1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <mutex> 27 #include <shared_mutex> 28 #include <thread> 29 #include <unordered_map> 30 #include <vector> 31 32 // Header from ATMI interface 33 #include "atmi_interop_hsa.h" 34 #include "atmi_runtime.h" 35 36 #include "internal.h" 37 38 #include "Debug.h" 39 #include "get_elf_mach_gfx_name.h" 40 #include "omptargetplugin.h" 41 #include "print_tracing.h" 42 43 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 44 45 #ifndef TARGET_NAME 46 #define TARGET_NAME AMDHSA 47 #endif 48 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 49 50 // hostrpc interface, FIXME: consider moving to its own include these are 51 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 52 // linked as --whole-archive to override the weak symbols that are used to 53 // implement a fallback for toolchains that do not yet have a hostrpc library. 54 extern "C" { 55 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 56 uint32_t device_id); 57 hsa_status_t hostrpc_init(); 58 hsa_status_t hostrpc_terminate(); 59 60 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 61 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 62 return HSA_STATUS_SUCCESS; 63 } 64 __attribute__((weak)) unsigned long 65 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 66 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 67 "missing\n", 68 device_id); 69 return 0; 70 } 71 } 72 73 int print_kernel_trace; 74 75 #undef check // Drop definition from internal.h 76 #ifdef OMPTARGET_DEBUG 77 #define check(msg, status) \ 78 if (status != ATMI_STATUS_SUCCESS) { \ 79 DP(#msg " failed\n"); \ 80 } else { \ 81 DP(#msg " succeeded\n"); \ 82 } 83 #else 84 #define check(msg, status) \ 85 {} 86 #endif 87 88 #include "elf_common.h" 89 90 /// Keep entries table per device 91 struct FuncOrGblEntryTy { 92 __tgt_target_table Table; 93 std::vector<__tgt_offload_entry> Entries; 94 }; 95 96 enum ExecutionModeType { 97 SPMD, // constructors, destructors, 98 // combined constructs (`teams distribute parallel for [simd]`) 99 GENERIC, // everything else 100 NONE 101 }; 102 103 struct KernelArgPool { 104 private: 105 static pthread_mutex_t mutex; 106 107 public: 108 uint32_t kernarg_segment_size; 109 void *kernarg_region = nullptr; 110 std::queue<int> free_kernarg_segments; 111 112 uint32_t kernarg_size_including_implicit() { 113 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 114 } 115 116 ~KernelArgPool() { 117 if (kernarg_region) { 118 auto r = hsa_amd_memory_pool_free(kernarg_region); 119 assert(r == HSA_STATUS_SUCCESS); 120 if (r != HSA_STATUS_SUCCESS) { 121 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 122 "Memory pool free", get_error_string(r)); 123 exit(1); 124 } 125 } 126 } 127 128 // Can't really copy or move a mutex 129 KernelArgPool() = default; 130 KernelArgPool(const KernelArgPool &) = delete; 131 KernelArgPool(KernelArgPool &&) = delete; 132 133 KernelArgPool(uint32_t kernarg_segment_size) 134 : kernarg_segment_size(kernarg_segment_size) { 135 136 // atmi uses one pool per kernel for all gpus, with a fixed upper size 137 // preserving that exact scheme here, including the queue<int> 138 { 139 hsa_status_t err = hsa_amd_memory_pool_allocate( 140 atl_gpu_kernarg_pools[0], 141 kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 142 &kernarg_region); 143 if (err != HSA_STATUS_SUCCESS) { 144 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 145 "Allocating memory for the executable-kernel", 146 get_error_string(err)); 147 exit(1); 148 } 149 core::allow_access_to_all_gpu_agents(kernarg_region); 150 151 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 152 free_kernarg_segments.push(i); 153 } 154 } 155 } 156 157 void *allocate(uint64_t arg_num) { 158 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 159 lock l(&mutex); 160 void *res = nullptr; 161 if (!free_kernarg_segments.empty()) { 162 163 int free_idx = free_kernarg_segments.front(); 164 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 165 (free_idx * kernarg_size_including_implicit())); 166 assert(free_idx == pointer_to_index(res)); 167 free_kernarg_segments.pop(); 168 } 169 return res; 170 } 171 172 void deallocate(void *ptr) { 173 lock l(&mutex); 174 int idx = pointer_to_index(ptr); 175 free_kernarg_segments.push(idx); 176 } 177 178 private: 179 int pointer_to_index(void *ptr) { 180 ptrdiff_t bytes = 181 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 182 assert(bytes >= 0); 183 assert(bytes % kernarg_size_including_implicit() == 0); 184 return bytes / kernarg_size_including_implicit(); 185 } 186 struct lock { 187 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 188 ~lock() { pthread_mutex_unlock(m); } 189 pthread_mutex_t *m; 190 }; 191 }; 192 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 193 194 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 195 KernelArgPoolMap; 196 197 /// Use a single entity to encode a kernel and a set of flags 198 struct KernelTy { 199 // execution mode of kernel 200 // 0 - SPMD mode (without master warp) 201 // 1 - Generic mode (with master warp) 202 int8_t ExecutionMode; 203 int16_t ConstWGSize; 204 int32_t device_id; 205 void *CallStackAddr = nullptr; 206 const char *Name; 207 208 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 209 void *_CallStackAddr, const char *_Name, 210 uint32_t _kernarg_segment_size) 211 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 212 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 213 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 214 215 std::string N(_Name); 216 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 217 KernelArgPoolMap.insert( 218 std::make_pair(N, std::unique_ptr<KernelArgPool>( 219 new KernelArgPool(_kernarg_segment_size)))); 220 } 221 } 222 }; 223 224 /// List that contains all the kernels. 225 /// FIXME: we may need this to be per device and per library. 226 std::list<KernelTy> KernelsList; 227 228 // ATMI API to get gpu and gpu memory place 229 static atmi_place_t get_gpu_place(int device_id) { 230 return ATMI_PLACE_GPU(0, device_id); 231 } 232 static atmi_mem_place_t get_gpu_mem_place(int device_id) { 233 return ATMI_MEM_PLACE_GPU_MEM(0, device_id, 0); 234 } 235 236 static std::vector<hsa_agent_t> find_gpu_agents() { 237 std::vector<hsa_agent_t> res; 238 239 hsa_status_t err = hsa_iterate_agents( 240 [](hsa_agent_t agent, void *data) -> hsa_status_t { 241 std::vector<hsa_agent_t> *res = 242 static_cast<std::vector<hsa_agent_t> *>(data); 243 244 hsa_device_type_t device_type; 245 // get_info fails iff HSA runtime not yet initialized 246 hsa_status_t err = 247 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 248 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 249 printf("rtl.cpp: err %d\n", err); 250 assert(err == HSA_STATUS_SUCCESS); 251 252 if (device_type == HSA_DEVICE_TYPE_GPU) { 253 res->push_back(agent); 254 } 255 return HSA_STATUS_SUCCESS; 256 }, 257 &res); 258 259 // iterate_agents fails iff HSA runtime not yet initialized 260 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 261 printf("rtl.cpp: err %d\n", err); 262 assert(err == HSA_STATUS_SUCCESS); 263 return res; 264 } 265 266 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 267 void *data) { 268 if (status != HSA_STATUS_SUCCESS) { 269 const char *status_string; 270 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 271 status_string = "unavailable"; 272 } 273 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 274 __LINE__, source, status, status_string); 275 abort(); 276 } 277 } 278 279 namespace core { 280 namespace { 281 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 282 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 283 } 284 285 uint16_t create_header() { 286 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 287 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 288 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 289 return header; 290 } 291 } // namespace 292 } // namespace core 293 294 /// Class containing all the device information 295 class RTLDeviceInfoTy { 296 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 297 298 public: 299 // load binary populates symbol tables and mutates various global state 300 // run uses those symbol tables 301 std::shared_timed_mutex load_run_lock; 302 303 int NumberOfDevices; 304 305 // GPU devices 306 std::vector<hsa_agent_t> HSAAgents; 307 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 308 309 // Device properties 310 std::vector<int> ComputeUnits; 311 std::vector<int> GroupsPerDevice; 312 std::vector<int> ThreadsPerGroup; 313 std::vector<int> WarpSize; 314 std::vector<std::string> GPUName; 315 316 // OpenMP properties 317 std::vector<int> NumTeams; 318 std::vector<int> NumThreads; 319 320 // OpenMP Environment properties 321 int EnvNumTeams; 322 int EnvTeamLimit; 323 int EnvMaxTeamsDefault; 324 325 // OpenMP Requires Flags 326 int64_t RequiresFlags; 327 328 // Resource pools 329 SignalPoolT FreeSignalPool; 330 331 struct atmiFreePtrDeletor { 332 void operator()(void *p) { 333 atmi_free(p); // ignore failure to free 334 } 335 }; 336 337 // device_State shared across loaded binaries, error if inconsistent size 338 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 339 deviceStateStore; 340 341 static const unsigned HardTeamLimit = 342 (1 << 16) - 1; // 64K needed to fit in uint16 343 static const int DefaultNumTeams = 128; 344 static const int Max_Teams = 345 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 346 static const int Warp_Size = 347 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 348 static const int Max_WG_Size = 349 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 350 static const int Default_WG_Size = 351 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 352 353 using MemcpyFunc = atmi_status_t (*)(hsa_signal_t, void *, const void *, 354 size_t size, hsa_agent_t); 355 atmi_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 356 MemcpyFunc Func, int32_t deviceId) { 357 hsa_agent_t agent = HSAAgents[deviceId]; 358 hsa_signal_t s = FreeSignalPool.pop(); 359 if (s.handle == 0) { 360 return ATMI_STATUS_ERROR; 361 } 362 atmi_status_t r = Func(s, dest, src, size, agent); 363 FreeSignalPool.push(s); 364 return r; 365 } 366 367 atmi_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 368 size_t size, int32_t deviceId) { 369 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 370 } 371 372 atmi_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 373 size_t size, int32_t deviceId) { 374 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 375 } 376 377 // Record entry point associated with device 378 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 379 assert(device_id < (int32_t)FuncGblEntries.size() && 380 "Unexpected device id!"); 381 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 382 383 E.Entries.push_back(entry); 384 } 385 386 // Return true if the entry is associated with device 387 bool findOffloadEntry(int32_t device_id, void *addr) { 388 assert(device_id < (int32_t)FuncGblEntries.size() && 389 "Unexpected device id!"); 390 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 391 392 for (auto &it : E.Entries) { 393 if (it.addr == addr) 394 return true; 395 } 396 397 return false; 398 } 399 400 // Return the pointer to the target entries table 401 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 402 assert(device_id < (int32_t)FuncGblEntries.size() && 403 "Unexpected device id!"); 404 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 405 406 int32_t size = E.Entries.size(); 407 408 // Table is empty 409 if (!size) 410 return 0; 411 412 __tgt_offload_entry *begin = &E.Entries[0]; 413 __tgt_offload_entry *end = &E.Entries[size - 1]; 414 415 // Update table info according to the entries and return the pointer 416 E.Table.EntriesBegin = begin; 417 E.Table.EntriesEnd = ++end; 418 419 return &E.Table; 420 } 421 422 // Clear entries table for a device 423 void clearOffloadEntriesTable(int device_id) { 424 assert(device_id < (int32_t)FuncGblEntries.size() && 425 "Unexpected device id!"); 426 FuncGblEntries[device_id].emplace_back(); 427 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 428 // KernelArgPoolMap.clear(); 429 E.Entries.clear(); 430 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 431 } 432 433 RTLDeviceInfoTy() { 434 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 435 // anytime. You do not need a debug library build. 436 // 0 => no tracing 437 // 1 => tracing dispatch only 438 // >1 => verbosity increase 439 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 440 print_kernel_trace = atoi(envStr); 441 else 442 print_kernel_trace = 0; 443 444 DP("Start initializing HSA-ATMI\n"); 445 atmi_status_t err = atmi_init(); 446 if (err != ATMI_STATUS_SUCCESS) { 447 DP("Error when initializing HSA-ATMI\n"); 448 return; 449 } 450 // Init hostcall soon after initializing ATMI 451 hostrpc_init(); 452 453 HSAAgents = find_gpu_agents(); 454 NumberOfDevices = (int)HSAAgents.size(); 455 456 if (NumberOfDevices == 0) { 457 DP("There are no devices supporting HSA.\n"); 458 return; 459 } else { 460 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 461 } 462 463 // Init the device info 464 HSAQueues.resize(NumberOfDevices); 465 FuncGblEntries.resize(NumberOfDevices); 466 ThreadsPerGroup.resize(NumberOfDevices); 467 ComputeUnits.resize(NumberOfDevices); 468 GPUName.resize(NumberOfDevices); 469 GroupsPerDevice.resize(NumberOfDevices); 470 WarpSize.resize(NumberOfDevices); 471 NumTeams.resize(NumberOfDevices); 472 NumThreads.resize(NumberOfDevices); 473 deviceStateStore.resize(NumberOfDevices); 474 475 for (int i = 0; i < NumberOfDevices; i++) { 476 uint32_t queue_size = 0; 477 { 478 hsa_status_t err; 479 err = hsa_agent_get_info(HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, 480 &queue_size); 481 if (err != HSA_STATUS_SUCCESS) { 482 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 483 "Querying the agent maximum queue size", 484 get_error_string(err)); 485 exit(1); 486 } 487 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 488 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 489 } 490 } 491 492 hsa_status_t rc = hsa_queue_create( 493 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 494 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 495 if (rc != HSA_STATUS_SUCCESS) { 496 DP("Failed to create HSA queues\n"); 497 return; 498 } 499 500 deviceStateStore[i] = {nullptr, 0}; 501 } 502 503 for (int i = 0; i < NumberOfDevices; i++) { 504 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 505 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 506 ComputeUnits[i] = 1; 507 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 508 GroupsPerDevice[i], ThreadsPerGroup[i]); 509 } 510 511 // Get environment variables regarding teams 512 char *envStr = getenv("OMP_TEAM_LIMIT"); 513 if (envStr) { 514 // OMP_TEAM_LIMIT has been set 515 EnvTeamLimit = std::stoi(envStr); 516 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 517 } else { 518 EnvTeamLimit = -1; 519 } 520 envStr = getenv("OMP_NUM_TEAMS"); 521 if (envStr) { 522 // OMP_NUM_TEAMS has been set 523 EnvNumTeams = std::stoi(envStr); 524 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 525 } else { 526 EnvNumTeams = -1; 527 } 528 // Get environment variables regarding expMaxTeams 529 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 530 if (envStr) { 531 EnvMaxTeamsDefault = std::stoi(envStr); 532 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 533 } else { 534 EnvMaxTeamsDefault = -1; 535 } 536 537 // Default state. 538 RequiresFlags = OMP_REQ_UNDEFINED; 539 } 540 541 ~RTLDeviceInfoTy() { 542 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 543 // Run destructors on types that use HSA before 544 // atmi_finalize removes access to it 545 deviceStateStore.clear(); 546 KernelArgPoolMap.clear(); 547 // Terminate hostrpc before finalizing ATMI 548 hostrpc_terminate(); 549 atmi_finalize(); 550 } 551 }; 552 553 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 554 555 // TODO: May need to drop the trailing to fields until deviceRTL is updated 556 struct omptarget_device_environmentTy { 557 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 558 // only useful for Debug build of deviceRTLs 559 int32_t num_devices; // gets number of active offload devices 560 int32_t device_num; // gets a value 0 to num_devices-1 561 }; 562 563 static RTLDeviceInfoTy DeviceInfo; 564 565 namespace { 566 567 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 568 __tgt_async_info *AsyncInfo) { 569 assert(AsyncInfo && "AsyncInfo is nullptr"); 570 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 571 // Return success if we are not copying back to host from target. 572 if (!HstPtr) 573 return OFFLOAD_SUCCESS; 574 atmi_status_t err; 575 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 576 (long long unsigned)(Elf64_Addr)TgtPtr, 577 (long long unsigned)(Elf64_Addr)HstPtr); 578 579 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 580 DeviceId); 581 582 if (err != ATMI_STATUS_SUCCESS) { 583 DP("Error when copying data from device to host. Pointers: " 584 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 585 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 586 return OFFLOAD_FAIL; 587 } 588 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 589 (long long unsigned)(Elf64_Addr)TgtPtr, 590 (long long unsigned)(Elf64_Addr)HstPtr); 591 return OFFLOAD_SUCCESS; 592 } 593 594 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 595 __tgt_async_info *AsyncInfo) { 596 assert(AsyncInfo && "AsyncInfo is nullptr"); 597 atmi_status_t err; 598 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 599 // Return success if we are not doing host to target. 600 if (!HstPtr) 601 return OFFLOAD_SUCCESS; 602 603 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 604 (long long unsigned)(Elf64_Addr)HstPtr, 605 (long long unsigned)(Elf64_Addr)TgtPtr); 606 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 607 DeviceId); 608 if (err != ATMI_STATUS_SUCCESS) { 609 DP("Error when copying data from host to device. Pointers: " 610 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 611 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 612 return OFFLOAD_FAIL; 613 } 614 return OFFLOAD_SUCCESS; 615 } 616 617 // Async. 618 // The implementation was written with cuda streams in mind. The semantics of 619 // that are to execute kernels on a queue in order of insertion. A synchronise 620 // call then makes writes visible between host and device. This means a series 621 // of N data_submit_async calls are expected to execute serially. HSA offers 622 // various options to run the data copies concurrently. This may require changes 623 // to libomptarget. 624 625 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 626 // there are no outstanding kernels that need to be synchronized. Any async call 627 // may be passed a Queue==0, at which point the cuda implementation will set it 628 // to non-null (see getStream). The cuda streams are per-device. Upstream may 629 // change this interface to explicitly initialize the AsyncInfo_pointer, but 630 // until then hsa lazily initializes it as well. 631 632 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 633 // set non-null while using async calls, return to null to indicate completion 634 assert(AsyncInfo); 635 if (!AsyncInfo->Queue) { 636 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 637 } 638 } 639 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 640 assert(AsyncInfo); 641 assert(AsyncInfo->Queue); 642 AsyncInfo->Queue = 0; 643 } 644 645 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 646 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 647 int32_t r = elf_check_machine(image, amdgcnMachineID); 648 if (!r) { 649 DP("Supported machine ID not found\n"); 650 } 651 return r; 652 } 653 654 uint32_t elf_e_flags(__tgt_device_image *image) { 655 char *img_begin = (char *)image->ImageStart; 656 size_t img_size = (char *)image->ImageEnd - img_begin; 657 658 Elf *e = elf_memory(img_begin, img_size); 659 if (!e) { 660 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 661 return 0; 662 } 663 664 Elf64_Ehdr *eh64 = elf64_getehdr(e); 665 666 if (!eh64) { 667 DP("Unable to get machine ID from ELF file!\n"); 668 elf_end(e); 669 return 0; 670 } 671 672 uint32_t Flags = eh64->e_flags; 673 674 elf_end(e); 675 DP("ELF Flags: 0x%x\n", Flags); 676 return Flags; 677 } 678 } // namespace 679 680 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 681 return elf_machine_id_is_amdgcn(image); 682 } 683 684 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 685 686 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 687 DP("Init requires flags to %ld\n", RequiresFlags); 688 DeviceInfo.RequiresFlags = RequiresFlags; 689 return RequiresFlags; 690 } 691 692 int32_t __tgt_rtl_init_device(int device_id) { 693 hsa_status_t err; 694 695 // this is per device id init 696 DP("Initialize the device id: %d\n", device_id); 697 698 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 699 700 // Get number of Compute Unit 701 uint32_t compute_units = 0; 702 err = hsa_agent_get_info( 703 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 704 &compute_units); 705 if (err != HSA_STATUS_SUCCESS) { 706 DeviceInfo.ComputeUnits[device_id] = 1; 707 DP("Error getting compute units : settiing to 1\n"); 708 } else { 709 DeviceInfo.ComputeUnits[device_id] = compute_units; 710 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 711 } 712 713 char GetInfoName[64]; // 64 max size returned by get info 714 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 715 (void *)GetInfoName); 716 if (err) 717 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 718 else { 719 DeviceInfo.GPUName[device_id] = GetInfoName; 720 } 721 722 if (print_kernel_trace & STARTUP_DETAILS) 723 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 724 DeviceInfo.ComputeUnits[device_id], 725 DeviceInfo.GPUName[device_id].c_str()); 726 727 // Query attributes to determine number of threads/block and blocks/grid. 728 uint16_t workgroup_max_dim[3]; 729 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 730 &workgroup_max_dim); 731 if (err != HSA_STATUS_SUCCESS) { 732 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 733 DP("Error getting grid dims: num groups : %d\n", 734 RTLDeviceInfoTy::DefaultNumTeams); 735 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 736 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 737 DP("Using %d ROCm blocks per grid\n", 738 DeviceInfo.GroupsPerDevice[device_id]); 739 } else { 740 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 741 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 742 "at the hard limit\n", 743 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 744 } 745 746 // Get thread limit 747 hsa_dim3_t grid_max_dim; 748 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 749 if (err == HSA_STATUS_SUCCESS) { 750 DeviceInfo.ThreadsPerGroup[device_id] = 751 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 752 DeviceInfo.GroupsPerDevice[device_id]; 753 if ((DeviceInfo.ThreadsPerGroup[device_id] > 754 RTLDeviceInfoTy::Max_WG_Size) || 755 DeviceInfo.ThreadsPerGroup[device_id] == 0) { 756 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 757 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 758 } else { 759 DP("Using ROCm Queried thread limit: %d\n", 760 DeviceInfo.ThreadsPerGroup[device_id]); 761 } 762 } else { 763 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 764 DP("Error getting max block dimension, use default:%d \n", 765 RTLDeviceInfoTy::Max_WG_Size); 766 } 767 768 // Get wavefront size 769 uint32_t wavefront_size = 0; 770 err = 771 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 772 if (err == HSA_STATUS_SUCCESS) { 773 DP("Queried wavefront size: %d\n", wavefront_size); 774 DeviceInfo.WarpSize[device_id] = wavefront_size; 775 } else { 776 DP("Default wavefront size: %d\n", 777 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 778 DeviceInfo.WarpSize[device_id] = 779 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 780 } 781 782 // Adjust teams to the env variables 783 if (DeviceInfo.EnvTeamLimit > 0 && 784 DeviceInfo.GroupsPerDevice[device_id] > DeviceInfo.EnvTeamLimit) { 785 DeviceInfo.GroupsPerDevice[device_id] = DeviceInfo.EnvTeamLimit; 786 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 787 DeviceInfo.EnvTeamLimit); 788 } 789 790 // Set default number of teams 791 if (DeviceInfo.EnvNumTeams > 0) { 792 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 793 DP("Default number of teams set according to environment %d\n", 794 DeviceInfo.EnvNumTeams); 795 } else { 796 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 797 int TeamsPerCU = 1; // default number of teams per CU is 1 798 if (TeamsPerCUEnvStr) { 799 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 800 } 801 802 DeviceInfo.NumTeams[device_id] = 803 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 804 DP("Default number of teams = %d * number of compute units %d\n", 805 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 806 } 807 808 if (DeviceInfo.NumTeams[device_id] > DeviceInfo.GroupsPerDevice[device_id]) { 809 DeviceInfo.NumTeams[device_id] = DeviceInfo.GroupsPerDevice[device_id]; 810 DP("Default number of teams exceeds device limit, capping at %d\n", 811 DeviceInfo.GroupsPerDevice[device_id]); 812 } 813 814 // Set default number of threads 815 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 816 DP("Default number of threads set according to library's default %d\n", 817 RTLDeviceInfoTy::Default_WG_Size); 818 if (DeviceInfo.NumThreads[device_id] > 819 DeviceInfo.ThreadsPerGroup[device_id]) { 820 DeviceInfo.NumTeams[device_id] = DeviceInfo.ThreadsPerGroup[device_id]; 821 DP("Default number of threads exceeds device limit, capping at %d\n", 822 DeviceInfo.ThreadsPerGroup[device_id]); 823 } 824 825 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 826 device_id, DeviceInfo.GroupsPerDevice[device_id], 827 DeviceInfo.ThreadsPerGroup[device_id]); 828 829 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 830 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 831 DeviceInfo.GroupsPerDevice[device_id], 832 DeviceInfo.GroupsPerDevice[device_id] * 833 DeviceInfo.ThreadsPerGroup[device_id]); 834 835 return OFFLOAD_SUCCESS; 836 } 837 838 namespace { 839 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 840 size_t N; 841 int rc = elf_getshdrnum(elf, &N); 842 if (rc != 0) { 843 return nullptr; 844 } 845 846 Elf64_Shdr *result = nullptr; 847 for (size_t i = 0; i < N; i++) { 848 Elf_Scn *scn = elf_getscn(elf, i); 849 if (scn) { 850 Elf64_Shdr *shdr = elf64_getshdr(scn); 851 if (shdr) { 852 if (shdr->sh_type == SHT_HASH) { 853 if (result == nullptr) { 854 result = shdr; 855 } else { 856 // multiple SHT_HASH sections not handled 857 return nullptr; 858 } 859 } 860 } 861 } 862 } 863 return result; 864 } 865 866 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 867 const char *symname) { 868 869 assert(section_hash); 870 size_t section_symtab_index = section_hash->sh_link; 871 Elf64_Shdr *section_symtab = 872 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 873 size_t section_strtab_index = section_symtab->sh_link; 874 875 const Elf64_Sym *symtab = 876 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 877 878 const uint32_t *hashtab = 879 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 880 881 // Layout: 882 // nbucket 883 // nchain 884 // bucket[nbucket] 885 // chain[nchain] 886 uint32_t nbucket = hashtab[0]; 887 const uint32_t *bucket = &hashtab[2]; 888 const uint32_t *chain = &hashtab[nbucket + 2]; 889 890 const size_t max = strlen(symname) + 1; 891 const uint32_t hash = elf_hash(symname); 892 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 893 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 894 if (strncmp(symname, n, max) == 0) { 895 return &symtab[i]; 896 } 897 } 898 899 return nullptr; 900 } 901 902 typedef struct { 903 void *addr = nullptr; 904 uint32_t size = UINT32_MAX; 905 uint32_t sh_type = SHT_NULL; 906 } symbol_info; 907 908 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 909 symbol_info *res) { 910 if (elf_kind(elf) != ELF_K_ELF) { 911 return 1; 912 } 913 914 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 915 if (!section_hash) { 916 return 1; 917 } 918 919 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 920 if (!sym) { 921 return 1; 922 } 923 924 if (sym->st_size > UINT32_MAX) { 925 return 1; 926 } 927 928 if (sym->st_shndx == SHN_UNDEF) { 929 return 1; 930 } 931 932 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 933 if (!section) { 934 return 1; 935 } 936 937 Elf64_Shdr *header = elf64_getshdr(section); 938 if (!header) { 939 return 1; 940 } 941 942 res->addr = sym->st_value + base; 943 res->size = static_cast<uint32_t>(sym->st_size); 944 res->sh_type = header->sh_type; 945 return 0; 946 } 947 948 int get_symbol_info_without_loading(char *base, size_t img_size, 949 const char *symname, symbol_info *res) { 950 Elf *elf = elf_memory(base, img_size); 951 if (elf) { 952 int rc = get_symbol_info_without_loading(elf, base, symname, res); 953 elf_end(elf); 954 return rc; 955 } 956 return 1; 957 } 958 959 atmi_status_t interop_get_symbol_info(char *base, size_t img_size, 960 const char *symname, void **var_addr, 961 uint32_t *var_size) { 962 symbol_info si; 963 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 964 if (rc == 0) { 965 *var_addr = si.addr; 966 *var_size = si.size; 967 return ATMI_STATUS_SUCCESS; 968 } else { 969 return ATMI_STATUS_ERROR; 970 } 971 } 972 973 template <typename C> 974 atmi_status_t module_register_from_memory_to_place(void *module_bytes, 975 size_t module_size, 976 atmi_place_t place, C cb) { 977 auto L = [](void *data, size_t size, void *cb_state) -> atmi_status_t { 978 C *unwrapped = static_cast<C *>(cb_state); 979 return (*unwrapped)(data, size); 980 }; 981 return atmi_module_register_from_memory_to_place( 982 module_bytes, module_size, place, L, static_cast<void *>(&cb)); 983 } 984 } // namespace 985 986 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 987 uint64_t device_State_bytes = 0; 988 { 989 // If this is the deviceRTL, get the state variable size 990 symbol_info size_si; 991 int rc = get_symbol_info_without_loading( 992 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 993 994 if (rc == 0) { 995 if (size_si.size != sizeof(uint64_t)) { 996 fprintf(stderr, 997 "Found device_State_size variable with wrong size, aborting\n"); 998 exit(1); 999 } 1000 1001 // Read number of bytes directly from the elf 1002 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1003 } 1004 } 1005 return device_State_bytes; 1006 } 1007 1008 static __tgt_target_table * 1009 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1010 1011 static __tgt_target_table * 1012 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1013 1014 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1015 __tgt_device_image *image) { 1016 DeviceInfo.load_run_lock.lock(); 1017 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1018 DeviceInfo.load_run_lock.unlock(); 1019 return res; 1020 } 1021 1022 struct device_environment { 1023 // initialise an omptarget_device_environmentTy in the deviceRTL 1024 // patches around differences in the deviceRTL between trunk, aomp, 1025 // rocmcc. Over time these differences will tend to zero and this class 1026 // simplified. 1027 // Symbol may be in .data or .bss, and may be missing fields: 1028 // - aomp has debug_level, num_devices, device_num 1029 // - trunk has debug_level 1030 // - under review in trunk is debug_level, device_num 1031 // - rocmcc matches aomp, patch to swap num_devices and device_num 1032 1033 // The symbol may also have been deadstripped because the device side 1034 // accessors were unused. 1035 1036 // If the symbol is in .data (aomp, rocm) it can be written directly. 1037 // If it is in .bss, we must wait for it to be allocated space on the 1038 // gpu (trunk) and initialize after loading. 1039 const char *sym() { return "omptarget_device_environment"; } 1040 1041 omptarget_device_environmentTy host_device_env; 1042 symbol_info si; 1043 bool valid = false; 1044 1045 __tgt_device_image *image; 1046 const size_t img_size; 1047 1048 device_environment(int device_id, int number_devices, 1049 __tgt_device_image *image, const size_t img_size) 1050 : image(image), img_size(img_size) { 1051 1052 host_device_env.num_devices = number_devices; 1053 host_device_env.device_num = device_id; 1054 host_device_env.debug_level = 0; 1055 #ifdef OMPTARGET_DEBUG 1056 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1057 host_device_env.debug_level = std::stoi(envStr); 1058 } 1059 #endif 1060 1061 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1062 img_size, sym(), &si); 1063 if (rc != 0) { 1064 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1065 return; 1066 } 1067 1068 if (si.size > sizeof(host_device_env)) { 1069 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1070 sizeof(host_device_env)); 1071 return; 1072 } 1073 1074 valid = true; 1075 } 1076 1077 bool in_image() { return si.sh_type != SHT_NOBITS; } 1078 1079 atmi_status_t before_loading(void *data, size_t size) { 1080 if (valid) { 1081 if (in_image()) { 1082 DP("Setting global device environment before load (%u bytes)\n", 1083 si.size); 1084 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1085 void *pos = (char *)data + offset; 1086 memcpy(pos, &host_device_env, si.size); 1087 } 1088 } 1089 return ATMI_STATUS_SUCCESS; 1090 } 1091 1092 atmi_status_t after_loading() { 1093 if (valid) { 1094 if (!in_image()) { 1095 DP("Setting global device environment after load (%u bytes)\n", 1096 si.size); 1097 int device_id = host_device_env.device_num; 1098 1099 void *state_ptr; 1100 uint32_t state_ptr_size; 1101 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1102 get_gpu_mem_place(device_id), sym(), &state_ptr, &state_ptr_size); 1103 if (err != ATMI_STATUS_SUCCESS) { 1104 DP("failed to find %s in loaded image\n", sym()); 1105 return err; 1106 } 1107 1108 if (state_ptr_size != si.size) { 1109 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1110 si.size); 1111 return ATMI_STATUS_ERROR; 1112 } 1113 1114 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1115 state_ptr_size, device_id); 1116 } 1117 } 1118 return ATMI_STATUS_SUCCESS; 1119 } 1120 }; 1121 1122 static atmi_status_t atmi_calloc(void **ret_ptr, size_t size, 1123 atmi_mem_place_t place) { 1124 uint64_t rounded = 4 * ((size + 3) / 4); 1125 void *ptr; 1126 atmi_status_t err = atmi_malloc(&ptr, rounded, place); 1127 if (err != ATMI_STATUS_SUCCESS) { 1128 return err; 1129 } 1130 1131 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1132 if (rc != HSA_STATUS_SUCCESS) { 1133 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1134 atmi_free(ptr); 1135 return ATMI_STATUS_ERROR; 1136 } 1137 1138 *ret_ptr = ptr; 1139 return ATMI_STATUS_SUCCESS; 1140 } 1141 1142 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1143 __tgt_device_image *image) { 1144 // This function loads the device image onto gpu[device_id] and does other 1145 // per-image initialization work. Specifically: 1146 // 1147 // - Initialize an omptarget_device_environmentTy instance embedded in the 1148 // image at the symbol "omptarget_device_environment" 1149 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1150 // 1151 // - Allocate a large array per-gpu (could be moved to init_device) 1152 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1153 // - Allocate at least that many bytes of gpu memory 1154 // - Zero initialize it 1155 // - Write the pointer to the symbol omptarget_nvptx_device_State 1156 // 1157 // - Pulls some per-kernel information together from various sources and 1158 // records it in the KernelsList for quicker access later 1159 // 1160 // The initialization can be done before or after loading the image onto the 1161 // gpu. This function presently does a mixture. Using the hsa api to get/set 1162 // the information is simpler to implement, in exchange for more complicated 1163 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1164 // back from the gpu vs a hashtable lookup on the host. 1165 1166 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1167 1168 DeviceInfo.clearOffloadEntriesTable(device_id); 1169 1170 // We do not need to set the ELF version because the caller of this function 1171 // had to do that to decide the right runtime to use 1172 1173 if (!elf_machine_id_is_amdgcn(image)) { 1174 return NULL; 1175 } 1176 1177 { 1178 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1179 img_size); 1180 1181 atmi_status_t err = module_register_from_memory_to_place( 1182 (void *)image->ImageStart, img_size, get_gpu_place(device_id), 1183 [&](void *data, size_t size) { 1184 return env.before_loading(data, size); 1185 }); 1186 1187 check("Module registering", err); 1188 if (err != ATMI_STATUS_SUCCESS) { 1189 fprintf(stderr, 1190 "Possible gpu arch mismatch: device:%s, image:%s please check" 1191 " compiler flag: -march=<gpu>\n", 1192 DeviceInfo.GPUName[device_id].c_str(), 1193 get_elf_mach_gfx_name(elf_e_flags(image))); 1194 return NULL; 1195 } 1196 1197 err = env.after_loading(); 1198 if (err != ATMI_STATUS_SUCCESS) { 1199 return NULL; 1200 } 1201 } 1202 1203 DP("ATMI module successfully loaded!\n"); 1204 1205 { 1206 // the device_State array is either large value in bss or a void* that 1207 // needs to be assigned to a pointer to an array of size device_state_bytes 1208 // If absent, it has been deadstripped and needs no setup. 1209 1210 void *state_ptr; 1211 uint32_t state_ptr_size; 1212 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1213 get_gpu_mem_place(device_id), "omptarget_nvptx_device_State", 1214 &state_ptr, &state_ptr_size); 1215 1216 if (err != ATMI_STATUS_SUCCESS) { 1217 DP("No device_state symbol found, skipping initialization\n"); 1218 } else { 1219 if (state_ptr_size < sizeof(void *)) { 1220 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1221 sizeof(void *)); 1222 return NULL; 1223 } 1224 1225 // if it's larger than a void*, assume it's a bss array and no further 1226 // initialization is required. Only try to set up a pointer for 1227 // sizeof(void*) 1228 if (state_ptr_size == sizeof(void *)) { 1229 uint64_t device_State_bytes = 1230 get_device_State_bytes((char *)image->ImageStart, img_size); 1231 if (device_State_bytes == 0) { 1232 DP("Can't initialize device_State, missing size information\n"); 1233 return NULL; 1234 } 1235 1236 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1237 if (dss.first.get() == nullptr) { 1238 assert(dss.second == 0); 1239 void *ptr = NULL; 1240 atmi_status_t err = atmi_calloc(&ptr, device_State_bytes, 1241 get_gpu_mem_place(device_id)); 1242 if (err != ATMI_STATUS_SUCCESS) { 1243 DP("Failed to allocate device_state array\n"); 1244 return NULL; 1245 } 1246 dss = { 1247 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1248 device_State_bytes, 1249 }; 1250 } 1251 1252 void *ptr = dss.first.get(); 1253 if (device_State_bytes != dss.second) { 1254 DP("Inconsistent sizes of device_State unsupported\n"); 1255 return NULL; 1256 } 1257 1258 // write ptr to device memory so it can be used by later kernels 1259 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1260 sizeof(void *), device_id); 1261 if (err != ATMI_STATUS_SUCCESS) { 1262 DP("memcpy install of state_ptr failed\n"); 1263 return NULL; 1264 } 1265 } 1266 } 1267 } 1268 1269 // Here, we take advantage of the data that is appended after img_end to get 1270 // the symbols' name we need to load. This data consist of the host entries 1271 // begin and end as well as the target name (see the offloading linker script 1272 // creation in clang compiler). 1273 1274 // Find the symbols in the module by name. The name can be obtain by 1275 // concatenating the host entry name with the target name 1276 1277 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1278 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1279 1280 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1281 1282 if (!e->addr) { 1283 // The host should have always something in the address to 1284 // uniquely identify the target region. 1285 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1286 (unsigned long long)e->size); 1287 return NULL; 1288 } 1289 1290 if (e->size) { 1291 __tgt_offload_entry entry = *e; 1292 1293 void *varptr; 1294 uint32_t varsize; 1295 1296 atmi_status_t err = atmi_interop_hsa_get_symbol_info( 1297 get_gpu_mem_place(device_id), e->name, &varptr, &varsize); 1298 1299 if (err != ATMI_STATUS_SUCCESS) { 1300 // Inform the user what symbol prevented offloading 1301 DP("Loading global '%s' (Failed)\n", e->name); 1302 return NULL; 1303 } 1304 1305 if (varsize != e->size) { 1306 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1307 varsize, e->size); 1308 return NULL; 1309 } 1310 1311 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1312 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1313 entry.addr = (void *)varptr; 1314 1315 DeviceInfo.addOffloadEntry(device_id, entry); 1316 1317 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1318 e->flags & OMP_DECLARE_TARGET_LINK) { 1319 // If unified memory is present any target link variables 1320 // can access host addresses directly. There is no longer a 1321 // need for device copies. 1322 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1323 sizeof(void *), device_id); 1324 if (err != ATMI_STATUS_SUCCESS) 1325 DP("Error when copying USM\n"); 1326 DP("Copy linked variable host address (" DPxMOD ")" 1327 "to device address (" DPxMOD ")\n", 1328 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1329 } 1330 1331 continue; 1332 } 1333 1334 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1335 1336 atmi_mem_place_t place = get_gpu_mem_place(device_id); 1337 uint32_t kernarg_segment_size; 1338 atmi_status_t err = atmi_interop_hsa_get_kernel_info( 1339 place, e->name, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1340 &kernarg_segment_size); 1341 1342 // each arg is a void * in this openmp implementation 1343 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1344 std::vector<size_t> arg_sizes(arg_num); 1345 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1346 it != arg_sizes.end(); it++) { 1347 *it = sizeof(void *); 1348 } 1349 1350 // default value GENERIC (in case symbol is missing from cubin file) 1351 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1352 1353 // get flat group size if present, else Default_WG_Size 1354 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1355 1356 // get Kernel Descriptor if present. 1357 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1358 struct KernDescValType { 1359 uint16_t Version; 1360 uint16_t TSize; 1361 uint16_t WG_Size; 1362 uint8_t Mode; 1363 }; 1364 struct KernDescValType KernDescVal; 1365 std::string KernDescNameStr(e->name); 1366 KernDescNameStr += "_kern_desc"; 1367 const char *KernDescName = KernDescNameStr.c_str(); 1368 1369 void *KernDescPtr; 1370 uint32_t KernDescSize; 1371 void *CallStackAddr = nullptr; 1372 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1373 KernDescName, &KernDescPtr, &KernDescSize); 1374 1375 if (err == ATMI_STATUS_SUCCESS) { 1376 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1377 DP("Loading global computation properties '%s' - size mismatch (%u != " 1378 "%lu)\n", 1379 KernDescName, KernDescSize, sizeof(KernDescVal)); 1380 1381 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1382 1383 // Check structure size against recorded size. 1384 if ((size_t)KernDescSize != KernDescVal.TSize) 1385 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1386 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1387 1388 DP("After loading global for %s KernDesc \n", KernDescName); 1389 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1390 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1391 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1392 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1393 1394 // Get ExecMode 1395 ExecModeVal = KernDescVal.Mode; 1396 DP("ExecModeVal %d\n", ExecModeVal); 1397 if (KernDescVal.WG_Size == 0) { 1398 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1399 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1400 } 1401 WGSizeVal = KernDescVal.WG_Size; 1402 DP("WGSizeVal %d\n", WGSizeVal); 1403 check("Loading KernDesc computation property", err); 1404 } else { 1405 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1406 1407 // Generic 1408 std::string ExecModeNameStr(e->name); 1409 ExecModeNameStr += "_exec_mode"; 1410 const char *ExecModeName = ExecModeNameStr.c_str(); 1411 1412 void *ExecModePtr; 1413 uint32_t varsize; 1414 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1415 ExecModeName, &ExecModePtr, &varsize); 1416 1417 if (err == ATMI_STATUS_SUCCESS) { 1418 if ((size_t)varsize != sizeof(int8_t)) { 1419 DP("Loading global computation properties '%s' - size mismatch(%u != " 1420 "%lu)\n", 1421 ExecModeName, varsize, sizeof(int8_t)); 1422 return NULL; 1423 } 1424 1425 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1426 1427 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1428 ExecModeVal); 1429 1430 if (ExecModeVal < 0 || ExecModeVal > 1) { 1431 DP("Error wrong exec_mode value specified in HSA code object file: " 1432 "%d\n", 1433 ExecModeVal); 1434 return NULL; 1435 } 1436 } else { 1437 DP("Loading global exec_mode '%s' - symbol missing, using default " 1438 "value " 1439 "GENERIC (1)\n", 1440 ExecModeName); 1441 } 1442 check("Loading computation property", err); 1443 1444 // Flat group size 1445 std::string WGSizeNameStr(e->name); 1446 WGSizeNameStr += "_wg_size"; 1447 const char *WGSizeName = WGSizeNameStr.c_str(); 1448 1449 void *WGSizePtr; 1450 uint32_t WGSize; 1451 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1452 WGSizeName, &WGSizePtr, &WGSize); 1453 1454 if (err == ATMI_STATUS_SUCCESS) { 1455 if ((size_t)WGSize != sizeof(int16_t)) { 1456 DP("Loading global computation properties '%s' - size mismatch (%u " 1457 "!= " 1458 "%lu)\n", 1459 WGSizeName, WGSize, sizeof(int16_t)); 1460 return NULL; 1461 } 1462 1463 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1464 1465 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1466 1467 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1468 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1469 DP("Error wrong WGSize value specified in HSA code object file: " 1470 "%d\n", 1471 WGSizeVal); 1472 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1473 } 1474 } else { 1475 DP("Warning: Loading WGSize '%s' - symbol not found, " 1476 "using default value %d\n", 1477 WGSizeName, WGSizeVal); 1478 } 1479 1480 check("Loading WGSize computation property", err); 1481 } 1482 1483 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1484 CallStackAddr, e->name, 1485 kernarg_segment_size)); 1486 __tgt_offload_entry entry = *e; 1487 entry.addr = (void *)&KernelsList.back(); 1488 DeviceInfo.addOffloadEntry(device_id, entry); 1489 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1490 } 1491 1492 return DeviceInfo.getOffloadEntriesTable(device_id); 1493 } 1494 1495 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1496 void *ptr = NULL; 1497 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1498 1499 if (kind != TARGET_ALLOC_DEFAULT) { 1500 REPORT("Invalid target data allocation kind or requested allocator not " 1501 "implemented yet\n"); 1502 return NULL; 1503 } 1504 1505 atmi_status_t err = atmi_malloc(&ptr, size, get_gpu_mem_place(device_id)); 1506 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1507 (long long unsigned)(Elf64_Addr)ptr); 1508 ptr = (err == ATMI_STATUS_SUCCESS) ? ptr : NULL; 1509 return ptr; 1510 } 1511 1512 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1513 int64_t size) { 1514 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1515 __tgt_async_info AsyncInfo; 1516 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1517 if (rc != OFFLOAD_SUCCESS) 1518 return OFFLOAD_FAIL; 1519 1520 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1521 } 1522 1523 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1524 int64_t size, __tgt_async_info *AsyncInfo) { 1525 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1526 if (AsyncInfo) { 1527 initAsyncInfo(AsyncInfo); 1528 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1529 } else { 1530 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1531 } 1532 } 1533 1534 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1535 int64_t size) { 1536 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1537 __tgt_async_info AsyncInfo; 1538 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1539 if (rc != OFFLOAD_SUCCESS) 1540 return OFFLOAD_FAIL; 1541 1542 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1543 } 1544 1545 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1546 void *tgt_ptr, int64_t size, 1547 __tgt_async_info *AsyncInfo) { 1548 assert(AsyncInfo && "AsyncInfo is nullptr"); 1549 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1550 initAsyncInfo(AsyncInfo); 1551 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1552 } 1553 1554 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1555 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1556 atmi_status_t err; 1557 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1558 err = atmi_free(tgt_ptr); 1559 if (err != ATMI_STATUS_SUCCESS) { 1560 DP("Error when freeing CUDA memory\n"); 1561 return OFFLOAD_FAIL; 1562 } 1563 return OFFLOAD_SUCCESS; 1564 } 1565 1566 // Determine launch values for threadsPerGroup and num_groups. 1567 // Outputs: treadsPerGroup, num_groups 1568 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1569 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1570 // loop_tripcount. 1571 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1572 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1573 int num_teams, int thread_limit, uint64_t loop_tripcount, 1574 int32_t device_id) { 1575 1576 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1577 ? DeviceInfo.EnvMaxTeamsDefault 1578 : DeviceInfo.NumTeams[device_id]; 1579 if (Max_Teams > DeviceInfo.HardTeamLimit) 1580 Max_Teams = DeviceInfo.HardTeamLimit; 1581 1582 if (print_kernel_trace & STARTUP_DETAILS) { 1583 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1584 RTLDeviceInfoTy::Max_Teams); 1585 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1586 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1587 RTLDeviceInfoTy::Warp_Size); 1588 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1589 RTLDeviceInfoTy::Max_WG_Size); 1590 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1591 RTLDeviceInfoTy::Default_WG_Size); 1592 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1593 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1594 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1595 } 1596 // check for thread_limit() clause 1597 if (thread_limit > 0) { 1598 threadsPerGroup = thread_limit; 1599 DP("Setting threads per block to requested %d\n", thread_limit); 1600 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1601 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1602 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1603 } 1604 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1605 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1606 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1607 } 1608 } 1609 // check flat_max_work_group_size attr here 1610 if (threadsPerGroup > ConstWGSize) { 1611 threadsPerGroup = ConstWGSize; 1612 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1613 threadsPerGroup); 1614 } 1615 if (print_kernel_trace & STARTUP_DETAILS) 1616 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1617 DP("Preparing %d threads\n", threadsPerGroup); 1618 1619 // Set default num_groups (teams) 1620 if (DeviceInfo.EnvTeamLimit > 0) 1621 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1622 ? Max_Teams 1623 : DeviceInfo.EnvTeamLimit; 1624 else 1625 num_groups = Max_Teams; 1626 DP("Set default num of groups %d\n", num_groups); 1627 1628 if (print_kernel_trace & STARTUP_DETAILS) { 1629 fprintf(stderr, "num_groups: %d\n", num_groups); 1630 fprintf(stderr, "num_teams: %d\n", num_teams); 1631 } 1632 1633 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1634 // This reduction is typical for default case (no thread_limit clause). 1635 // or when user goes crazy with num_teams clause. 1636 // FIXME: We cant distinguish between a constant or variable thread limit. 1637 // So we only handle constant thread_limits. 1638 if (threadsPerGroup > 1639 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1640 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1641 // here? 1642 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1643 1644 // check for num_teams() clause 1645 if (num_teams > 0) { 1646 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1647 } 1648 if (print_kernel_trace & STARTUP_DETAILS) { 1649 fprintf(stderr, "num_groups: %d\n", num_groups); 1650 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1651 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1652 } 1653 1654 if (DeviceInfo.EnvNumTeams > 0) { 1655 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1656 : num_groups; 1657 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1658 } else if (DeviceInfo.EnvTeamLimit > 0) { 1659 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1660 ? DeviceInfo.EnvTeamLimit 1661 : num_groups; 1662 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1663 } else { 1664 if (num_teams <= 0) { 1665 if (loop_tripcount > 0) { 1666 if (ExecutionMode == SPMD) { 1667 // round up to the nearest integer 1668 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1669 } else { 1670 num_groups = loop_tripcount; 1671 } 1672 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1673 "threads per block %d\n", 1674 num_groups, loop_tripcount, threadsPerGroup); 1675 } 1676 } else { 1677 num_groups = num_teams; 1678 } 1679 if (num_groups > Max_Teams) { 1680 num_groups = Max_Teams; 1681 if (print_kernel_trace & STARTUP_DETAILS) 1682 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1683 Max_Teams); 1684 } 1685 if (num_groups > num_teams && num_teams > 0) { 1686 num_groups = num_teams; 1687 if (print_kernel_trace & STARTUP_DETAILS) 1688 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1689 num_groups, num_teams); 1690 } 1691 } 1692 1693 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1694 if (num_teams > 0) { 1695 num_groups = num_teams; 1696 // Cap num_groups to EnvMaxTeamsDefault if set. 1697 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1698 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1699 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1700 } 1701 if (print_kernel_trace & STARTUP_DETAILS) { 1702 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1703 fprintf(stderr, "num_groups: %d\n", num_groups); 1704 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1705 } 1706 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1707 threadsPerGroup); 1708 } 1709 1710 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1711 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1712 bool full = true; 1713 while (full) { 1714 full = 1715 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1716 } 1717 return packet_id; 1718 } 1719 1720 extern bool g_atmi_hostcall_required; // declared without header by atmi 1721 1722 static int32_t __tgt_rtl_run_target_team_region_locked( 1723 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1724 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1725 int32_t thread_limit, uint64_t loop_tripcount); 1726 1727 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1728 void **tgt_args, 1729 ptrdiff_t *tgt_offsets, 1730 int32_t arg_num, int32_t num_teams, 1731 int32_t thread_limit, 1732 uint64_t loop_tripcount) { 1733 1734 DeviceInfo.load_run_lock.lock_shared(); 1735 int32_t res = __tgt_rtl_run_target_team_region_locked( 1736 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1737 thread_limit, loop_tripcount); 1738 1739 DeviceInfo.load_run_lock.unlock_shared(); 1740 return res; 1741 } 1742 1743 int32_t __tgt_rtl_run_target_team_region_locked( 1744 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1745 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1746 int32_t thread_limit, uint64_t loop_tripcount) { 1747 // Set the context we are using 1748 // update thread limit content in gpu memory if un-initialized or specified 1749 // from host 1750 1751 DP("Run target team region thread_limit %d\n", thread_limit); 1752 1753 // All args are references. 1754 std::vector<void *> args(arg_num); 1755 std::vector<void *> ptrs(arg_num); 1756 1757 DP("Arg_num: %d\n", arg_num); 1758 for (int32_t i = 0; i < arg_num; ++i) { 1759 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1760 args[i] = &ptrs[i]; 1761 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1762 } 1763 1764 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1765 1766 std::string kernel_name = std::string(KernelInfo->Name); 1767 if (KernelInfoTable[device_id].find(kernel_name) == 1768 KernelInfoTable[device_id].end()) { 1769 DP("Kernel %s not found\n", kernel_name.c_str()); 1770 return OFFLOAD_FAIL; 1771 } 1772 1773 uint32_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count; 1774 1775 { 1776 auto it = KernelInfoTable[device_id][kernel_name]; 1777 sgpr_count = it.sgpr_count; 1778 vgpr_count = it.vgpr_count; 1779 sgpr_spill_count = it.sgpr_spill_count; 1780 vgpr_spill_count = it.vgpr_spill_count; 1781 } 1782 1783 /* 1784 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1785 */ 1786 int num_groups = 0; 1787 1788 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1789 1790 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1791 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1792 DeviceInfo.EnvNumTeams, 1793 num_teams, // From run_region arg 1794 thread_limit, // From run_region arg 1795 loop_tripcount, // From run_region arg 1796 KernelInfo->device_id); 1797 1798 if (print_kernel_trace >= LAUNCH) { 1799 // enum modes are SPMD, GENERIC, NONE 0,1,2 1800 // if doing rtl timing, print to stderr, unless stdout requested. 1801 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1802 fprintf(traceToStdout ? stdout : stderr, 1803 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1804 "reqd:(%4dX%4d) sgpr_count:%u vgpr_count:%u sgpr_spill_count:%u " 1805 "vgpr_spill_count:%u tripcount:%lu n:%s\n", 1806 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1807 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1808 sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count, 1809 loop_tripcount, KernelInfo->Name); 1810 } 1811 1812 // Run on the device. 1813 { 1814 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1815 uint64_t packet_id = acquire_available_packet_id(queue); 1816 1817 const uint32_t mask = queue->size - 1; // size is a power of 2 1818 hsa_kernel_dispatch_packet_t *packet = 1819 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1820 (packet_id & mask); 1821 1822 // packet->header is written last 1823 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1824 packet->workgroup_size_x = threadsPerGroup; 1825 packet->workgroup_size_y = 1; 1826 packet->workgroup_size_z = 1; 1827 packet->reserved0 = 0; 1828 packet->grid_size_x = num_groups * threadsPerGroup; 1829 packet->grid_size_y = 1; 1830 packet->grid_size_z = 1; 1831 packet->private_segment_size = 0; 1832 packet->group_segment_size = 0; 1833 packet->kernel_object = 0; 1834 packet->kernarg_address = 0; // use the block allocator 1835 packet->reserved2 = 0; // atmi writes id_ here 1836 packet->completion_signal = {0}; // may want a pool of signals 1837 1838 { 1839 auto it = KernelInfoTable[device_id][kernel_name]; 1840 packet->kernel_object = it.kernel_object; 1841 packet->private_segment_size = it.private_segment_size; 1842 packet->group_segment_size = it.group_segment_size; 1843 assert(arg_num == (int)it.num_args); 1844 } 1845 1846 KernelArgPool *ArgPool = nullptr; 1847 { 1848 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1849 if (it != KernelArgPoolMap.end()) { 1850 ArgPool = (it->second).get(); 1851 } 1852 } 1853 if (!ArgPool) { 1854 fprintf(stderr, "Warning: No ArgPool for %s on device %d\n", 1855 KernelInfo->Name, device_id); 1856 } 1857 { 1858 void *kernarg = nullptr; 1859 if (ArgPool) { 1860 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1861 kernarg = ArgPool->allocate(arg_num); 1862 } 1863 if (!kernarg) { 1864 printf("Allocate kernarg failed\n"); 1865 exit(1); 1866 } 1867 1868 // Copy explicit arguments 1869 for (int i = 0; i < arg_num; i++) { 1870 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1871 } 1872 1873 // Initialize implicit arguments. ATMI seems to leave most fields 1874 // uninitialized 1875 atmi_implicit_args_t *impl_args = 1876 reinterpret_cast<atmi_implicit_args_t *>( 1877 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1878 memset(impl_args, 0, 1879 sizeof(atmi_implicit_args_t)); // may not be necessary 1880 impl_args->offset_x = 0; 1881 impl_args->offset_y = 0; 1882 impl_args->offset_z = 0; 1883 1884 // assign a hostcall buffer for the selected Q 1885 if (g_atmi_hostcall_required) { 1886 // hostrpc_assign_buffer is not thread safe, and this function is 1887 // under a multiple reader lock, not a writer lock. 1888 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 1889 pthread_mutex_lock(&hostcall_init_lock); 1890 impl_args->hostcall_ptr = hostrpc_assign_buffer( 1891 DeviceInfo.HSAAgents[device_id], queue, device_id); 1892 pthread_mutex_unlock(&hostcall_init_lock); 1893 if (!impl_args->hostcall_ptr) { 1894 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 1895 "error\n"); 1896 return OFFLOAD_FAIL; 1897 } 1898 } 1899 1900 packet->kernarg_address = kernarg; 1901 } 1902 1903 { 1904 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1905 if (s.handle == 0) { 1906 printf("Failed to get signal instance\n"); 1907 exit(1); 1908 } 1909 packet->completion_signal = s; 1910 hsa_signal_store_relaxed(packet->completion_signal, 1); 1911 } 1912 1913 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 1914 core::create_header(), packet->setup); 1915 1916 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1917 1918 while (hsa_signal_wait_scacquire(packet->completion_signal, 1919 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1920 HSA_WAIT_STATE_BLOCKED) != 0) 1921 ; 1922 1923 assert(ArgPool); 1924 ArgPool->deallocate(packet->kernarg_address); 1925 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 1926 } 1927 1928 DP("Kernel completed\n"); 1929 return OFFLOAD_SUCCESS; 1930 } 1931 1932 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 1933 void **tgt_args, ptrdiff_t *tgt_offsets, 1934 int32_t arg_num) { 1935 // use one team and one thread 1936 // fix thread num 1937 int32_t team_num = 1; 1938 int32_t thread_limit = 0; // use default 1939 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1940 tgt_offsets, arg_num, team_num, 1941 thread_limit, 0); 1942 } 1943 1944 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 1945 void *tgt_entry_ptr, void **tgt_args, 1946 ptrdiff_t *tgt_offsets, 1947 int32_t arg_num, 1948 __tgt_async_info *AsyncInfo) { 1949 assert(AsyncInfo && "AsyncInfo is nullptr"); 1950 initAsyncInfo(AsyncInfo); 1951 1952 // use one team and one thread 1953 // fix thread num 1954 int32_t team_num = 1; 1955 int32_t thread_limit = 0; // use default 1956 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1957 tgt_offsets, arg_num, team_num, 1958 thread_limit, 0); 1959 } 1960 1961 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 1962 assert(AsyncInfo && "AsyncInfo is nullptr"); 1963 1964 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 1965 // is not ensured by devices.cpp for amdgcn 1966 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 1967 if (AsyncInfo->Queue) { 1968 finiAsyncInfo(AsyncInfo); 1969 } 1970 return OFFLOAD_SUCCESS; 1971 } 1972