321 if (size_si.size != sizeof(uint64_t)) { 1322 DP("Found device_State_size variable with wrong size\n"); 1323 return 0; 1324 } 1325 1326 // Read number of bytes directly from the elf 1327 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1328 } 1329 } 1330 return device_State_bytes; 1331 } 1332 1333 static __tgt_target_table * 1334 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1335 1336 static __tgt_target_table * 1337 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1338 1339 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1340 __tgt_device_image *image) { 1341 DeviceInfo.load_run_lock.lock(); 1342 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1343 DeviceInfo.load_run_lock.unlock(); 1344 return res; 1345 } 1346 1347 struct device_environment { 1348 // initialise an omptarget_device_environmentTy in the deviceRTL 1349 // patches around differences in the deviceRTL between trunk, aomp, 1350 // rocmcc. Over time these differences will tend to zero and this class 1351 // simplified. 1352 // Symbol may be in .data or .bss, and may be missing fields: 1353 // - aomp has debug_level, num_devices, device_num 1354 // - trunk has debug_level 1355 // - under review in trunk is debug_level, device_num 1356 // - rocmcc matches aomp, patch to swap num_devices and device_num 1357 1358 // The symbol may also have been deadstripped because the device side 1359 // accessors were unused. 1360 1361 // If the symbol is in .data (aomp, rocm) it can be written directly. 1362 // If it is in .bss, we must wait for it to be allocated space on the 1363 // gpu (trunk) and initialize after loading. 1364 const char *sym() { return "omptarget_device_environment"; } 1365 1366 omptarget_device_environmentTy host_device_env; 1367 symbol_info si; 1368 bool valid = false; 1369 1370 __tgt_device_image *image; 1371 const size_t img_size; 1372 1373 device_environment(int device_id, int number_devices, 1374 __tgt_device_image *image, const size_t img_size) 1375 : image(image), img_size(img_size) { 1376 1377 host_device_env.num_devices = number_devices; 1378 host_device_env.device_num = device_id; 1379 host_device_env.debug_level = 0; 1380 #ifdef OMPTARGET_DEBUG 1381 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1382 host_device_env.debug_level = std::stoi(envStr); 1383 } 1384 #endif 1385 1386 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1387 img_size, sym(), &si); 1388 if (rc != 0) { 1389 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1390 return; 1391 } 1392 1393 if (si.size > sizeof(host_device_env)) { 1394 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1395 sizeof(host_device_env)); 1396 return; 1397 } 1398 1399 valid = true; 1400 } 1401 1402 bool in_image() { return si.sh_type != SHT_NOBITS; } 1403 1404 hsa_status_t before_loading(void *data, size_t size) { 1405 if (valid) { 1406 if (in_image()) { 1407 DP("Setting global device environment before load (%u bytes)\n", 1408 si.size); 1409 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1410 void *pos = (char *)data + offset; 1411 memcpy(pos, &host_device_env, si.size); 1412 } 1413 } 1414 return HSA_STATUS_SUCCESS; 1415 } 1416 1417 hsa_status_t after_loading() { 1418 if (valid) { 1419 if (!in_image()) { 1420 DP("Setting global device environment after load (%u bytes)\n", 1421 si.size); 1422 int device_id = host_device_env.device_num; 1423 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1424 void *state_ptr; 1425 uint32_t state_ptr_size; 1426 hsa_status_t err = interop_hsa_get_symbol_info( 1427 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1428 if (err != HSA_STATUS_SUCCESS) { 1429 DP("failed to find %s in loaded image\n", sym()); 1430 return err; 1431 } 1432 1433 if (state_ptr_size != si.size) { 1434 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1435 si.size); 1436 return HSA_STATUS_ERROR; 1437 } 1438 1439 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1440 state_ptr_size, device_id); 1441 } 1442 } 1443 return HSA_STATUS_SUCCESS; 1444 } 1445 }; 1446 1447 static hsa_status_t impl_calloc(void **ret_ptr, size_t size, int DeviceId) { 1448 uint64_t rounded = 4 * ((size + 3) / 4); 1449 void *ptr; 1450 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(DeviceId); 1451 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, rounded, 0, &ptr); 1452 if (err != HSA_STATUS_SUCCESS) { 1453 return err; 1454 } 1455 1456 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1457 if (rc != HSA_STATUS_SUCCESS) { 1458 DP("zero fill device_state failed with %u\n", rc); 1459 core::Runtime::Memfree(ptr); 1460 return HSA_STATUS_ERROR; 1461 } 1462 1463 *ret_ptr = ptr; 1464 return HSA_STATUS_SUCCESS; 1465 } 1466 1467 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1468 symbol_info si; 1469 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1470 return (rc == 0) && (si.addr != nullptr); 1471 } 1472 1473 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1474 __tgt_device_image *image) { 1475 // This function loads the device image onto gpu[device_id] and does other 1476 // per-image initialization work. Specifically: 1477 // 1478 // - Initialize an omptarget_device_environmentTy instance embedded in the 1479 // image at the symbol "omptarget_device_environment" 1480 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1481 // 1482 // - Allocate a large array per-gpu (could be moved to init_device) 1483 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1484 // - Allocate at least that many bytes of gpu memory 1485 // - Zero initialize it 1486 // - Write the pointer to the symbol omptarget_nvptx_device_State 1487 // 1488 // - Pulls some per-kernel information together from various sources and 1489 // records it in the KernelsList for quicker access later 1490 // 1491 // The initialization can be done before or after loading the image onto the 1492 // gpu. This function presently does a mixture. Using the hsa api to get/set 1493 // the information is simpler to implement, in exchange for more complicated 1494 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1495 // back from the gpu vs a hashtable lookup on the host. 1496 1497 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1498 1499 DeviceInfo.clearOffloadEntriesTable(device_id); 1500 1501 // We do not need to set the ELF version because the caller of this function 1502 // had to do that to decide the right runtime to use 1503 1504 if (!elf_machine_id_is_amdgcn(image)) { 1505 return NULL; 1506 } 1507 1508 { 1509 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1510 img_size); 1511 1512 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1513 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1514 hsa_status_t err = module_register_from_memory_to_place( 1515 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1516 [&](void *data, size_t size) { 1517 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1518 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1519 __ATOMIC_RELEASE); 1520 } 1521 return env.before_loading(data, size); 1522 }, 1523 DeviceInfo.HSAExecutables); 1524 1525 check("Module registering", err); 1526 if (err != HSA_STATUS_SUCCESS) { 1527 const char *DeviceName = DeviceInfo.GPUName[device_id].c_str(); 1528 const char *ElfName = get_elf_mach_gfx_name(elf_e_flags(image)); 1529 1530 if (strcmp(DeviceName, ElfName) != 0) { 1531 DP("Possible gpu arch mismatch: device:%s, image:%s please check" 1532 " compiler flag: -march=<gpu>\n", 1533 DeviceName, ElfName); 1534 } else { 1535 DP("Error loading image onto GPU: %s\n", get_error_string(err)); 1536 } 1537 1538 return NULL; 1539 } 1540 1541 err = env.after_loading(); 1542 if (err != HSA_STATUS_SUCCESS) { 1543 return NULL; 1544 } 1545 } 1546 1547 DP("AMDGPU module successfully loaded!\n"); 1548 1549 { 1550 // the device_State array is either large value in bss or a void* that 1551 // needs to be assigned to a pointer to an array of size device_state_bytes 1552 // If absent, it has been deadstripped and needs no setup. 1553 1554 void *state_ptr; 1555 uint32_t state_ptr_size; 1556 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1557 hsa_status_t err = interop_hsa_get_symbol_info( 1558 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1559 &state_ptr_size); 1560 1561 if (err != HSA_STATUS_SUCCESS) { 1562 DP("No device_state symbol found, skipping initialization\n"); 1563 } else { 1564 if (state_ptr_size < sizeof(void *)) { 1565 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1566 sizeof(void *)); 1567 return NULL; 1568 } 1569 1570 // if it's larger than a void*, assume it's a bss array and no further 1571 // initialization is required. Only try to set up a pointer for 1572 // sizeof(void*) 1573 if (state_ptr_size == sizeof(void *)) { 1574 uint64_t device_State_bytes = 1575 get_device_State_bytes((char *)image->ImageStart, img_size); 1576 if (device_State_bytes == 0) { 1577 DP("Can't initialize device_State, missing size information\n"); 1578 return NULL; 1579 } 1580 1581 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1582 if (dss.first.get() == nullptr) { 1583 assert(dss.second == 0); 1584 void *ptr = NULL; 1585 hsa_status_t err = impl_calloc(&ptr, device_State_bytes, device_id); 1586 if (err != HSA_STATUS_SUCCESS) { 1587 DP("Failed to allocate device_state array\n"); 1588 return NULL; 1589 } 1590 dss = { 1591 std::unique_ptr<void, RTLDeviceInfoTy::implFreePtrDeletor>{ptr}, 1592 device_State_bytes, 1593 }; 1594 } 1595 1596 void *ptr = dss.first.get(); 1597 if (device_State_bytes != dss.second) { 1598 DP("Inconsistent sizes of device_State unsupported\n"); 1599 return NULL; 1600 } 1601 1602 // write ptr to device memory so it can be used by later kernels 1603 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1604 sizeof(void *), device_id); 1605 if (err != HSA_STATUS_SUCCESS) { 1606 DP("memcpy install of state_ptr failed\n"); 1607 return NULL; 1608 } 1609 } 1610 } 1611 } 1612 1613 // Here, we take advantage of the data that is appended after img_end to get 1614 // the symbols' name we need to load. This data consist of the host entries 1615 // begin and end as well as the target name (see the offloading linker script 1616 // creation in clang compiler). 1617 1618 // Find the symbols in the module by name. The name can be obtain by 1619 // concatenating the host entry name with the target name 1620 1621 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1622 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1623 1624 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1625 1626 if (!e->addr) { 1627 // The host should have always something in the address to 1628 // uniquely identify the target region. 1629 DP("Analyzing host entry '<null>' (size = %lld)...\n", 1630 (unsigned long long)e->size); 1631 return NULL; 1632 } 1633 1634 if (e->size) { 1635 __tgt_offload_entry entry = *e; 1636 1637 void *varptr; 1638 uint32_t varsize; 1639 1640 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1641 hsa_status_t err = interop_hsa_get_symbol_info( 1642 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1643 1644 if (err != HSA_STATUS_SUCCESS) { 1645 // Inform the user what symbol prevented offloading 1646 DP("Loading global '%s' (Failed)\n", e->name); 1647 return NULL; 1648 } 1649 1650 if (varsize != e->size) { 1651 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1652 varsize, e->size); 1653 return NULL; 1654 } 1655 1656 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1657 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1658 entry.addr = (void *)varptr; 1659 1660 DeviceInfo.addOffloadEntry(device_id, entry); 1661 1662 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1663 e->flags & OMP_DECLARE_TARGET_LINK) { 1664 // If unified memory is present any target link variables 1665 // can access host addresses directly. There is no longer a 1666 // need for device copies. 1667 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1668 sizeof(void *), device_id); 1669 if (err != HSA_STATUS_SUCCESS) 1670 DP("Error when copying USM\n"); 1671 DP("Copy linked variable host address (" DPxMOD ")" 1672 "to device address (" DPxMOD ")\n", 1673 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1674 } 1675 1676 continue; 1677 } 1678 1679 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1680 1681 uint32_t kernarg_segment_size; 1682 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1683 hsa_status_t err = interop_hsa_get_kernel_info( 1684 KernelInfoMap, device_id, e->name, 1685 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1686 &kernarg_segment_size); 1687 1688 // each arg is a void * in this openmp implementation 1689 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1690 std::vector<size_t> arg_sizes(arg_num); 1691 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1692 it != arg_sizes.end(); it++) { 1693 *it = sizeof(void *); 1694 } 1695 1696 // default value GENERIC (in case symbol is missing from cubin file) 1697 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1698 1699 // get flat group size if present, else Default_WG_Size 1700 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1701 1702 // get Kernel Descriptor if present. 1703 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1704 struct KernDescValType { 1705 uint16_t Version; 1706 uint16_t TSize; 1707 uint16_t WG_Size; 1708 uint8_t Mode; 1709 }; 1710 struct KernDescValType KernDescVal; 1711 std::string KernDescNameStr(e->name); 1712 KernDescNameStr += "_kern_desc"; 1713 const char *KernDescName = KernDescNameStr.c_str(); 1714 1715 void *KernDescPtr; 1716 uint32_t KernDescSize; 1717 void *CallStackAddr = nullptr; 1718 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1719 KernDescName, &KernDescPtr, &KernDescSize); 1720 1721 if (err == HSA_STATUS_SUCCESS) { 1722 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1723 DP("Loading global computation properties '%s' - size mismatch (%u != " 1724 "%lu)\n", 1725 KernDescName, KernDescSize, sizeof(KernDescVal)); 1726 1727 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1728 1729 // Check structure size against recorded size. 1730 if ((size_t)KernDescSize != KernDescVal.TSize) 1731 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1732 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1733 1734 DP("After loading global for %s KernDesc \n", KernDescName); 1735 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1736 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1737 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1738 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1739 1740 // Get ExecMode 1741 ExecModeVal = KernDescVal.Mode; 1742 DP("ExecModeVal %d\n", ExecModeVal); 1743 if (KernDescVal.WG_Size == 0) { 1744 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1745 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1746 } 1747 WGSizeVal = KernDescVal.WG_Size; 1748 DP("WGSizeVal %d\n", WGSizeVal); 1749 check("Loading KernDesc computation property", err); 1750 } else { 1751 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1752 1753 // Generic 1754 std::string ExecModeNameStr(e->name); 1755 ExecModeNameStr += "_exec_mode"; 1756 const char *ExecModeName = ExecModeNameStr.c_str(); 1757 1758 void *ExecModePtr; 1759 uint32_t varsize; 1760 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1761 ExecModeName, &ExecModePtr, &varsize); 1762 1763 if (err == HSA_STATUS_SUCCESS) { 1764 if ((size_t)varsize != sizeof(int8_t)) { 1765 DP("Loading global computation properties '%s' - size mismatch(%u != " 1766 "%lu)\n", 1767 ExecModeName, varsize, sizeof(int8_t)); 1768 return NULL; 1769 } 1770 1771 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1772 1773 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1774 ExecModeVal); 1775 1776 if (ExecModeVal < 0 || ExecModeVal > 2) { 1777 DP("Error wrong exec_mode value specified in HSA code object file: " 1778 "%d\n", 1779 ExecModeVal); 1780 return NULL; 1781 } 1782 } else { 1783 DP("Loading global exec_mode '%s' - symbol missing, using default " 1784 "value " 1785 "GENERIC (1)\n", 1786 ExecModeName); 1787 } 1788 check("Loading computation property", err); 1789 1790 // Flat group size 1791 std::string WGSizeNameStr(e->name); 1792 WGSizeNameStr += "_wg_size"; 1793 const char *WGSizeName = WGSizeNameStr.c_str(); 1794 1795 void *WGSizePtr; 1796 uint32_t WGSize; 1797 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1798 WGSizeName, &WGSizePtr, &WGSize); 1799 1800 if (err == HSA_STATUS_SUCCESS) { 1801 if ((size_t)WGSize != sizeof(int16_t)) { 1802 DP("Loading global computation properties '%s' - size mismatch (%u " 1803 "!= " 1804 "%lu)\n", 1805 WGSizeName, WGSize, sizeof(int16_t)); 1806 return NULL; 1807 } 1808 1809 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1810 1811 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1812 1813 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1814 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1815 DP("Error wrong WGSize value specified in HSA code object file: " 1816 "%d\n", 1817 WGSizeVal); 1818 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1819 } 1820 } else { 1821 DP("Warning: Loading WGSize '%s' - symbol not found, " 1822 "using default value %d\n", 1823 WGSizeName, WGSizeVal); 1824 } 1825 1826 check("Loading WGSize computation property", err); 1827 } 1828 1829 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1830 CallStackAddr, e->name, kernarg_segment_size, 1831 DeviceInfo.KernArgPool)); 1832 __tgt_offload_entry entry = *e; 1833 entry.addr = (void *)&KernelsList.back(); 1834 DeviceInfo.addOffloadEntry(device_id, entry); 1835 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1836 } 1837 1838 return DeviceInfo.getOffloadEntriesTable(device_id); 1839 } 1840 1841 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1842 void *ptr = NULL; 1843 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1844 1845 if (kind != TARGET_ALLOC_DEFAULT) { 1846 REPORT("Invalid target data allocation kind or requested allocator not " 1847 "implemented yet\n"); 1848 return NULL; 1849 } 1850 1851 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(device_id); 1852 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, size, 0, &ptr); 1853 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1854 (long long unsigned)(Elf64_Addr)ptr); 1855 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1856 return ptr; 1857 } 1858 1859 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1860 int64_t size) { 1861 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1862 __tgt_async_info AsyncInfo; 1863 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1864 if (rc != OFFLOAD_SUCCESS) 1865 return OFFLOAD_FAIL; 1866 1867 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1868 } 1869 1870 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1871 int64_t size, __tgt_async_info *AsyncInfo) { 1872 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1873 if (AsyncInfo) { 1874 initAsyncInfo(AsyncInfo); 1875 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1876 } else { 1877 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1878 } 1879 } 1880 1881 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1882 int64_t size) { 1883 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1884 __tgt_async_info AsyncInfo; 1885 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1886 if (rc != OFFLOAD_SUCCESS) 1887 return OFFLOAD_FAIL; 1888 1889 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1890 } 1891 1892 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1893 void *tgt_ptr, int64_t size, 1894 __tgt_async_info *AsyncInfo) { 1895 assert(AsyncInfo && "AsyncInfo is nullptr"); 1896 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1897 initAsyncInfo(AsyncInfo); 1898 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1899 } 1900 1901 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1902 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1903 hsa_status_t err; 1904 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1905 err = core::Runtime::Memfree(tgt_ptr); 1906 if (err != HSA_STATUS_SUCCESS) { 1907 DP("Error when freeing CUDA memory\n"); 1908 return OFFLOAD_FAIL; 1909 } 1910 return OFFLOAD_SUCCESS; 1911 } 1912 1913 // Determine launch values for kernel. 1914 struct launchVals { 1915 int WorkgroupSize; 1916 int GridSize; 1917 }; 1918 launchVals getLaunchVals(int WarpSize, EnvironmentVariables Env, 1919 int ConstWGSize, int ExecutionMode, int num_teams, 1920 int thread_limit, uint64_t loop_tripcount, 1921 int DeviceNumTeams) { 1922 1923 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1924 int num_groups = 0; 1925 1926 int Max_Teams = 1927 Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams; 1928 if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit) 1929 Max_Teams = RTLDeviceInfoTy::HardTeamLimit; 1930 1931 if (print_kernel_trace & STARTUP_DETAILS) { 1932 DP("RTLDeviceInfoTy::Max_Teams: %d\n", RTLDeviceInfoTy::Max_Teams); 1933 DP("Max_Teams: %d\n", Max_Teams); 1934 DP("RTLDeviceInfoTy::Warp_Size: %d\n", WarpSize); 1935 DP("RTLDeviceInfoTy::Max_WG_Size: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1936 DP("RTLDeviceInfoTy::Default_WG_Size: %d\n", 1937 RTLDeviceInfoTy::Default_WG_Size); 1938 DP("thread_limit: %d\n", thread_limit); 1939 DP("threadsPerGroup: %d\n", threadsPerGroup); 1940 DP("ConstWGSize: %d\n", ConstWGSize); 1941 } 1942 // check for thread_limit() clause 1943 if (thread_limit > 0) { 1944 threadsPerGroup = thread_limit; 1945 DP("Setting threads per block to requested %d\n", thread_limit); 1946 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1947 threadsPerGroup += WarpSize; 1948 DP("Adding master wavefront: +%d threads\n", WarpSize); 1949 } 1950 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1951 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1952 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1953 } 1954 } 1955 // check flat_max_work_group_size attr here 1956 if (threadsPerGroup > ConstWGSize) { 1957 threadsPerGroup = ConstWGSize; 1958 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1959 threadsPerGroup); 1960 } 1961 if (print_kernel_trace & STARTUP_DETAILS) 1962 DP("threadsPerGroup: %d\n", threadsPerGroup); 1963 DP("Preparing %d threads\n", threadsPerGroup); 1964 1965 // Set default num_groups (teams) 1966 if (Env.TeamLimit > 0) 1967 num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit; 1968 else 1969 num_groups = Max_Teams; 1970 DP("Set default num of groups %d\n", num_groups); 1971 1972 if (print_kernel_trace & STARTUP_DETAILS) { 1973 DP("num_groups: %d\n", num_groups); 1974 DP("num_teams: %d\n", num_teams); 1975 } 1976 1977 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1978 // This reduction is typical for default case (no thread_limit clause). 1979 // or when user goes crazy with num_teams clause. 1980 // FIXME: We cant distinguish between a constant or variable thread limit. 1981 // So we only handle constant thread_limits. 1982 if (threadsPerGroup > 1983 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1984 // Should we round threadsPerGroup up to nearest WarpSize 1985 // here? 1986 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1987 1988 // check for num_teams() clause 1989 if (num_teams > 0) { 1990 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1991 } 1992 if (print_kernel_trace & STARTUP_DETAILS) { 1993 DP("num_groups: %d\n", num_groups); 1994 DP("Env.NumTeams %d\n", Env.NumTeams); 1995 DP("Env.TeamLimit %d\n", Env.TeamLimit); 1996 } 1997 1998 if (Env.NumTeams > 0) { 1999 num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups; 2000 DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams); 2001 } else if (Env.TeamLimit > 0) { 2002 num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups; 2003 DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit); 2004 } else { 2005 if (num_teams <= 0) { 2006 if (loop_tripcount > 0) { 2007 if (ExecutionMode == SPMD) { 2008 // round up to the nearest integer 2009 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 2010 } else if (ExecutionMode == GENERIC) { 2011 num_groups = loop_tripcount; 2012 } else /* ExecutionMode == SPMD_GENERIC */ { 2013 // This is a generic kernel that was transformed to use SPMD-mode 2014 // execution but uses Generic-mode semantics for scheduling. 2015 num_groups = loop_tripcount; 2016 } 2017 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 2018 "threads per block %d\n", 2019 num_groups, loop_tripcount, threadsPerGroup); 2020 } 2021 } else { 2022 num_groups = num_teams; 2023 } 2024 if (num_groups > Max_Teams) { 2025 num_groups = Max_Teams; 2026 if (print_kernel_trace & STARTUP_DETAILS) 2027 DP("Limiting num_groups %d to Max_Teams %d \n", num_groups, Max_Teams); 2028 } 2029 if (num_groups > num_teams && num_teams > 0) { 2030 num_groups = num_teams; 2031 if (print_kernel_trace & STARTUP_DETAILS) 2032 DP("Limiting num_groups %d to clause num_teams %d \n", num_groups, 2033 num_teams); 2034 } 2035 } 2036 2037 // num_teams clause always honored, no matter what, unless DEFAULT is active. 2038 if (num_teams > 0) { 2039 num_groups = num_teams; 2040 // Cap num_groups to EnvMaxTeamsDefault if set. 2041 if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault) 2042 num_groups = Env.MaxTeamsDefault; 2043 } 2044 if (print_kernel_trace & STARTUP_DETAILS) { 2045 DP("threadsPerGroup: %d\n", threadsPerGroup); 2046 DP("num_groups: %d\n", num_groups); 2047 DP("loop_tripcount: %ld\n", loop_tripcount); 2048 } 2049 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 2050 threadsPerGroup); 2051 2052 launchVals res; 2053 res.WorkgroupSize = threadsPerGroup; 2054 res.GridSize = threadsPerGroup * num_groups; 2055 return res; 2056 } 2057 2058 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 2059 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 2060 bool full = true; 2061 while (full) { 2062 full = 2063 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 2064 } 2065 return packet_id; 2066 } 2067 2068 static int32_t __tgt_rtl_run_target_team_region_locked( 2069 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2070 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2071 int32_t thread_limit, uint64_t loop_tripcount); 2072 2073 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 2074 void **tgt_args, 2075 ptrdiff_t *tgt_offsets, 2076 int32_t arg_num, int32_t num_teams, 2077 int32_t thread_limit, 2078 uint64_t loop_tripcount) { 2079 2080 DeviceInfo.load_run_lock.lock_shared(); 2081 int32_t res = __tgt_rtl_run_target_team_region_locked( 2082 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 2083 thread_limit, loop_tripcount); 2084 2085 DeviceInfo.load_run_lock.unlock_shared(); 2086 return res; 2087 } 2088 2089 int32_t __tgt_rtl_run_target_team_region_locked( 2090 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2091 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2092 int32_t thread_limit, uint64_t loop_tripcount) { 2093 // Set the context we are using 2094 // update thread limit content in gpu memory if un-initialized or specified 2095 // from host 2096 2097 DP("Run target team region thread_limit %d\n", thread_limit); 2098 2099 // All args are references. 2100 std::vector<void *> args(arg_num); 2101 std::vector<void *> ptrs(arg_num); 2102 2103 DP("Arg_num: %d\n", arg_num); 2104 for (int32_t i = 0; i < arg_num; ++i) { 2105 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 2106 args[i] = &ptrs[i]; 2107 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 2108 } 2109 2110 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 2111 2112 std::string kernel_name = std::string(KernelInfo->Name); 2113 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 2114 if (KernelInfoTable[device_id].find(kernel_name) == 2115 KernelInfoTable[device_id].end()) { 2116 DP("Kernel %s not found\n", kernel_name.c_str()); 2117 return OFFLOAD_FAIL; 2118 } 2119 2120 const atl_kernel_info_t KernelInfoEntry = 2121 KernelInfoTable[device_id][kernel_name]; 2122 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 2123 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 2124 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 2125 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 2126 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 2127 2128 assert(arg_num == (int)KernelInfoEntry.num_args); 2129 2130 /* 2131 * Set limit based on ThreadsPerGroup and GroupsPerDevice 2132 */ 2133 launchVals LV = 2134 getLaunchVals(DeviceInfo.WarpSize[device_id], DeviceInfo.Env, 2135 KernelInfo->ConstWGSize, KernelInfo->ExecutionMode, 2136 num_teams, // From run_region arg 2137 thread_limit, // From run_region arg 2138 loop_tripcount, // From run_region arg 2139 DeviceInfo.NumTeams[KernelInfo->device_id]); 2140 const int GridSize = LV.GridSize; 2141 const int WorkgroupSize = LV.WorkgroupSize; 2142 2143 if (print_kernel_trace >= LAUNCH) { 2144 int num_groups = GridSize / WorkgroupSize; 2145 // enum modes are SPMD, GENERIC, NONE 0,1,2 2146 // if doing rtl timing, print to stderr, unless stdout requested. 2147 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 2148 fprintf(traceToStdout ? stdout : stderr, 2149 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 2150 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 2151 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 2152 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 2153 arg_num, num_groups, WorkgroupSize, num_teams, thread_limit, 2154 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 2155 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 2156 } 2157 2158 // Run on the device. 2159 { 2160 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id].get(); 2161 if (!queue) { 2162 return OFFLOAD_FAIL; 2163 } 2164 uint64_t packet_id = acquire_available_packet_id(queue); 2165 2166 const uint32_t mask = queue->size - 1; // size is a power of 2 2167 hsa_kernel_dispatch_packet_t *packet = 2168 (hsa_kernel_dispatch_packet_t *)queue->base_address + 2169 (packet_id & mask); 2170 2171 // packet->header is written last 2172 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 2173 packet->workgroup_size_x = WorkgroupSize; 2174 packet->workgroup_size_y = 1; 2175 packet->workgroup_size_z = 1; 2176 packet->reserved0 = 0; 2177 packet->grid_size_x = GridSize; 2178 packet->grid_size_y = 1; 2179 packet->grid_size_z = 1; 2180 packet->private_segment_size = KernelInfoEntry.private_segment_size; 2181 packet->group_segment_size = KernelInfoEntry.group_segment_size; 2182 packet->kernel_object = KernelInfoEntry.kernel_object; 2183 packet->kernarg_address = 0; // use the block allocator 2184 packet->reserved2 = 0; // impl writes id_ here 2185 packet->completion_signal = {0}; // may want a pool of signals 2186 2187 KernelArgPool *ArgPool = nullptr; 2188 void *kernarg = nullptr; 2189 { 2190 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 2191 if (it != KernelArgPoolMap.end()) { 2192 ArgPool = (it->second).get(); 2193 } 2194 } 2195 if (!ArgPool) { 2196 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 2197 device_id); 2198 } 2199 { 2200 if (ArgPool) { 2201 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 2202 kernarg = ArgPool->allocate(arg_num); 2203 } 2204 if (!kernarg) { 2205 DP("Allocate kernarg failed\n"); 2206 return OFFLOAD_FAIL; 2207 } 2208 2209 // Copy explicit arguments 2210 for (int i = 0; i < arg_num; i++) { 2211 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 2212 } 2213 2214 // Initialize implicit arguments. TODO: Which of these can be dropped 2215 impl_implicit_args_t *impl_args = 2216 reinterpret_cast<impl_implicit_args_t *>( 2217 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 2218 memset(impl_args, 0, 2219 sizeof(impl_implicit_args_t)); // may not be necessary 2220 impl_args->offset_x = 0; 2221 impl_args->offset_y = 0; 2222 impl_args->offset_z = 0; 2223 2224 // assign a hostcall buffer for the selected Q 2225 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 2226 // hostrpc_assign_buffer is not thread safe, and this function is 2227 // under a multiple reader lock, not a writer lock. 2228 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 2229 pthread_mutex_lock(&hostcall_init_lock); 2230 impl_args->hostcall_ptr = hostrpc_assign_buffer( 2231 DeviceInfo.HSAAgents[device_id], queue, device_id); 2232 pthread_mutex_unlock(&hostcall_init_lock); 2233 if (!impl_args->hostcall_ptr) { 2234 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 2235 "error\n"); 2236 return OFFLOAD_FAIL; 2237 } 2238 } 2239 2240 packet->kernarg_address = kernarg; 2241 } 2242 2243 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 2244 if (s.handle == 0) { 2245 DP("Failed to get signal instance\n"); 2246 return OFFLOAD_FAIL; 2247 } 2248 packet->completion_signal = s; 2249 hsa_signal_store_relaxed(packet->completion_signal, 1); 2250 2251 // Publish the packet indicating it is ready to be processed 2252 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 2253 core::create_header(), packet->setup); 2254 2255 // Since the packet is already published, its contents must not be 2256 // accessed any more 2257 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 2258 2259 while (hsa_signal_wait_scacquire(s, HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 2260 HSA_WAIT_STATE_BLOCKED) != 0) 2261 ; 2262 2263 assert(ArgPool); 2264 ArgPool->deallocate(kernarg); 2265 DeviceInfo.FreeSignalPool.push(s); 2266 } 2267 2268 DP("Kernel completed\n"); 2269 return OFFLOAD_SUCCESS; 2270 } 2271 2272 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2273 void **tgt_args, ptrdiff_t *tgt_offsets, 2274 int32_t arg_num) { 2275 // use one team and one thread 2276 // fix thread num 2277 int32_t team_num = 1; 2278 int32_t thread_limit = 0; // use default 2279 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2280 tgt_offsets, arg_num, team_num, 2281 thread_limit, 0); 2282 } 2283 2284 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2285 void *tgt_entry_ptr, void **tgt_args, 2286 ptrdiff_t *tgt_offsets, 2287 int32_t arg_num, 2288 __tgt_async_info *AsyncInfo) { 2289 assert(AsyncInfo && "AsyncInfo is nullptr"); 2290 initAsyncInfo(AsyncInfo); 2291 2292 // use one team and one thread 2293 // fix thread num 2294 int32_t team_num = 1; 2295 int32_t thread_limit = 0; // use default 2296 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2297 tgt_offsets, arg_num, team_num, 2298 thread_limit, 0); 2299 } 2300 2301 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2302 assert(AsyncInfo && "AsyncInfo is nullptr"); 2303 2304 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2305 // is not ensured by devices.cpp for amdgcn 2306 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2307 if (AsyncInfo->Queue) { 2308 finiAsyncInfo(AsyncInfo); 2309 } 2310 return OFFLOAD_SUCCESS; 2311 } 2312 2313 namespace core { 2314 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 2315 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 2316 &DeviceInfo.HSAAgents[0], NULL, ptr); 2317 } 2318 2319 } // namespace core 2320