1 //===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <functional> 19 #include <libelf.h> 20 #include <list> 21 #include <memory> 22 #include <mutex> 23 #include <shared_mutex> 24 #include <unordered_map> 25 #include <vector> 26 27 // Header from ATMI interface 28 #include "atmi_interop_hsa.h" 29 #include "atmi_runtime.h" 30 31 #include "internal.h" 32 33 #include "Debug.h" 34 #include "get_elf_mach_gfx_name.h" 35 #include "omptargetplugin.h" 36 #include "print_tracing.h" 37 38 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 39 40 #ifndef TARGET_NAME 41 #error "Missing TARGET_NAME macro" 42 #endif 43 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 44 45 // hostrpc interface, FIXME: consider moving to its own include these are 46 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 47 // linked as --whole-archive to override the weak symbols that are used to 48 // implement a fallback for toolchains that do not yet have a hostrpc library. 49 extern "C" { 50 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 51 uint32_t device_id); 52 hsa_status_t hostrpc_init(); 53 hsa_status_t hostrpc_terminate(); 54 55 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 56 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 57 return HSA_STATUS_SUCCESS; 58 } 59 __attribute__((weak)) unsigned long 60 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 61 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 62 "missing\n", 63 device_id); 64 return 0; 65 } 66 } 67 68 // Heuristic parameters used for kernel launch 69 // Number of teams per CU to allow scheduling flexibility 70 static const unsigned DefaultTeamsPerCU = 4; 71 72 int print_kernel_trace; 73 74 #ifdef OMPTARGET_DEBUG 75 #define check(msg, status) \ 76 if (status != HSA_STATUS_SUCCESS) { \ 77 DP(#msg " failed\n"); \ 78 } else { \ 79 DP(#msg " succeeded\n"); \ 80 } 81 #else 82 #define check(msg, status) \ 83 {} 84 #endif 85 86 #include "elf_common.h" 87 88 namespace core { 89 hsa_status_t RegisterModuleFromMemory( 90 std::map<std::string, atl_kernel_info_t> &KernelInfo, 91 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, void *, size_t, 92 hsa_agent_t agent, 93 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 94 void *cb_state), 95 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables); 96 } 97 98 namespace hsa { 99 template <typename C> hsa_status_t iterate_agents(C cb) { 100 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 101 C *unwrapped = static_cast<C *>(data); 102 return (*unwrapped)(agent); 103 }; 104 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 105 } 106 107 template <typename C> 108 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { 109 auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { 110 C *unwrapped = static_cast<C *>(data); 111 return (*unwrapped)(MemoryPool); 112 }; 113 114 return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb)); 115 } 116 117 } // namespace hsa 118 119 /// Keep entries table per device 120 struct FuncOrGblEntryTy { 121 __tgt_target_table Table; 122 std::vector<__tgt_offload_entry> Entries; 123 }; 124 125 enum ExecutionModeType { 126 SPMD, // constructors, destructors, 127 // combined constructs (`teams distribute parallel for [simd]`) 128 GENERIC, // everything else 129 SPMD_GENERIC, // Generic kernel with SPMD execution 130 NONE 131 }; 132 133 struct KernelArgPool { 134 private: 135 static pthread_mutex_t mutex; 136 137 public: 138 uint32_t kernarg_segment_size; 139 void *kernarg_region = nullptr; 140 std::queue<int> free_kernarg_segments; 141 142 uint32_t kernarg_size_including_implicit() { 143 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 144 } 145 146 ~KernelArgPool() { 147 if (kernarg_region) { 148 auto r = hsa_amd_memory_pool_free(kernarg_region); 149 if (r != HSA_STATUS_SUCCESS) { 150 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 151 } 152 } 153 } 154 155 // Can't really copy or move a mutex 156 KernelArgPool() = default; 157 KernelArgPool(const KernelArgPool &) = delete; 158 KernelArgPool(KernelArgPool &&) = delete; 159 160 KernelArgPool(uint32_t kernarg_segment_size, 161 hsa_amd_memory_pool_t &memory_pool) 162 : kernarg_segment_size(kernarg_segment_size) { 163 164 // atmi uses one pool per kernel for all gpus, with a fixed upper size 165 // preserving that exact scheme here, including the queue<int> 166 167 hsa_status_t err = hsa_amd_memory_pool_allocate( 168 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 169 &kernarg_region); 170 171 if (err != HSA_STATUS_SUCCESS) { 172 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 173 kernarg_region = nullptr; // paranoid 174 return; 175 } 176 177 err = core::allow_access_to_all_gpu_agents(kernarg_region); 178 if (err != HSA_STATUS_SUCCESS) { 179 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 180 get_error_string(err)); 181 auto r = hsa_amd_memory_pool_free(kernarg_region); 182 if (r != HSA_STATUS_SUCCESS) { 183 // if free failed, can't do anything more to resolve it 184 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 185 } 186 kernarg_region = nullptr; 187 return; 188 } 189 190 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 191 free_kernarg_segments.push(i); 192 } 193 } 194 195 void *allocate(uint64_t arg_num) { 196 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 197 lock l(&mutex); 198 void *res = nullptr; 199 if (!free_kernarg_segments.empty()) { 200 201 int free_idx = free_kernarg_segments.front(); 202 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 203 (free_idx * kernarg_size_including_implicit())); 204 assert(free_idx == pointer_to_index(res)); 205 free_kernarg_segments.pop(); 206 } 207 return res; 208 } 209 210 void deallocate(void *ptr) { 211 lock l(&mutex); 212 int idx = pointer_to_index(ptr); 213 free_kernarg_segments.push(idx); 214 } 215 216 private: 217 int pointer_to_index(void *ptr) { 218 ptrdiff_t bytes = 219 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 220 assert(bytes >= 0); 221 assert(bytes % kernarg_size_including_implicit() == 0); 222 return bytes / kernarg_size_including_implicit(); 223 } 224 struct lock { 225 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 226 ~lock() { pthread_mutex_unlock(m); } 227 pthread_mutex_t *m; 228 }; 229 }; 230 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 231 232 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 233 KernelArgPoolMap; 234 235 /// Use a single entity to encode a kernel and a set of flags 236 struct KernelTy { 237 // execution mode of kernel 238 // 0 - SPMD mode (without master warp) 239 // 1 - Generic mode (with master warp) 240 // 2 - SPMD mode execution with Generic mode semantics. 241 int8_t ExecutionMode; 242 int16_t ConstWGSize; 243 int32_t device_id; 244 void *CallStackAddr = nullptr; 245 const char *Name; 246 247 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 248 void *_CallStackAddr, const char *_Name, 249 uint32_t _kernarg_segment_size, 250 hsa_amd_memory_pool_t &KernArgMemoryPool) 251 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 252 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 253 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 254 255 std::string N(_Name); 256 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 257 KernelArgPoolMap.insert( 258 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 259 _kernarg_segment_size, KernArgMemoryPool)))); 260 } 261 } 262 }; 263 264 /// List that contains all the kernels. 265 /// FIXME: we may need this to be per device and per library. 266 std::list<KernelTy> KernelsList; 267 268 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 269 270 hsa_status_t err = 271 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 272 hsa_device_type_t device_type; 273 // get_info fails iff HSA runtime not yet initialized 274 hsa_status_t err = 275 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 276 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 277 printf("rtl.cpp: err %d\n", err); 278 assert(err == HSA_STATUS_SUCCESS); 279 280 CB(device_type, agent); 281 return HSA_STATUS_SUCCESS; 282 }); 283 284 // iterate_agents fails iff HSA runtime not yet initialized 285 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 286 printf("rtl.cpp: err %d\n", err); 287 } 288 289 return err; 290 } 291 292 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 293 void *data) { 294 if (status != HSA_STATUS_SUCCESS) { 295 const char *status_string; 296 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 297 status_string = "unavailable"; 298 } 299 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 300 __LINE__, source, status, status_string); 301 abort(); 302 } 303 } 304 305 namespace core { 306 namespace { 307 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 308 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 309 } 310 311 uint16_t create_header() { 312 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 313 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 314 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 315 return header; 316 } 317 318 hsa_status_t addKernArgPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 319 std::vector<hsa_amd_memory_pool_t> *Result = 320 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 321 bool AllocAllowed = false; 322 hsa_status_t err = hsa_amd_memory_pool_get_info( 323 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 324 &AllocAllowed); 325 if (err != HSA_STATUS_SUCCESS) { 326 fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n", 327 get_error_string(err)); 328 return err; 329 } 330 331 if (!AllocAllowed) { 332 // nothing needs to be done here. 333 return HSA_STATUS_SUCCESS; 334 } 335 336 uint32_t GlobalFlags = 0; 337 err = hsa_amd_memory_pool_get_info( 338 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 339 if (err != HSA_STATUS_SUCCESS) { 340 fprintf(stderr, "Get memory pool info failed: %s\n", get_error_string(err)); 341 return err; 342 } 343 344 size_t size = 0; 345 err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, 346 &size); 347 if (err != HSA_STATUS_SUCCESS) { 348 fprintf(stderr, "Get memory pool size failed: %s\n", get_error_string(err)); 349 return err; 350 } 351 352 if ((GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) && 353 (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) && 354 size > 0) { 355 Result->push_back(MemoryPool); 356 } 357 358 return HSA_STATUS_SUCCESS; 359 } 360 361 std::pair<hsa_status_t, bool> 362 isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { 363 bool AllocAllowed = false; 364 hsa_status_t Err = hsa_amd_memory_pool_get_info( 365 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 366 &AllocAllowed); 367 if (Err != HSA_STATUS_SUCCESS) { 368 fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n", 369 get_error_string(Err)); 370 return {Err, false}; 371 } 372 373 return {HSA_STATUS_SUCCESS, AllocAllowed}; 374 } 375 376 template <typename AccumulatorFunc> 377 hsa_status_t collectMemoryPools(const std::vector<hsa_agent_t> &Agents, 378 AccumulatorFunc Func) { 379 for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { 380 hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( 381 Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { 382 hsa_status_t Err; 383 bool Valid = false; 384 std::tie(Err, Valid) = isValidMemoryPool(MemoryPool); 385 if (Err != HSA_STATUS_SUCCESS) { 386 return Err; 387 } 388 if (Valid) 389 Func(MemoryPool, DeviceId); 390 return HSA_STATUS_SUCCESS; 391 }); 392 393 if (Err != HSA_STATUS_SUCCESS) { 394 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 395 "Iterate all memory pools", get_error_string(Err)); 396 return Err; 397 } 398 } 399 400 return HSA_STATUS_SUCCESS; 401 } 402 403 std::pair<hsa_status_t, hsa_amd_memory_pool_t> 404 FindKernargPool(const std::vector<hsa_agent_t> &HSAAgents) { 405 std::vector<hsa_amd_memory_pool_t> KernArgPools; 406 for (const auto &Agent : HSAAgents) { 407 hsa_status_t err = HSA_STATUS_SUCCESS; 408 err = hsa_amd_agent_iterate_memory_pools( 409 Agent, addKernArgPool, static_cast<void *>(&KernArgPools)); 410 if (err != HSA_STATUS_SUCCESS) { 411 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 412 "Iterate all memory pools", get_error_string(err)); 413 return {err, hsa_amd_memory_pool_t{}}; 414 } 415 } 416 417 if (KernArgPools.empty()) { 418 fprintf(stderr, "Unable to find any valid kernarg pool\n"); 419 return {HSA_STATUS_ERROR, hsa_amd_memory_pool_t{}}; 420 } 421 422 return {HSA_STATUS_SUCCESS, KernArgPools[0]}; 423 } 424 425 } // namespace 426 } // namespace core 427 428 struct EnvironmentVariables { 429 int NumTeams; 430 int TeamLimit; 431 int TeamThreadLimit; 432 int MaxTeamsDefault; 433 }; 434 435 /// Class containing all the device information 436 class RTLDeviceInfoTy { 437 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 438 bool HSAInitializeSucceeded = false; 439 440 public: 441 // load binary populates symbol tables and mutates various global state 442 // run uses those symbol tables 443 std::shared_timed_mutex load_run_lock; 444 445 int NumberOfDevices = 0; 446 447 // GPU devices 448 std::vector<hsa_agent_t> HSAAgents; 449 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 450 451 // CPUs 452 std::vector<hsa_agent_t> CPUAgents; 453 454 // Device properties 455 std::vector<int> ComputeUnits; 456 std::vector<int> GroupsPerDevice; 457 std::vector<int> ThreadsPerGroup; 458 std::vector<int> WarpSize; 459 std::vector<std::string> GPUName; 460 461 // OpenMP properties 462 std::vector<int> NumTeams; 463 std::vector<int> NumThreads; 464 465 // OpenMP Environment properties 466 EnvironmentVariables Env; 467 468 // OpenMP Requires Flags 469 int64_t RequiresFlags; 470 471 // Resource pools 472 SignalPoolT FreeSignalPool; 473 474 bool hostcall_required = false; 475 476 std::vector<hsa_executable_t> HSAExecutables; 477 478 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 479 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 480 481 hsa_amd_memory_pool_t KernArgPool; 482 483 // fine grained memory pool for host allocations 484 hsa_amd_memory_pool_t HostFineGrainedMemoryPool; 485 486 // fine and coarse-grained memory pools per offloading device 487 std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools; 488 std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools; 489 490 struct atmiFreePtrDeletor { 491 void operator()(void *p) { 492 core::Runtime::Memfree(p); // ignore failure to free 493 } 494 }; 495 496 // device_State shared across loaded binaries, error if inconsistent size 497 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 498 deviceStateStore; 499 500 static const unsigned HardTeamLimit = 501 (1 << 16) - 1; // 64K needed to fit in uint16 502 static const int DefaultNumTeams = 128; 503 static const int Max_Teams = llvm::omp::AMDGPUGridValues.GV_Max_Teams; 504 static const int Warp_Size = llvm::omp::AMDGPUGridValues.GV_Warp_Size; 505 static const int Max_WG_Size = llvm::omp::AMDGPUGridValues.GV_Max_WG_Size; 506 static const int Default_WG_Size = 507 llvm::omp::AMDGPUGridValues.GV_Default_WG_Size; 508 509 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 510 size_t size, hsa_agent_t, 511 hsa_amd_memory_pool_t); 512 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 513 MemcpyFunc Func, int32_t deviceId) { 514 hsa_agent_t agent = HSAAgents[deviceId]; 515 hsa_signal_t s = FreeSignalPool.pop(); 516 if (s.handle == 0) { 517 return HSA_STATUS_ERROR; 518 } 519 hsa_status_t r = Func(s, dest, src, size, agent, HostFineGrainedMemoryPool); 520 FreeSignalPool.push(s); 521 return r; 522 } 523 524 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 525 size_t size, int32_t deviceId) { 526 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 527 } 528 529 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 530 size_t size, int32_t deviceId) { 531 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 532 } 533 534 // Record entry point associated with device 535 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 536 assert(device_id < (int32_t)FuncGblEntries.size() && 537 "Unexpected device id!"); 538 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 539 540 E.Entries.push_back(entry); 541 } 542 543 // Return true if the entry is associated with device 544 bool findOffloadEntry(int32_t device_id, void *addr) { 545 assert(device_id < (int32_t)FuncGblEntries.size() && 546 "Unexpected device id!"); 547 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 548 549 for (auto &it : E.Entries) { 550 if (it.addr == addr) 551 return true; 552 } 553 554 return false; 555 } 556 557 // Return the pointer to the target entries table 558 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 559 assert(device_id < (int32_t)FuncGblEntries.size() && 560 "Unexpected device id!"); 561 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 562 563 int32_t size = E.Entries.size(); 564 565 // Table is empty 566 if (!size) 567 return 0; 568 569 __tgt_offload_entry *begin = &E.Entries[0]; 570 __tgt_offload_entry *end = &E.Entries[size - 1]; 571 572 // Update table info according to the entries and return the pointer 573 E.Table.EntriesBegin = begin; 574 E.Table.EntriesEnd = ++end; 575 576 return &E.Table; 577 } 578 579 // Clear entries table for a device 580 void clearOffloadEntriesTable(int device_id) { 581 assert(device_id < (int32_t)FuncGblEntries.size() && 582 "Unexpected device id!"); 583 FuncGblEntries[device_id].emplace_back(); 584 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 585 // KernelArgPoolMap.clear(); 586 E.Entries.clear(); 587 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 588 } 589 590 hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, 591 int DeviceId) { 592 assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); 593 uint32_t GlobalFlags = 0; 594 hsa_status_t Err = hsa_amd_memory_pool_get_info( 595 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 596 597 if (Err != HSA_STATUS_SUCCESS) { 598 return Err; 599 } 600 601 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 602 DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; 603 } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { 604 DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; 605 } 606 607 return HSA_STATUS_SUCCESS; 608 } 609 610 hsa_status_t addHostMemoryPool(hsa_amd_memory_pool_t MemoryPool, 611 int DeviceId) { 612 uint32_t GlobalFlags = 0; 613 hsa_status_t Err = hsa_amd_memory_pool_get_info( 614 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 615 616 if (Err != HSA_STATUS_SUCCESS) { 617 return Err; 618 } 619 620 uint32_t Size; 621 Err = hsa_amd_memory_pool_get_info(MemoryPool, 622 HSA_AMD_MEMORY_POOL_INFO_SIZE, &Size); 623 if (Err != HSA_STATUS_SUCCESS) { 624 return Err; 625 } 626 627 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED && 628 Size > 0) { 629 HostFineGrainedMemoryPool = MemoryPool; 630 } 631 632 return HSA_STATUS_SUCCESS; 633 } 634 635 hsa_status_t setupMemoryPools() { 636 using namespace std::placeholders; 637 hsa_status_t Err; 638 Err = core::collectMemoryPools( 639 CPUAgents, std::bind(&RTLDeviceInfoTy::addHostMemoryPool, this, _1, _2)); 640 if (Err != HSA_STATUS_SUCCESS) { 641 fprintf(stderr, "HSA error in collecting memory pools for CPU: %s\n", 642 get_error_string(Err)); 643 return Err; 644 } 645 Err = core::collectMemoryPools( 646 HSAAgents, std::bind(&RTLDeviceInfoTy::addDeviceMemoryPool, this, _1, _2)); 647 if (Err != HSA_STATUS_SUCCESS) { 648 fprintf(stderr, 649 "HSA error in collecting memory pools for offload devices: %s\n", 650 get_error_string(Err)); 651 return Err; 652 } 653 return HSA_STATUS_SUCCESS; 654 } 655 656 hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { 657 assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && 658 "Invalid device Id"); 659 return DeviceCoarseGrainedMemoryPools[DeviceId]; 660 } 661 662 hsa_amd_memory_pool_t getHostMemoryPool() { 663 return HostFineGrainedMemoryPool; 664 } 665 666 static int readEnvElseMinusOne(const char *Env) { 667 const char *envStr = getenv(Env); 668 int res = -1; 669 if (envStr) { 670 res = std::stoi(envStr); 671 DP("Parsed %s=%d\n", Env, res); 672 } 673 return res; 674 } 675 676 RTLDeviceInfoTy() { 677 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 678 // anytime. You do not need a debug library build. 679 // 0 => no tracing 680 // 1 => tracing dispatch only 681 // >1 => verbosity increase 682 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 683 print_kernel_trace = atoi(envStr); 684 else 685 print_kernel_trace = 0; 686 687 DP("Start initializing " GETNAME(TARGET_NAME) "\n"); 688 hsa_status_t err = core::atl_init_gpu_context(); 689 if (err == HSA_STATUS_SUCCESS) { 690 HSAInitializeSucceeded = true; 691 } else { 692 DP("Error when initializing " GETNAME(TARGET_NAME) "\n"); 693 return; 694 } 695 696 // Init hostcall soon after initializing ATMI 697 hostrpc_init(); 698 699 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 700 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 701 CPUAgents.push_back(Agent); 702 } else { 703 HSAAgents.push_back(Agent); 704 } 705 }); 706 if (err != HSA_STATUS_SUCCESS) 707 return; 708 709 NumberOfDevices = (int)HSAAgents.size(); 710 711 if (NumberOfDevices == 0) { 712 DP("There are no devices supporting HSA.\n"); 713 return; 714 } else { 715 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 716 } 717 std::tie(err, KernArgPool) = core::FindKernargPool(CPUAgents); 718 if (err != HSA_STATUS_SUCCESS) { 719 DP("Error when reading memory pools\n"); 720 return; 721 } 722 723 // Init the device info 724 HSAQueues.resize(NumberOfDevices); 725 FuncGblEntries.resize(NumberOfDevices); 726 ThreadsPerGroup.resize(NumberOfDevices); 727 ComputeUnits.resize(NumberOfDevices); 728 GPUName.resize(NumberOfDevices); 729 GroupsPerDevice.resize(NumberOfDevices); 730 WarpSize.resize(NumberOfDevices); 731 NumTeams.resize(NumberOfDevices); 732 NumThreads.resize(NumberOfDevices); 733 deviceStateStore.resize(NumberOfDevices); 734 KernelInfoTable.resize(NumberOfDevices); 735 SymbolInfoTable.resize(NumberOfDevices); 736 DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); 737 DeviceFineGrainedMemoryPools.resize(NumberOfDevices); 738 739 err = setupMemoryPools(); 740 if (err != HSA_STATUS_SUCCESS) { 741 DP("Error when setting up memory pools"); 742 return; 743 } 744 745 for (int i = 0; i < NumberOfDevices; i++) { 746 HSAQueues[i] = nullptr; 747 } 748 749 for (int i = 0; i < NumberOfDevices; i++) { 750 uint32_t queue_size = 0; 751 { 752 hsa_status_t err = hsa_agent_get_info( 753 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 754 if (err != HSA_STATUS_SUCCESS) { 755 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 756 return; 757 } 758 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 759 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 760 } 761 } 762 763 hsa_status_t rc = hsa_queue_create( 764 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 765 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 766 if (rc != HSA_STATUS_SUCCESS) { 767 DP("Failed to create HSA queue %d\n", i); 768 return; 769 } 770 771 deviceStateStore[i] = {nullptr, 0}; 772 } 773 774 for (int i = 0; i < NumberOfDevices; i++) { 775 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 776 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 777 ComputeUnits[i] = 1; 778 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 779 GroupsPerDevice[i], ThreadsPerGroup[i]); 780 } 781 782 // Get environment variables regarding teams 783 Env.TeamLimit = readEnvElseMinusOne("OMP_TEAM_LIMIT"); 784 Env.NumTeams = readEnvElseMinusOne("OMP_NUM_TEAMS"); 785 Env.MaxTeamsDefault = readEnvElseMinusOne("OMP_MAX_TEAMS_DEFAULT"); 786 Env.TeamThreadLimit = readEnvElseMinusOne("OMP_TEAMS_THREAD_LIMIT"); 787 788 // Default state. 789 RequiresFlags = OMP_REQ_UNDEFINED; 790 } 791 792 ~RTLDeviceInfoTy() { 793 DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n"); 794 if (!HSAInitializeSucceeded) { 795 // Then none of these can have been set up and they can't be torn down 796 return; 797 } 798 // Run destructors on types that use HSA before 799 // atmi_finalize removes access to it 800 deviceStateStore.clear(); 801 KernelArgPoolMap.clear(); 802 // Terminate hostrpc before finalizing ATMI 803 hostrpc_terminate(); 804 805 hsa_status_t Err; 806 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 807 Err = hsa_executable_destroy(HSAExecutables[I]); 808 if (Err != HSA_STATUS_SUCCESS) { 809 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 810 "Destroying executable", get_error_string(Err)); 811 } 812 } 813 814 Err = hsa_shut_down(); 815 if (Err != HSA_STATUS_SUCCESS) { 816 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA", 817 get_error_string(Err)); 818 } 819 } 820 }; 821 822 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 823 824 // TODO: May need to drop the trailing to fields until deviceRTL is updated 825 struct omptarget_device_environmentTy { 826 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 827 // only useful for Debug build of deviceRTLs 828 int32_t num_devices; // gets number of active offload devices 829 int32_t device_num; // gets a value 0 to num_devices-1 830 }; 831 832 static RTLDeviceInfoTy DeviceInfo; 833 834 namespace { 835 836 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 837 __tgt_async_info *AsyncInfo) { 838 assert(AsyncInfo && "AsyncInfo is nullptr"); 839 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 840 // Return success if we are not copying back to host from target. 841 if (!HstPtr) 842 return OFFLOAD_SUCCESS; 843 hsa_status_t err; 844 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 845 (long long unsigned)(Elf64_Addr)TgtPtr, 846 (long long unsigned)(Elf64_Addr)HstPtr); 847 848 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 849 DeviceId); 850 851 if (err != HSA_STATUS_SUCCESS) { 852 DP("Error when copying data from device to host. Pointers: " 853 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 854 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 855 return OFFLOAD_FAIL; 856 } 857 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 858 (long long unsigned)(Elf64_Addr)TgtPtr, 859 (long long unsigned)(Elf64_Addr)HstPtr); 860 return OFFLOAD_SUCCESS; 861 } 862 863 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 864 __tgt_async_info *AsyncInfo) { 865 assert(AsyncInfo && "AsyncInfo is nullptr"); 866 hsa_status_t err; 867 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 868 // Return success if we are not doing host to target. 869 if (!HstPtr) 870 return OFFLOAD_SUCCESS; 871 872 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 873 (long long unsigned)(Elf64_Addr)HstPtr, 874 (long long unsigned)(Elf64_Addr)TgtPtr); 875 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 876 DeviceId); 877 if (err != HSA_STATUS_SUCCESS) { 878 DP("Error when copying data from host to device. Pointers: " 879 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 880 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 881 return OFFLOAD_FAIL; 882 } 883 return OFFLOAD_SUCCESS; 884 } 885 886 // Async. 887 // The implementation was written with cuda streams in mind. The semantics of 888 // that are to execute kernels on a queue in order of insertion. A synchronise 889 // call then makes writes visible between host and device. This means a series 890 // of N data_submit_async calls are expected to execute serially. HSA offers 891 // various options to run the data copies concurrently. This may require changes 892 // to libomptarget. 893 894 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 895 // there are no outstanding kernels that need to be synchronized. Any async call 896 // may be passed a Queue==0, at which point the cuda implementation will set it 897 // to non-null (see getStream). The cuda streams are per-device. Upstream may 898 // change this interface to explicitly initialize the AsyncInfo_pointer, but 899 // until then hsa lazily initializes it as well. 900 901 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 902 // set non-null while using async calls, return to null to indicate completion 903 assert(AsyncInfo); 904 if (!AsyncInfo->Queue) { 905 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 906 } 907 } 908 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 909 assert(AsyncInfo); 910 assert(AsyncInfo->Queue); 911 AsyncInfo->Queue = 0; 912 } 913 914 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 915 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 916 int32_t r = elf_check_machine(image, amdgcnMachineID); 917 if (!r) { 918 DP("Supported machine ID not found\n"); 919 } 920 return r; 921 } 922 923 uint32_t elf_e_flags(__tgt_device_image *image) { 924 char *img_begin = (char *)image->ImageStart; 925 size_t img_size = (char *)image->ImageEnd - img_begin; 926 927 Elf *e = elf_memory(img_begin, img_size); 928 if (!e) { 929 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 930 return 0; 931 } 932 933 Elf64_Ehdr *eh64 = elf64_getehdr(e); 934 935 if (!eh64) { 936 DP("Unable to get machine ID from ELF file!\n"); 937 elf_end(e); 938 return 0; 939 } 940 941 uint32_t Flags = eh64->e_flags; 942 943 elf_end(e); 944 DP("ELF Flags: 0x%x\n", Flags); 945 return Flags; 946 } 947 } // namespace 948 949 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 950 return elf_machine_id_is_amdgcn(image); 951 } 952 953 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 954 955 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 956 DP("Init requires flags to %ld\n", RequiresFlags); 957 DeviceInfo.RequiresFlags = RequiresFlags; 958 return RequiresFlags; 959 } 960 961 namespace { 962 template <typename T> bool enforce_upper_bound(T *value, T upper) { 963 bool changed = *value > upper; 964 if (changed) { 965 *value = upper; 966 } 967 return changed; 968 } 969 } // namespace 970 971 int32_t __tgt_rtl_init_device(int device_id) { 972 hsa_status_t err; 973 974 // this is per device id init 975 DP("Initialize the device id: %d\n", device_id); 976 977 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 978 979 // Get number of Compute Unit 980 uint32_t compute_units = 0; 981 err = hsa_agent_get_info( 982 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 983 &compute_units); 984 if (err != HSA_STATUS_SUCCESS) { 985 DeviceInfo.ComputeUnits[device_id] = 1; 986 DP("Error getting compute units : settiing to 1\n"); 987 } else { 988 DeviceInfo.ComputeUnits[device_id] = compute_units; 989 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 990 } 991 992 char GetInfoName[64]; // 64 max size returned by get info 993 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 994 (void *)GetInfoName); 995 if (err) 996 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 997 else { 998 DeviceInfo.GPUName[device_id] = GetInfoName; 999 } 1000 1001 if (print_kernel_trace & STARTUP_DETAILS) 1002 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 1003 DeviceInfo.ComputeUnits[device_id], 1004 DeviceInfo.GPUName[device_id].c_str()); 1005 1006 // Query attributes to determine number of threads/block and blocks/grid. 1007 uint16_t workgroup_max_dim[3]; 1008 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 1009 &workgroup_max_dim); 1010 if (err != HSA_STATUS_SUCCESS) { 1011 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 1012 DP("Error getting grid dims: num groups : %d\n", 1013 RTLDeviceInfoTy::DefaultNumTeams); 1014 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 1015 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 1016 DP("Using %d ROCm blocks per grid\n", 1017 DeviceInfo.GroupsPerDevice[device_id]); 1018 } else { 1019 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 1020 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 1021 "at the hard limit\n", 1022 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 1023 } 1024 1025 // Get thread limit 1026 hsa_dim3_t grid_max_dim; 1027 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 1028 if (err == HSA_STATUS_SUCCESS) { 1029 DeviceInfo.ThreadsPerGroup[device_id] = 1030 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 1031 DeviceInfo.GroupsPerDevice[device_id]; 1032 1033 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 1034 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1035 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1036 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 1037 RTLDeviceInfoTy::Max_WG_Size)) { 1038 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1039 } else { 1040 DP("Using ROCm Queried thread limit: %d\n", 1041 DeviceInfo.ThreadsPerGroup[device_id]); 1042 } 1043 } else { 1044 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1045 DP("Error getting max block dimension, use default:%d \n", 1046 RTLDeviceInfoTy::Max_WG_Size); 1047 } 1048 1049 // Get wavefront size 1050 uint32_t wavefront_size = 0; 1051 err = 1052 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 1053 if (err == HSA_STATUS_SUCCESS) { 1054 DP("Queried wavefront size: %d\n", wavefront_size); 1055 DeviceInfo.WarpSize[device_id] = wavefront_size; 1056 } else { 1057 DP("Default wavefront size: %d\n", 1058 llvm::omp::AMDGPUGridValues.GV_Warp_Size); 1059 DeviceInfo.WarpSize[device_id] = llvm::omp::AMDGPUGridValues.GV_Warp_Size; 1060 } 1061 1062 // Adjust teams to the env variables 1063 1064 if (DeviceInfo.Env.TeamLimit > 0 && 1065 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 1066 DeviceInfo.Env.TeamLimit))) { 1067 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 1068 DeviceInfo.Env.TeamLimit); 1069 } 1070 1071 // Set default number of teams 1072 if (DeviceInfo.Env.NumTeams > 0) { 1073 DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams; 1074 DP("Default number of teams set according to environment %d\n", 1075 DeviceInfo.Env.NumTeams); 1076 } else { 1077 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 1078 int TeamsPerCU = DefaultTeamsPerCU; 1079 if (TeamsPerCUEnvStr) { 1080 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 1081 } 1082 1083 DeviceInfo.NumTeams[device_id] = 1084 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 1085 DP("Default number of teams = %d * number of compute units %d\n", 1086 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 1087 } 1088 1089 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 1090 DeviceInfo.GroupsPerDevice[device_id])) { 1091 DP("Default number of teams exceeds device limit, capping at %d\n", 1092 DeviceInfo.GroupsPerDevice[device_id]); 1093 } 1094 1095 // Adjust threads to the env variables 1096 if (DeviceInfo.Env.TeamThreadLimit > 0 && 1097 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1098 DeviceInfo.Env.TeamThreadLimit))) { 1099 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 1100 DeviceInfo.Env.TeamThreadLimit); 1101 } 1102 1103 // Set default number of threads 1104 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 1105 DP("Default number of threads set according to library's default %d\n", 1106 RTLDeviceInfoTy::Default_WG_Size); 1107 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1108 DeviceInfo.ThreadsPerGroup[device_id])) { 1109 DP("Default number of threads exceeds device limit, capping at %d\n", 1110 DeviceInfo.ThreadsPerGroup[device_id]); 1111 } 1112 1113 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 1114 device_id, DeviceInfo.GroupsPerDevice[device_id], 1115 DeviceInfo.ThreadsPerGroup[device_id]); 1116 1117 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 1118 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 1119 DeviceInfo.GroupsPerDevice[device_id], 1120 DeviceInfo.GroupsPerDevice[device_id] * 1121 DeviceInfo.ThreadsPerGroup[device_id]); 1122 1123 return OFFLOAD_SUCCESS; 1124 } 1125 1126 namespace { 1127 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 1128 size_t N; 1129 int rc = elf_getshdrnum(elf, &N); 1130 if (rc != 0) { 1131 return nullptr; 1132 } 1133 1134 Elf64_Shdr *result = nullptr; 1135 for (size_t i = 0; i < N; i++) { 1136 Elf_Scn *scn = elf_getscn(elf, i); 1137 if (scn) { 1138 Elf64_Shdr *shdr = elf64_getshdr(scn); 1139 if (shdr) { 1140 if (shdr->sh_type == SHT_HASH) { 1141 if (result == nullptr) { 1142 result = shdr; 1143 } else { 1144 // multiple SHT_HASH sections not handled 1145 return nullptr; 1146 } 1147 } 1148 } 1149 } 1150 } 1151 return result; 1152 } 1153 1154 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1155 const char *symname) { 1156 1157 assert(section_hash); 1158 size_t section_symtab_index = section_hash->sh_link; 1159 Elf64_Shdr *section_symtab = 1160 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1161 size_t section_strtab_index = section_symtab->sh_link; 1162 1163 const Elf64_Sym *symtab = 1164 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1165 1166 const uint32_t *hashtab = 1167 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1168 1169 // Layout: 1170 // nbucket 1171 // nchain 1172 // bucket[nbucket] 1173 // chain[nchain] 1174 uint32_t nbucket = hashtab[0]; 1175 const uint32_t *bucket = &hashtab[2]; 1176 const uint32_t *chain = &hashtab[nbucket + 2]; 1177 1178 const size_t max = strlen(symname) + 1; 1179 const uint32_t hash = elf_hash(symname); 1180 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1181 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1182 if (strncmp(symname, n, max) == 0) { 1183 return &symtab[i]; 1184 } 1185 } 1186 1187 return nullptr; 1188 } 1189 1190 struct symbol_info { 1191 void *addr = nullptr; 1192 uint32_t size = UINT32_MAX; 1193 uint32_t sh_type = SHT_NULL; 1194 }; 1195 1196 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1197 symbol_info *res) { 1198 if (elf_kind(elf) != ELF_K_ELF) { 1199 return 1; 1200 } 1201 1202 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1203 if (!section_hash) { 1204 return 1; 1205 } 1206 1207 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1208 if (!sym) { 1209 return 1; 1210 } 1211 1212 if (sym->st_size > UINT32_MAX) { 1213 return 1; 1214 } 1215 1216 if (sym->st_shndx == SHN_UNDEF) { 1217 return 1; 1218 } 1219 1220 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1221 if (!section) { 1222 return 1; 1223 } 1224 1225 Elf64_Shdr *header = elf64_getshdr(section); 1226 if (!header) { 1227 return 1; 1228 } 1229 1230 res->addr = sym->st_value + base; 1231 res->size = static_cast<uint32_t>(sym->st_size); 1232 res->sh_type = header->sh_type; 1233 return 0; 1234 } 1235 1236 int get_symbol_info_without_loading(char *base, size_t img_size, 1237 const char *symname, symbol_info *res) { 1238 Elf *elf = elf_memory(base, img_size); 1239 if (elf) { 1240 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1241 elf_end(elf); 1242 return rc; 1243 } 1244 return 1; 1245 } 1246 1247 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1248 const char *symname, void **var_addr, 1249 uint32_t *var_size) { 1250 symbol_info si; 1251 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1252 if (rc == 0) { 1253 *var_addr = si.addr; 1254 *var_size = si.size; 1255 return HSA_STATUS_SUCCESS; 1256 } else { 1257 return HSA_STATUS_ERROR; 1258 } 1259 } 1260 1261 template <typename C> 1262 hsa_status_t module_register_from_memory_to_place( 1263 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1264 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1265 void *module_bytes, size_t module_size, int DeviceId, C cb, 1266 std::vector<hsa_executable_t> &HSAExecutables) { 1267 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1268 C *unwrapped = static_cast<C *>(cb_state); 1269 return (*unwrapped)(data, size); 1270 }; 1271 return core::RegisterModuleFromMemory( 1272 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1273 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1274 HSAExecutables); 1275 } 1276 } // namespace 1277 1278 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1279 uint64_t device_State_bytes = 0; 1280 { 1281 // If this is the deviceRTL, get the state variable size 1282 symbol_info size_si; 1283 int rc = get_symbol_info_without_loading( 1284 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1285 1286 if (rc == 0) { 1287 if (size_si.size != sizeof(uint64_t)) { 1288 DP("Found device_State_size variable with wrong size\n"); 1289 return 0; 1290 } 1291 1292 // Read number of bytes directly from the elf 1293 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1294 } 1295 } 1296 return device_State_bytes; 1297 } 1298 1299 static __tgt_target_table * 1300 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1301 1302 static __tgt_target_table * 1303 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1304 1305 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1306 __tgt_device_image *image) { 1307 DeviceInfo.load_run_lock.lock(); 1308 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1309 DeviceInfo.load_run_lock.unlock(); 1310 return res; 1311 } 1312 1313 struct device_environment { 1314 // initialise an omptarget_device_environmentTy in the deviceRTL 1315 // patches around differences in the deviceRTL between trunk, aomp, 1316 // rocmcc. Over time these differences will tend to zero and this class 1317 // simplified. 1318 // Symbol may be in .data or .bss, and may be missing fields: 1319 // - aomp has debug_level, num_devices, device_num 1320 // - trunk has debug_level 1321 // - under review in trunk is debug_level, device_num 1322 // - rocmcc matches aomp, patch to swap num_devices and device_num 1323 1324 // The symbol may also have been deadstripped because the device side 1325 // accessors were unused. 1326 1327 // If the symbol is in .data (aomp, rocm) it can be written directly. 1328 // If it is in .bss, we must wait for it to be allocated space on the 1329 // gpu (trunk) and initialize after loading. 1330 const char *sym() { return "omptarget_device_environment"; } 1331 1332 omptarget_device_environmentTy host_device_env; 1333 symbol_info si; 1334 bool valid = false; 1335 1336 __tgt_device_image *image; 1337 const size_t img_size; 1338 1339 device_environment(int device_id, int number_devices, 1340 __tgt_device_image *image, const size_t img_size) 1341 : image(image), img_size(img_size) { 1342 1343 host_device_env.num_devices = number_devices; 1344 host_device_env.device_num = device_id; 1345 host_device_env.debug_level = 0; 1346 #ifdef OMPTARGET_DEBUG 1347 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1348 host_device_env.debug_level = std::stoi(envStr); 1349 } 1350 #endif 1351 1352 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1353 img_size, sym(), &si); 1354 if (rc != 0) { 1355 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1356 return; 1357 } 1358 1359 if (si.size > sizeof(host_device_env)) { 1360 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1361 sizeof(host_device_env)); 1362 return; 1363 } 1364 1365 valid = true; 1366 } 1367 1368 bool in_image() { return si.sh_type != SHT_NOBITS; } 1369 1370 hsa_status_t before_loading(void *data, size_t size) { 1371 if (valid) { 1372 if (in_image()) { 1373 DP("Setting global device environment before load (%u bytes)\n", 1374 si.size); 1375 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1376 void *pos = (char *)data + offset; 1377 memcpy(pos, &host_device_env, si.size); 1378 } 1379 } 1380 return HSA_STATUS_SUCCESS; 1381 } 1382 1383 hsa_status_t after_loading() { 1384 if (valid) { 1385 if (!in_image()) { 1386 DP("Setting global device environment after load (%u bytes)\n", 1387 si.size); 1388 int device_id = host_device_env.device_num; 1389 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1390 void *state_ptr; 1391 uint32_t state_ptr_size; 1392 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1393 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1394 if (err != HSA_STATUS_SUCCESS) { 1395 DP("failed to find %s in loaded image\n", sym()); 1396 return err; 1397 } 1398 1399 if (state_ptr_size != si.size) { 1400 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1401 si.size); 1402 return HSA_STATUS_ERROR; 1403 } 1404 1405 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1406 state_ptr_size, device_id); 1407 } 1408 } 1409 return HSA_STATUS_SUCCESS; 1410 } 1411 }; 1412 1413 static hsa_status_t atmi_calloc(void **ret_ptr, size_t size, int DeviceId) { 1414 uint64_t rounded = 4 * ((size + 3) / 4); 1415 void *ptr; 1416 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(DeviceId); 1417 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, rounded, 0, &ptr); 1418 if (err != HSA_STATUS_SUCCESS) { 1419 return err; 1420 } 1421 1422 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1423 if (rc != HSA_STATUS_SUCCESS) { 1424 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1425 core::Runtime::Memfree(ptr); 1426 return HSA_STATUS_ERROR; 1427 } 1428 1429 *ret_ptr = ptr; 1430 return HSA_STATUS_SUCCESS; 1431 } 1432 1433 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1434 symbol_info si; 1435 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1436 return (rc == 0) && (si.addr != nullptr); 1437 } 1438 1439 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1440 __tgt_device_image *image) { 1441 // This function loads the device image onto gpu[device_id] and does other 1442 // per-image initialization work. Specifically: 1443 // 1444 // - Initialize an omptarget_device_environmentTy instance embedded in the 1445 // image at the symbol "omptarget_device_environment" 1446 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1447 // 1448 // - Allocate a large array per-gpu (could be moved to init_device) 1449 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1450 // - Allocate at least that many bytes of gpu memory 1451 // - Zero initialize it 1452 // - Write the pointer to the symbol omptarget_nvptx_device_State 1453 // 1454 // - Pulls some per-kernel information together from various sources and 1455 // records it in the KernelsList for quicker access later 1456 // 1457 // The initialization can be done before or after loading the image onto the 1458 // gpu. This function presently does a mixture. Using the hsa api to get/set 1459 // the information is simpler to implement, in exchange for more complicated 1460 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1461 // back from the gpu vs a hashtable lookup on the host. 1462 1463 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1464 1465 DeviceInfo.clearOffloadEntriesTable(device_id); 1466 1467 // We do not need to set the ELF version because the caller of this function 1468 // had to do that to decide the right runtime to use 1469 1470 if (!elf_machine_id_is_amdgcn(image)) { 1471 return NULL; 1472 } 1473 1474 { 1475 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1476 img_size); 1477 1478 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1479 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1480 hsa_status_t err = module_register_from_memory_to_place( 1481 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1482 [&](void *data, size_t size) { 1483 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1484 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1485 __ATOMIC_RELEASE); 1486 } 1487 return env.before_loading(data, size); 1488 }, 1489 DeviceInfo.HSAExecutables); 1490 1491 check("Module registering", err); 1492 if (err != HSA_STATUS_SUCCESS) { 1493 fprintf(stderr, 1494 "Possible gpu arch mismatch: device:%s, image:%s please check" 1495 " compiler flag: -march=<gpu>\n", 1496 DeviceInfo.GPUName[device_id].c_str(), 1497 get_elf_mach_gfx_name(elf_e_flags(image))); 1498 return NULL; 1499 } 1500 1501 err = env.after_loading(); 1502 if (err != HSA_STATUS_SUCCESS) { 1503 return NULL; 1504 } 1505 } 1506 1507 DP("ATMI module successfully loaded!\n"); 1508 1509 { 1510 // the device_State array is either large value in bss or a void* that 1511 // needs to be assigned to a pointer to an array of size device_state_bytes 1512 // If absent, it has been deadstripped and needs no setup. 1513 1514 void *state_ptr; 1515 uint32_t state_ptr_size; 1516 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1517 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1518 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1519 &state_ptr_size); 1520 1521 if (err != HSA_STATUS_SUCCESS) { 1522 DP("No device_state symbol found, skipping initialization\n"); 1523 } else { 1524 if (state_ptr_size < sizeof(void *)) { 1525 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1526 sizeof(void *)); 1527 return NULL; 1528 } 1529 1530 // if it's larger than a void*, assume it's a bss array and no further 1531 // initialization is required. Only try to set up a pointer for 1532 // sizeof(void*) 1533 if (state_ptr_size == sizeof(void *)) { 1534 uint64_t device_State_bytes = 1535 get_device_State_bytes((char *)image->ImageStart, img_size); 1536 if (device_State_bytes == 0) { 1537 DP("Can't initialize device_State, missing size information\n"); 1538 return NULL; 1539 } 1540 1541 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1542 if (dss.first.get() == nullptr) { 1543 assert(dss.second == 0); 1544 void *ptr = NULL; 1545 hsa_status_t err = atmi_calloc(&ptr, device_State_bytes, device_id); 1546 if (err != HSA_STATUS_SUCCESS) { 1547 DP("Failed to allocate device_state array\n"); 1548 return NULL; 1549 } 1550 dss = { 1551 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1552 device_State_bytes, 1553 }; 1554 } 1555 1556 void *ptr = dss.first.get(); 1557 if (device_State_bytes != dss.second) { 1558 DP("Inconsistent sizes of device_State unsupported\n"); 1559 return NULL; 1560 } 1561 1562 // write ptr to device memory so it can be used by later kernels 1563 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1564 sizeof(void *), device_id); 1565 if (err != HSA_STATUS_SUCCESS) { 1566 DP("memcpy install of state_ptr failed\n"); 1567 return NULL; 1568 } 1569 } 1570 } 1571 } 1572 1573 // Here, we take advantage of the data that is appended after img_end to get 1574 // the symbols' name we need to load. This data consist of the host entries 1575 // begin and end as well as the target name (see the offloading linker script 1576 // creation in clang compiler). 1577 1578 // Find the symbols in the module by name. The name can be obtain by 1579 // concatenating the host entry name with the target name 1580 1581 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1582 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1583 1584 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1585 1586 if (!e->addr) { 1587 // The host should have always something in the address to 1588 // uniquely identify the target region. 1589 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1590 (unsigned long long)e->size); 1591 return NULL; 1592 } 1593 1594 if (e->size) { 1595 __tgt_offload_entry entry = *e; 1596 1597 void *varptr; 1598 uint32_t varsize; 1599 1600 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1601 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1602 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1603 1604 if (err != HSA_STATUS_SUCCESS) { 1605 // Inform the user what symbol prevented offloading 1606 DP("Loading global '%s' (Failed)\n", e->name); 1607 return NULL; 1608 } 1609 1610 if (varsize != e->size) { 1611 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1612 varsize, e->size); 1613 return NULL; 1614 } 1615 1616 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1617 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1618 entry.addr = (void *)varptr; 1619 1620 DeviceInfo.addOffloadEntry(device_id, entry); 1621 1622 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1623 e->flags & OMP_DECLARE_TARGET_LINK) { 1624 // If unified memory is present any target link variables 1625 // can access host addresses directly. There is no longer a 1626 // need for device copies. 1627 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1628 sizeof(void *), device_id); 1629 if (err != HSA_STATUS_SUCCESS) 1630 DP("Error when copying USM\n"); 1631 DP("Copy linked variable host address (" DPxMOD ")" 1632 "to device address (" DPxMOD ")\n", 1633 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1634 } 1635 1636 continue; 1637 } 1638 1639 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1640 1641 uint32_t kernarg_segment_size; 1642 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1643 hsa_status_t err = atmi_interop_hsa_get_kernel_info( 1644 KernelInfoMap, device_id, e->name, 1645 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1646 &kernarg_segment_size); 1647 1648 // each arg is a void * in this openmp implementation 1649 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1650 std::vector<size_t> arg_sizes(arg_num); 1651 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1652 it != arg_sizes.end(); it++) { 1653 *it = sizeof(void *); 1654 } 1655 1656 // default value GENERIC (in case symbol is missing from cubin file) 1657 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1658 1659 // get flat group size if present, else Default_WG_Size 1660 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1661 1662 // get Kernel Descriptor if present. 1663 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1664 struct KernDescValType { 1665 uint16_t Version; 1666 uint16_t TSize; 1667 uint16_t WG_Size; 1668 uint8_t Mode; 1669 }; 1670 struct KernDescValType KernDescVal; 1671 std::string KernDescNameStr(e->name); 1672 KernDescNameStr += "_kern_desc"; 1673 const char *KernDescName = KernDescNameStr.c_str(); 1674 1675 void *KernDescPtr; 1676 uint32_t KernDescSize; 1677 void *CallStackAddr = nullptr; 1678 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1679 KernDescName, &KernDescPtr, &KernDescSize); 1680 1681 if (err == HSA_STATUS_SUCCESS) { 1682 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1683 DP("Loading global computation properties '%s' - size mismatch (%u != " 1684 "%lu)\n", 1685 KernDescName, KernDescSize, sizeof(KernDescVal)); 1686 1687 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1688 1689 // Check structure size against recorded size. 1690 if ((size_t)KernDescSize != KernDescVal.TSize) 1691 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1692 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1693 1694 DP("After loading global for %s KernDesc \n", KernDescName); 1695 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1696 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1697 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1698 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1699 1700 // Get ExecMode 1701 ExecModeVal = KernDescVal.Mode; 1702 DP("ExecModeVal %d\n", ExecModeVal); 1703 if (KernDescVal.WG_Size == 0) { 1704 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1705 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1706 } 1707 WGSizeVal = KernDescVal.WG_Size; 1708 DP("WGSizeVal %d\n", WGSizeVal); 1709 check("Loading KernDesc computation property", err); 1710 } else { 1711 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1712 1713 // Generic 1714 std::string ExecModeNameStr(e->name); 1715 ExecModeNameStr += "_exec_mode"; 1716 const char *ExecModeName = ExecModeNameStr.c_str(); 1717 1718 void *ExecModePtr; 1719 uint32_t varsize; 1720 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1721 ExecModeName, &ExecModePtr, &varsize); 1722 1723 if (err == HSA_STATUS_SUCCESS) { 1724 if ((size_t)varsize != sizeof(int8_t)) { 1725 DP("Loading global computation properties '%s' - size mismatch(%u != " 1726 "%lu)\n", 1727 ExecModeName, varsize, sizeof(int8_t)); 1728 return NULL; 1729 } 1730 1731 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1732 1733 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1734 ExecModeVal); 1735 1736 if (ExecModeVal < 0 || ExecModeVal > 2) { 1737 DP("Error wrong exec_mode value specified in HSA code object file: " 1738 "%d\n", 1739 ExecModeVal); 1740 return NULL; 1741 } 1742 } else { 1743 DP("Loading global exec_mode '%s' - symbol missing, using default " 1744 "value " 1745 "GENERIC (1)\n", 1746 ExecModeName); 1747 } 1748 check("Loading computation property", err); 1749 1750 // Flat group size 1751 std::string WGSizeNameStr(e->name); 1752 WGSizeNameStr += "_wg_size"; 1753 const char *WGSizeName = WGSizeNameStr.c_str(); 1754 1755 void *WGSizePtr; 1756 uint32_t WGSize; 1757 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1758 WGSizeName, &WGSizePtr, &WGSize); 1759 1760 if (err == HSA_STATUS_SUCCESS) { 1761 if ((size_t)WGSize != sizeof(int16_t)) { 1762 DP("Loading global computation properties '%s' - size mismatch (%u " 1763 "!= " 1764 "%lu)\n", 1765 WGSizeName, WGSize, sizeof(int16_t)); 1766 return NULL; 1767 } 1768 1769 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1770 1771 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1772 1773 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1774 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1775 DP("Error wrong WGSize value specified in HSA code object file: " 1776 "%d\n", 1777 WGSizeVal); 1778 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1779 } 1780 } else { 1781 DP("Warning: Loading WGSize '%s' - symbol not found, " 1782 "using default value %d\n", 1783 WGSizeName, WGSizeVal); 1784 } 1785 1786 check("Loading WGSize computation property", err); 1787 } 1788 1789 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1790 CallStackAddr, e->name, kernarg_segment_size, 1791 DeviceInfo.KernArgPool)); 1792 __tgt_offload_entry entry = *e; 1793 entry.addr = (void *)&KernelsList.back(); 1794 DeviceInfo.addOffloadEntry(device_id, entry); 1795 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1796 } 1797 1798 return DeviceInfo.getOffloadEntriesTable(device_id); 1799 } 1800 1801 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1802 void *ptr = NULL; 1803 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1804 1805 if (kind != TARGET_ALLOC_DEFAULT) { 1806 REPORT("Invalid target data allocation kind or requested allocator not " 1807 "implemented yet\n"); 1808 return NULL; 1809 } 1810 1811 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(device_id); 1812 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, size, 0, &ptr); 1813 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1814 (long long unsigned)(Elf64_Addr)ptr); 1815 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1816 return ptr; 1817 } 1818 1819 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1820 int64_t size) { 1821 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1822 __tgt_async_info AsyncInfo; 1823 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1824 if (rc != OFFLOAD_SUCCESS) 1825 return OFFLOAD_FAIL; 1826 1827 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1828 } 1829 1830 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1831 int64_t size, __tgt_async_info *AsyncInfo) { 1832 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1833 if (AsyncInfo) { 1834 initAsyncInfo(AsyncInfo); 1835 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1836 } else { 1837 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1838 } 1839 } 1840 1841 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1842 int64_t size) { 1843 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1844 __tgt_async_info AsyncInfo; 1845 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1846 if (rc != OFFLOAD_SUCCESS) 1847 return OFFLOAD_FAIL; 1848 1849 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1850 } 1851 1852 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1853 void *tgt_ptr, int64_t size, 1854 __tgt_async_info *AsyncInfo) { 1855 assert(AsyncInfo && "AsyncInfo is nullptr"); 1856 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1857 initAsyncInfo(AsyncInfo); 1858 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1859 } 1860 1861 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1862 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1863 hsa_status_t err; 1864 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1865 err = core::Runtime::Memfree(tgt_ptr); 1866 if (err != HSA_STATUS_SUCCESS) { 1867 DP("Error when freeing CUDA memory\n"); 1868 return OFFLOAD_FAIL; 1869 } 1870 return OFFLOAD_SUCCESS; 1871 } 1872 1873 // Determine launch values for kernel. 1874 struct launchVals { 1875 int WorkgroupSize; 1876 int GridSize; 1877 }; 1878 launchVals getLaunchVals(EnvironmentVariables Env, int ConstWGSize, 1879 int ExecutionMode, int num_teams, int thread_limit, 1880 uint64_t loop_tripcount, int DeviceNumTeams) { 1881 1882 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1883 int num_groups = 0; 1884 1885 int Max_Teams = 1886 Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams; 1887 if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit) 1888 Max_Teams = RTLDeviceInfoTy::HardTeamLimit; 1889 1890 if (print_kernel_trace & STARTUP_DETAILS) { 1891 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1892 RTLDeviceInfoTy::Max_Teams); 1893 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1894 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1895 RTLDeviceInfoTy::Warp_Size); 1896 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1897 RTLDeviceInfoTy::Max_WG_Size); 1898 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1899 RTLDeviceInfoTy::Default_WG_Size); 1900 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1901 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1902 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1903 } 1904 // check for thread_limit() clause 1905 if (thread_limit > 0) { 1906 threadsPerGroup = thread_limit; 1907 DP("Setting threads per block to requested %d\n", thread_limit); 1908 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1909 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1910 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1911 } 1912 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1913 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1914 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1915 } 1916 } 1917 // check flat_max_work_group_size attr here 1918 if (threadsPerGroup > ConstWGSize) { 1919 threadsPerGroup = ConstWGSize; 1920 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1921 threadsPerGroup); 1922 } 1923 if (print_kernel_trace & STARTUP_DETAILS) 1924 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1925 DP("Preparing %d threads\n", threadsPerGroup); 1926 1927 // Set default num_groups (teams) 1928 if (Env.TeamLimit > 0) 1929 num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit; 1930 else 1931 num_groups = Max_Teams; 1932 DP("Set default num of groups %d\n", num_groups); 1933 1934 if (print_kernel_trace & STARTUP_DETAILS) { 1935 fprintf(stderr, "num_groups: %d\n", num_groups); 1936 fprintf(stderr, "num_teams: %d\n", num_teams); 1937 } 1938 1939 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1940 // This reduction is typical for default case (no thread_limit clause). 1941 // or when user goes crazy with num_teams clause. 1942 // FIXME: We cant distinguish between a constant or variable thread limit. 1943 // So we only handle constant thread_limits. 1944 if (threadsPerGroup > 1945 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1946 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1947 // here? 1948 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1949 1950 // check for num_teams() clause 1951 if (num_teams > 0) { 1952 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1953 } 1954 if (print_kernel_trace & STARTUP_DETAILS) { 1955 fprintf(stderr, "num_groups: %d\n", num_groups); 1956 fprintf(stderr, "Env.NumTeams %d\n", Env.NumTeams); 1957 fprintf(stderr, "Env.TeamLimit %d\n", Env.TeamLimit); 1958 } 1959 1960 if (Env.NumTeams > 0) { 1961 num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups; 1962 DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams); 1963 } else if (Env.TeamLimit > 0) { 1964 num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups; 1965 DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit); 1966 } else { 1967 if (num_teams <= 0) { 1968 if (loop_tripcount > 0) { 1969 if (ExecutionMode == SPMD) { 1970 // round up to the nearest integer 1971 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1972 } else if (ExecutionMode == GENERIC) { 1973 num_groups = loop_tripcount; 1974 } else /* ExecutionMode == SPMD_GENERIC */ { 1975 // This is a generic kernel that was transformed to use SPMD-mode 1976 // execution but uses Generic-mode semantics for scheduling. 1977 num_groups = loop_tripcount; 1978 } 1979 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1980 "threads per block %d\n", 1981 num_groups, loop_tripcount, threadsPerGroup); 1982 } 1983 } else { 1984 num_groups = num_teams; 1985 } 1986 if (num_groups > Max_Teams) { 1987 num_groups = Max_Teams; 1988 if (print_kernel_trace & STARTUP_DETAILS) 1989 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1990 Max_Teams); 1991 } 1992 if (num_groups > num_teams && num_teams > 0) { 1993 num_groups = num_teams; 1994 if (print_kernel_trace & STARTUP_DETAILS) 1995 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1996 num_groups, num_teams); 1997 } 1998 } 1999 2000 // num_teams clause always honored, no matter what, unless DEFAULT is active. 2001 if (num_teams > 0) { 2002 num_groups = num_teams; 2003 // Cap num_groups to EnvMaxTeamsDefault if set. 2004 if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault) 2005 num_groups = Env.MaxTeamsDefault; 2006 } 2007 if (print_kernel_trace & STARTUP_DETAILS) { 2008 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 2009 fprintf(stderr, "num_groups: %d\n", num_groups); 2010 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 2011 } 2012 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 2013 threadsPerGroup); 2014 2015 launchVals res; 2016 res.WorkgroupSize = threadsPerGroup; 2017 res.GridSize = threadsPerGroup * num_groups; 2018 return res; 2019 } 2020 2021 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 2022 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 2023 bool full = true; 2024 while (full) { 2025 full = 2026 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 2027 } 2028 return packet_id; 2029 } 2030 2031 static int32_t __tgt_rtl_run_target_team_region_locked( 2032 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2033 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2034 int32_t thread_limit, uint64_t loop_tripcount); 2035 2036 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 2037 void **tgt_args, 2038 ptrdiff_t *tgt_offsets, 2039 int32_t arg_num, int32_t num_teams, 2040 int32_t thread_limit, 2041 uint64_t loop_tripcount) { 2042 2043 DeviceInfo.load_run_lock.lock_shared(); 2044 int32_t res = __tgt_rtl_run_target_team_region_locked( 2045 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 2046 thread_limit, loop_tripcount); 2047 2048 DeviceInfo.load_run_lock.unlock_shared(); 2049 return res; 2050 } 2051 2052 int32_t __tgt_rtl_run_target_team_region_locked( 2053 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2054 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2055 int32_t thread_limit, uint64_t loop_tripcount) { 2056 // Set the context we are using 2057 // update thread limit content in gpu memory if un-initialized or specified 2058 // from host 2059 2060 DP("Run target team region thread_limit %d\n", thread_limit); 2061 2062 // All args are references. 2063 std::vector<void *> args(arg_num); 2064 std::vector<void *> ptrs(arg_num); 2065 2066 DP("Arg_num: %d\n", arg_num); 2067 for (int32_t i = 0; i < arg_num; ++i) { 2068 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 2069 args[i] = &ptrs[i]; 2070 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 2071 } 2072 2073 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 2074 2075 std::string kernel_name = std::string(KernelInfo->Name); 2076 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 2077 if (KernelInfoTable[device_id].find(kernel_name) == 2078 KernelInfoTable[device_id].end()) { 2079 DP("Kernel %s not found\n", kernel_name.c_str()); 2080 return OFFLOAD_FAIL; 2081 } 2082 2083 const atl_kernel_info_t KernelInfoEntry = 2084 KernelInfoTable[device_id][kernel_name]; 2085 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 2086 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 2087 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 2088 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 2089 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 2090 2091 assert(arg_num == (int)KernelInfoEntry.num_args); 2092 2093 /* 2094 * Set limit based on ThreadsPerGroup and GroupsPerDevice 2095 */ 2096 launchVals LV = getLaunchVals(DeviceInfo.Env, KernelInfo->ConstWGSize, 2097 KernelInfo->ExecutionMode, 2098 num_teams, // From run_region arg 2099 thread_limit, // From run_region arg 2100 loop_tripcount, // From run_region arg 2101 DeviceInfo.NumTeams[KernelInfo->device_id]); 2102 const int GridSize = LV.GridSize; 2103 const int WorkgroupSize = LV.WorkgroupSize; 2104 2105 if (print_kernel_trace >= LAUNCH) { 2106 int num_groups = GridSize / WorkgroupSize; 2107 // enum modes are SPMD, GENERIC, NONE 0,1,2 2108 // if doing rtl timing, print to stderr, unless stdout requested. 2109 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 2110 fprintf(traceToStdout ? stdout : stderr, 2111 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 2112 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 2113 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 2114 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 2115 arg_num, num_groups, WorkgroupSize, num_teams, thread_limit, 2116 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 2117 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 2118 } 2119 2120 // Run on the device. 2121 { 2122 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 2123 if (!queue) { 2124 return OFFLOAD_FAIL; 2125 } 2126 uint64_t packet_id = acquire_available_packet_id(queue); 2127 2128 const uint32_t mask = queue->size - 1; // size is a power of 2 2129 hsa_kernel_dispatch_packet_t *packet = 2130 (hsa_kernel_dispatch_packet_t *)queue->base_address + 2131 (packet_id & mask); 2132 2133 // packet->header is written last 2134 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 2135 packet->workgroup_size_x = WorkgroupSize; 2136 packet->workgroup_size_y = 1; 2137 packet->workgroup_size_z = 1; 2138 packet->reserved0 = 0; 2139 packet->grid_size_x = GridSize; 2140 packet->grid_size_y = 1; 2141 packet->grid_size_z = 1; 2142 packet->private_segment_size = KernelInfoEntry.private_segment_size; 2143 packet->group_segment_size = KernelInfoEntry.group_segment_size; 2144 packet->kernel_object = KernelInfoEntry.kernel_object; 2145 packet->kernarg_address = 0; // use the block allocator 2146 packet->reserved2 = 0; // atmi writes id_ here 2147 packet->completion_signal = {0}; // may want a pool of signals 2148 2149 KernelArgPool *ArgPool = nullptr; 2150 { 2151 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 2152 if (it != KernelArgPoolMap.end()) { 2153 ArgPool = (it->second).get(); 2154 } 2155 } 2156 if (!ArgPool) { 2157 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 2158 device_id); 2159 } 2160 { 2161 void *kernarg = nullptr; 2162 if (ArgPool) { 2163 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 2164 kernarg = ArgPool->allocate(arg_num); 2165 } 2166 if (!kernarg) { 2167 DP("Allocate kernarg failed\n"); 2168 return OFFLOAD_FAIL; 2169 } 2170 2171 // Copy explicit arguments 2172 for (int i = 0; i < arg_num; i++) { 2173 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 2174 } 2175 2176 // Initialize implicit arguments. ATMI seems to leave most fields 2177 // uninitialized 2178 atmi_implicit_args_t *impl_args = 2179 reinterpret_cast<atmi_implicit_args_t *>( 2180 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 2181 memset(impl_args, 0, 2182 sizeof(atmi_implicit_args_t)); // may not be necessary 2183 impl_args->offset_x = 0; 2184 impl_args->offset_y = 0; 2185 impl_args->offset_z = 0; 2186 2187 // assign a hostcall buffer for the selected Q 2188 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 2189 // hostrpc_assign_buffer is not thread safe, and this function is 2190 // under a multiple reader lock, not a writer lock. 2191 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 2192 pthread_mutex_lock(&hostcall_init_lock); 2193 impl_args->hostcall_ptr = hostrpc_assign_buffer( 2194 DeviceInfo.HSAAgents[device_id], queue, device_id); 2195 pthread_mutex_unlock(&hostcall_init_lock); 2196 if (!impl_args->hostcall_ptr) { 2197 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 2198 "error\n"); 2199 return OFFLOAD_FAIL; 2200 } 2201 } 2202 2203 packet->kernarg_address = kernarg; 2204 } 2205 2206 { 2207 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 2208 if (s.handle == 0) { 2209 DP("Failed to get signal instance\n"); 2210 return OFFLOAD_FAIL; 2211 } 2212 packet->completion_signal = s; 2213 hsa_signal_store_relaxed(packet->completion_signal, 1); 2214 } 2215 2216 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 2217 core::create_header(), packet->setup); 2218 2219 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 2220 2221 while (hsa_signal_wait_scacquire(packet->completion_signal, 2222 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 2223 HSA_WAIT_STATE_BLOCKED) != 0) 2224 ; 2225 2226 assert(ArgPool); 2227 ArgPool->deallocate(packet->kernarg_address); 2228 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 2229 } 2230 2231 DP("Kernel completed\n"); 2232 return OFFLOAD_SUCCESS; 2233 } 2234 2235 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2236 void **tgt_args, ptrdiff_t *tgt_offsets, 2237 int32_t arg_num) { 2238 // use one team and one thread 2239 // fix thread num 2240 int32_t team_num = 1; 2241 int32_t thread_limit = 0; // use default 2242 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2243 tgt_offsets, arg_num, team_num, 2244 thread_limit, 0); 2245 } 2246 2247 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2248 void *tgt_entry_ptr, void **tgt_args, 2249 ptrdiff_t *tgt_offsets, 2250 int32_t arg_num, 2251 __tgt_async_info *AsyncInfo) { 2252 assert(AsyncInfo && "AsyncInfo is nullptr"); 2253 initAsyncInfo(AsyncInfo); 2254 2255 // use one team and one thread 2256 // fix thread num 2257 int32_t team_num = 1; 2258 int32_t thread_limit = 0; // use default 2259 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2260 tgt_offsets, arg_num, team_num, 2261 thread_limit, 0); 2262 } 2263 2264 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2265 assert(AsyncInfo && "AsyncInfo is nullptr"); 2266 2267 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2268 // is not ensured by devices.cpp for amdgcn 2269 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2270 if (AsyncInfo->Queue) { 2271 finiAsyncInfo(AsyncInfo); 2272 } 2273 return OFFLOAD_SUCCESS; 2274 } 2275 2276 namespace core { 2277 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 2278 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 2279 &DeviceInfo.HSAAgents[0], NULL, ptr); 2280 } 2281 2282 } // namespace core 2283