1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <dlfcn.h> 19 #include <elf.h> 20 #include <ffi.h> 21 #include <fstream> 22 #include <iostream> 23 #include <libelf.h> 24 #include <list> 25 #include <memory> 26 #include <mutex> 27 #include <shared_mutex> 28 #include <thread> 29 #include <unordered_map> 30 #include <vector> 31 32 // Header from ATMI interface 33 #include "atmi_interop_hsa.h" 34 #include "atmi_runtime.h" 35 36 #include "internal.h" 37 38 #include "Debug.h" 39 #include "omptargetplugin.h" 40 41 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 42 43 #ifndef TARGET_NAME 44 #define TARGET_NAME AMDHSA 45 #endif 46 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 47 48 int print_kernel_trace; 49 50 // Size of the target call stack struture 51 uint32_t TgtStackItemSize = 0; 52 53 #undef check // Drop definition from internal.h 54 #ifdef OMPTARGET_DEBUG 55 #define check(msg, status) \ 56 if (status != ATMI_STATUS_SUCCESS) { \ 57 /* fprintf(stderr, "[%s:%d] %s failed.\n", __FILE__, __LINE__, #msg);*/ \ 58 DP(#msg " failed\n"); \ 59 /*assert(0);*/ \ 60 } else { \ 61 /* fprintf(stderr, "[%s:%d] %s succeeded.\n", __FILE__, __LINE__, #msg); \ 62 */ \ 63 DP(#msg " succeeded\n"); \ 64 } 65 #else 66 #define check(msg, status) \ 67 {} 68 #endif 69 70 #include "../../common/elf_common.c" 71 72 static bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 73 const uint16_t amdgcnMachineID = 224; 74 int32_t r = elf_check_machine(image, amdgcnMachineID); 75 if (!r) { 76 DP("Supported machine ID not found\n"); 77 } 78 return r; 79 } 80 81 /// Keep entries table per device 82 struct FuncOrGblEntryTy { 83 __tgt_target_table Table; 84 std::vector<__tgt_offload_entry> Entries; 85 }; 86 87 enum ExecutionModeType { 88 SPMD, // constructors, destructors, 89 // combined constructs (`teams distribute parallel for [simd]`) 90 GENERIC, // everything else 91 NONE 92 }; 93 94 struct KernelArgPool { 95 private: 96 static pthread_mutex_t mutex; 97 98 public: 99 uint32_t kernarg_segment_size; 100 void *kernarg_region = nullptr; 101 std::queue<int> free_kernarg_segments; 102 103 uint32_t kernarg_size_including_implicit() { 104 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 105 } 106 107 ~KernelArgPool() { 108 if (kernarg_region) { 109 auto r = hsa_amd_memory_pool_free(kernarg_region); 110 assert(r == HSA_STATUS_SUCCESS); 111 ErrorCheck(Memory pool free, r); 112 } 113 } 114 115 // Can't really copy or move a mutex 116 KernelArgPool() = default; 117 KernelArgPool(const KernelArgPool &) = delete; 118 KernelArgPool(KernelArgPool &&) = delete; 119 120 KernelArgPool(uint32_t kernarg_segment_size) 121 : kernarg_segment_size(kernarg_segment_size) { 122 123 // atmi uses one pool per kernel for all gpus, with a fixed upper size 124 // preserving that exact scheme here, including the queue<int> 125 { 126 hsa_status_t err = hsa_amd_memory_pool_allocate( 127 atl_gpu_kernarg_pools[0], 128 kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 129 &kernarg_region); 130 ErrorCheck(Allocating memory for the executable-kernel, err); 131 core::allow_access_to_all_gpu_agents(kernarg_region); 132 133 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 134 free_kernarg_segments.push(i); 135 } 136 } 137 } 138 139 void *allocate(uint64_t arg_num) { 140 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 141 lock l(&mutex); 142 void *res = nullptr; 143 if (!free_kernarg_segments.empty()) { 144 145 int free_idx = free_kernarg_segments.front(); 146 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 147 (free_idx * kernarg_size_including_implicit())); 148 assert(free_idx == pointer_to_index(res)); 149 free_kernarg_segments.pop(); 150 } 151 return res; 152 } 153 154 void deallocate(void *ptr) { 155 lock l(&mutex); 156 int idx = pointer_to_index(ptr); 157 free_kernarg_segments.push(idx); 158 } 159 160 private: 161 int pointer_to_index(void *ptr) { 162 ptrdiff_t bytes = 163 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 164 assert(bytes >= 0); 165 assert(bytes % kernarg_size_including_implicit() == 0); 166 return bytes / kernarg_size_including_implicit(); 167 } 168 struct lock { 169 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 170 ~lock() { pthread_mutex_unlock(m); } 171 pthread_mutex_t *m; 172 }; 173 }; 174 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 175 176 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 177 KernelArgPoolMap; 178 179 /// Use a single entity to encode a kernel and a set of flags 180 struct KernelTy { 181 // execution mode of kernel 182 // 0 - SPMD mode (without master warp) 183 // 1 - Generic mode (with master warp) 184 int8_t ExecutionMode; 185 int16_t ConstWGSize; 186 int8_t MaxParLevel; 187 int32_t device_id; 188 void *CallStackAddr; 189 const char *Name; 190 191 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int8_t _MaxParLevel, 192 int32_t _device_id, void *_CallStackAddr, const char *_Name, 193 uint32_t _kernarg_segment_size) 194 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 195 MaxParLevel(_MaxParLevel), device_id(_device_id), 196 CallStackAddr(_CallStackAddr), Name(_Name) { 197 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 198 199 std::string N(_Name); 200 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 201 KernelArgPoolMap.insert( 202 std::make_pair(N, std::unique_ptr<KernelArgPool>( 203 new KernelArgPool(_kernarg_segment_size)))); 204 } 205 } 206 }; 207 208 /// List that contains all the kernels. 209 /// FIXME: we may need this to be per device and per library. 210 std::list<KernelTy> KernelsList; 211 212 // ATMI API to get gpu and gpu memory place 213 static atmi_place_t get_gpu_place(int device_id) { 214 return ATMI_PLACE_GPU(0, device_id); 215 } 216 static atmi_mem_place_t get_gpu_mem_place(int device_id) { 217 return ATMI_MEM_PLACE_GPU_MEM(0, device_id, 0); 218 } 219 220 static std::vector<hsa_agent_t> find_gpu_agents() { 221 std::vector<hsa_agent_t> res; 222 223 hsa_status_t err = hsa_iterate_agents( 224 [](hsa_agent_t agent, void *data) -> hsa_status_t { 225 std::vector<hsa_agent_t> *res = 226 static_cast<std::vector<hsa_agent_t> *>(data); 227 228 hsa_device_type_t device_type; 229 // get_info fails iff HSA runtime not yet initialized 230 hsa_status_t err = 231 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 232 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 233 printf("rtl.cpp: err %d\n", err); 234 assert(err == HSA_STATUS_SUCCESS); 235 236 if (device_type == HSA_DEVICE_TYPE_GPU) { 237 res->push_back(agent); 238 } 239 return HSA_STATUS_SUCCESS; 240 }, 241 &res); 242 243 // iterate_agents fails iff HSA runtime not yet initialized 244 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) 245 printf("rtl.cpp: err %d\n", err); 246 assert(err == HSA_STATUS_SUCCESS); 247 return res; 248 } 249 250 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 251 void *data) { 252 if (status != HSA_STATUS_SUCCESS) { 253 const char *status_string; 254 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 255 status_string = "unavailable"; 256 } 257 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, 258 __LINE__, source, status, status_string); 259 abort(); 260 } 261 } 262 263 namespace core { 264 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 265 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 266 } 267 268 uint16_t create_header(hsa_packet_type_t type, int barrier, 269 atmi_task_fence_scope_t acq_fence, 270 atmi_task_fence_scope_t rel_fence) { 271 uint16_t header = type << HSA_PACKET_HEADER_TYPE; 272 header |= barrier << HSA_PACKET_HEADER_BARRIER; 273 header |= (hsa_fence_scope_t) static_cast<int>( 274 acq_fence << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE); 275 header |= (hsa_fence_scope_t) static_cast<int>( 276 rel_fence << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE); 277 return header; 278 } 279 } // namespace core 280 281 /// Class containing all the device information 282 class RTLDeviceInfoTy { 283 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 284 285 public: 286 // load binary populates symbol tables and mutates various global state 287 // run uses those symbol tables 288 std::shared_timed_mutex load_run_lock; 289 290 int NumberOfDevices; 291 292 // GPU devices 293 std::vector<hsa_agent_t> HSAAgents; 294 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 295 296 // Device properties 297 std::vector<int> ComputeUnits; 298 std::vector<int> GroupsPerDevice; 299 std::vector<int> ThreadsPerGroup; 300 std::vector<int> WarpSize; 301 302 // OpenMP properties 303 std::vector<int> NumTeams; 304 std::vector<int> NumThreads; 305 306 // OpenMP Environment properties 307 int EnvNumTeams; 308 int EnvTeamLimit; 309 int EnvMaxTeamsDefault; 310 311 // OpenMP Requires Flags 312 int64_t RequiresFlags; 313 314 // Resource pools 315 SignalPoolT FreeSignalPool; 316 317 struct atmiFreePtrDeletor { 318 void operator()(void *p) { 319 atmi_free(p); // ignore failure to free 320 } 321 }; 322 323 // device_State shared across loaded binaries, error if inconsistent size 324 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 325 deviceStateStore; 326 327 static const int HardTeamLimit = 1 << 20; // 1 Meg 328 static const int DefaultNumTeams = 128; 329 static const int Max_Teams = 330 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams]; 331 static const int Warp_Size = 332 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 333 static const int Max_WG_Size = 334 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size]; 335 static const int Default_WG_Size = 336 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size]; 337 338 atmi_status_t freesignalpool_memcpy(void *dest, const void *src, 339 size_t size) { 340 hsa_signal_t s = FreeSignalPool.pop(); 341 if (s.handle == 0) { 342 return ATMI_STATUS_ERROR; 343 } 344 atmi_status_t r = atmi_memcpy(s, dest, src, size); 345 FreeSignalPool.push(s); 346 return r; 347 } 348 349 // Record entry point associated with device 350 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 351 assert(device_id < (int32_t)FuncGblEntries.size() && 352 "Unexpected device id!"); 353 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 354 355 E.Entries.push_back(entry); 356 } 357 358 // Return true if the entry is associated with device 359 bool findOffloadEntry(int32_t device_id, void *addr) { 360 assert(device_id < (int32_t)FuncGblEntries.size() && 361 "Unexpected device id!"); 362 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 363 364 for (auto &it : E.Entries) { 365 if (it.addr == addr) 366 return true; 367 } 368 369 return false; 370 } 371 372 // Return the pointer to the target entries table 373 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 374 assert(device_id < (int32_t)FuncGblEntries.size() && 375 "Unexpected device id!"); 376 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 377 378 int32_t size = E.Entries.size(); 379 380 // Table is empty 381 if (!size) 382 return 0; 383 384 __tgt_offload_entry *begin = &E.Entries[0]; 385 __tgt_offload_entry *end = &E.Entries[size - 1]; 386 387 // Update table info according to the entries and return the pointer 388 E.Table.EntriesBegin = begin; 389 E.Table.EntriesEnd = ++end; 390 391 return &E.Table; 392 } 393 394 // Clear entries table for a device 395 void clearOffloadEntriesTable(int device_id) { 396 assert(device_id < (int32_t)FuncGblEntries.size() && 397 "Unexpected device id!"); 398 FuncGblEntries[device_id].emplace_back(); 399 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 400 // KernelArgPoolMap.clear(); 401 E.Entries.clear(); 402 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 403 } 404 405 RTLDeviceInfoTy() { 406 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 407 // anytime. You do not need a debug library build. 408 // 0 => no tracing 409 // 1 => tracing dispatch only 410 // >1 => verbosity increase 411 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 412 print_kernel_trace = atoi(envStr); 413 else 414 print_kernel_trace = 0; 415 416 DP("Start initializing HSA-ATMI\n"); 417 atmi_status_t err = atmi_init(); 418 if (err != ATMI_STATUS_SUCCESS) { 419 DP("Error when initializing HSA-ATMI\n"); 420 return; 421 } 422 423 HSAAgents = find_gpu_agents(); 424 NumberOfDevices = (int)HSAAgents.size(); 425 426 if (NumberOfDevices == 0) { 427 DP("There are no devices supporting HSA.\n"); 428 return; 429 } else { 430 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 431 } 432 433 // Init the device info 434 HSAQueues.resize(NumberOfDevices); 435 FuncGblEntries.resize(NumberOfDevices); 436 ThreadsPerGroup.resize(NumberOfDevices); 437 ComputeUnits.resize(NumberOfDevices); 438 GroupsPerDevice.resize(NumberOfDevices); 439 WarpSize.resize(NumberOfDevices); 440 NumTeams.resize(NumberOfDevices); 441 NumThreads.resize(NumberOfDevices); 442 deviceStateStore.resize(NumberOfDevices); 443 444 for (int i = 0; i < NumberOfDevices; i++) { 445 uint32_t queue_size = 0; 446 { 447 hsa_status_t err; 448 err = hsa_agent_get_info(HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, 449 &queue_size); 450 ErrorCheck(Querying the agent maximum queue size, err); 451 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 452 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 453 } 454 } 455 456 hsa_status_t rc = hsa_queue_create( 457 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 458 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 459 if (rc != HSA_STATUS_SUCCESS) { 460 DP("Failed to create HSA queues\n"); 461 return; 462 } 463 464 deviceStateStore[i] = {nullptr, 0}; 465 } 466 467 for (int i = 0; i < NumberOfDevices; i++) { 468 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 469 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 470 ComputeUnits[i] = 1; 471 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 472 GroupsPerDevice[i], ThreadsPerGroup[i]); 473 } 474 475 // Get environment variables regarding teams 476 char *envStr = getenv("OMP_TEAM_LIMIT"); 477 if (envStr) { 478 // OMP_TEAM_LIMIT has been set 479 EnvTeamLimit = std::stoi(envStr); 480 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit); 481 } else { 482 EnvTeamLimit = -1; 483 } 484 envStr = getenv("OMP_NUM_TEAMS"); 485 if (envStr) { 486 // OMP_NUM_TEAMS has been set 487 EnvNumTeams = std::stoi(envStr); 488 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams); 489 } else { 490 EnvNumTeams = -1; 491 } 492 // Get environment variables regarding expMaxTeams 493 envStr = getenv("OMP_MAX_TEAMS_DEFAULT"); 494 if (envStr) { 495 EnvMaxTeamsDefault = std::stoi(envStr); 496 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault); 497 } else { 498 EnvMaxTeamsDefault = -1; 499 } 500 501 // Default state. 502 RequiresFlags = OMP_REQ_UNDEFINED; 503 } 504 505 ~RTLDeviceInfoTy() { 506 DP("Finalizing the HSA-ATMI DeviceInfo.\n"); 507 // Run destructors on types that use HSA before 508 // atmi_finalize removes access to it 509 deviceStateStore.clear(); 510 KernelArgPoolMap.clear(); 511 atmi_finalize(); 512 } 513 }; 514 515 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 516 517 // TODO: May need to drop the trailing to fields until deviceRTL is updated 518 struct omptarget_device_environmentTy { 519 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 520 // only useful for Debug build of deviceRTLs 521 int32_t num_devices; // gets number of active offload devices 522 int32_t device_num; // gets a value 0 to num_devices-1 523 }; 524 525 static RTLDeviceInfoTy DeviceInfo; 526 527 namespace { 528 529 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 530 __tgt_async_info *AsyncInfoPtr) { 531 assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr"); 532 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 533 // Return success if we are not copying back to host from target. 534 if (!HstPtr) 535 return OFFLOAD_SUCCESS; 536 atmi_status_t err; 537 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 538 (long long unsigned)(Elf64_Addr)TgtPtr, 539 (long long unsigned)(Elf64_Addr)HstPtr); 540 541 err = DeviceInfo.freesignalpool_memcpy(HstPtr, TgtPtr, (size_t)Size); 542 543 if (err != ATMI_STATUS_SUCCESS) { 544 DP("Error when copying data from device to host. Pointers: " 545 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 546 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 547 return OFFLOAD_FAIL; 548 } 549 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 550 (long long unsigned)(Elf64_Addr)TgtPtr, 551 (long long unsigned)(Elf64_Addr)HstPtr); 552 return OFFLOAD_SUCCESS; 553 } 554 555 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 556 __tgt_async_info *AsyncInfoPtr) { 557 assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr"); 558 atmi_status_t err; 559 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 560 // Return success if we are not doing host to target. 561 if (!HstPtr) 562 return OFFLOAD_SUCCESS; 563 564 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 565 (long long unsigned)(Elf64_Addr)HstPtr, 566 (long long unsigned)(Elf64_Addr)TgtPtr); 567 err = DeviceInfo.freesignalpool_memcpy(TgtPtr, HstPtr, (size_t)Size); 568 if (err != ATMI_STATUS_SUCCESS) { 569 DP("Error when copying data from host to device. Pointers: " 570 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 571 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 572 return OFFLOAD_FAIL; 573 } 574 return OFFLOAD_SUCCESS; 575 } 576 577 // Async. 578 // The implementation was written with cuda streams in mind. The semantics of 579 // that are to execute kernels on a queue in order of insertion. A synchronise 580 // call then makes writes visible between host and device. This means a series 581 // of N data_submit_async calls are expected to execute serially. HSA offers 582 // various options to run the data copies concurrently. This may require changes 583 // to libomptarget. 584 585 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 586 // there are no outstanding kernels that need to be synchronized. Any async call 587 // may be passed a Queue==0, at which point the cuda implementation will set it 588 // to non-null (see getStream). The cuda streams are per-device. Upstream may 589 // change this interface to explicitly initialize the async_info_pointer, but 590 // until then hsa lazily initializes it as well. 591 592 void initAsyncInfoPtr(__tgt_async_info *async_info_ptr) { 593 // set non-null while using async calls, return to null to indicate completion 594 assert(async_info_ptr); 595 if (!async_info_ptr->Queue) { 596 async_info_ptr->Queue = reinterpret_cast<void *>(UINT64_MAX); 597 } 598 } 599 void finiAsyncInfoPtr(__tgt_async_info *async_info_ptr) { 600 assert(async_info_ptr); 601 assert(async_info_ptr->Queue); 602 async_info_ptr->Queue = 0; 603 } 604 } // namespace 605 606 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 607 return elf_machine_id_is_amdgcn(image); 608 } 609 610 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 611 612 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 613 DP("Init requires flags to %ld\n", RequiresFlags); 614 DeviceInfo.RequiresFlags = RequiresFlags; 615 return RequiresFlags; 616 } 617 618 int32_t __tgt_rtl_init_device(int device_id) { 619 hsa_status_t err; 620 621 // this is per device id init 622 DP("Initialize the device id: %d\n", device_id); 623 624 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 625 626 // Get number of Compute Unit 627 uint32_t compute_units = 0; 628 err = hsa_agent_get_info( 629 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 630 &compute_units); 631 if (err != HSA_STATUS_SUCCESS) { 632 DeviceInfo.ComputeUnits[device_id] = 1; 633 DP("Error getting compute units : settiing to 1\n"); 634 } else { 635 DeviceInfo.ComputeUnits[device_id] = compute_units; 636 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 637 } 638 if (print_kernel_trace > 1) 639 fprintf(stderr, "Device#%-2d CU's: %2d\n", device_id, 640 DeviceInfo.ComputeUnits[device_id]); 641 642 // Query attributes to determine number of threads/block and blocks/grid. 643 uint16_t workgroup_max_dim[3]; 644 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 645 &workgroup_max_dim); 646 if (err != HSA_STATUS_SUCCESS) { 647 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 648 DP("Error getting grid dims: num groups : %d\n", 649 RTLDeviceInfoTy::DefaultNumTeams); 650 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 651 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 652 DP("Using %d ROCm blocks per grid\n", 653 DeviceInfo.GroupsPerDevice[device_id]); 654 } else { 655 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 656 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 657 "at the hard limit\n", 658 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 659 } 660 661 // Get thread limit 662 hsa_dim3_t grid_max_dim; 663 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 664 if (err == HSA_STATUS_SUCCESS) { 665 DeviceInfo.ThreadsPerGroup[device_id] = 666 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 667 DeviceInfo.GroupsPerDevice[device_id]; 668 if ((DeviceInfo.ThreadsPerGroup[device_id] > 669 RTLDeviceInfoTy::Max_WG_Size) || 670 DeviceInfo.ThreadsPerGroup[device_id] == 0) { 671 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 672 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 673 } else { 674 DP("Using ROCm Queried thread limit: %d\n", 675 DeviceInfo.ThreadsPerGroup[device_id]); 676 } 677 } else { 678 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 679 DP("Error getting max block dimension, use default:%d \n", 680 RTLDeviceInfoTy::Max_WG_Size); 681 } 682 683 // Get wavefront size 684 uint32_t wavefront_size = 0; 685 err = 686 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 687 if (err == HSA_STATUS_SUCCESS) { 688 DP("Queried wavefront size: %d\n", wavefront_size); 689 DeviceInfo.WarpSize[device_id] = wavefront_size; 690 } else { 691 DP("Default wavefront size: %d\n", 692 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]); 693 DeviceInfo.WarpSize[device_id] = 694 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]; 695 } 696 697 // Adjust teams to the env variables 698 if (DeviceInfo.EnvTeamLimit > 0 && 699 DeviceInfo.GroupsPerDevice[device_id] > DeviceInfo.EnvTeamLimit) { 700 DeviceInfo.GroupsPerDevice[device_id] = DeviceInfo.EnvTeamLimit; 701 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 702 DeviceInfo.EnvTeamLimit); 703 } 704 705 // Set default number of teams 706 if (DeviceInfo.EnvNumTeams > 0) { 707 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams; 708 DP("Default number of teams set according to environment %d\n", 709 DeviceInfo.EnvNumTeams); 710 } else { 711 DeviceInfo.NumTeams[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 712 DP("Default number of teams set according to library's default %d\n", 713 RTLDeviceInfoTy::DefaultNumTeams); 714 } 715 716 if (DeviceInfo.NumTeams[device_id] > DeviceInfo.GroupsPerDevice[device_id]) { 717 DeviceInfo.NumTeams[device_id] = DeviceInfo.GroupsPerDevice[device_id]; 718 DP("Default number of teams exceeds device limit, capping at %d\n", 719 DeviceInfo.GroupsPerDevice[device_id]); 720 } 721 722 // Set default number of threads 723 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 724 DP("Default number of threads set according to library's default %d\n", 725 RTLDeviceInfoTy::Default_WG_Size); 726 if (DeviceInfo.NumThreads[device_id] > 727 DeviceInfo.ThreadsPerGroup[device_id]) { 728 DeviceInfo.NumTeams[device_id] = DeviceInfo.ThreadsPerGroup[device_id]; 729 DP("Default number of threads exceeds device limit, capping at %d\n", 730 DeviceInfo.ThreadsPerGroup[device_id]); 731 } 732 733 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 734 device_id, DeviceInfo.GroupsPerDevice[device_id], 735 DeviceInfo.ThreadsPerGroup[device_id]); 736 737 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 738 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 739 DeviceInfo.GroupsPerDevice[device_id], 740 DeviceInfo.GroupsPerDevice[device_id] * 741 DeviceInfo.ThreadsPerGroup[device_id]); 742 743 return OFFLOAD_SUCCESS; 744 } 745 746 namespace { 747 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 748 size_t N; 749 int rc = elf_getshdrnum(elf, &N); 750 if (rc != 0) { 751 return nullptr; 752 } 753 754 Elf64_Shdr *result = nullptr; 755 for (size_t i = 0; i < N; i++) { 756 Elf_Scn *scn = elf_getscn(elf, i); 757 if (scn) { 758 Elf64_Shdr *shdr = elf64_getshdr(scn); 759 if (shdr) { 760 if (shdr->sh_type == SHT_HASH) { 761 if (result == nullptr) { 762 result = shdr; 763 } else { 764 // multiple SHT_HASH sections not handled 765 return nullptr; 766 } 767 } 768 } 769 } 770 } 771 return result; 772 } 773 774 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 775 const char *symname) { 776 777 assert(section_hash); 778 size_t section_symtab_index = section_hash->sh_link; 779 Elf64_Shdr *section_symtab = 780 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 781 size_t section_strtab_index = section_symtab->sh_link; 782 783 const Elf64_Sym *symtab = 784 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 785 786 const uint32_t *hashtab = 787 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 788 789 // Layout: 790 // nbucket 791 // nchain 792 // bucket[nbucket] 793 // chain[nchain] 794 uint32_t nbucket = hashtab[0]; 795 const uint32_t *bucket = &hashtab[2]; 796 const uint32_t *chain = &hashtab[nbucket + 2]; 797 798 const size_t max = strlen(symname) + 1; 799 const uint32_t hash = elf_hash(symname); 800 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 801 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 802 if (strncmp(symname, n, max) == 0) { 803 return &symtab[i]; 804 } 805 } 806 807 return nullptr; 808 } 809 810 typedef struct { 811 void *addr = nullptr; 812 uint32_t size = UINT32_MAX; 813 } symbol_info; 814 815 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 816 symbol_info *res) { 817 if (elf_kind(elf) != ELF_K_ELF) { 818 return 1; 819 } 820 821 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 822 if (!section_hash) { 823 return 1; 824 } 825 826 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 827 if (!sym) { 828 return 1; 829 } 830 831 if (sym->st_size > UINT32_MAX) { 832 return 1; 833 } 834 835 res->size = static_cast<uint32_t>(sym->st_size); 836 res->addr = sym->st_value + base; 837 return 0; 838 } 839 840 int get_symbol_info_without_loading(char *base, size_t img_size, 841 const char *symname, symbol_info *res) { 842 Elf *elf = elf_memory(base, img_size); 843 if (elf) { 844 int rc = get_symbol_info_without_loading(elf, base, symname, res); 845 elf_end(elf); 846 return rc; 847 } 848 return 1; 849 } 850 851 atmi_status_t interop_get_symbol_info(char *base, size_t img_size, 852 const char *symname, void **var_addr, 853 uint32_t *var_size) { 854 symbol_info si; 855 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 856 if (rc == 0) { 857 *var_addr = si.addr; 858 *var_size = si.size; 859 return ATMI_STATUS_SUCCESS; 860 } else { 861 return ATMI_STATUS_ERROR; 862 } 863 } 864 865 template <typename C> 866 atmi_status_t module_register_from_memory_to_place(void *module_bytes, 867 size_t module_size, 868 atmi_place_t place, C cb) { 869 auto L = [](void *data, size_t size, void *cb_state) -> atmi_status_t { 870 C *unwrapped = static_cast<C *>(cb_state); 871 return (*unwrapped)(data, size); 872 }; 873 return atmi_module_register_from_memory_to_place( 874 module_bytes, module_size, place, L, static_cast<void *>(&cb)); 875 } 876 } // namespace 877 878 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 879 uint64_t device_State_bytes = 0; 880 { 881 // If this is the deviceRTL, get the state variable size 882 symbol_info size_si; 883 int rc = get_symbol_info_without_loading( 884 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 885 886 if (rc == 0) { 887 if (size_si.size != sizeof(uint64_t)) { 888 fprintf(stderr, 889 "Found device_State_size variable with wrong size, aborting\n"); 890 exit(1); 891 } 892 893 // Read number of bytes directly from the elf 894 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 895 } 896 } 897 return device_State_bytes; 898 } 899 900 static __tgt_target_table * 901 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 902 903 static __tgt_target_table * 904 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 905 906 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 907 __tgt_device_image *image) { 908 DeviceInfo.load_run_lock.lock(); 909 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 910 DeviceInfo.load_run_lock.unlock(); 911 return res; 912 } 913 914 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 915 __tgt_device_image *image) { 916 917 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 918 919 DeviceInfo.clearOffloadEntriesTable(device_id); 920 921 // We do not need to set the ELF version because the caller of this function 922 // had to do that to decide the right runtime to use 923 924 if (!elf_machine_id_is_amdgcn(image)) { 925 return NULL; 926 } 927 928 omptarget_device_environmentTy host_device_env; 929 host_device_env.num_devices = DeviceInfo.NumberOfDevices; 930 host_device_env.device_num = device_id; 931 host_device_env.debug_level = 0; 932 #ifdef OMPTARGET_DEBUG 933 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 934 host_device_env.debug_level = std::stoi(envStr); 935 } 936 #endif 937 938 auto on_deserialized_data = [&](void *data, size_t size) -> atmi_status_t { 939 const char *device_env_Name = "omptarget_device_environment"; 940 symbol_info si; 941 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 942 img_size, device_env_Name, &si); 943 if (rc != 0) { 944 DP("Finding global device environment '%s' - symbol missing.\n", 945 device_env_Name); 946 // no need to return FAIL, consider this is a not a device debug build. 947 return ATMI_STATUS_SUCCESS; 948 } 949 if (si.size != sizeof(host_device_env)) { 950 return ATMI_STATUS_ERROR; 951 } 952 DP("Setting global device environment %lu bytes\n", si.size); 953 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 954 void *pos = (char *)data + offset; 955 memcpy(pos, &host_device_env, sizeof(host_device_env)); 956 return ATMI_STATUS_SUCCESS; 957 }; 958 959 atmi_status_t err; 960 { 961 err = module_register_from_memory_to_place( 962 (void *)image->ImageStart, img_size, get_gpu_place(device_id), 963 on_deserialized_data); 964 965 check("Module registering", err); 966 if (err != ATMI_STATUS_SUCCESS) { 967 char GPUName[64] = "--unknown gpu--"; 968 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 969 (void)hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 970 (void *)GPUName); 971 fprintf(stderr, 972 "Possible gpu arch mismatch: %s, please check" 973 " compiler: -march=<gpu> flag\n", 974 GPUName); 975 return NULL; 976 } 977 } 978 979 DP("ATMI module successfully loaded!\n"); 980 981 // Zero the pseudo-bss variable by calling into hsa 982 // Do this post-load to handle got 983 uint64_t device_State_bytes = 984 get_device_State_bytes((char *)image->ImageStart, img_size); 985 auto &dss = DeviceInfo.deviceStateStore[device_id]; 986 if (device_State_bytes != 0) { 987 988 if (dss.first.get() == nullptr) { 989 assert(dss.second == 0); 990 void *ptr = NULL; 991 atmi_status_t err = 992 atmi_malloc(&ptr, device_State_bytes, get_gpu_mem_place(device_id)); 993 if (err != ATMI_STATUS_SUCCESS) { 994 fprintf(stderr, "Failed to allocate device_state array\n"); 995 return NULL; 996 } 997 dss = {std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 998 device_State_bytes}; 999 } 1000 1001 void *ptr = dss.first.get(); 1002 if (device_State_bytes != dss.second) { 1003 fprintf(stderr, "Inconsistent sizes of device_State unsupported\n"); 1004 exit(1); 1005 } 1006 1007 void *state_ptr; 1008 uint32_t state_ptr_size; 1009 err = atmi_interop_hsa_get_symbol_info(get_gpu_mem_place(device_id), 1010 "omptarget_nvptx_device_State", 1011 &state_ptr, &state_ptr_size); 1012 1013 if (err != ATMI_STATUS_SUCCESS) { 1014 fprintf(stderr, "failed to find device_state ptr\n"); 1015 return NULL; 1016 } 1017 if (state_ptr_size != sizeof(void *)) { 1018 fprintf(stderr, "unexpected size of state_ptr %u != %zu\n", 1019 state_ptr_size, sizeof(void *)); 1020 return NULL; 1021 } 1022 1023 // write ptr to device memory so it can be used by later kernels 1024 err = DeviceInfo.freesignalpool_memcpy(state_ptr, &ptr, sizeof(void *)); 1025 if (err != ATMI_STATUS_SUCCESS) { 1026 fprintf(stderr, "memcpy install of state_ptr failed\n"); 1027 return NULL; 1028 } 1029 1030 assert((device_State_bytes & 0x3) == 0); // known >= 4 byte aligned 1031 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, device_State_bytes / 4); 1032 if (rc != HSA_STATUS_SUCCESS) { 1033 fprintf(stderr, "zero fill device_state failed with %u\n", rc); 1034 return NULL; 1035 } 1036 } 1037 1038 // TODO: Check with Guansong to understand the below comment more thoroughly. 1039 // Here, we take advantage of the data that is appended after img_end to get 1040 // the symbols' name we need to load. This data consist of the host entries 1041 // begin and end as well as the target name (see the offloading linker script 1042 // creation in clang compiler). 1043 1044 // Find the symbols in the module by name. The name can be obtain by 1045 // concatenating the host entry name with the target name 1046 1047 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1048 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1049 1050 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1051 1052 if (!e->addr) { 1053 // The host should have always something in the address to 1054 // uniquely identify the target region. 1055 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n", 1056 (unsigned long long)e->size); 1057 return NULL; 1058 } 1059 1060 if (e->size) { 1061 __tgt_offload_entry entry = *e; 1062 1063 void *varptr; 1064 uint32_t varsize; 1065 1066 err = atmi_interop_hsa_get_symbol_info(get_gpu_mem_place(device_id), 1067 e->name, &varptr, &varsize); 1068 1069 if (err != ATMI_STATUS_SUCCESS) { 1070 DP("Loading global '%s' (Failed)\n", e->name); 1071 // Inform the user what symbol prevented offloading 1072 fprintf(stderr, "Loading global '%s' (Failed)\n", e->name); 1073 return NULL; 1074 } 1075 1076 if (varsize != e->size) { 1077 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1078 varsize, e->size); 1079 return NULL; 1080 } 1081 1082 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1083 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1084 entry.addr = (void *)varptr; 1085 1086 DeviceInfo.addOffloadEntry(device_id, entry); 1087 1088 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1089 e->flags & OMP_DECLARE_TARGET_LINK) { 1090 // If unified memory is present any target link variables 1091 // can access host addresses directly. There is no longer a 1092 // need for device copies. 1093 err = DeviceInfo.freesignalpool_memcpy(varptr, e->addr, sizeof(void *)); 1094 if (err != ATMI_STATUS_SUCCESS) 1095 DP("Error when copying USM\n"); 1096 DP("Copy linked variable host address (" DPxMOD ")" 1097 "to device address (" DPxMOD ")\n", 1098 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1099 } 1100 1101 continue; 1102 } 1103 1104 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1105 1106 atmi_mem_place_t place = get_gpu_mem_place(device_id); 1107 uint32_t kernarg_segment_size; 1108 err = atmi_interop_hsa_get_kernel_info( 1109 place, e->name, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1110 &kernarg_segment_size); 1111 1112 // each arg is a void * in this openmp implementation 1113 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1114 std::vector<size_t> arg_sizes(arg_num); 1115 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1116 it != arg_sizes.end(); it++) { 1117 *it = sizeof(void *); 1118 } 1119 1120 // default value GENERIC (in case symbol is missing from cubin file) 1121 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1122 1123 // get flat group size if present, else Default_WG_Size 1124 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1125 1126 // Max parallel level 1127 int16_t MaxParLevVal = 0; 1128 1129 // get Kernel Descriptor if present. 1130 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1131 struct KernDescValType { 1132 uint16_t Version; 1133 uint16_t TSize; 1134 uint16_t WG_Size; 1135 uint8_t Mode; 1136 uint8_t HostServices; 1137 uint8_t MaxParallelLevel; 1138 }; 1139 struct KernDescValType KernDescVal; 1140 std::string KernDescNameStr(e->name); 1141 KernDescNameStr += "_kern_desc"; 1142 const char *KernDescName = KernDescNameStr.c_str(); 1143 1144 void *KernDescPtr; 1145 uint32_t KernDescSize; 1146 void *CallStackAddr; 1147 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1148 KernDescName, &KernDescPtr, &KernDescSize); 1149 1150 if (err == ATMI_STATUS_SUCCESS) { 1151 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1152 DP("Loading global computation properties '%s' - size mismatch (%u != " 1153 "%lu)\n", 1154 KernDescName, KernDescSize, sizeof(KernDescVal)); 1155 1156 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1157 1158 // Check structure size against recorded size. 1159 if ((size_t)KernDescSize != KernDescVal.TSize) 1160 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1161 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1162 1163 DP("After loading global for %s KernDesc \n", KernDescName); 1164 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1165 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1166 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1167 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1168 DP("KernDesc: HostServices: %x\n", KernDescVal.HostServices); 1169 DP("KernDesc: MaxParallelLevel: %x\n", KernDescVal.MaxParallelLevel); 1170 1171 // gather location of callStack and size of struct 1172 MaxParLevVal = KernDescVal.MaxParallelLevel; 1173 if (MaxParLevVal > 0) { 1174 uint32_t varsize; 1175 const char *CsNam = "omptarget_nest_par_call_stack"; 1176 err = atmi_interop_hsa_get_symbol_info(place, CsNam, &CallStackAddr, 1177 &varsize); 1178 if (err != ATMI_STATUS_SUCCESS) { 1179 fprintf(stderr, "Addr of %s failed\n", CsNam); 1180 return NULL; 1181 } 1182 void *StructSizePtr; 1183 const char *SsNam = "omptarget_nest_par_call_struct_size"; 1184 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1185 SsNam, &StructSizePtr, &varsize); 1186 if ((err != ATMI_STATUS_SUCCESS) || 1187 (varsize != sizeof(TgtStackItemSize))) { 1188 fprintf(stderr, "Addr of %s failed\n", SsNam); 1189 return NULL; 1190 } 1191 memcpy(&TgtStackItemSize, StructSizePtr, sizeof(TgtStackItemSize)); 1192 DP("Size of our struct is %d\n", TgtStackItemSize); 1193 } 1194 1195 // Get ExecMode 1196 ExecModeVal = KernDescVal.Mode; 1197 DP("ExecModeVal %d\n", ExecModeVal); 1198 if (KernDescVal.WG_Size == 0) { 1199 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1200 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1201 } 1202 WGSizeVal = KernDescVal.WG_Size; 1203 DP("WGSizeVal %d\n", WGSizeVal); 1204 check("Loading KernDesc computation property", err); 1205 } else { 1206 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1207 1208 // Generic 1209 std::string ExecModeNameStr(e->name); 1210 ExecModeNameStr += "_exec_mode"; 1211 const char *ExecModeName = ExecModeNameStr.c_str(); 1212 1213 void *ExecModePtr; 1214 uint32_t varsize; 1215 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1216 ExecModeName, &ExecModePtr, &varsize); 1217 1218 if (err == ATMI_STATUS_SUCCESS) { 1219 if ((size_t)varsize != sizeof(int8_t)) { 1220 DP("Loading global computation properties '%s' - size mismatch(%u != " 1221 "%lu)\n", 1222 ExecModeName, varsize, sizeof(int8_t)); 1223 return NULL; 1224 } 1225 1226 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1227 1228 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1229 ExecModeVal); 1230 1231 if (ExecModeVal < 0 || ExecModeVal > 1) { 1232 DP("Error wrong exec_mode value specified in HSA code object file: " 1233 "%d\n", 1234 ExecModeVal); 1235 return NULL; 1236 } 1237 } else { 1238 DP("Loading global exec_mode '%s' - symbol missing, using default " 1239 "value " 1240 "GENERIC (1)\n", 1241 ExecModeName); 1242 } 1243 check("Loading computation property", err); 1244 1245 // Flat group size 1246 std::string WGSizeNameStr(e->name); 1247 WGSizeNameStr += "_wg_size"; 1248 const char *WGSizeName = WGSizeNameStr.c_str(); 1249 1250 void *WGSizePtr; 1251 uint32_t WGSize; 1252 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1253 WGSizeName, &WGSizePtr, &WGSize); 1254 1255 if (err == ATMI_STATUS_SUCCESS) { 1256 if ((size_t)WGSize != sizeof(int16_t)) { 1257 DP("Loading global computation properties '%s' - size mismatch (%u " 1258 "!= " 1259 "%lu)\n", 1260 WGSizeName, WGSize, sizeof(int16_t)); 1261 return NULL; 1262 } 1263 1264 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1265 1266 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1267 1268 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1269 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1270 DP("Error wrong WGSize value specified in HSA code object file: " 1271 "%d\n", 1272 WGSizeVal); 1273 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1274 } 1275 } else { 1276 DP("Warning: Loading WGSize '%s' - symbol not found, " 1277 "using default value %d\n", 1278 WGSizeName, WGSizeVal); 1279 } 1280 1281 check("Loading WGSize computation property", err); 1282 } 1283 1284 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, MaxParLevVal, 1285 device_id, CallStackAddr, e->name, 1286 kernarg_segment_size)); 1287 __tgt_offload_entry entry = *e; 1288 entry.addr = (void *)&KernelsList.back(); 1289 DeviceInfo.addOffloadEntry(device_id, entry); 1290 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1291 } 1292 1293 return DeviceInfo.getOffloadEntriesTable(device_id); 1294 } 1295 1296 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *) { 1297 void *ptr = NULL; 1298 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1299 atmi_status_t err = atmi_malloc(&ptr, size, get_gpu_mem_place(device_id)); 1300 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1301 (long long unsigned)(Elf64_Addr)ptr); 1302 ptr = (err == ATMI_STATUS_SUCCESS) ? ptr : NULL; 1303 return ptr; 1304 } 1305 1306 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1307 int64_t size) { 1308 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1309 __tgt_async_info async_info; 1310 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &async_info); 1311 if (rc != OFFLOAD_SUCCESS) 1312 return OFFLOAD_FAIL; 1313 1314 return __tgt_rtl_synchronize(device_id, &async_info); 1315 } 1316 1317 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1318 int64_t size, 1319 __tgt_async_info *async_info_ptr) { 1320 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1321 if (async_info_ptr) { 1322 initAsyncInfoPtr(async_info_ptr); 1323 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, async_info_ptr); 1324 } else { 1325 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1326 } 1327 } 1328 1329 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1330 int64_t size) { 1331 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1332 __tgt_async_info async_info; 1333 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &async_info); 1334 if (rc != OFFLOAD_SUCCESS) 1335 return OFFLOAD_FAIL; 1336 1337 return __tgt_rtl_synchronize(device_id, &async_info); 1338 } 1339 1340 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1341 void *tgt_ptr, int64_t size, 1342 __tgt_async_info *async_info_ptr) { 1343 assert(async_info_ptr && "async_info is nullptr"); 1344 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1345 initAsyncInfoPtr(async_info_ptr); 1346 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, async_info_ptr); 1347 } 1348 1349 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1350 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1351 atmi_status_t err; 1352 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1353 err = atmi_free(tgt_ptr); 1354 if (err != ATMI_STATUS_SUCCESS) { 1355 DP("Error when freeing CUDA memory\n"); 1356 return OFFLOAD_FAIL; 1357 } 1358 return OFFLOAD_SUCCESS; 1359 } 1360 1361 // Determine launch values for threadsPerGroup and num_groups. 1362 // Outputs: treadsPerGroup, num_groups 1363 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode, 1364 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit, 1365 // loop_tripcount. 1366 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize, 1367 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams, 1368 int num_teams, int thread_limit, uint64_t loop_tripcount) { 1369 1370 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0 1371 ? DeviceInfo.EnvMaxTeamsDefault 1372 : DeviceInfo.Max_Teams; 1373 if (Max_Teams > DeviceInfo.HardTeamLimit) 1374 Max_Teams = DeviceInfo.HardTeamLimit; 1375 1376 if (print_kernel_trace > 1) { 1377 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n", 1378 RTLDeviceInfoTy::Max_Teams); 1379 fprintf(stderr, "Max_Teams: %d\n", Max_Teams); 1380 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n", 1381 RTLDeviceInfoTy::Warp_Size); 1382 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n", 1383 RTLDeviceInfoTy::Max_WG_Size); 1384 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n", 1385 RTLDeviceInfoTy::Default_WG_Size); 1386 fprintf(stderr, "thread_limit: %d\n", thread_limit); 1387 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1388 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize); 1389 } 1390 // check for thread_limit() clause 1391 if (thread_limit > 0) { 1392 threadsPerGroup = thread_limit; 1393 DP("Setting threads per block to requested %d\n", thread_limit); 1394 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1395 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1396 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1397 } 1398 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1399 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1400 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1401 } 1402 } 1403 // check flat_max_work_group_size attr here 1404 if (threadsPerGroup > ConstWGSize) { 1405 threadsPerGroup = ConstWGSize; 1406 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1407 threadsPerGroup); 1408 } 1409 if (print_kernel_trace > 1) 1410 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1411 DP("Preparing %d threads\n", threadsPerGroup); 1412 1413 // Set default num_groups (teams) 1414 if (DeviceInfo.EnvTeamLimit > 0) 1415 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit) 1416 ? Max_Teams 1417 : DeviceInfo.EnvTeamLimit; 1418 else 1419 num_groups = Max_Teams; 1420 DP("Set default num of groups %d\n", num_groups); 1421 1422 if (print_kernel_trace > 1) { 1423 fprintf(stderr, "num_groups: %d\n", num_groups); 1424 fprintf(stderr, "num_teams: %d\n", num_teams); 1425 } 1426 1427 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1428 // This reduction is typical for default case (no thread_limit clause). 1429 // or when user goes crazy with num_teams clause. 1430 // FIXME: We cant distinguish between a constant or variable thread limit. 1431 // So we only handle constant thread_limits. 1432 if (threadsPerGroup > 1433 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1434 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1435 // here? 1436 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1437 1438 // check for num_teams() clause 1439 if (num_teams > 0) { 1440 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1441 } 1442 if (print_kernel_trace > 1) { 1443 fprintf(stderr, "num_groups: %d\n", num_groups); 1444 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1445 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit); 1446 } 1447 1448 if (DeviceInfo.EnvNumTeams > 0) { 1449 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams 1450 : num_groups; 1451 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams); 1452 } else if (DeviceInfo.EnvTeamLimit > 0) { 1453 num_groups = (DeviceInfo.EnvTeamLimit < num_groups) 1454 ? DeviceInfo.EnvTeamLimit 1455 : num_groups; 1456 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit); 1457 } else { 1458 if (num_teams <= 0) { 1459 if (loop_tripcount > 0) { 1460 if (ExecutionMode == SPMD) { 1461 // round up to the nearest integer 1462 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1463 } else { 1464 num_groups = loop_tripcount; 1465 } 1466 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1467 "threads per block %d\n", 1468 num_groups, loop_tripcount, threadsPerGroup); 1469 } 1470 } else { 1471 num_groups = num_teams; 1472 } 1473 if (num_groups > Max_Teams) { 1474 num_groups = Max_Teams; 1475 if (print_kernel_trace > 1) 1476 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups, 1477 Max_Teams); 1478 } 1479 if (num_groups > num_teams && num_teams > 0) { 1480 num_groups = num_teams; 1481 if (print_kernel_trace > 1) 1482 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n", 1483 num_groups, num_teams); 1484 } 1485 } 1486 1487 // num_teams clause always honored, no matter what, unless DEFAULT is active. 1488 if (num_teams > 0) { 1489 num_groups = num_teams; 1490 // Cap num_groups to EnvMaxTeamsDefault if set. 1491 if (DeviceInfo.EnvMaxTeamsDefault > 0 && 1492 num_groups > DeviceInfo.EnvMaxTeamsDefault) 1493 num_groups = DeviceInfo.EnvMaxTeamsDefault; 1494 } 1495 if (print_kernel_trace > 1) { 1496 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup); 1497 fprintf(stderr, "num_groups: %d\n", num_groups); 1498 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount); 1499 } 1500 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 1501 threadsPerGroup); 1502 } 1503 1504 static void *AllocateNestedParallelCallMemory(int MaxParLevel, int NumGroups, 1505 int ThreadsPerGroup, 1506 int device_id, 1507 void *CallStackAddr, int SPMD) { 1508 if (print_kernel_trace > 1) 1509 fprintf(stderr, "MaxParLevel %d SPMD %d NumGroups %d NumThrds %d\n", 1510 MaxParLevel, SPMD, NumGroups, ThreadsPerGroup); 1511 // Total memory needed is Teams * Threads * ParLevels 1512 size_t NestedMemSize = 1513 MaxParLevel * NumGroups * ThreadsPerGroup * TgtStackItemSize * 4; 1514 1515 if (print_kernel_trace > 1) 1516 fprintf(stderr, "NestedMemSize %ld \n", NestedMemSize); 1517 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1518 void *TgtPtr = NULL; 1519 atmi_status_t err = 1520 atmi_malloc(&TgtPtr, NestedMemSize, get_gpu_mem_place(device_id)); 1521 err = 1522 DeviceInfo.freesignalpool_memcpy(CallStackAddr, &TgtPtr, sizeof(void *)); 1523 if (print_kernel_trace > 2) 1524 fprintf(stderr, "CallSck %lx TgtPtr %lx *TgtPtr %lx \n", 1525 (long)CallStackAddr, (long)&TgtPtr, (long)TgtPtr); 1526 if (err != ATMI_STATUS_SUCCESS) { 1527 fprintf(stderr, "Mem not wrtten to target, err %d\n", err); 1528 } 1529 return TgtPtr; // we need to free this after kernel. 1530 } 1531 1532 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 1533 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 1534 bool full = true; 1535 while (full) { 1536 full = 1537 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 1538 } 1539 return packet_id; 1540 } 1541 1542 static int32_t __tgt_rtl_run_target_team_region_locked( 1543 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1544 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1545 int32_t thread_limit, uint64_t loop_tripcount); 1546 1547 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 1548 void **tgt_args, 1549 ptrdiff_t *tgt_offsets, 1550 int32_t arg_num, int32_t num_teams, 1551 int32_t thread_limit, 1552 uint64_t loop_tripcount) { 1553 1554 DeviceInfo.load_run_lock.lock_shared(); 1555 int32_t res = __tgt_rtl_run_target_team_region_locked( 1556 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 1557 thread_limit, loop_tripcount); 1558 1559 DeviceInfo.load_run_lock.unlock_shared(); 1560 return res; 1561 } 1562 1563 int32_t __tgt_rtl_run_target_team_region_locked( 1564 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 1565 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 1566 int32_t thread_limit, uint64_t loop_tripcount) { 1567 static pthread_mutex_t nested_parallel_mutex = PTHREAD_MUTEX_INITIALIZER; 1568 1569 // Set the context we are using 1570 // update thread limit content in gpu memory if un-initialized or specified 1571 // from host 1572 1573 DP("Run target team region thread_limit %d\n", thread_limit); 1574 1575 // All args are references. 1576 std::vector<void *> args(arg_num); 1577 std::vector<void *> ptrs(arg_num); 1578 1579 DP("Arg_num: %d\n", arg_num); 1580 for (int32_t i = 0; i < arg_num; ++i) { 1581 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 1582 args[i] = &ptrs[i]; 1583 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 1584 } 1585 1586 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 1587 1588 /* 1589 * Set limit based on ThreadsPerGroup and GroupsPerDevice 1590 */ 1591 int num_groups = 0; 1592 1593 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1594 1595 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize, 1596 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit, 1597 DeviceInfo.EnvNumTeams, 1598 num_teams, // From run_region arg 1599 thread_limit, // From run_region arg 1600 loop_tripcount // From run_region arg 1601 ); 1602 1603 void *TgtCallStack = NULL; 1604 if (KernelInfo->MaxParLevel > 0) { 1605 pthread_mutex_lock(&nested_parallel_mutex); 1606 TgtCallStack = AllocateNestedParallelCallMemory( 1607 KernelInfo->MaxParLevel, num_groups, threadsPerGroup, 1608 KernelInfo->device_id, KernelInfo->CallStackAddr, 1609 KernelInfo->ExecutionMode); 1610 } 1611 if (print_kernel_trace > 0) 1612 // enum modes are SPMD, GENERIC, NONE 0,1,2 1613 fprintf(stderr, 1614 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 1615 "reqd:(%4dX%4d) n:%s\n", 1616 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 1617 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit, 1618 KernelInfo->Name); 1619 1620 // Run on the device. 1621 { 1622 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 1623 uint64_t packet_id = acquire_available_packet_id(queue); 1624 1625 const uint32_t mask = queue->size - 1; // size is a power of 2 1626 hsa_kernel_dispatch_packet_t *packet = 1627 (hsa_kernel_dispatch_packet_t *)queue->base_address + 1628 (packet_id & mask); 1629 1630 // packet->header is written last 1631 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 1632 packet->workgroup_size_x = threadsPerGroup; 1633 packet->workgroup_size_y = 1; 1634 packet->workgroup_size_z = 1; 1635 packet->reserved0 = 0; 1636 packet->grid_size_x = num_groups * threadsPerGroup; 1637 packet->grid_size_y = 1; 1638 packet->grid_size_z = 1; 1639 packet->private_segment_size = 0; 1640 packet->group_segment_size = 0; 1641 packet->kernel_object = 0; 1642 packet->kernarg_address = 0; // use the block allocator 1643 packet->reserved2 = 0; // atmi writes id_ here 1644 packet->completion_signal = {0}; // may want a pool of signals 1645 1646 std::string kernel_name = std::string(KernelInfo->Name); 1647 { 1648 assert(KernelInfoTable[device_id].find(kernel_name) != 1649 KernelInfoTable[device_id].end()); 1650 auto it = KernelInfoTable[device_id][kernel_name]; 1651 packet->kernel_object = it.kernel_object; 1652 packet->private_segment_size = it.private_segment_size; 1653 packet->group_segment_size = it.group_segment_size; 1654 assert(arg_num == (int)it.num_args); 1655 } 1656 1657 KernelArgPool *ArgPool = nullptr; 1658 { 1659 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 1660 if (it != KernelArgPoolMap.end()) { 1661 ArgPool = (it->second).get(); 1662 } 1663 } 1664 if (!ArgPool) { 1665 fprintf(stderr, "Warning: No ArgPool for %s on device %d\n", 1666 KernelInfo->Name, device_id); 1667 } 1668 { 1669 void *kernarg = nullptr; 1670 if (ArgPool) { 1671 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 1672 kernarg = ArgPool->allocate(arg_num); 1673 } 1674 if (!kernarg) { 1675 printf("Allocate kernarg failed\n"); 1676 exit(1); 1677 } 1678 1679 // Copy explicit arguments 1680 for (int i = 0; i < arg_num; i++) { 1681 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 1682 } 1683 1684 // Initialize implicit arguments. ATMI seems to leave most fields 1685 // uninitialized 1686 atmi_implicit_args_t *impl_args = 1687 reinterpret_cast<atmi_implicit_args_t *>( 1688 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 1689 memset(impl_args, 0, 1690 sizeof(atmi_implicit_args_t)); // may not be necessary 1691 impl_args->offset_x = 0; 1692 impl_args->offset_y = 0; 1693 impl_args->offset_z = 0; 1694 1695 packet->kernarg_address = kernarg; 1696 } 1697 1698 { 1699 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 1700 if (s.handle == 0) { 1701 printf("Failed to get signal instance\n"); 1702 exit(1); 1703 } 1704 packet->completion_signal = s; 1705 hsa_signal_store_relaxed(packet->completion_signal, 1); 1706 } 1707 1708 core::packet_store_release( 1709 reinterpret_cast<uint32_t *>(packet), 1710 core::create_header(HSA_PACKET_TYPE_KERNEL_DISPATCH, 0, 1711 ATMI_FENCE_SCOPE_SYSTEM, ATMI_FENCE_SCOPE_SYSTEM), 1712 packet->setup); 1713 1714 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 1715 1716 while (hsa_signal_wait_scacquire(packet->completion_signal, 1717 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 1718 HSA_WAIT_STATE_BLOCKED) != 0) 1719 ; 1720 1721 assert(ArgPool); 1722 ArgPool->deallocate(packet->kernarg_address); 1723 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 1724 } 1725 1726 DP("Kernel completed\n"); 1727 // Free call stack for nested 1728 if (TgtCallStack) { 1729 pthread_mutex_unlock(&nested_parallel_mutex); 1730 atmi_free(TgtCallStack); 1731 } 1732 1733 return OFFLOAD_SUCCESS; 1734 } 1735 1736 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 1737 void **tgt_args, ptrdiff_t *tgt_offsets, 1738 int32_t arg_num) { 1739 // use one team and one thread 1740 // fix thread num 1741 int32_t team_num = 1; 1742 int32_t thread_limit = 0; // use default 1743 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1744 tgt_offsets, arg_num, team_num, 1745 thread_limit, 0); 1746 } 1747 1748 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 1749 void *tgt_entry_ptr, void **tgt_args, 1750 ptrdiff_t *tgt_offsets, 1751 int32_t arg_num, 1752 __tgt_async_info *async_info_ptr) { 1753 assert(async_info_ptr && "async_info is nullptr"); 1754 initAsyncInfoPtr(async_info_ptr); 1755 1756 // use one team and one thread 1757 // fix thread num 1758 int32_t team_num = 1; 1759 int32_t thread_limit = 0; // use default 1760 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 1761 tgt_offsets, arg_num, team_num, 1762 thread_limit, 0); 1763 } 1764 1765 int32_t __tgt_rtl_synchronize(int32_t device_id, 1766 __tgt_async_info *async_info_ptr) { 1767 assert(async_info_ptr && "async_info is nullptr"); 1768 1769 // Cuda asserts that async_info_ptr->Queue is non-null, but this invariant 1770 // is not ensured by devices.cpp for amdgcn 1771 // assert(async_info_ptr->Queue && "async_info_ptr->Queue is nullptr"); 1772 if (async_info_ptr->Queue) { 1773 finiAsyncInfoPtr(async_info_ptr); 1774 } 1775 return OFFLOAD_SUCCESS; 1776 } 1777