1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <elf.h> 19 #include <fstream> 20 #include <iostream> 21 #include <libelf.h> 22 #include <list> 23 #include <memory> 24 #include <mutex> 25 #include <shared_mutex> 26 #include <thread> 27 #include <unordered_map> 28 #include <vector> 29 30 // Header from ATMI interface 31 #include "atmi_interop_hsa.h" 32 #include "atmi_runtime.h" 33 34 #include "internal.h" 35 36 #include "Debug.h" 37 #include "get_elf_mach_gfx_name.h" 38 #include "machine.h" 39 #include "omptargetplugin.h" 40 #include "print_tracing.h" 41 42 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 43 44 #ifndef TARGET_NAME 45 #define TARGET_NAME AMDHSA 46 #endif 47 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 48 49 // hostrpc interface, FIXME: consider moving to its own include these are 50 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 51 // linked as --whole-archive to override the weak symbols that are used to 52 // implement a fallback for toolchains that do not yet have a hostrpc library. 53 extern "C" { 54 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 55 uint32_t device_id); 56 hsa_status_t hostrpc_init(); 57 hsa_status_t hostrpc_terminate(); 58 59 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 60 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 61 return HSA_STATUS_SUCCESS; 62 } 63 __attribute__((weak)) unsigned long 64 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 65 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 66 "missing\n", 67 device_id); 68 return 0; 69 } 70 } 71 72 int print_kernel_trace; 73 74 #ifdef OMPTARGET_DEBUG 75 #define check(msg, status) \ 76 if (status != HSA_STATUS_SUCCESS) { \ 77 DP(#msg " failed\n"); \ 78 } else { \ 79 DP(#msg " succeeded\n"); \ 80 } 81 #else 82 #define check(msg, status) \ 83 {} 84 #endif 85 86 #include "elf_common.h" 87 88 namespace core { 89 hsa_status_t RegisterModuleFromMemory( 90 std::map<std::string, atl_kernel_info_t> &KernelInfo, 91 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, void *, size_t, 92 hsa_agent_t agent, 93 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 94 void *cb_state), 95 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables); 96 } 97 98 namespace hsa { 99 template <typename C> hsa_status_t iterate_agents(C cb) { 100 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 101 C *unwrapped = static_cast<C *>(data); 102 return (*unwrapped)(agent); 103 }; 104 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 105 } 106 107 } // namespace hsa 108 109 /// Keep entries table per device 110 struct FuncOrGblEntryTy { 111 __tgt_target_table Table; 112 std::vector<__tgt_offload_entry> Entries; 113 }; 114 115 enum ExecutionModeType { 116 SPMD, // constructors, destructors, 117 // combined constructs (`teams distribute parallel for [simd]`) 118 GENERIC, // everything else 119 NONE 120 }; 121 122 struct KernelArgPool { 123 private: 124 static pthread_mutex_t mutex; 125 126 public: 127 uint32_t kernarg_segment_size; 128 void *kernarg_region = nullptr; 129 std::queue<int> free_kernarg_segments; 130 131 uint32_t kernarg_size_including_implicit() { 132 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 133 } 134 135 ~KernelArgPool() { 136 if (kernarg_region) { 137 auto r = hsa_amd_memory_pool_free(kernarg_region); 138 if (r != HSA_STATUS_SUCCESS) { 139 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 140 } 141 } 142 } 143 144 // Can't really copy or move a mutex 145 KernelArgPool() = default; 146 KernelArgPool(const KernelArgPool &) = delete; 147 KernelArgPool(KernelArgPool &&) = delete; 148 149 KernelArgPool(uint32_t kernarg_segment_size, 150 hsa_amd_memory_pool_t &memory_pool) 151 : kernarg_segment_size(kernarg_segment_size) { 152 153 // atmi uses one pool per kernel for all gpus, with a fixed upper size 154 // preserving that exact scheme here, including the queue<int> 155 156 hsa_status_t err = hsa_amd_memory_pool_allocate( 157 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 158 &kernarg_region); 159 160 if (err != HSA_STATUS_SUCCESS) { 161 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 162 kernarg_region = nullptr; // paranoid 163 return; 164 } 165 166 err = core::allow_access_to_all_gpu_agents(kernarg_region); 167 if (err != HSA_STATUS_SUCCESS) { 168 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 169 get_error_string(err)); 170 auto r = hsa_amd_memory_pool_free(kernarg_region); 171 if (r != HSA_STATUS_SUCCESS) { 172 // if free failed, can't do anything more to resolve it 173 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 174 } 175 kernarg_region = nullptr; 176 return; 177 } 178 179 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 180 free_kernarg_segments.push(i); 181 } 182 } 183 184 void *allocate(uint64_t arg_num) { 185 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 186 lock l(&mutex); 187 void *res = nullptr; 188 if (!free_kernarg_segments.empty()) { 189 190 int free_idx = free_kernarg_segments.front(); 191 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 192 (free_idx * kernarg_size_including_implicit())); 193 assert(free_idx == pointer_to_index(res)); 194 free_kernarg_segments.pop(); 195 } 196 return res; 197 } 198 199 void deallocate(void *ptr) { 200 lock l(&mutex); 201 int idx = pointer_to_index(ptr); 202 free_kernarg_segments.push(idx); 203 } 204 205 private: 206 int pointer_to_index(void *ptr) { 207 ptrdiff_t bytes = 208 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 209 assert(bytes >= 0); 210 assert(bytes % kernarg_size_including_implicit() == 0); 211 return bytes / kernarg_size_including_implicit(); 212 } 213 struct lock { 214 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 215 ~lock() { pthread_mutex_unlock(m); } 216 pthread_mutex_t *m; 217 }; 218 }; 219 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 220 221 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 222 KernelArgPoolMap; 223 224 /// Use a single entity to encode a kernel and a set of flags 225 struct KernelTy { 226 // execution mode of kernel 227 // 0 - SPMD mode (without master warp) 228 // 1 - Generic mode (with master warp) 229 int8_t ExecutionMode; 230 int16_t ConstWGSize; 231 int32_t device_id; 232 void *CallStackAddr = nullptr; 233 const char *Name; 234 235 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 236 void *_CallStackAddr, const char *_Name, 237 uint32_t _kernarg_segment_size, 238 hsa_amd_memory_pool_t &KernArgMemoryPool) 239 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 240 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 241 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 242 243 std::string N(_Name); 244 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 245 KernelArgPoolMap.insert( 246 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 247 _kernarg_segment_size, KernArgMemoryPool)))); 248 } 249 } 250 }; 251 252 /// List that contains all the kernels. 253 /// FIXME: we may need this to be per device and per library. 254 std::list<KernelTy> KernelsList; 255 256 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 257 258 hsa_status_t err = 259 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 260 hsa_device_type_t device_type; 261 // get_info fails iff HSA runtime not yet initialized 262 hsa_status_t err = 263 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 264 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 265 printf("rtl.cpp: err %d\n", err); 266 assert(err == HSA_STATUS_SUCCESS); 267 268 CB(device_type, agent); 269 return HSA_STATUS_SUCCESS; 270 }); 271 272 // iterate_agents fails iff HSA runtime not yet initialized 273 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 274 printf("rtl.cpp: err %d\n", err); 275 } 276 277 return err; 278 } 279 280 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 281 void *data) { 282 if (status != HSA_STATUS_SUCCESS) { 283 const char *status_string; 284 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 285 status_string = "unavailable"; 286 } 287 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 288 __LINE__, source, status, status_string); 289 abort(); 290 } 291 } 292 293 namespace core { 294 namespace { 295 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 296 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 297 } 298 299 uint16_t create_header() { 300 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 301 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 302 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 303 return header; 304 } 305 306 hsa_status_t addKernArgPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 307 std::vector<hsa_amd_memory_pool_t> *Result = 308 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 309 bool AllocAllowed = false; 310 hsa_status_t err = hsa_amd_memory_pool_get_info( 311 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 312 &AllocAllowed); 313 if (err != HSA_STATUS_SUCCESS) { 314 fprintf(stderr, "Alloc allowed in memory pool check failed: %s\n", 315 get_error_string(err)); 316 return err; 317 } 318 319 if (!AllocAllowed) { 320 // nothing needs to be done here. 321 return HSA_STATUS_SUCCESS; 322 } 323 324 uint32_t GlobalFlags = 0; 325 err = hsa_amd_memory_pool_get_info( 326 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 327 if (err != HSA_STATUS_SUCCESS) { 328 fprintf(stderr, "Get memory pool info failed: %s\n", get_error_string(err)); 329 return err; 330 } 331 332 if ((GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) && 333 (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT)) { 334 size_t size = 0; 335 err = hsa_amd_memory_pool_get_info(MemoryPool, 336 HSA_AMD_MEMORY_POOL_INFO_SIZE, &size); 337 if (err != HSA_STATUS_SUCCESS) { 338 fprintf(stderr, "Get memory pool size failed: %s\n", 339 get_error_string(err)); 340 return err; 341 } 342 if (size > 0) 343 Result->push_back(MemoryPool); 344 } 345 346 return HSA_STATUS_SUCCESS; 347 } 348 349 std::pair<hsa_status_t, hsa_amd_memory_pool_t> 350 FindKernargPool(const std::vector<hsa_agent_t> &HSAAgents) { 351 std::vector<hsa_amd_memory_pool_t> KernArgPools; 352 for (const auto &Agent : HSAAgents) { 353 hsa_status_t err = HSA_STATUS_SUCCESS; 354 err = hsa_amd_agent_iterate_memory_pools( 355 Agent, addKernArgPool, static_cast<void *>(&KernArgPools)); 356 if (err != HSA_STATUS_SUCCESS) { 357 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 358 "Iterate all memory pools", get_error_string(err)); 359 return {err, hsa_amd_memory_pool_t{}}; 360 } 361 } 362 363 if (KernArgPools.empty()) { 364 fprintf(stderr, "Unable to find any valid kernarg pool\n"); 365 return {HSA_STATUS_ERROR, hsa_amd_memory_pool_t{}}; 366 } 367 368 return {HSA_STATUS_SUCCESS, KernArgPools[0]}; 369 } 370 371 } // namespace 372 } // namespace core 373 374 /// Class containing all the device information 375 class RTLDeviceInfoTy { 376 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 377 378 public: 379 // load binary populates symbol tables and mutates various global state 380 // run uses those symbol tables 381 std::shared_timed_mutex load_run_lock; 382 383 int NumberOfDevices; 384 385 // GPU devices 386 std::vector<hsa_agent_t> HSAAgents; 387 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 388 389 // CPUs 390 std::vector<hsa_agent_t> CPUAgents; 391 392 // Device properties 393 std::vector<int> ComputeUnits; 394 std::vector<int> GroupsPerDevice; 395 std::vector<int> ThreadsPerGroup; 396 std::vector<int> WarpSize; 397 std::vector<std::string> GPUName; 398 399 // OpenMP properties 400 std::vector<int> NumTeams; 401 std::vector<int> NumThreads; 402 403 // OpenMP Environment properties 404 int EnvNumTeams; 405 int EnvTeamLimit; 406 int EnvTeamThreadLimit; 407 int EnvMaxTeamsDefault; 408 409 // OpenMP Requires Flags 410 int64_t RequiresFlags; 411 412 // Resource pools 413 SignalPoolT FreeSignalPool; 414 415 bool hostcall_required = false; 416 417 std::vector<hsa_executable_t> HSAExecutables; 418 419 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 420 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 421 422 hsa_amd_memory_pool_t KernArgPool; 423 424 struct atmiFreePtrDeletor { 425 void operator()(void *p) { 426 core::Runtime::Memfree(p); // ignore failure to free 427 } 428 }; 429 430 // device_State shared across loaded binaries, error if inconsistent size 431 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 432 deviceStateStore; 433 434 static const unsigned HardTeamLimit = 435 (1 << 16) - 1; // 64K needed to fit in uint16 436 static const int DefaultNumTeams = 128; 437 static const int Max_Teams = 438 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 439 static const int Warp_Size = 440 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 441 static const int Max_WG_Size = 442 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 443 static const int Default_WG_Size = 444 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 445 446 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 447 size_t size, hsa_agent_t); 448 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 449 MemcpyFunc Func, int32_t deviceId) { 450 hsa_agent_t agent = HSAAgents[deviceId]; 451 hsa_signal_t s = FreeSignalPool.pop(); 452 if (s.handle == 0) { 453 return HSA_STATUS_ERROR; 454 } 455 hsa_status_t r = Func(s, dest, src, size, agent); 456 FreeSignalPool.push(s); 457 return r; 458 } 459 460 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 461 size_t size, int32_t deviceId) { 462 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 463 } 464 465 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 466 size_t size, int32_t deviceId) { 467 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 468 } 469 470 // Record entry point associated with device 471 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 472 assert(device_id < (int32_t)FuncGblEntries.size() && 473 "Unexpected device id!"); 474 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 475 476 E.Entries.push_back(entry); 477 } 478 479 // Return true if the entry is associated with device 480 bool findOffloadEntry(int32_t device_id, void *addr) { 481 assert(device_id < (int32_t)FuncGblEntries.size() && 482 "Unexpected device id!"); 483 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 484 485 for (auto &it : E.Entries) { 486 if (it.addr == addr) 487 return true; 488 } 489 490 return false; 491 } 492 493 // Return the pointer to the target entries table 494 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 495 assert(device_id < (int32_t)FuncGblEntries.size() && 496 "Unexpected device id!"); 497 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 498 499 int32_t size = E.Entries.size(); 500 501 // Table is empty 502 if (!size) 503 return 0; 504 505 __tgt_offload_entry *begin = &E.Entries[0]; 506 __tgt_offload_entry *end = &E.Entries[size - 1]; 507 508 // Update table info according to the entries and return the pointer 509 E.Table.EntriesBegin = begin; 510 E.Table.EntriesEnd = ++end; 511 512 return &E.Table; 513 } 514 515 // Clear entries table for a device 516 void clearOffloadEntriesTable(int device_id) { 517 assert(device_id < (int32_t)FuncGblEntries.size() && 518 "Unexpected device id!"); 519 FuncGblEntries[device_id].emplace_back(); 520 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 521 // KernelArgPoolMap.clear(); 522 E.Entries.clear(); 523 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 524 } 525 526 RTLDeviceInfoTy() { 527 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 528 // anytime. You do not need a debug library build. 529 // 0 => no tracing 530 // 1 => tracing dispatch only 531 // >1 => verbosity increase 532 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 533 print_kernel_trace = atoi(envStr); 534 else 535 print_kernel_trace = 0; 536 537 DP("Start initializing HSA-ATMI\n"); 538 hsa_status_t err = core::atl_init_gpu_context(); 539 if (err != HSA_STATUS_SUCCESS) { 540 DP("Error when initializing HSA-ATMI\n"); 541 return; 542 } 543 544 // Init hostcall soon after initializing ATMI 545 hostrpc_init(); 546 547 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 548 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 549 CPUAgents.push_back(Agent); 550 } else { 551 HSAAgents.push_back(Agent); 552 } 553 }); 554 if (err != HSA_STATUS_SUCCESS) 555 return; 556 557 NumberOfDevices = (int)HSAAgents.size(); 558 559 if (NumberOfDevices == 0) { 560 DP("There are no devices supporting HSA.\n"); 561 return; 562 } else { 563 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 564 } 565 std::tie(err, KernArgPool) = core::FindKernargPool(CPUAgents); 566 if (err != HSA_STATUS_SUCCESS) { 567 DP("Error when reading memory pools\n"); 568 return; 569 } 570 571 // Init the device info 572 HSAQueues.resize(NumberOfDevices); 573 FuncGblEntries.resize(NumberOfDevices); 574 ThreadsPerGroup.resize(NumberOfDevices); 575 ComputeUnits.resize(NumberOfDevices); 576 GPUName.resize(NumberOfDevices); 577 GroupsPerDevice.resize(NumberOfDevices); 578 WarpSize.resize(NumberOfDevices); 579 NumTeams.resize(NumberOfDevices); 580 NumThreads.resize(NumberOfDevices); 581 deviceStateStore.resize(NumberOfDevices); 582 KernelInfoTable.resize(NumberOfDevices); 583 SymbolInfoTable.resize(NumberOfDevices); 584 585 for (int i = 0; i < NumberOfDevices; i++) { 586 HSAQueues[i] = nullptr; 587 } 588 589 for (int i = 0; i < NumberOfDevices; i++) { 590 uint32_t queue_size = 0; 591 { 592 hsa_status_t err = hsa_agent_get_info( 593 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 594 if (err != HSA_STATUS_SUCCESS) { 595 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 596 return; 597 } 598 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 599 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 600 } 601 } 602 603 hsa_status_t rc = hsa_queue_create( 604 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 605 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 606 if (rc != HSA_STATUS_SUCCESS) { 607 DP("Failed to create HSA queue %d\n", i); 608 return; 609 } 610 611 deviceStateStore[i] = {nullptr, 0}; 612 } 613 614 for (int i = 0; i < NumberOfDevices; i++) { 615 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 616 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 617 ComputeUnits[i] = 1; 618 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 619 GroupsPerDevice[i], ThreadsPerGroup[i]); 620 } 621 622 // Get environment variables regarding teams 623 char *envStr = getenv("OMP_TEAM_LIMIT"); 624 if (envStr) { 625 // OMP_TEAM_LIMIT has been set 626 EnvTeamLimit = std::stoi(envStr); 627 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 628 } else { 629 EnvTeamLimit = -1; 630 } 631 envStr = getenv("OMP_NUM_TEAMS"); 632 if (envStr) { 633 // OMP_NUM_TEAMS has been set 634 EnvNumTeams = std::stoi(envStr); 635 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 636 } else { 637 EnvNumTeams = -1; 638 } 639 // Get environment variables regarding expMaxTeams 640 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 641 if (envStr) { 642 EnvMaxTeamsDefault = std::stoi(envStr); 643 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 644 } else { 645 EnvMaxTeamsDefault = -1; 646 } 647 envStr = getenv("OMP_TEAMS_THREAD_LIMIT"); 648 if (envStr) { 649 EnvTeamThreadLimit = std::stoi(envStr); 650 DP("Parsed OMP_TEAMS_THREAD_LIMIT=%d\n", EnvTeamThreadLimit); 651 } else { 652 EnvTeamThreadLimit = -1; 653 } 654 655 // Default state. 656 RequiresFlags = OMP_REQ_UNDEFINED; 657 } 658 659 ~RTLDeviceInfoTy() { 660 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 661 // Run destructors on types that use HSA before 662 // atmi_finalize removes access to it 663 deviceStateStore.clear(); 664 KernelArgPoolMap.clear(); 665 // Terminate hostrpc before finalizing ATMI 666 hostrpc_terminate(); 667 668 hsa_status_t Err; 669 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 670 Err = hsa_executable_destroy(HSAExecutables[I]); 671 if (Err != HSA_STATUS_SUCCESS) { 672 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 673 "Destroying executable", get_error_string(Err)); 674 } 675 } 676 677 Err = hsa_shut_down(); 678 if (Err != HSA_STATUS_SUCCESS) { 679 printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA", 680 get_error_string(Err)); 681 } 682 } 683 }; 684 685 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 686 687 // TODO: May need to drop the trailing to fields until deviceRTL is updated 688 struct omptarget_device_environmentTy { 689 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 690 // only useful for Debug build of deviceRTLs 691 int32_t num_devices; // gets number of active offload devices 692 int32_t device_num; // gets a value 0 to num_devices-1 693 }; 694 695 static RTLDeviceInfoTy DeviceInfo; 696 697 namespace { 698 699 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 700 __tgt_async_info *AsyncInfo) { 701 assert(AsyncInfo && "AsyncInfo is nullptr"); 702 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 703 // Return success if we are not copying back to host from target. 704 if (!HstPtr) 705 return OFFLOAD_SUCCESS; 706 hsa_status_t err; 707 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 708 (long long unsigned)(Elf64_Addr)TgtPtr, 709 (long long unsigned)(Elf64_Addr)HstPtr); 710 711 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 712 DeviceId); 713 714 if (err != HSA_STATUS_SUCCESS) { 715 DP("Error when copying data from device to host. Pointers: " 716 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 717 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 718 return OFFLOAD_FAIL; 719 } 720 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 721 (long long unsigned)(Elf64_Addr)TgtPtr, 722 (long long unsigned)(Elf64_Addr)HstPtr); 723 return OFFLOAD_SUCCESS; 724 } 725 726 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 727 __tgt_async_info *AsyncInfo) { 728 assert(AsyncInfo && "AsyncInfo is nullptr"); 729 hsa_status_t err; 730 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 731 // Return success if we are not doing host to target. 732 if (!HstPtr) 733 return OFFLOAD_SUCCESS; 734 735 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 736 (long long unsigned)(Elf64_Addr)HstPtr, 737 (long long unsigned)(Elf64_Addr)TgtPtr); 738 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 739 DeviceId); 740 if (err != HSA_STATUS_SUCCESS) { 741 DP("Error when copying data from host to device. Pointers: " 742 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 743 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 744 return OFFLOAD_FAIL; 745 } 746 return OFFLOAD_SUCCESS; 747 } 748 749 // Async. 750 // The implementation was written with cuda streams in mind. The semantics of 751 // that are to execute kernels on a queue in order of insertion. A synchronise 752 // call then makes writes visible between host and device. This means a series 753 // of N data_submit_async calls are expected to execute serially. HSA offers 754 // various options to run the data copies concurrently. This may require changes 755 // to libomptarget. 756 757 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 758 // there are no outstanding kernels that need to be synchronized. Any async call 759 // may be passed a Queue==0, at which point the cuda implementation will set it 760 // to non-null (see getStream). The cuda streams are per-device. Upstream may 761 // change this interface to explicitly initialize the AsyncInfo_pointer, but 762 // until then hsa lazily initializes it as well. 763 764 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 765 // set non-null while using async calls, return to null to indicate completion 766 assert(AsyncInfo); 767 if (!AsyncInfo->Queue) { 768 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 769 } 770 } 771 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 772 assert(AsyncInfo); 773 assert(AsyncInfo->Queue); 774 AsyncInfo->Queue = 0; 775 } 776 777 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 778 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 779 int32_t r = elf_check_machine(image, amdgcnMachineID); 780 if (!r) { 781 DP("Supported machine ID not found\n"); 782 } 783 return r; 784 } 785 786 uint32_t elf_e_flags(__tgt_device_image *image) { 787 char *img_begin = (char *)image->ImageStart; 788 size_t img_size = (char *)image->ImageEnd - img_begin; 789 790 Elf *e = elf_memory(img_begin, img_size); 791 if (!e) { 792 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 793 return 0; 794 } 795 796 Elf64_Ehdr *eh64 = elf64_getehdr(e); 797 798 if (!eh64) { 799 DP("Unable to get machine ID from ELF file!\n"); 800 elf_end(e); 801 return 0; 802 } 803 804 uint32_t Flags = eh64->e_flags; 805 806 elf_end(e); 807 DP("ELF Flags: 0x%x\n", Flags); 808 return Flags; 809 } 810 } // namespace 811 812 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 813 return elf_machine_id_is_amdgcn(image); 814 } 815 816 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 817 818 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 819 DP("Init requires flags to %ld\n", RequiresFlags); 820 DeviceInfo.RequiresFlags = RequiresFlags; 821 return RequiresFlags; 822 } 823 824 namespace { 825 template <typename T> bool enforce_upper_bound(T *value, T upper) { 826 bool changed = *value > upper; 827 if (changed) { 828 *value = upper; 829 } 830 return changed; 831 } 832 } // namespace 833 834 int32_t __tgt_rtl_init_device(int device_id) { 835 hsa_status_t err; 836 837 // this is per device id init 838 DP("Initialize the device id: %d\n", device_id); 839 840 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 841 842 // Get number of Compute Unit 843 uint32_t compute_units = 0; 844 err = hsa_agent_get_info( 845 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 846 &compute_units); 847 if (err != HSA_STATUS_SUCCESS) { 848 DeviceInfo.ComputeUnits[device_id] = 1; 849 DP("Error getting compute units : settiing to 1\n"); 850 } else { 851 DeviceInfo.ComputeUnits[device_id] = compute_units; 852 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 853 } 854 855 char GetInfoName[64]; // 64 max size returned by get info 856 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 857 (void *)GetInfoName); 858 if (err) 859 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 860 else { 861 DeviceInfo.GPUName[device_id] = GetInfoName; 862 } 863 864 if (print_kernel_trace & STARTUP_DETAILS) 865 fprintf(stderr, "Device#%-2d CU's: %2d %s\n", device_id, 866 DeviceInfo.ComputeUnits[device_id], 867 DeviceInfo.GPUName[device_id].c_str()); 868 869 // Query attributes to determine number of threads/block and blocks/grid. 870 uint16_t workgroup_max_dim[3]; 871 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 872 &workgroup_max_dim); 873 if (err != HSA_STATUS_SUCCESS) { 874 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 875 DP("Error getting grid dims: num groups : %d\n", 876 RTLDeviceInfoTy::DefaultNumTeams); 877 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 878 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 879 DP("Using %d ROCm blocks per grid\n", 880 DeviceInfo.GroupsPerDevice[device_id]); 881 } else { 882 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 883 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 884 "at the hard limit\n", 885 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 886 } 887 888 // Get thread limit 889 hsa_dim3_t grid_max_dim; 890 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 891 if (err == HSA_STATUS_SUCCESS) { 892 DeviceInfo.ThreadsPerGroup[device_id] = 893 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 894 DeviceInfo.GroupsPerDevice[device_id]; 895 896 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 897 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 898 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 899 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 900 RTLDeviceInfoTy::Max_WG_Size)) { 901 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 902 } else { 903 DP("Using ROCm Queried thread limit: %d\n", 904 DeviceInfo.ThreadsPerGroup[device_id]); 905 } 906 } else { 907 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 908 DP("Error getting max block dimension, use default:%d \n", 909 RTLDeviceInfoTy::Max_WG_Size); 910 } 911 912 // Get wavefront size 913 uint32_t wavefront_size = 0; 914 err = 915 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 916 if (err == HSA_STATUS_SUCCESS) { 917 DP("Queried wavefront size: %d\n", wavefront_size); 918 DeviceInfo.WarpSize[device_id] = wavefront_size; 919 } else { 920 DP("Default wavefront size: %d\n", 921 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 922 DeviceInfo.WarpSize[device_id] = 923 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 924 } 925 926 // Adjust teams to the env variables 927 928 if (DeviceInfo.EnvTeamLimit > 0 && 929 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 930 DeviceInfo.EnvTeamLimit))) { 931 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 932 DeviceInfo.EnvTeamLimit); 933 } 934 935 // Set default number of teams 936 if (DeviceInfo.EnvNumTeams > 0) { 937 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 938 DP("Default number of teams set according to environment %d\n", 939 DeviceInfo.EnvNumTeams); 940 } else { 941 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 942 int TeamsPerCU = 1; // default number of teams per CU is 1 943 if (TeamsPerCUEnvStr) { 944 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 945 } 946 947 DeviceInfo.NumTeams[device_id] = 948 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 949 DP("Default number of teams = %d * number of compute units %d\n", 950 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 951 } 952 953 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 954 DeviceInfo.GroupsPerDevice[device_id])) { 955 DP("Default number of teams exceeds device limit, capping at %d\n", 956 DeviceInfo.GroupsPerDevice[device_id]); 957 } 958 959 // Adjust threads to the env variables 960 if (DeviceInfo.EnvTeamThreadLimit > 0 && 961 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 962 DeviceInfo.EnvTeamThreadLimit))) { 963 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 964 DeviceInfo.EnvTeamThreadLimit); 965 } 966 967 // Set default number of threads 968 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 969 DP("Default number of threads set according to library's default %d\n", 970 RTLDeviceInfoTy::Default_WG_Size); 971 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 972 DeviceInfo.ThreadsPerGroup[device_id])) { 973 DP("Default number of threads exceeds device limit, capping at %d\n", 974 DeviceInfo.ThreadsPerGroup[device_id]); 975 } 976 977 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 978 device_id, DeviceInfo.GroupsPerDevice[device_id], 979 DeviceInfo.ThreadsPerGroup[device_id]); 980 981 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 982 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 983 DeviceInfo.GroupsPerDevice[device_id], 984 DeviceInfo.GroupsPerDevice[device_id] * 985 DeviceInfo.ThreadsPerGroup[device_id]); 986 987 return OFFLOAD_SUCCESS; 988 } 989 990 namespace { 991 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 992 size_t N; 993 int rc = elf_getshdrnum(elf, &N); 994 if (rc != 0) { 995 return nullptr; 996 } 997 998 Elf64_Shdr *result = nullptr; 999 for (size_t i = 0; i < N; i++) { 1000 Elf_Scn *scn = elf_getscn(elf, i); 1001 if (scn) { 1002 Elf64_Shdr *shdr = elf64_getshdr(scn); 1003 if (shdr) { 1004 if (shdr->sh_type == SHT_HASH) { 1005 if (result == nullptr) { 1006 result = shdr; 1007 } else { 1008 // multiple SHT_HASH sections not handled 1009 return nullptr; 1010 } 1011 } 1012 } 1013 } 1014 } 1015 return result; 1016 } 1017 1018 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1019 const char *symname) { 1020 1021 assert(section_hash); 1022 size_t section_symtab_index = section_hash->sh_link; 1023 Elf64_Shdr *section_symtab = 1024 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1025 size_t section_strtab_index = section_symtab->sh_link; 1026 1027 const Elf64_Sym *symtab = 1028 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1029 1030 const uint32_t *hashtab = 1031 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1032 1033 // Layout: 1034 // nbucket 1035 // nchain 1036 // bucket[nbucket] 1037 // chain[nchain] 1038 uint32_t nbucket = hashtab[0]; 1039 const uint32_t *bucket = &hashtab[2]; 1040 const uint32_t *chain = &hashtab[nbucket + 2]; 1041 1042 const size_t max = strlen(symname) + 1; 1043 const uint32_t hash = elf_hash(symname); 1044 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1045 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1046 if (strncmp(symname, n, max) == 0) { 1047 return &symtab[i]; 1048 } 1049 } 1050 1051 return nullptr; 1052 } 1053 1054 typedef struct { 1055 void *addr = nullptr; 1056 uint32_t size = UINT32_MAX; 1057 uint32_t sh_type = SHT_NULL; 1058 } symbol_info; 1059 1060 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1061 symbol_info *res) { 1062 if (elf_kind(elf) != ELF_K_ELF) { 1063 return 1; 1064 } 1065 1066 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1067 if (!section_hash) { 1068 return 1; 1069 } 1070 1071 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1072 if (!sym) { 1073 return 1; 1074 } 1075 1076 if (sym->st_size > UINT32_MAX) { 1077 return 1; 1078 } 1079 1080 if (sym->st_shndx == SHN_UNDEF) { 1081 return 1; 1082 } 1083 1084 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1085 if (!section) { 1086 return 1; 1087 } 1088 1089 Elf64_Shdr *header = elf64_getshdr(section); 1090 if (!header) { 1091 return 1; 1092 } 1093 1094 res->addr = sym->st_value + base; 1095 res->size = static_cast<uint32_t>(sym->st_size); 1096 res->sh_type = header->sh_type; 1097 return 0; 1098 } 1099 1100 int get_symbol_info_without_loading(char *base, size_t img_size, 1101 const char *symname, symbol_info *res) { 1102 Elf *elf = elf_memory(base, img_size); 1103 if (elf) { 1104 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1105 elf_end(elf); 1106 return rc; 1107 } 1108 return 1; 1109 } 1110 1111 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1112 const char *symname, void **var_addr, 1113 uint32_t *var_size) { 1114 symbol_info si; 1115 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1116 if (rc == 0) { 1117 *var_addr = si.addr; 1118 *var_size = si.size; 1119 return HSA_STATUS_SUCCESS; 1120 } else { 1121 return HSA_STATUS_ERROR; 1122 } 1123 } 1124 1125 template <typename C> 1126 hsa_status_t module_register_from_memory_to_place( 1127 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1128 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1129 void *module_bytes, size_t module_size, int DeviceId, C cb, 1130 std::vector<hsa_executable_t> &HSAExecutables) { 1131 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1132 C *unwrapped = static_cast<C *>(cb_state); 1133 return (*unwrapped)(data, size); 1134 }; 1135 return core::RegisterModuleFromMemory( 1136 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1137 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1138 HSAExecutables); 1139 } 1140 } // namespace 1141 1142 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1143 uint64_t device_State_bytes = 0; 1144 { 1145 // If this is the deviceRTL, get the state variable size 1146 symbol_info size_si; 1147 int rc = get_symbol_info_without_loading( 1148 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1149 1150 if (rc == 0) { 1151 if (size_si.size != sizeof(uint64_t)) { 1152 DP("Found device_State_size variable with wrong size\n"); 1153 return 0; 1154 } 1155 1156 // Read number of bytes directly from the elf 1157 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1158 } 1159 } 1160 return device_State_bytes; 1161 } 1162 1163 static __tgt_target_table * 1164 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1165 1166 static __tgt_target_table * 1167 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1168 1169 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1170 __tgt_device_image *image) { 1171 DeviceInfo.load_run_lock.lock(); 1172 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1173 DeviceInfo.load_run_lock.unlock(); 1174 return res; 1175 } 1176 1177 struct device_environment { 1178 // initialise an omptarget_device_environmentTy in the deviceRTL 1179 // patches around differences in the deviceRTL between trunk, aomp, 1180 // rocmcc. Over time these differences will tend to zero and this class 1181 // simplified. 1182 // Symbol may be in .data or .bss, and may be missing fields: 1183 // - aomp has debug_level, num_devices, device_num 1184 // - trunk has debug_level 1185 // - under review in trunk is debug_level, device_num 1186 // - rocmcc matches aomp, patch to swap num_devices and device_num 1187 1188 // The symbol may also have been deadstripped because the device side 1189 // accessors were unused. 1190 1191 // If the symbol is in .data (aomp, rocm) it can be written directly. 1192 // If it is in .bss, we must wait for it to be allocated space on the 1193 // gpu (trunk) and initialize after loading. 1194 const char *sym() { return "omptarget_device_environment"; } 1195 1196 omptarget_device_environmentTy host_device_env; 1197 symbol_info si; 1198 bool valid = false; 1199 1200 __tgt_device_image *image; 1201 const size_t img_size; 1202 1203 device_environment(int device_id, int number_devices, 1204 __tgt_device_image *image, const size_t img_size) 1205 : image(image), img_size(img_size) { 1206 1207 host_device_env.num_devices = number_devices; 1208 host_device_env.device_num = device_id; 1209 host_device_env.debug_level = 0; 1210 #ifdef OMPTARGET_DEBUG 1211 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1212 host_device_env.debug_level = std::stoi(envStr); 1213 } 1214 #endif 1215 1216 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1217 img_size, sym(), &si); 1218 if (rc != 0) { 1219 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1220 return; 1221 } 1222 1223 if (si.size > sizeof(host_device_env)) { 1224 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1225 sizeof(host_device_env)); 1226 return; 1227 } 1228 1229 valid = true; 1230 } 1231 1232 bool in_image() { return si.sh_type != SHT_NOBITS; } 1233 1234 hsa_status_t before_loading(void *data, size_t size) { 1235 if (valid) { 1236 if (in_image()) { 1237 DP("Setting global device environment before load (%u bytes)\n", 1238 si.size); 1239 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1240 void *pos = (char *)data + offset; 1241 memcpy(pos, &host_device_env, si.size); 1242 } 1243 } 1244 return HSA_STATUS_SUCCESS; 1245 } 1246 1247 hsa_status_t after_loading() { 1248 if (valid) { 1249 if (!in_image()) { 1250 DP("Setting global device environment after load (%u bytes)\n", 1251 si.size); 1252 int device_id = host_device_env.device_num; 1253 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1254 void *state_ptr; 1255 uint32_t state_ptr_size; 1256 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1257 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1258 if (err != HSA_STATUS_SUCCESS) { 1259 DP("failed to find %s in loaded image\n", sym()); 1260 return err; 1261 } 1262 1263 if (state_ptr_size != si.size) { 1264 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1265 si.size); 1266 return HSA_STATUS_ERROR; 1267 } 1268 1269 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1270 state_ptr_size, device_id); 1271 } 1272 } 1273 return HSA_STATUS_SUCCESS; 1274 } 1275 }; 1276 1277 static hsa_status_t atmi_calloc(void **ret_ptr, size_t size, int DeviceId) { 1278 uint64_t rounded = 4 * ((size + 3) / 4); 1279 void *ptr; 1280 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, rounded, DeviceId); 1281 if (err != HSA_STATUS_SUCCESS) { 1282 return err; 1283 } 1284 1285 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1286 if (rc != HSA_STATUS_SUCCESS) { 1287 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1288 core::Runtime::Memfree(ptr); 1289 return HSA_STATUS_ERROR; 1290 } 1291 1292 *ret_ptr = ptr; 1293 return HSA_STATUS_SUCCESS; 1294 } 1295 1296 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1297 symbol_info si; 1298 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1299 return (rc == 0) && (si.addr != nullptr); 1300 } 1301 1302 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1303 __tgt_device_image *image) { 1304 // This function loads the device image onto gpu[device_id] and does other 1305 // per-image initialization work. Specifically: 1306 // 1307 // - Initialize an omptarget_device_environmentTy instance embedded in the 1308 // image at the symbol "omptarget_device_environment" 1309 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1310 // 1311 // - Allocate a large array per-gpu (could be moved to init_device) 1312 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1313 // - Allocate at least that many bytes of gpu memory 1314 // - Zero initialize it 1315 // - Write the pointer to the symbol omptarget_nvptx_device_State 1316 // 1317 // - Pulls some per-kernel information together from various sources and 1318 // records it in the KernelsList for quicker access later 1319 // 1320 // The initialization can be done before or after loading the image onto the 1321 // gpu. This function presently does a mixture. Using the hsa api to get/set 1322 // the information is simpler to implement, in exchange for more complicated 1323 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1324 // back from the gpu vs a hashtable lookup on the host. 1325 1326 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1327 1328 DeviceInfo.clearOffloadEntriesTable(device_id); 1329 1330 // We do not need to set the ELF version because the caller of this function 1331 // had to do that to decide the right runtime to use 1332 1333 if (!elf_machine_id_is_amdgcn(image)) { 1334 return NULL; 1335 } 1336 1337 { 1338 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1339 img_size); 1340 1341 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1342 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1343 hsa_status_t err = module_register_from_memory_to_place( 1344 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1345 [&](void *data, size_t size) { 1346 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1347 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1348 __ATOMIC_RELEASE); 1349 } 1350 return env.before_loading(data, size); 1351 }, 1352 DeviceInfo.HSAExecutables); 1353 1354 check("Module registering", err); 1355 if (err != HSA_STATUS_SUCCESS) { 1356 fprintf(stderr, 1357 "Possible gpu arch mismatch: device:%s, image:%s please check" 1358 " compiler flag: -march=<gpu>\n", 1359 DeviceInfo.GPUName[device_id].c_str(), 1360 get_elf_mach_gfx_name(elf_e_flags(image))); 1361 return NULL; 1362 } 1363 1364 err = env.after_loading(); 1365 if (err != HSA_STATUS_SUCCESS) { 1366 return NULL; 1367 } 1368 } 1369 1370 DP("ATMI module successfully loaded!\n"); 1371 1372 { 1373 // the device_State array is either large value in bss or a void* that 1374 // needs to be assigned to a pointer to an array of size device_state_bytes 1375 // If absent, it has been deadstripped and needs no setup. 1376 1377 void *state_ptr; 1378 uint32_t state_ptr_size; 1379 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1380 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1381 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1382 &state_ptr_size); 1383 1384 if (err != HSA_STATUS_SUCCESS) { 1385 DP("No device_state symbol found, skipping initialization\n"); 1386 } else { 1387 if (state_ptr_size < sizeof(void *)) { 1388 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1389 sizeof(void *)); 1390 return NULL; 1391 } 1392 1393 // if it's larger than a void*, assume it's a bss array and no further 1394 // initialization is required. Only try to set up a pointer for 1395 // sizeof(void*) 1396 if (state_ptr_size == sizeof(void *)) { 1397 uint64_t device_State_bytes = 1398 get_device_State_bytes((char *)image->ImageStart, img_size); 1399 if (device_State_bytes == 0) { 1400 DP("Can't initialize device_State, missing size information\n"); 1401 return NULL; 1402 } 1403 1404 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1405 if (dss.first.get() == nullptr) { 1406 assert(dss.second == 0); 1407 void *ptr = NULL; 1408 hsa_status_t err = atmi_calloc(&ptr, device_State_bytes, device_id); 1409 if (err != HSA_STATUS_SUCCESS) { 1410 DP("Failed to allocate device_state array\n"); 1411 return NULL; 1412 } 1413 dss = { 1414 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1415 device_State_bytes, 1416 }; 1417 } 1418 1419 void *ptr = dss.first.get(); 1420 if (device_State_bytes != dss.second) { 1421 DP("Inconsistent sizes of device_State unsupported\n"); 1422 return NULL; 1423 } 1424 1425 // write ptr to device memory so it can be used by later kernels 1426 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1427 sizeof(void *), device_id); 1428 if (err != HSA_STATUS_SUCCESS) { 1429 DP("memcpy install of state_ptr failed\n"); 1430 return NULL; 1431 } 1432 } 1433 } 1434 } 1435 1436 // Here, we take advantage of the data that is appended after img_end to get 1437 // the symbols' name we need to load. This data consist of the host entries 1438 // begin and end as well as the target name (see the offloading linker script 1439 // creation in clang compiler). 1440 1441 // Find the symbols in the module by name. The name can be obtain by 1442 // concatenating the host entry name with the target name 1443 1444 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1445 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1446 1447 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1448 1449 if (!e->addr) { 1450 // The host should have always something in the address to 1451 // uniquely identify the target region. 1452 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1453 (unsigned long long)e->size); 1454 return NULL; 1455 } 1456 1457 if (e->size) { 1458 __tgt_offload_entry entry = *e; 1459 1460 void *varptr; 1461 uint32_t varsize; 1462 1463 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1464 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1465 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1466 1467 if (err != HSA_STATUS_SUCCESS) { 1468 // Inform the user what symbol prevented offloading 1469 DP("Loading global '%s' (Failed)\n", e->name); 1470 return NULL; 1471 } 1472 1473 if (varsize != e->size) { 1474 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1475 varsize, e->size); 1476 return NULL; 1477 } 1478 1479 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1480 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1481 entry.addr = (void *)varptr; 1482 1483 DeviceInfo.addOffloadEntry(device_id, entry); 1484 1485 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1486 e->flags & OMP_DECLARE_TARGET_LINK) { 1487 // If unified memory is present any target link variables 1488 // can access host addresses directly. There is no longer a 1489 // need for device copies. 1490 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1491 sizeof(void *), device_id); 1492 if (err != HSA_STATUS_SUCCESS) 1493 DP("Error when copying USM\n"); 1494 DP("Copy linked variable host address (" DPxMOD ")" 1495 "to device address (" DPxMOD ")\n", 1496 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1497 } 1498 1499 continue; 1500 } 1501 1502 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1503 1504 uint32_t kernarg_segment_size; 1505 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1506 hsa_status_t err = atmi_interop_hsa_get_kernel_info( 1507 KernelInfoMap, device_id, e->name, 1508 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1509 &kernarg_segment_size); 1510 1511 // each arg is a void * in this openmp implementation 1512 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1513 std::vector<size_t> arg_sizes(arg_num); 1514 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1515 it != arg_sizes.end(); it++) { 1516 *it = sizeof(void *); 1517 } 1518 1519 // default value GENERIC (in case symbol is missing from cubin file) 1520 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1521 1522 // get flat group size if present, else Default_WG_Size 1523 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1524 1525 // get Kernel Descriptor if present. 1526 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1527 struct KernDescValType { 1528 uint16_t Version; 1529 uint16_t TSize; 1530 uint16_t WG_Size; 1531 uint8_t Mode; 1532 }; 1533 struct KernDescValType KernDescVal; 1534 std::string KernDescNameStr(e->name); 1535 KernDescNameStr += "_kern_desc"; 1536 const char *KernDescName = KernDescNameStr.c_str(); 1537 1538 void *KernDescPtr; 1539 uint32_t KernDescSize; 1540 void *CallStackAddr = nullptr; 1541 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1542 KernDescName, &KernDescPtr, &KernDescSize); 1543 1544 if (err == HSA_STATUS_SUCCESS) { 1545 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1546 DP("Loading global computation properties '%s' - size mismatch (%u != " 1547 "%lu)\n", 1548 KernDescName, KernDescSize, sizeof(KernDescVal)); 1549 1550 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1551 1552 // Check structure size against recorded size. 1553 if ((size_t)KernDescSize != KernDescVal.TSize) 1554 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1555 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1556 1557 DP("After loading global for %s KernDesc \n", KernDescName); 1558 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1559 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1560 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1561 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1562 1563 // Get ExecMode 1564 ExecModeVal = KernDescVal.Mode; 1565 DP("ExecModeVal %d\n", ExecModeVal); 1566 if (KernDescVal.WG_Size == 0) { 1567 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1568 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1569 } 1570 WGSizeVal = KernDescVal.WG_Size; 1571 DP("WGSizeVal %d\n", WGSizeVal); 1572 check("Loading KernDesc computation property", err); 1573 } else { 1574 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1575 1576 // Generic 1577 std::string ExecModeNameStr(e->name); 1578 ExecModeNameStr += "_exec_mode"; 1579 const char *ExecModeName = ExecModeNameStr.c_str(); 1580 1581 void *ExecModePtr; 1582 uint32_t varsize; 1583 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1584 ExecModeName, &ExecModePtr, &varsize); 1585 1586 if (err == HSA_STATUS_SUCCESS) { 1587 if ((size_t)varsize != sizeof(int8_t)) { 1588 DP("Loading global computation properties '%s' - size mismatch(%u != " 1589 "%lu)\n", 1590 ExecModeName, varsize, sizeof(int8_t)); 1591 return NULL; 1592 } 1593 1594 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1595 1596 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1597 ExecModeVal); 1598 1599 if (ExecModeVal < 0 || ExecModeVal > 1) { 1600 DP("Error wrong exec_mode value specified in HSA code object file: " 1601 "%d\n", 1602 ExecModeVal); 1603 return NULL; 1604 } 1605 } else { 1606 DP("Loading global exec_mode '%s' - symbol missing, using default " 1607 "value " 1608 "GENERIC (1)\n", 1609 ExecModeName); 1610 } 1611 check("Loading computation property", err); 1612 1613 // Flat group size 1614 std::string WGSizeNameStr(e->name); 1615 WGSizeNameStr += "_wg_size"; 1616 const char *WGSizeName = WGSizeNameStr.c_str(); 1617 1618 void *WGSizePtr; 1619 uint32_t WGSize; 1620 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1621 WGSizeName, &WGSizePtr, &WGSize); 1622 1623 if (err == HSA_STATUS_SUCCESS) { 1624 if ((size_t)WGSize != sizeof(int16_t)) { 1625 DP("Loading global computation properties '%s' - size mismatch (%u " 1626 "!= " 1627 "%lu)\n", 1628 WGSizeName, WGSize, sizeof(int16_t)); 1629 return NULL; 1630 } 1631 1632 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1633 1634 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1635 1636 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1637 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1638 DP("Error wrong WGSize value specified in HSA code object file: " 1639 "%d\n", 1640 WGSizeVal); 1641 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1642 } 1643 } else { 1644 DP("Warning: Loading WGSize '%s' - symbol not found, " 1645 "using default value %d\n", 1646 WGSizeName, WGSizeVal); 1647 } 1648 1649 check("Loading WGSize computation property", err); 1650 } 1651 1652 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1653 CallStackAddr, e->name, kernarg_segment_size, 1654 DeviceInfo.KernArgPool)); 1655 __tgt_offload_entry entry = *e; 1656 entry.addr = (void *)&KernelsList.back(); 1657 DeviceInfo.addOffloadEntry(device_id, entry); 1658 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1659 } 1660 1661 return DeviceInfo.getOffloadEntriesTable(device_id); 1662 } 1663 1664 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1665 void *ptr = NULL; 1666 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1667 1668 if (kind != TARGET_ALLOC_DEFAULT) { 1669 REPORT("Invalid target data allocation kind or requested allocator not " 1670 "implemented yet\n"); 1671 return NULL; 1672 } 1673 1674 hsa_status_t err = core::Runtime::DeviceMalloc(&ptr, size, device_id); 1675 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1676 (long long unsigned)(Elf64_Addr)ptr); 1677 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1678 return ptr; 1679 } 1680 1681 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1682 int64_t size) { 1683 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1684 __tgt_async_info AsyncInfo; 1685 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1686 if (rc != OFFLOAD_SUCCESS) 1687 return OFFLOAD_FAIL; 1688 1689 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1690 } 1691 1692 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1693 int64_t size, __tgt_async_info *AsyncInfo) { 1694 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1695 if (AsyncInfo) { 1696 initAsyncInfo(AsyncInfo); 1697 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1698 } else { 1699 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1700 } 1701 } 1702 1703 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1704 int64_t size) { 1705 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1706 __tgt_async_info AsyncInfo; 1707 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1708 if (rc != OFFLOAD_SUCCESS) 1709 return OFFLOAD_FAIL; 1710 1711 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1712 } 1713 1714 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1715 void *tgt_ptr, int64_t size, 1716 __tgt_async_info *AsyncInfo) { 1717 assert(AsyncInfo && "AsyncInfo is nullptr"); 1718 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1719 initAsyncInfo(AsyncInfo); 1720 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1721 } 1722 1723 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1724 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1725 hsa_status_t err; 1726 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1727 err = core::Runtime::Memfree(tgt_ptr); 1728 if (err != HSA_STATUS_SUCCESS) { 1729 DP("Error when freeing CUDA memory\n"); 1730 return OFFLOAD_FAIL; 1731 } 1732 return OFFLOAD_SUCCESS; 1733 } 1734 1735 // Determine launch values for threadsPerGroup and num_groups. 1736 // Outputs: treadsPerGroup, num_groups 1737 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1738 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1739 // loop_tripcount. 1740 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1741 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1742 int num_teams, int thread_limit, uint64_t loop_tripcount, 1743 int32_t device_id) { 1744 1745 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1746 ? DeviceInfo.EnvMaxTeamsDefault 1747 : DeviceInfo.NumTeams[device_id]; 1748 if (Max_Teams > DeviceInfo.HardTeamLimit) 1749 Max_Teams = DeviceInfo.HardTeamLimit; 1750 1751 if (print_kernel_trace & STARTUP_DETAILS) { 1752 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1753 RTLDeviceInfoTy::Max_Teams); 1754 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1755 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1756 RTLDeviceInfoTy::Warp_Size); 1757 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1758 RTLDeviceInfoTy::Max_WG_Size); 1759 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1760 RTLDeviceInfoTy::Default_WG_Size); 1761 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1762 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1763 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1764 } 1765 // check for thread_limit() clause 1766 if (thread_limit > 0) { 1767 threadsPerGroup = thread_limit; 1768 DP("Setting threads per block to requested %d\n", thread_limit); 1769 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1770 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1771 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1772 } 1773 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1774 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1775 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1776 } 1777 } 1778 // check flat_max_work_group_size attr here 1779 if (threadsPerGroup > ConstWGSize) { 1780 threadsPerGroup = ConstWGSize; 1781 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1782 threadsPerGroup); 1783 } 1784 if (print_kernel_trace & STARTUP_DETAILS) 1785 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1786 DP("Preparing %d threads\n", threadsPerGroup); 1787 1788 // Set default num_groups (teams) 1789 if (DeviceInfo.EnvTeamLimit > 0) 1790 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1791 ? Max_Teams 1792 : DeviceInfo.EnvTeamLimit; 1793 else 1794 num_groups = Max_Teams; 1795 DP("Set default num of groups %d\n", num_groups); 1796 1797 if (print_kernel_trace & STARTUP_DETAILS) { 1798 fprintf(stderr, "num_groups: %d\n", num_groups); 1799 fprintf(stderr, "num_teams: %d\n", num_teams); 1800 } 1801 1802 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1803 // This reduction is typical for default case (no thread_limit clause). 1804 // or when user goes crazy with num_teams clause. 1805 // FIXME: We cant distinguish between a constant or variable thread limit. 1806 // So we only handle constant thread_limits. 1807 if (threadsPerGroup > 1808 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1809 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1810 // here? 1811 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1812 1813 // check for num_teams() clause 1814 if (num_teams > 0) { 1815 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1816 } 1817 if (print_kernel_trace & STARTUP_DETAILS) { 1818 fprintf(stderr, "num_groups: %d\n", num_groups); 1819 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1820 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1821 } 1822 1823 if (DeviceInfo.EnvNumTeams > 0) { 1824 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1825 : num_groups; 1826 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1827 } else if (DeviceInfo.EnvTeamLimit > 0) { 1828 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1829 ? DeviceInfo.EnvTeamLimit 1830 : num_groups; 1831 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1832 } else { 1833 if (num_teams <= 0) { 1834 if (loop_tripcount > 0) { 1835 if (ExecutionMode == SPMD) { 1836 // round up to the nearest integer 1837 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1838 } else { 1839 num_groups = loop_tripcount; 1840 } 1841 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1842 "threads per block %d\n", 1843 num_groups, loop_tripcount, threadsPerGroup); 1844 } 1845 } else { 1846 num_groups = num_teams; 1847 } 1848 if (num_groups > Max_Teams) { 1849 num_groups = Max_Teams; 1850 if (print_kernel_trace & STARTUP_DETAILS) 1851 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1852 Max_Teams); 1853 } 1854 if (num_groups > num_teams && num_teams > 0) { 1855 num_groups = num_teams; 1856 if (print_kernel_trace & STARTUP_DETAILS) 1857 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1858 num_groups, num_teams); 1859 } 1860 } 1861 1862 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1863 if (num_teams > 0) { 1864 num_groups = num_teams; 1865 // Cap num_groups to EnvMaxTeamsDefault if set. 1866 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1867 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1868 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1869 } 1870 if (print_kernel_trace & STARTUP_DETAILS) { 1871 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1872 fprintf(stderr, "num_groups: %d\n", num_groups); 1873 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1874 } 1875 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1876 threadsPerGroup); 1877 } 1878 1879 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1880 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1881 bool full = true; 1882 while (full) { 1883 full = 1884 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1885 } 1886 return packet_id; 1887 } 1888 1889 static int32_t __tgt_rtl_run_target_team_region_locked( 1890 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1891 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1892 int32_t thread_limit, uint64_t loop_tripcount); 1893 1894 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1895 void **tgt_args, 1896 ptrdiff_t *tgt_offsets, 1897 int32_t arg_num, int32_t num_teams, 1898 int32_t thread_limit, 1899 uint64_t loop_tripcount) { 1900 1901 DeviceInfo.load_run_lock.lock_shared(); 1902 int32_t res = __tgt_rtl_run_target_team_region_locked( 1903 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1904 thread_limit, loop_tripcount); 1905 1906 DeviceInfo.load_run_lock.unlock_shared(); 1907 return res; 1908 } 1909 1910 int32_t __tgt_rtl_run_target_team_region_locked( 1911 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1912 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1913 int32_t thread_limit, uint64_t loop_tripcount) { 1914 // Set the context we are using 1915 // update thread limit content in gpu memory if un-initialized or specified 1916 // from host 1917 1918 DP("Run target team region thread_limit %d\n", thread_limit); 1919 1920 // All args are references. 1921 std::vector<void *> args(arg_num); 1922 std::vector<void *> ptrs(arg_num); 1923 1924 DP("Arg_num: %d\n", arg_num); 1925 for (int32_t i = 0; i < arg_num; ++i) { 1926 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1927 args[i] = &ptrs[i]; 1928 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1929 } 1930 1931 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1932 1933 std::string kernel_name = std::string(KernelInfo->Name); 1934 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 1935 if (KernelInfoTable[device_id].find(kernel_name) == 1936 KernelInfoTable[device_id].end()) { 1937 DP("Kernel %s not found\n", kernel_name.c_str()); 1938 return OFFLOAD_FAIL; 1939 } 1940 1941 const atl_kernel_info_t KernelInfoEntry = 1942 KernelInfoTable[device_id][kernel_name]; 1943 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 1944 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 1945 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 1946 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 1947 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 1948 1949 assert(arg_num == (int)KernelInfoEntry.num_args); 1950 1951 /* 1952 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1953 */ 1954 int num_groups = 0; 1955 1956 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1957 1958 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1959 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1960 DeviceInfo.EnvNumTeams, 1961 num_teams, // From run_region arg 1962 thread_limit, // From run_region arg 1963 loop_tripcount, // From run_region arg 1964 KernelInfo->device_id); 1965 1966 if (print_kernel_trace >= LAUNCH) { 1967 // enum modes are SPMD, GENERIC, NONE 0,1,2 1968 // if doing rtl timing, print to stderr, unless stdout requested. 1969 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 1970 fprintf(traceToStdout ? stdout : stderr, 1971 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1972 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 1973 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 1974 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1975 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1976 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 1977 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 1978 } 1979 1980 // Run on the device. 1981 { 1982 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1983 if (!queue) { 1984 return OFFLOAD_FAIL; 1985 } 1986 uint64_t packet_id = acquire_available_packet_id(queue); 1987 1988 const uint32_t mask = queue->size - 1; // size is a power of 2 1989 hsa_kernel_dispatch_packet_t *packet = 1990 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1991 (packet_id & mask); 1992 1993 // packet->header is written last 1994 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1995 packet->workgroup_size_x = threadsPerGroup; 1996 packet->workgroup_size_y = 1; 1997 packet->workgroup_size_z = 1; 1998 packet->reserved0 = 0; 1999 packet->grid_size_x = num_groups * threadsPerGroup; 2000 packet->grid_size_y = 1; 2001 packet->grid_size_z = 1; 2002 packet->private_segment_size = KernelInfoEntry.private_segment_size; 2003 packet->group_segment_size = KernelInfoEntry.group_segment_size; 2004 packet->kernel_object = KernelInfoEntry.kernel_object; 2005 packet->kernarg_address = 0; // use the block allocator 2006 packet->reserved2 = 0; // atmi writes id_ here 2007 packet->completion_signal = {0}; // may want a pool of signals 2008 2009 KernelArgPool *ArgPool = nullptr; 2010 { 2011 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 2012 if (it != KernelArgPoolMap.end()) { 2013 ArgPool = (it->second).get(); 2014 } 2015 } 2016 if (!ArgPool) { 2017 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 2018 device_id); 2019 } 2020 { 2021 void *kernarg = nullptr; 2022 if (ArgPool) { 2023 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 2024 kernarg = ArgPool->allocate(arg_num); 2025 } 2026 if (!kernarg) { 2027 DP("Allocate kernarg failed\n"); 2028 return OFFLOAD_FAIL; 2029 } 2030 2031 // Copy explicit arguments 2032 for (int i = 0; i < arg_num; i++) { 2033 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 2034 } 2035 2036 // Initialize implicit arguments. ATMI seems to leave most fields 2037 // uninitialized 2038 atmi_implicit_args_t *impl_args = 2039 reinterpret_cast<atmi_implicit_args_t *>( 2040 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 2041 memset(impl_args, 0, 2042 sizeof(atmi_implicit_args_t)); // may not be necessary 2043 impl_args->offset_x = 0; 2044 impl_args->offset_y = 0; 2045 impl_args->offset_z = 0; 2046 2047 // assign a hostcall buffer for the selected Q 2048 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 2049 // hostrpc_assign_buffer is not thread safe, and this function is 2050 // under a multiple reader lock, not a writer lock. 2051 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 2052 pthread_mutex_lock(&hostcall_init_lock); 2053 impl_args->hostcall_ptr = hostrpc_assign_buffer( 2054 DeviceInfo.HSAAgents[device_id], queue, device_id); 2055 pthread_mutex_unlock(&hostcall_init_lock); 2056 if (!impl_args->hostcall_ptr) { 2057 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 2058 "error\n"); 2059 return OFFLOAD_FAIL; 2060 } 2061 } 2062 2063 packet->kernarg_address = kernarg; 2064 } 2065 2066 { 2067 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 2068 if (s.handle == 0) { 2069 DP("Failed to get signal instance\n"); 2070 return OFFLOAD_FAIL; 2071 } 2072 packet->completion_signal = s; 2073 hsa_signal_store_relaxed(packet->completion_signal, 1); 2074 } 2075 2076 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 2077 core::create_header(), packet->setup); 2078 2079 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 2080 2081 while (hsa_signal_wait_scacquire(packet->completion_signal, 2082 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 2083 HSA_WAIT_STATE_BLOCKED) != 0) 2084 ; 2085 2086 assert(ArgPool); 2087 ArgPool->deallocate(packet->kernarg_address); 2088 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 2089 } 2090 2091 DP("Kernel completed\n"); 2092 return OFFLOAD_SUCCESS; 2093 } 2094 2095 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2096 void **tgt_args, ptrdiff_t *tgt_offsets, 2097 int32_t arg_num) { 2098 // use one team and one thread 2099 // fix thread num 2100 int32_t team_num = 1; 2101 int32_t thread_limit = 0; // use default 2102 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2103 tgt_offsets, arg_num, team_num, 2104 thread_limit, 0); 2105 } 2106 2107 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2108 void *tgt_entry_ptr, void **tgt_args, 2109 ptrdiff_t *tgt_offsets, 2110 int32_t arg_num, 2111 __tgt_async_info *AsyncInfo) { 2112 assert(AsyncInfo && "AsyncInfo is nullptr"); 2113 initAsyncInfo(AsyncInfo); 2114 2115 // use one team and one thread 2116 // fix thread num 2117 int32_t team_num = 1; 2118 int32_t thread_limit = 0; // use default 2119 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2120 tgt_offsets, arg_num, team_num, 2121 thread_limit, 0); 2122 } 2123 2124 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2125 assert(AsyncInfo && "AsyncInfo is nullptr"); 2126 2127 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2128 // is not ensured by devices.cpp for amdgcn 2129 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2130 if (AsyncInfo->Queue) { 2131 finiAsyncInfo(AsyncInfo); 2132 } 2133 return OFFLOAD_SUCCESS; 2134 } 2135 2136 namespace core { 2137 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 2138 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 2139 &DeviceInfo.HSAAgents[0], NULL, ptr); 2140 } 2141 2142 } // namespace core 2143