1 //===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // RTL for hsa machine 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <algorithm> 14 #include <assert.h> 15 #include <cstdio> 16 #include <cstdlib> 17 #include <cstring> 18 #include <functional> 19 #include <libelf.h> 20 #include <list> 21 #include <memory> 22 #include <mutex> 23 #include <shared_mutex> 24 #include <unordered_map> 25 #include <vector> 26 27 #include "interop_hsa.h" 28 #include "impl_runtime.h" 29 30 #include "internal.h" 31 32 #include "Debug.h" 33 #include "get_elf_mach_gfx_name.h" 34 #include "omptargetplugin.h" 35 #include "print_tracing.h" 36 37 #include "llvm/Frontend/OpenMP/OMPGridValues.h" 38 39 #ifndef TARGET_NAME 40 #error "Missing TARGET_NAME macro" 41 #endif 42 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL" 43 44 // hostrpc interface, FIXME: consider moving to its own include these are 45 // statically linked into amdgpu/plugin if present from hostrpc_services.a, 46 // linked as --whole-archive to override the weak symbols that are used to 47 // implement a fallback for toolchains that do not yet have a hostrpc library. 48 extern "C" { 49 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q, 50 uint32_t device_id); 51 hsa_status_t hostrpc_init(); 52 hsa_status_t hostrpc_terminate(); 53 54 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; } 55 __attribute__((weak)) hsa_status_t hostrpc_terminate() { 56 return HSA_STATUS_SUCCESS; 57 } 58 __attribute__((weak)) unsigned long 59 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) { 60 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library " 61 "missing\n", 62 device_id); 63 return 0; 64 } 65 } 66 67 // Heuristic parameters used for kernel launch 68 // Number of teams per CU to allow scheduling flexibility 69 static const unsigned DefaultTeamsPerCU = 4; 70 71 int print_kernel_trace; 72 73 #ifdef OMPTARGET_DEBUG 74 #define check(msg, status) \ 75 if (status != HSA_STATUS_SUCCESS) { \ 76 DP(#msg " failed\n"); \ 77 } else { \ 78 DP(#msg " succeeded\n"); \ 79 } 80 #else 81 #define check(msg, status) \ 82 {} 83 #endif 84 85 #include "elf_common.h" 86 87 namespace core { 88 hsa_status_t RegisterModuleFromMemory( 89 std::map<std::string, atl_kernel_info_t> &KernelInfo, 90 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, void *, size_t, 91 hsa_agent_t agent, 92 hsa_status_t (*on_deserialized_data)(void *data, size_t size, 93 void *cb_state), 94 void *cb_state, std::vector<hsa_executable_t> &HSAExecutables); 95 } 96 97 namespace hsa { 98 template <typename C> hsa_status_t iterate_agents(C cb) { 99 auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t { 100 C *unwrapped = static_cast<C *>(data); 101 return (*unwrapped)(agent); 102 }; 103 return hsa_iterate_agents(L, static_cast<void *>(&cb)); 104 } 105 106 template <typename C> 107 hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) { 108 auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t { 109 C *unwrapped = static_cast<C *>(data); 110 return (*unwrapped)(MemoryPool); 111 }; 112 113 return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb)); 114 } 115 116 } // namespace hsa 117 118 /// Keep entries table per device 119 struct FuncOrGblEntryTy { 120 __tgt_target_table Table; 121 std::vector<__tgt_offload_entry> Entries; 122 }; 123 124 enum ExecutionModeType { 125 SPMD, // constructors, destructors, 126 // combined constructs (`teams distribute parallel for [simd]`) 127 GENERIC, // everything else 128 SPMD_GENERIC, // Generic kernel with SPMD execution 129 NONE 130 }; 131 132 struct KernelArgPool { 133 private: 134 static pthread_mutex_t mutex; 135 136 public: 137 uint32_t kernarg_segment_size; 138 void *kernarg_region = nullptr; 139 std::queue<int> free_kernarg_segments; 140 141 uint32_t kernarg_size_including_implicit() { 142 return kernarg_segment_size + sizeof(atmi_implicit_args_t); 143 } 144 145 ~KernelArgPool() { 146 if (kernarg_region) { 147 auto r = hsa_amd_memory_pool_free(kernarg_region); 148 if (r != HSA_STATUS_SUCCESS) { 149 DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r)); 150 } 151 } 152 } 153 154 // Can't really copy or move a mutex 155 KernelArgPool() = default; 156 KernelArgPool(const KernelArgPool &) = delete; 157 KernelArgPool(KernelArgPool &&) = delete; 158 159 KernelArgPool(uint32_t kernarg_segment_size, 160 hsa_amd_memory_pool_t &memory_pool) 161 : kernarg_segment_size(kernarg_segment_size) { 162 163 // atmi uses one pool per kernel for all gpus, with a fixed upper size 164 // preserving that exact scheme here, including the queue<int> 165 166 hsa_status_t err = hsa_amd_memory_pool_allocate( 167 memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0, 168 &kernarg_region); 169 170 if (err != HSA_STATUS_SUCCESS) { 171 DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err)); 172 kernarg_region = nullptr; // paranoid 173 return; 174 } 175 176 err = core::allow_access_to_all_gpu_agents(kernarg_region); 177 if (err != HSA_STATUS_SUCCESS) { 178 DP("hsa allow_access_to_all_gpu_agents failed: %s\n", 179 get_error_string(err)); 180 auto r = hsa_amd_memory_pool_free(kernarg_region); 181 if (r != HSA_STATUS_SUCCESS) { 182 // if free failed, can't do anything more to resolve it 183 DP("hsa memory poll free failed: %s\n", get_error_string(err)); 184 } 185 kernarg_region = nullptr; 186 return; 187 } 188 189 for (int i = 0; i < MAX_NUM_KERNELS; i++) { 190 free_kernarg_segments.push(i); 191 } 192 } 193 194 void *allocate(uint64_t arg_num) { 195 assert((arg_num * sizeof(void *)) == kernarg_segment_size); 196 lock l(&mutex); 197 void *res = nullptr; 198 if (!free_kernarg_segments.empty()) { 199 200 int free_idx = free_kernarg_segments.front(); 201 res = static_cast<void *>(static_cast<char *>(kernarg_region) + 202 (free_idx * kernarg_size_including_implicit())); 203 assert(free_idx == pointer_to_index(res)); 204 free_kernarg_segments.pop(); 205 } 206 return res; 207 } 208 209 void deallocate(void *ptr) { 210 lock l(&mutex); 211 int idx = pointer_to_index(ptr); 212 free_kernarg_segments.push(idx); 213 } 214 215 private: 216 int pointer_to_index(void *ptr) { 217 ptrdiff_t bytes = 218 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region); 219 assert(bytes >= 0); 220 assert(bytes % kernarg_size_including_implicit() == 0); 221 return bytes / kernarg_size_including_implicit(); 222 } 223 struct lock { 224 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); } 225 ~lock() { pthread_mutex_unlock(m); } 226 pthread_mutex_t *m; 227 }; 228 }; 229 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER; 230 231 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>> 232 KernelArgPoolMap; 233 234 /// Use a single entity to encode a kernel and a set of flags 235 struct KernelTy { 236 // execution mode of kernel 237 // 0 - SPMD mode (without master warp) 238 // 1 - Generic mode (with master warp) 239 // 2 - SPMD mode execution with Generic mode semantics. 240 int8_t ExecutionMode; 241 int16_t ConstWGSize; 242 int32_t device_id; 243 void *CallStackAddr = nullptr; 244 const char *Name; 245 246 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id, 247 void *_CallStackAddr, const char *_Name, 248 uint32_t _kernarg_segment_size, 249 hsa_amd_memory_pool_t &KernArgMemoryPool) 250 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize), 251 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) { 252 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode); 253 254 std::string N(_Name); 255 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) { 256 KernelArgPoolMap.insert( 257 std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool( 258 _kernarg_segment_size, KernArgMemoryPool)))); 259 } 260 } 261 }; 262 263 /// List that contains all the kernels. 264 /// FIXME: we may need this to be per device and per library. 265 std::list<KernelTy> KernelsList; 266 267 template <typename Callback> static hsa_status_t FindAgents(Callback CB) { 268 269 hsa_status_t err = 270 hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t { 271 hsa_device_type_t device_type; 272 // get_info fails iff HSA runtime not yet initialized 273 hsa_status_t err = 274 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type); 275 276 if (err != HSA_STATUS_SUCCESS) { 277 if (print_kernel_trace > 0) 278 DP("rtl.cpp: err %s\n", get_error_string(err)); 279 280 return err; 281 } 282 283 CB(device_type, agent); 284 return HSA_STATUS_SUCCESS; 285 }); 286 287 // iterate_agents fails iff HSA runtime not yet initialized 288 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) { 289 DP("rtl.cpp: err %s\n", get_error_string(err)); 290 } 291 292 return err; 293 } 294 295 static void callbackQueue(hsa_status_t status, hsa_queue_t *source, 296 void *data) { 297 if (status != HSA_STATUS_SUCCESS) { 298 const char *status_string; 299 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) { 300 status_string = "unavailable"; 301 } 302 DP("[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, __LINE__, source, 303 status, status_string); 304 abort(); 305 } 306 } 307 308 namespace core { 309 namespace { 310 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) { 311 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE); 312 } 313 314 uint16_t create_header() { 315 uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE; 316 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE; 317 header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE; 318 return header; 319 } 320 321 hsa_status_t addKernArgPool(hsa_amd_memory_pool_t MemoryPool, void *Data) { 322 std::vector<hsa_amd_memory_pool_t> *Result = 323 static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data); 324 bool AllocAllowed = false; 325 hsa_status_t err = hsa_amd_memory_pool_get_info( 326 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 327 &AllocAllowed); 328 if (err != HSA_STATUS_SUCCESS) { 329 DP("Alloc allowed in memory pool check failed: %s\n", 330 get_error_string(err)); 331 return err; 332 } 333 334 if (!AllocAllowed) { 335 // nothing needs to be done here. 336 return HSA_STATUS_SUCCESS; 337 } 338 339 uint32_t GlobalFlags = 0; 340 err = hsa_amd_memory_pool_get_info( 341 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 342 if (err != HSA_STATUS_SUCCESS) { 343 DP("Get memory pool info failed: %s\n", get_error_string(err)); 344 return err; 345 } 346 347 size_t size = 0; 348 err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE, 349 &size); 350 if (err != HSA_STATUS_SUCCESS) { 351 DP("Get memory pool size failed: %s\n", get_error_string(err)); 352 return err; 353 } 354 355 if ((GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) && 356 (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) && 357 size > 0) { 358 Result->push_back(MemoryPool); 359 } 360 361 return HSA_STATUS_SUCCESS; 362 } 363 364 std::pair<hsa_status_t, bool> 365 isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) { 366 bool AllocAllowed = false; 367 hsa_status_t Err = hsa_amd_memory_pool_get_info( 368 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED, 369 &AllocAllowed); 370 if (Err != HSA_STATUS_SUCCESS) { 371 DP("Alloc allowed in memory pool check failed: %s\n", 372 get_error_string(Err)); 373 return {Err, false}; 374 } 375 376 return {HSA_STATUS_SUCCESS, AllocAllowed}; 377 } 378 379 template <typename AccumulatorFunc> 380 hsa_status_t collectMemoryPools(const std::vector<hsa_agent_t> &Agents, 381 AccumulatorFunc Func) { 382 for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) { 383 hsa_status_t Err = hsa::amd_agent_iterate_memory_pools( 384 Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) { 385 hsa_status_t Err; 386 bool Valid = false; 387 std::tie(Err, Valid) = isValidMemoryPool(MemoryPool); 388 if (Err != HSA_STATUS_SUCCESS) { 389 return Err; 390 } 391 if (Valid) 392 Func(MemoryPool, DeviceId); 393 return HSA_STATUS_SUCCESS; 394 }); 395 396 if (Err != HSA_STATUS_SUCCESS) { 397 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 398 "Iterate all memory pools", get_error_string(Err)); 399 return Err; 400 } 401 } 402 403 return HSA_STATUS_SUCCESS; 404 } 405 406 std::pair<hsa_status_t, hsa_amd_memory_pool_t> 407 FindKernargPool(const std::vector<hsa_agent_t> &HSAAgents) { 408 std::vector<hsa_amd_memory_pool_t> KernArgPools; 409 for (const auto &Agent : HSAAgents) { 410 hsa_status_t err = HSA_STATUS_SUCCESS; 411 err = hsa_amd_agent_iterate_memory_pools( 412 Agent, addKernArgPool, static_cast<void *>(&KernArgPools)); 413 if (err != HSA_STATUS_SUCCESS) { 414 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 415 "Iterate all memory pools", get_error_string(err)); 416 return {err, hsa_amd_memory_pool_t{}}; 417 } 418 } 419 420 if (KernArgPools.empty()) { 421 DP("Unable to find any valid kernarg pool\n"); 422 return {HSA_STATUS_ERROR, hsa_amd_memory_pool_t{}}; 423 } 424 425 return {HSA_STATUS_SUCCESS, KernArgPools[0]}; 426 } 427 428 } // namespace 429 } // namespace core 430 431 struct EnvironmentVariables { 432 int NumTeams; 433 int TeamLimit; 434 int TeamThreadLimit; 435 int MaxTeamsDefault; 436 }; 437 438 static constexpr const llvm::omp::GV &getGridValue() { 439 return llvm::omp::AMDGPUGridValues; 440 } 441 442 /// Class containing all the device information 443 class RTLDeviceInfoTy { 444 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries; 445 bool HSAInitializeSucceeded = false; 446 447 public: 448 // load binary populates symbol tables and mutates various global state 449 // run uses those symbol tables 450 std::shared_timed_mutex load_run_lock; 451 452 int NumberOfDevices = 0; 453 454 // GPU devices 455 std::vector<hsa_agent_t> HSAAgents; 456 std::vector<hsa_queue_t *> HSAQueues; // one per gpu 457 458 // CPUs 459 std::vector<hsa_agent_t> CPUAgents; 460 461 // Device properties 462 std::vector<int> ComputeUnits; 463 std::vector<int> GroupsPerDevice; 464 std::vector<int> ThreadsPerGroup; 465 std::vector<int> WarpSize; 466 std::vector<std::string> GPUName; 467 468 // OpenMP properties 469 std::vector<int> NumTeams; 470 std::vector<int> NumThreads; 471 472 // OpenMP Environment properties 473 EnvironmentVariables Env; 474 475 // OpenMP Requires Flags 476 int64_t RequiresFlags; 477 478 // Resource pools 479 SignalPoolT FreeSignalPool; 480 481 bool hostcall_required = false; 482 483 std::vector<hsa_executable_t> HSAExecutables; 484 485 std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable; 486 std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable; 487 488 hsa_amd_memory_pool_t KernArgPool; 489 490 // fine grained memory pool for host allocations 491 hsa_amd_memory_pool_t HostFineGrainedMemoryPool; 492 493 // fine and coarse-grained memory pools per offloading device 494 std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools; 495 std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools; 496 497 struct atmiFreePtrDeletor { 498 void operator()(void *p) { 499 core::Runtime::Memfree(p); // ignore failure to free 500 } 501 }; 502 503 // device_State shared across loaded binaries, error if inconsistent size 504 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>> 505 deviceStateStore; 506 507 static const unsigned HardTeamLimit = 508 (1 << 16) - 1; // 64K needed to fit in uint16 509 static const int DefaultNumTeams = 128; 510 static const int Max_Teams = getGridValue().GV_Max_Teams; 511 static const int Warp_Size = getGridValue().GV_Warp_Size; 512 static const int Max_WG_Size = getGridValue().GV_Max_WG_Size; 513 static const int Default_WG_Size = getGridValue().GV_Default_WG_Size; 514 515 using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *, 516 size_t size, hsa_agent_t, 517 hsa_amd_memory_pool_t); 518 hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size, 519 MemcpyFunc Func, int32_t deviceId) { 520 hsa_agent_t agent = HSAAgents[deviceId]; 521 hsa_signal_t s = FreeSignalPool.pop(); 522 if (s.handle == 0) { 523 return HSA_STATUS_ERROR; 524 } 525 hsa_status_t r = Func(s, dest, src, size, agent, HostFineGrainedMemoryPool); 526 FreeSignalPool.push(s); 527 return r; 528 } 529 530 hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src, 531 size_t size, int32_t deviceId) { 532 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId); 533 } 534 535 hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src, 536 size_t size, int32_t deviceId) { 537 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId); 538 } 539 540 // Record entry point associated with device 541 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) { 542 assert(device_id < (int32_t)FuncGblEntries.size() && 543 "Unexpected device id!"); 544 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 545 546 E.Entries.push_back(entry); 547 } 548 549 // Return true if the entry is associated with device 550 bool findOffloadEntry(int32_t device_id, void *addr) { 551 assert(device_id < (int32_t)FuncGblEntries.size() && 552 "Unexpected device id!"); 553 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 554 555 for (auto &it : E.Entries) { 556 if (it.addr == addr) 557 return true; 558 } 559 560 return false; 561 } 562 563 // Return the pointer to the target entries table 564 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) { 565 assert(device_id < (int32_t)FuncGblEntries.size() && 566 "Unexpected device id!"); 567 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 568 569 int32_t size = E.Entries.size(); 570 571 // Table is empty 572 if (!size) 573 return 0; 574 575 __tgt_offload_entry *begin = &E.Entries[0]; 576 __tgt_offload_entry *end = &E.Entries[size - 1]; 577 578 // Update table info according to the entries and return the pointer 579 E.Table.EntriesBegin = begin; 580 E.Table.EntriesEnd = ++end; 581 582 return &E.Table; 583 } 584 585 // Clear entries table for a device 586 void clearOffloadEntriesTable(int device_id) { 587 assert(device_id < (int32_t)FuncGblEntries.size() && 588 "Unexpected device id!"); 589 FuncGblEntries[device_id].emplace_back(); 590 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back(); 591 // KernelArgPoolMap.clear(); 592 E.Entries.clear(); 593 E.Table.EntriesBegin = E.Table.EntriesEnd = 0; 594 } 595 596 hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool, 597 int DeviceId) { 598 assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here."); 599 uint32_t GlobalFlags = 0; 600 hsa_status_t Err = hsa_amd_memory_pool_get_info( 601 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 602 603 if (Err != HSA_STATUS_SUCCESS) { 604 return Err; 605 } 606 607 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) { 608 DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool; 609 } else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) { 610 DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool; 611 } 612 613 return HSA_STATUS_SUCCESS; 614 } 615 616 hsa_status_t addHostMemoryPool(hsa_amd_memory_pool_t MemoryPool, 617 int DeviceId) { 618 uint32_t GlobalFlags = 0; 619 hsa_status_t Err = hsa_amd_memory_pool_get_info( 620 MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags); 621 622 if (Err != HSA_STATUS_SUCCESS) { 623 return Err; 624 } 625 626 uint32_t Size; 627 Err = hsa_amd_memory_pool_get_info(MemoryPool, 628 HSA_AMD_MEMORY_POOL_INFO_SIZE, &Size); 629 if (Err != HSA_STATUS_SUCCESS) { 630 return Err; 631 } 632 633 if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED && 634 Size > 0) { 635 HostFineGrainedMemoryPool = MemoryPool; 636 } 637 638 return HSA_STATUS_SUCCESS; 639 } 640 641 hsa_status_t setupMemoryPools() { 642 using namespace std::placeholders; 643 hsa_status_t Err; 644 Err = core::collectMemoryPools( 645 CPUAgents, std::bind(&RTLDeviceInfoTy::addHostMemoryPool, this, _1, _2)); 646 if (Err != HSA_STATUS_SUCCESS) { 647 DP("HSA error in collecting memory pools for CPU: %s\n", 648 get_error_string(Err)); 649 return Err; 650 } 651 Err = core::collectMemoryPools( 652 HSAAgents, std::bind(&RTLDeviceInfoTy::addDeviceMemoryPool, this, _1, _2)); 653 if (Err != HSA_STATUS_SUCCESS) { 654 DP("HSA error in collecting memory pools for offload devices: %s\n", 655 get_error_string(Err)); 656 return Err; 657 } 658 return HSA_STATUS_SUCCESS; 659 } 660 661 hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) { 662 assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() && 663 "Invalid device Id"); 664 return DeviceCoarseGrainedMemoryPools[DeviceId]; 665 } 666 667 hsa_amd_memory_pool_t getHostMemoryPool() { 668 return HostFineGrainedMemoryPool; 669 } 670 671 static int readEnvElseMinusOne(const char *Env) { 672 const char *envStr = getenv(Env); 673 int res = -1; 674 if (envStr) { 675 res = std::stoi(envStr); 676 DP("Parsed %s=%d\n", Env, res); 677 } 678 return res; 679 } 680 681 RTLDeviceInfoTy() { 682 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr 683 // anytime. You do not need a debug library build. 684 // 0 => no tracing 685 // 1 => tracing dispatch only 686 // >1 => verbosity increase 687 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE")) 688 print_kernel_trace = atoi(envStr); 689 else 690 print_kernel_trace = 0; 691 692 DP("Start initializing " GETNAME(TARGET_NAME) "\n"); 693 hsa_status_t err = core::atl_init_gpu_context(); 694 if (err == HSA_STATUS_SUCCESS) { 695 HSAInitializeSucceeded = true; 696 } else { 697 DP("Error when initializing " GETNAME(TARGET_NAME) "\n"); 698 return; 699 } 700 701 // Init hostcall soon after initializing ATMI 702 hostrpc_init(); 703 704 err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) { 705 if (DeviceType == HSA_DEVICE_TYPE_CPU) { 706 CPUAgents.push_back(Agent); 707 } else { 708 HSAAgents.push_back(Agent); 709 } 710 }); 711 if (err != HSA_STATUS_SUCCESS) 712 return; 713 714 NumberOfDevices = (int)HSAAgents.size(); 715 716 if (NumberOfDevices == 0) { 717 DP("There are no devices supporting HSA.\n"); 718 return; 719 } else { 720 DP("There are %d devices supporting HSA.\n", NumberOfDevices); 721 } 722 std::tie(err, KernArgPool) = core::FindKernargPool(CPUAgents); 723 if (err != HSA_STATUS_SUCCESS) { 724 DP("Error when reading memory pools\n"); 725 return; 726 } 727 728 // Init the device info 729 HSAQueues.resize(NumberOfDevices); 730 FuncGblEntries.resize(NumberOfDevices); 731 ThreadsPerGroup.resize(NumberOfDevices); 732 ComputeUnits.resize(NumberOfDevices); 733 GPUName.resize(NumberOfDevices); 734 GroupsPerDevice.resize(NumberOfDevices); 735 WarpSize.resize(NumberOfDevices); 736 NumTeams.resize(NumberOfDevices); 737 NumThreads.resize(NumberOfDevices); 738 deviceStateStore.resize(NumberOfDevices); 739 KernelInfoTable.resize(NumberOfDevices); 740 SymbolInfoTable.resize(NumberOfDevices); 741 DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices); 742 DeviceFineGrainedMemoryPools.resize(NumberOfDevices); 743 744 err = setupMemoryPools(); 745 if (err != HSA_STATUS_SUCCESS) { 746 DP("Error when setting up memory pools"); 747 return; 748 } 749 750 for (int i = 0; i < NumberOfDevices; i++) { 751 HSAQueues[i] = nullptr; 752 } 753 754 for (int i = 0; i < NumberOfDevices; i++) { 755 uint32_t queue_size = 0; 756 { 757 hsa_status_t err = hsa_agent_get_info( 758 HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size); 759 if (err != HSA_STATUS_SUCCESS) { 760 DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i); 761 return; 762 } 763 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) { 764 queue_size = core::Runtime::getInstance().getMaxQueueSize(); 765 } 766 } 767 768 hsa_status_t rc = hsa_queue_create( 769 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL, 770 UINT32_MAX, UINT32_MAX, &HSAQueues[i]); 771 if (rc != HSA_STATUS_SUCCESS) { 772 DP("Failed to create HSA queue %d\n", i); 773 return; 774 } 775 776 deviceStateStore[i] = {nullptr, 0}; 777 } 778 779 for (int i = 0; i < NumberOfDevices; i++) { 780 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size; 781 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams; 782 ComputeUnits[i] = 1; 783 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i, 784 GroupsPerDevice[i], ThreadsPerGroup[i]); 785 } 786 787 // Get environment variables regarding teams 788 Env.TeamLimit = readEnvElseMinusOne("OMP_TEAM_LIMIT"); 789 Env.NumTeams = readEnvElseMinusOne("OMP_NUM_TEAMS"); 790 Env.MaxTeamsDefault = readEnvElseMinusOne("OMP_MAX_TEAMS_DEFAULT"); 791 Env.TeamThreadLimit = readEnvElseMinusOne("OMP_TEAMS_THREAD_LIMIT"); 792 793 // Default state. 794 RequiresFlags = OMP_REQ_UNDEFINED; 795 } 796 797 ~RTLDeviceInfoTy() { 798 DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n"); 799 if (!HSAInitializeSucceeded) { 800 // Then none of these can have been set up and they can't be torn down 801 return; 802 } 803 // Run destructors on types that use HSA before 804 // atmi_finalize removes access to it 805 deviceStateStore.clear(); 806 KernelArgPoolMap.clear(); 807 // Terminate hostrpc before finalizing ATMI 808 hostrpc_terminate(); 809 810 hsa_status_t Err; 811 for (uint32_t I = 0; I < HSAExecutables.size(); I++) { 812 Err = hsa_executable_destroy(HSAExecutables[I]); 813 if (Err != HSA_STATUS_SUCCESS) { 814 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, 815 "Destroying executable", get_error_string(Err)); 816 } 817 } 818 819 Err = hsa_shut_down(); 820 if (Err != HSA_STATUS_SUCCESS) { 821 DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__, "Shutting down HSA", 822 get_error_string(Err)); 823 } 824 } 825 }; 826 827 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER; 828 829 // TODO: May need to drop the trailing to fields until deviceRTL is updated 830 struct omptarget_device_environmentTy { 831 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG 832 // only useful for Debug build of deviceRTLs 833 int32_t num_devices; // gets number of active offload devices 834 int32_t device_num; // gets a value 0 to num_devices-1 835 }; 836 837 static RTLDeviceInfoTy DeviceInfo; 838 839 namespace { 840 841 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size, 842 __tgt_async_info *AsyncInfo) { 843 assert(AsyncInfo && "AsyncInfo is nullptr"); 844 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 845 // Return success if we are not copying back to host from target. 846 if (!HstPtr) 847 return OFFLOAD_SUCCESS; 848 hsa_status_t err; 849 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 850 (long long unsigned)(Elf64_Addr)TgtPtr, 851 (long long unsigned)(Elf64_Addr)HstPtr); 852 853 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size, 854 DeviceId); 855 856 if (err != HSA_STATUS_SUCCESS) { 857 DP("Error when copying data from device to host. Pointers: " 858 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 859 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 860 return OFFLOAD_FAIL; 861 } 862 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size, 863 (long long unsigned)(Elf64_Addr)TgtPtr, 864 (long long unsigned)(Elf64_Addr)HstPtr); 865 return OFFLOAD_SUCCESS; 866 } 867 868 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size, 869 __tgt_async_info *AsyncInfo) { 870 assert(AsyncInfo && "AsyncInfo is nullptr"); 871 hsa_status_t err; 872 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large"); 873 // Return success if we are not doing host to target. 874 if (!HstPtr) 875 return OFFLOAD_SUCCESS; 876 877 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size, 878 (long long unsigned)(Elf64_Addr)HstPtr, 879 (long long unsigned)(Elf64_Addr)TgtPtr); 880 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size, 881 DeviceId); 882 if (err != HSA_STATUS_SUCCESS) { 883 DP("Error when copying data from host to device. Pointers: " 884 "host = 0x%016lx, device = 0x%016lx, size = %lld\n", 885 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size); 886 return OFFLOAD_FAIL; 887 } 888 return OFFLOAD_SUCCESS; 889 } 890 891 // Async. 892 // The implementation was written with cuda streams in mind. The semantics of 893 // that are to execute kernels on a queue in order of insertion. A synchronise 894 // call then makes writes visible between host and device. This means a series 895 // of N data_submit_async calls are expected to execute serially. HSA offers 896 // various options to run the data copies concurrently. This may require changes 897 // to libomptarget. 898 899 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that 900 // there are no outstanding kernels that need to be synchronized. Any async call 901 // may be passed a Queue==0, at which point the cuda implementation will set it 902 // to non-null (see getStream). The cuda streams are per-device. Upstream may 903 // change this interface to explicitly initialize the AsyncInfo_pointer, but 904 // until then hsa lazily initializes it as well. 905 906 void initAsyncInfo(__tgt_async_info *AsyncInfo) { 907 // set non-null while using async calls, return to null to indicate completion 908 assert(AsyncInfo); 909 if (!AsyncInfo->Queue) { 910 AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX); 911 } 912 } 913 void finiAsyncInfo(__tgt_async_info *AsyncInfo) { 914 assert(AsyncInfo); 915 assert(AsyncInfo->Queue); 916 AsyncInfo->Queue = 0; 917 } 918 919 bool elf_machine_id_is_amdgcn(__tgt_device_image *image) { 920 const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h 921 int32_t r = elf_check_machine(image, amdgcnMachineID); 922 if (!r) { 923 DP("Supported machine ID not found\n"); 924 } 925 return r; 926 } 927 928 uint32_t elf_e_flags(__tgt_device_image *image) { 929 char *img_begin = (char *)image->ImageStart; 930 size_t img_size = (char *)image->ImageEnd - img_begin; 931 932 Elf *e = elf_memory(img_begin, img_size); 933 if (!e) { 934 DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1)); 935 return 0; 936 } 937 938 Elf64_Ehdr *eh64 = elf64_getehdr(e); 939 940 if (!eh64) { 941 DP("Unable to get machine ID from ELF file!\n"); 942 elf_end(e); 943 return 0; 944 } 945 946 uint32_t Flags = eh64->e_flags; 947 948 elf_end(e); 949 DP("ELF Flags: 0x%x\n", Flags); 950 return Flags; 951 } 952 } // namespace 953 954 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) { 955 return elf_machine_id_is_amdgcn(image); 956 } 957 958 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; } 959 960 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) { 961 DP("Init requires flags to %ld\n", RequiresFlags); 962 DeviceInfo.RequiresFlags = RequiresFlags; 963 return RequiresFlags; 964 } 965 966 namespace { 967 template <typename T> bool enforce_upper_bound(T *value, T upper) { 968 bool changed = *value > upper; 969 if (changed) { 970 *value = upper; 971 } 972 return changed; 973 } 974 } // namespace 975 976 int32_t __tgt_rtl_init_device(int device_id) { 977 hsa_status_t err; 978 979 // this is per device id init 980 DP("Initialize the device id: %d\n", device_id); 981 982 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id]; 983 984 // Get number of Compute Unit 985 uint32_t compute_units = 0; 986 err = hsa_agent_get_info( 987 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT, 988 &compute_units); 989 if (err != HSA_STATUS_SUCCESS) { 990 DeviceInfo.ComputeUnits[device_id] = 1; 991 DP("Error getting compute units : settiing to 1\n"); 992 } else { 993 DeviceInfo.ComputeUnits[device_id] = compute_units; 994 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]); 995 } 996 997 char GetInfoName[64]; // 64 max size returned by get info 998 err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME, 999 (void *)GetInfoName); 1000 if (err) 1001 DeviceInfo.GPUName[device_id] = "--unknown gpu--"; 1002 else { 1003 DeviceInfo.GPUName[device_id] = GetInfoName; 1004 } 1005 1006 if (print_kernel_trace & STARTUP_DETAILS) 1007 DP("Device#%-2d CU's: %2d %s\n", device_id, 1008 DeviceInfo.ComputeUnits[device_id], 1009 DeviceInfo.GPUName[device_id].c_str()); 1010 1011 // Query attributes to determine number of threads/block and blocks/grid. 1012 uint16_t workgroup_max_dim[3]; 1013 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM, 1014 &workgroup_max_dim); 1015 if (err != HSA_STATUS_SUCCESS) { 1016 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams; 1017 DP("Error getting grid dims: num groups : %d\n", 1018 RTLDeviceInfoTy::DefaultNumTeams); 1019 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) { 1020 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0]; 1021 DP("Using %d ROCm blocks per grid\n", 1022 DeviceInfo.GroupsPerDevice[device_id]); 1023 } else { 1024 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit; 1025 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping " 1026 "at the hard limit\n", 1027 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit); 1028 } 1029 1030 // Get thread limit 1031 hsa_dim3_t grid_max_dim; 1032 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim); 1033 if (err == HSA_STATUS_SUCCESS) { 1034 DeviceInfo.ThreadsPerGroup[device_id] = 1035 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] / 1036 DeviceInfo.GroupsPerDevice[device_id]; 1037 1038 if (DeviceInfo.ThreadsPerGroup[device_id] == 0) { 1039 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1040 DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1041 } else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id], 1042 RTLDeviceInfoTy::Max_WG_Size)) { 1043 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1044 } else { 1045 DP("Using ROCm Queried thread limit: %d\n", 1046 DeviceInfo.ThreadsPerGroup[device_id]); 1047 } 1048 } else { 1049 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size; 1050 DP("Error getting max block dimension, use default:%d \n", 1051 RTLDeviceInfoTy::Max_WG_Size); 1052 } 1053 1054 // Get wavefront size 1055 uint32_t wavefront_size = 0; 1056 err = 1057 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size); 1058 if (err == HSA_STATUS_SUCCESS) { 1059 DP("Queried wavefront size: %d\n", wavefront_size); 1060 DeviceInfo.WarpSize[device_id] = wavefront_size; 1061 } else { 1062 DP("Default wavefront size: %d\n", getGridValue().GV_Warp_Size); 1063 DeviceInfo.WarpSize[device_id] = getGridValue().GV_Warp_Size; 1064 } 1065 1066 // Adjust teams to the env variables 1067 1068 if (DeviceInfo.Env.TeamLimit > 0 && 1069 (enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id], 1070 DeviceInfo.Env.TeamLimit))) { 1071 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n", 1072 DeviceInfo.Env.TeamLimit); 1073 } 1074 1075 // Set default number of teams 1076 if (DeviceInfo.Env.NumTeams > 0) { 1077 DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams; 1078 DP("Default number of teams set according to environment %d\n", 1079 DeviceInfo.Env.NumTeams); 1080 } else { 1081 char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC"); 1082 int TeamsPerCU = DefaultTeamsPerCU; 1083 if (TeamsPerCUEnvStr) { 1084 TeamsPerCU = std::stoi(TeamsPerCUEnvStr); 1085 } 1086 1087 DeviceInfo.NumTeams[device_id] = 1088 TeamsPerCU * DeviceInfo.ComputeUnits[device_id]; 1089 DP("Default number of teams = %d * number of compute units %d\n", 1090 TeamsPerCU, DeviceInfo.ComputeUnits[device_id]); 1091 } 1092 1093 if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id], 1094 DeviceInfo.GroupsPerDevice[device_id])) { 1095 DP("Default number of teams exceeds device limit, capping at %d\n", 1096 DeviceInfo.GroupsPerDevice[device_id]); 1097 } 1098 1099 // Adjust threads to the env variables 1100 if (DeviceInfo.Env.TeamThreadLimit > 0 && 1101 (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1102 DeviceInfo.Env.TeamThreadLimit))) { 1103 DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n", 1104 DeviceInfo.Env.TeamThreadLimit); 1105 } 1106 1107 // Set default number of threads 1108 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size; 1109 DP("Default number of threads set according to library's default %d\n", 1110 RTLDeviceInfoTy::Default_WG_Size); 1111 if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id], 1112 DeviceInfo.ThreadsPerGroup[device_id])) { 1113 DP("Default number of threads exceeds device limit, capping at %d\n", 1114 DeviceInfo.ThreadsPerGroup[device_id]); 1115 } 1116 1117 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n", 1118 device_id, DeviceInfo.GroupsPerDevice[device_id], 1119 DeviceInfo.ThreadsPerGroup[device_id]); 1120 1121 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id, 1122 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id], 1123 DeviceInfo.GroupsPerDevice[device_id], 1124 DeviceInfo.GroupsPerDevice[device_id] * 1125 DeviceInfo.ThreadsPerGroup[device_id]); 1126 1127 return OFFLOAD_SUCCESS; 1128 } 1129 1130 namespace { 1131 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) { 1132 size_t N; 1133 int rc = elf_getshdrnum(elf, &N); 1134 if (rc != 0) { 1135 return nullptr; 1136 } 1137 1138 Elf64_Shdr *result = nullptr; 1139 for (size_t i = 0; i < N; i++) { 1140 Elf_Scn *scn = elf_getscn(elf, i); 1141 if (scn) { 1142 Elf64_Shdr *shdr = elf64_getshdr(scn); 1143 if (shdr) { 1144 if (shdr->sh_type == SHT_HASH) { 1145 if (result == nullptr) { 1146 result = shdr; 1147 } else { 1148 // multiple SHT_HASH sections not handled 1149 return nullptr; 1150 } 1151 } 1152 } 1153 } 1154 } 1155 return result; 1156 } 1157 1158 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash, 1159 const char *symname) { 1160 1161 assert(section_hash); 1162 size_t section_symtab_index = section_hash->sh_link; 1163 Elf64_Shdr *section_symtab = 1164 elf64_getshdr(elf_getscn(elf, section_symtab_index)); 1165 size_t section_strtab_index = section_symtab->sh_link; 1166 1167 const Elf64_Sym *symtab = 1168 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset); 1169 1170 const uint32_t *hashtab = 1171 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset); 1172 1173 // Layout: 1174 // nbucket 1175 // nchain 1176 // bucket[nbucket] 1177 // chain[nchain] 1178 uint32_t nbucket = hashtab[0]; 1179 const uint32_t *bucket = &hashtab[2]; 1180 const uint32_t *chain = &hashtab[nbucket + 2]; 1181 1182 const size_t max = strlen(symname) + 1; 1183 const uint32_t hash = elf_hash(symname); 1184 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) { 1185 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name); 1186 if (strncmp(symname, n, max) == 0) { 1187 return &symtab[i]; 1188 } 1189 } 1190 1191 return nullptr; 1192 } 1193 1194 struct symbol_info { 1195 void *addr = nullptr; 1196 uint32_t size = UINT32_MAX; 1197 uint32_t sh_type = SHT_NULL; 1198 }; 1199 1200 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname, 1201 symbol_info *res) { 1202 if (elf_kind(elf) != ELF_K_ELF) { 1203 return 1; 1204 } 1205 1206 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf); 1207 if (!section_hash) { 1208 return 1; 1209 } 1210 1211 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname); 1212 if (!sym) { 1213 return 1; 1214 } 1215 1216 if (sym->st_size > UINT32_MAX) { 1217 return 1; 1218 } 1219 1220 if (sym->st_shndx == SHN_UNDEF) { 1221 return 1; 1222 } 1223 1224 Elf_Scn *section = elf_getscn(elf, sym->st_shndx); 1225 if (!section) { 1226 return 1; 1227 } 1228 1229 Elf64_Shdr *header = elf64_getshdr(section); 1230 if (!header) { 1231 return 1; 1232 } 1233 1234 res->addr = sym->st_value + base; 1235 res->size = static_cast<uint32_t>(sym->st_size); 1236 res->sh_type = header->sh_type; 1237 return 0; 1238 } 1239 1240 int get_symbol_info_without_loading(char *base, size_t img_size, 1241 const char *symname, symbol_info *res) { 1242 Elf *elf = elf_memory(base, img_size); 1243 if (elf) { 1244 int rc = get_symbol_info_without_loading(elf, base, symname, res); 1245 elf_end(elf); 1246 return rc; 1247 } 1248 return 1; 1249 } 1250 1251 hsa_status_t interop_get_symbol_info(char *base, size_t img_size, 1252 const char *symname, void **var_addr, 1253 uint32_t *var_size) { 1254 symbol_info si; 1255 int rc = get_symbol_info_without_loading(base, img_size, symname, &si); 1256 if (rc == 0) { 1257 *var_addr = si.addr; 1258 *var_size = si.size; 1259 return HSA_STATUS_SUCCESS; 1260 } else { 1261 return HSA_STATUS_ERROR; 1262 } 1263 } 1264 1265 template <typename C> 1266 hsa_status_t module_register_from_memory_to_place( 1267 std::map<std::string, atl_kernel_info_t> &KernelInfoTable, 1268 std::map<std::string, atl_symbol_info_t> &SymbolInfoTable, 1269 void *module_bytes, size_t module_size, int DeviceId, C cb, 1270 std::vector<hsa_executable_t> &HSAExecutables) { 1271 auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t { 1272 C *unwrapped = static_cast<C *>(cb_state); 1273 return (*unwrapped)(data, size); 1274 }; 1275 return core::RegisterModuleFromMemory( 1276 KernelInfoTable, SymbolInfoTable, module_bytes, module_size, 1277 DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb), 1278 HSAExecutables); 1279 } 1280 } // namespace 1281 1282 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) { 1283 uint64_t device_State_bytes = 0; 1284 { 1285 // If this is the deviceRTL, get the state variable size 1286 symbol_info size_si; 1287 int rc = get_symbol_info_without_loading( 1288 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si); 1289 1290 if (rc == 0) { 1291 if (size_si.size != sizeof(uint64_t)) { 1292 DP("Found device_State_size variable with wrong size\n"); 1293 return 0; 1294 } 1295 1296 // Read number of bytes directly from the elf 1297 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t)); 1298 } 1299 } 1300 return device_State_bytes; 1301 } 1302 1303 static __tgt_target_table * 1304 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1305 1306 static __tgt_target_table * 1307 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image); 1308 1309 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id, 1310 __tgt_device_image *image) { 1311 DeviceInfo.load_run_lock.lock(); 1312 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image); 1313 DeviceInfo.load_run_lock.unlock(); 1314 return res; 1315 } 1316 1317 struct device_environment { 1318 // initialise an omptarget_device_environmentTy in the deviceRTL 1319 // patches around differences in the deviceRTL between trunk, aomp, 1320 // rocmcc. Over time these differences will tend to zero and this class 1321 // simplified. 1322 // Symbol may be in .data or .bss, and may be missing fields: 1323 // - aomp has debug_level, num_devices, device_num 1324 // - trunk has debug_level 1325 // - under review in trunk is debug_level, device_num 1326 // - rocmcc matches aomp, patch to swap num_devices and device_num 1327 1328 // The symbol may also have been deadstripped because the device side 1329 // accessors were unused. 1330 1331 // If the symbol is in .data (aomp, rocm) it can be written directly. 1332 // If it is in .bss, we must wait for it to be allocated space on the 1333 // gpu (trunk) and initialize after loading. 1334 const char *sym() { return "omptarget_device_environment"; } 1335 1336 omptarget_device_environmentTy host_device_env; 1337 symbol_info si; 1338 bool valid = false; 1339 1340 __tgt_device_image *image; 1341 const size_t img_size; 1342 1343 device_environment(int device_id, int number_devices, 1344 __tgt_device_image *image, const size_t img_size) 1345 : image(image), img_size(img_size) { 1346 1347 host_device_env.num_devices = number_devices; 1348 host_device_env.device_num = device_id; 1349 host_device_env.debug_level = 0; 1350 #ifdef OMPTARGET_DEBUG 1351 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) { 1352 host_device_env.debug_level = std::stoi(envStr); 1353 } 1354 #endif 1355 1356 int rc = get_symbol_info_without_loading((char *)image->ImageStart, 1357 img_size, sym(), &si); 1358 if (rc != 0) { 1359 DP("Finding global device environment '%s' - symbol missing.\n", sym()); 1360 return; 1361 } 1362 1363 if (si.size > sizeof(host_device_env)) { 1364 DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size, 1365 sizeof(host_device_env)); 1366 return; 1367 } 1368 1369 valid = true; 1370 } 1371 1372 bool in_image() { return si.sh_type != SHT_NOBITS; } 1373 1374 hsa_status_t before_loading(void *data, size_t size) { 1375 if (valid) { 1376 if (in_image()) { 1377 DP("Setting global device environment before load (%u bytes)\n", 1378 si.size); 1379 uint64_t offset = (char *)si.addr - (char *)image->ImageStart; 1380 void *pos = (char *)data + offset; 1381 memcpy(pos, &host_device_env, si.size); 1382 } 1383 } 1384 return HSA_STATUS_SUCCESS; 1385 } 1386 1387 hsa_status_t after_loading() { 1388 if (valid) { 1389 if (!in_image()) { 1390 DP("Setting global device environment after load (%u bytes)\n", 1391 si.size); 1392 int device_id = host_device_env.device_num; 1393 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1394 void *state_ptr; 1395 uint32_t state_ptr_size; 1396 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1397 SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size); 1398 if (err != HSA_STATUS_SUCCESS) { 1399 DP("failed to find %s in loaded image\n", sym()); 1400 return err; 1401 } 1402 1403 if (state_ptr_size != si.size) { 1404 DP("Symbol had size %u before loading, %u after\n", state_ptr_size, 1405 si.size); 1406 return HSA_STATUS_ERROR; 1407 } 1408 1409 return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env, 1410 state_ptr_size, device_id); 1411 } 1412 } 1413 return HSA_STATUS_SUCCESS; 1414 } 1415 }; 1416 1417 static hsa_status_t atmi_calloc(void **ret_ptr, size_t size, int DeviceId) { 1418 uint64_t rounded = 4 * ((size + 3) / 4); 1419 void *ptr; 1420 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(DeviceId); 1421 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, rounded, 0, &ptr); 1422 if (err != HSA_STATUS_SUCCESS) { 1423 return err; 1424 } 1425 1426 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4); 1427 if (rc != HSA_STATUS_SUCCESS) { 1428 DP("zero fill device_state failed with %u\n", rc); 1429 core::Runtime::Memfree(ptr); 1430 return HSA_STATUS_ERROR; 1431 } 1432 1433 *ret_ptr = ptr; 1434 return HSA_STATUS_SUCCESS; 1435 } 1436 1437 static bool image_contains_symbol(void *data, size_t size, const char *sym) { 1438 symbol_info si; 1439 int rc = get_symbol_info_without_loading((char *)data, size, sym, &si); 1440 return (rc == 0) && (si.addr != nullptr); 1441 } 1442 1443 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id, 1444 __tgt_device_image *image) { 1445 // This function loads the device image onto gpu[device_id] and does other 1446 // per-image initialization work. Specifically: 1447 // 1448 // - Initialize an omptarget_device_environmentTy instance embedded in the 1449 // image at the symbol "omptarget_device_environment" 1450 // Fields debug_level, device_num, num_devices. Used by the deviceRTL. 1451 // 1452 // - Allocate a large array per-gpu (could be moved to init_device) 1453 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size 1454 // - Allocate at least that many bytes of gpu memory 1455 // - Zero initialize it 1456 // - Write the pointer to the symbol omptarget_nvptx_device_State 1457 // 1458 // - Pulls some per-kernel information together from various sources and 1459 // records it in the KernelsList for quicker access later 1460 // 1461 // The initialization can be done before or after loading the image onto the 1462 // gpu. This function presently does a mixture. Using the hsa api to get/set 1463 // the information is simpler to implement, in exchange for more complicated 1464 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes 1465 // back from the gpu vs a hashtable lookup on the host. 1466 1467 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart; 1468 1469 DeviceInfo.clearOffloadEntriesTable(device_id); 1470 1471 // We do not need to set the ELF version because the caller of this function 1472 // had to do that to decide the right runtime to use 1473 1474 if (!elf_machine_id_is_amdgcn(image)) { 1475 return NULL; 1476 } 1477 1478 { 1479 auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image, 1480 img_size); 1481 1482 auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id]; 1483 auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id]; 1484 hsa_status_t err = module_register_from_memory_to_place( 1485 KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id, 1486 [&](void *data, size_t size) { 1487 if (image_contains_symbol(data, size, "needs_hostcall_buffer")) { 1488 __atomic_store_n(&DeviceInfo.hostcall_required, true, 1489 __ATOMIC_RELEASE); 1490 } 1491 return env.before_loading(data, size); 1492 }, 1493 DeviceInfo.HSAExecutables); 1494 1495 check("Module registering", err); 1496 if (err != HSA_STATUS_SUCCESS) { 1497 const char *DeviceName = DeviceInfo.GPUName[device_id].c_str(); 1498 const char *ElfName = get_elf_mach_gfx_name(elf_e_flags(image)); 1499 1500 if (strcmp(DeviceName, ElfName) != 0) { 1501 DP("Possible gpu arch mismatch: device:%s, image:%s please check" 1502 " compiler flag: -march=<gpu>\n", 1503 DeviceName, ElfName); 1504 } else { 1505 DP("Error loading image onto GPU: %s\n", get_error_string(err)); 1506 } 1507 1508 return NULL; 1509 } 1510 1511 err = env.after_loading(); 1512 if (err != HSA_STATUS_SUCCESS) { 1513 return NULL; 1514 } 1515 } 1516 1517 DP("ATMI module successfully loaded!\n"); 1518 1519 { 1520 // the device_State array is either large value in bss or a void* that 1521 // needs to be assigned to a pointer to an array of size device_state_bytes 1522 // If absent, it has been deadstripped and needs no setup. 1523 1524 void *state_ptr; 1525 uint32_t state_ptr_size; 1526 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1527 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1528 SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr, 1529 &state_ptr_size); 1530 1531 if (err != HSA_STATUS_SUCCESS) { 1532 DP("No device_state symbol found, skipping initialization\n"); 1533 } else { 1534 if (state_ptr_size < sizeof(void *)) { 1535 DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size, 1536 sizeof(void *)); 1537 return NULL; 1538 } 1539 1540 // if it's larger than a void*, assume it's a bss array and no further 1541 // initialization is required. Only try to set up a pointer for 1542 // sizeof(void*) 1543 if (state_ptr_size == sizeof(void *)) { 1544 uint64_t device_State_bytes = 1545 get_device_State_bytes((char *)image->ImageStart, img_size); 1546 if (device_State_bytes == 0) { 1547 DP("Can't initialize device_State, missing size information\n"); 1548 return NULL; 1549 } 1550 1551 auto &dss = DeviceInfo.deviceStateStore[device_id]; 1552 if (dss.first.get() == nullptr) { 1553 assert(dss.second == 0); 1554 void *ptr = NULL; 1555 hsa_status_t err = atmi_calloc(&ptr, device_State_bytes, device_id); 1556 if (err != HSA_STATUS_SUCCESS) { 1557 DP("Failed to allocate device_state array\n"); 1558 return NULL; 1559 } 1560 dss = { 1561 std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr}, 1562 device_State_bytes, 1563 }; 1564 } 1565 1566 void *ptr = dss.first.get(); 1567 if (device_State_bytes != dss.second) { 1568 DP("Inconsistent sizes of device_State unsupported\n"); 1569 return NULL; 1570 } 1571 1572 // write ptr to device memory so it can be used by later kernels 1573 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr, 1574 sizeof(void *), device_id); 1575 if (err != HSA_STATUS_SUCCESS) { 1576 DP("memcpy install of state_ptr failed\n"); 1577 return NULL; 1578 } 1579 } 1580 } 1581 } 1582 1583 // Here, we take advantage of the data that is appended after img_end to get 1584 // the symbols' name we need to load. This data consist of the host entries 1585 // begin and end as well as the target name (see the offloading linker script 1586 // creation in clang compiler). 1587 1588 // Find the symbols in the module by name. The name can be obtain by 1589 // concatenating the host entry name with the target name 1590 1591 __tgt_offload_entry *HostBegin = image->EntriesBegin; 1592 __tgt_offload_entry *HostEnd = image->EntriesEnd; 1593 1594 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) { 1595 1596 if (!e->addr) { 1597 // The host should have always something in the address to 1598 // uniquely identify the target region. 1599 DP("Analyzing host entry '<null>' (size = %lld)...\n", 1600 (unsigned long long)e->size); 1601 return NULL; 1602 } 1603 1604 if (e->size) { 1605 __tgt_offload_entry entry = *e; 1606 1607 void *varptr; 1608 uint32_t varsize; 1609 1610 auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id]; 1611 hsa_status_t err = atmi_interop_hsa_get_symbol_info( 1612 SymbolInfoMap, device_id, e->name, &varptr, &varsize); 1613 1614 if (err != HSA_STATUS_SUCCESS) { 1615 // Inform the user what symbol prevented offloading 1616 DP("Loading global '%s' (Failed)\n", e->name); 1617 return NULL; 1618 } 1619 1620 if (varsize != e->size) { 1621 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name, 1622 varsize, e->size); 1623 return NULL; 1624 } 1625 1626 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n", 1627 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr)); 1628 entry.addr = (void *)varptr; 1629 1630 DeviceInfo.addOffloadEntry(device_id, entry); 1631 1632 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY && 1633 e->flags & OMP_DECLARE_TARGET_LINK) { 1634 // If unified memory is present any target link variables 1635 // can access host addresses directly. There is no longer a 1636 // need for device copies. 1637 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr, 1638 sizeof(void *), device_id); 1639 if (err != HSA_STATUS_SUCCESS) 1640 DP("Error when copying USM\n"); 1641 DP("Copy linked variable host address (" DPxMOD ")" 1642 "to device address (" DPxMOD ")\n", 1643 DPxPTR(*((void **)e->addr)), DPxPTR(varptr)); 1644 } 1645 1646 continue; 1647 } 1648 1649 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name)); 1650 1651 uint32_t kernarg_segment_size; 1652 auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id]; 1653 hsa_status_t err = atmi_interop_hsa_get_kernel_info( 1654 KernelInfoMap, device_id, e->name, 1655 HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE, 1656 &kernarg_segment_size); 1657 1658 // each arg is a void * in this openmp implementation 1659 uint32_t arg_num = kernarg_segment_size / sizeof(void *); 1660 std::vector<size_t> arg_sizes(arg_num); 1661 for (std::vector<size_t>::iterator it = arg_sizes.begin(); 1662 it != arg_sizes.end(); it++) { 1663 *it = sizeof(void *); 1664 } 1665 1666 // default value GENERIC (in case symbol is missing from cubin file) 1667 int8_t ExecModeVal = ExecutionModeType::GENERIC; 1668 1669 // get flat group size if present, else Default_WG_Size 1670 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1671 1672 // get Kernel Descriptor if present. 1673 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp 1674 struct KernDescValType { 1675 uint16_t Version; 1676 uint16_t TSize; 1677 uint16_t WG_Size; 1678 uint8_t Mode; 1679 }; 1680 struct KernDescValType KernDescVal; 1681 std::string KernDescNameStr(e->name); 1682 KernDescNameStr += "_kern_desc"; 1683 const char *KernDescName = KernDescNameStr.c_str(); 1684 1685 void *KernDescPtr; 1686 uint32_t KernDescSize; 1687 void *CallStackAddr = nullptr; 1688 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1689 KernDescName, &KernDescPtr, &KernDescSize); 1690 1691 if (err == HSA_STATUS_SUCCESS) { 1692 if ((size_t)KernDescSize != sizeof(KernDescVal)) 1693 DP("Loading global computation properties '%s' - size mismatch (%u != " 1694 "%lu)\n", 1695 KernDescName, KernDescSize, sizeof(KernDescVal)); 1696 1697 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize); 1698 1699 // Check structure size against recorded size. 1700 if ((size_t)KernDescSize != KernDescVal.TSize) 1701 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n", 1702 sizeof(KernDescVal), KernDescVal.TSize, KernDescName); 1703 1704 DP("After loading global for %s KernDesc \n", KernDescName); 1705 DP("KernDesc: Version: %d\n", KernDescVal.Version); 1706 DP("KernDesc: TSize: %d\n", KernDescVal.TSize); 1707 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size); 1708 DP("KernDesc: Mode: %d\n", KernDescVal.Mode); 1709 1710 // Get ExecMode 1711 ExecModeVal = KernDescVal.Mode; 1712 DP("ExecModeVal %d\n", ExecModeVal); 1713 if (KernDescVal.WG_Size == 0) { 1714 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size; 1715 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size); 1716 } 1717 WGSizeVal = KernDescVal.WG_Size; 1718 DP("WGSizeVal %d\n", WGSizeVal); 1719 check("Loading KernDesc computation property", err); 1720 } else { 1721 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName); 1722 1723 // Generic 1724 std::string ExecModeNameStr(e->name); 1725 ExecModeNameStr += "_exec_mode"; 1726 const char *ExecModeName = ExecModeNameStr.c_str(); 1727 1728 void *ExecModePtr; 1729 uint32_t varsize; 1730 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1731 ExecModeName, &ExecModePtr, &varsize); 1732 1733 if (err == HSA_STATUS_SUCCESS) { 1734 if ((size_t)varsize != sizeof(int8_t)) { 1735 DP("Loading global computation properties '%s' - size mismatch(%u != " 1736 "%lu)\n", 1737 ExecModeName, varsize, sizeof(int8_t)); 1738 return NULL; 1739 } 1740 1741 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize); 1742 1743 DP("After loading global for %s ExecMode = %d\n", ExecModeName, 1744 ExecModeVal); 1745 1746 if (ExecModeVal < 0 || ExecModeVal > 2) { 1747 DP("Error wrong exec_mode value specified in HSA code object file: " 1748 "%d\n", 1749 ExecModeVal); 1750 return NULL; 1751 } 1752 } else { 1753 DP("Loading global exec_mode '%s' - symbol missing, using default " 1754 "value " 1755 "GENERIC (1)\n", 1756 ExecModeName); 1757 } 1758 check("Loading computation property", err); 1759 1760 // Flat group size 1761 std::string WGSizeNameStr(e->name); 1762 WGSizeNameStr += "_wg_size"; 1763 const char *WGSizeName = WGSizeNameStr.c_str(); 1764 1765 void *WGSizePtr; 1766 uint32_t WGSize; 1767 err = interop_get_symbol_info((char *)image->ImageStart, img_size, 1768 WGSizeName, &WGSizePtr, &WGSize); 1769 1770 if (err == HSA_STATUS_SUCCESS) { 1771 if ((size_t)WGSize != sizeof(int16_t)) { 1772 DP("Loading global computation properties '%s' - size mismatch (%u " 1773 "!= " 1774 "%lu)\n", 1775 WGSizeName, WGSize, sizeof(int16_t)); 1776 return NULL; 1777 } 1778 1779 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize); 1780 1781 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal); 1782 1783 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size || 1784 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) { 1785 DP("Error wrong WGSize value specified in HSA code object file: " 1786 "%d\n", 1787 WGSizeVal); 1788 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size; 1789 } 1790 } else { 1791 DP("Warning: Loading WGSize '%s' - symbol not found, " 1792 "using default value %d\n", 1793 WGSizeName, WGSizeVal); 1794 } 1795 1796 check("Loading WGSize computation property", err); 1797 } 1798 1799 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id, 1800 CallStackAddr, e->name, kernarg_segment_size, 1801 DeviceInfo.KernArgPool)); 1802 __tgt_offload_entry entry = *e; 1803 entry.addr = (void *)&KernelsList.back(); 1804 DeviceInfo.addOffloadEntry(device_id, entry); 1805 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name); 1806 } 1807 1808 return DeviceInfo.getOffloadEntriesTable(device_id); 1809 } 1810 1811 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) { 1812 void *ptr = NULL; 1813 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1814 1815 if (kind != TARGET_ALLOC_DEFAULT) { 1816 REPORT("Invalid target data allocation kind or requested allocator not " 1817 "implemented yet\n"); 1818 return NULL; 1819 } 1820 1821 hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(device_id); 1822 hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, size, 0, &ptr); 1823 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size, 1824 (long long unsigned)(Elf64_Addr)ptr); 1825 ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL; 1826 return ptr; 1827 } 1828 1829 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr, 1830 int64_t size) { 1831 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1832 __tgt_async_info AsyncInfo; 1833 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo); 1834 if (rc != OFFLOAD_SUCCESS) 1835 return OFFLOAD_FAIL; 1836 1837 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1838 } 1839 1840 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr, 1841 int64_t size, __tgt_async_info *AsyncInfo) { 1842 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1843 if (AsyncInfo) { 1844 initAsyncInfo(AsyncInfo); 1845 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo); 1846 } else { 1847 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size); 1848 } 1849 } 1850 1851 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr, 1852 int64_t size) { 1853 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1854 __tgt_async_info AsyncInfo; 1855 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo); 1856 if (rc != OFFLOAD_SUCCESS) 1857 return OFFLOAD_FAIL; 1858 1859 return __tgt_rtl_synchronize(device_id, &AsyncInfo); 1860 } 1861 1862 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr, 1863 void *tgt_ptr, int64_t size, 1864 __tgt_async_info *AsyncInfo) { 1865 assert(AsyncInfo && "AsyncInfo is nullptr"); 1866 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1867 initAsyncInfo(AsyncInfo); 1868 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo); 1869 } 1870 1871 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) { 1872 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large"); 1873 hsa_status_t err; 1874 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr); 1875 err = core::Runtime::Memfree(tgt_ptr); 1876 if (err != HSA_STATUS_SUCCESS) { 1877 DP("Error when freeing CUDA memory\n"); 1878 return OFFLOAD_FAIL; 1879 } 1880 return OFFLOAD_SUCCESS; 1881 } 1882 1883 // Determine launch values for kernel. 1884 struct launchVals { 1885 int WorkgroupSize; 1886 int GridSize; 1887 }; 1888 launchVals getLaunchVals(EnvironmentVariables Env, int ConstWGSize, 1889 int ExecutionMode, int num_teams, int thread_limit, 1890 uint64_t loop_tripcount, int DeviceNumTeams) { 1891 1892 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size; 1893 int num_groups = 0; 1894 1895 int Max_Teams = 1896 Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams; 1897 if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit) 1898 Max_Teams = RTLDeviceInfoTy::HardTeamLimit; 1899 1900 if (print_kernel_trace & STARTUP_DETAILS) { 1901 DP("RTLDeviceInfoTy::Max_Teams: %d\n", RTLDeviceInfoTy::Max_Teams); 1902 DP("Max_Teams: %d\n", Max_Teams); 1903 DP("RTLDeviceInfoTy::Warp_Size: %d\n", RTLDeviceInfoTy::Warp_Size); 1904 DP("RTLDeviceInfoTy::Max_WG_Size: %d\n", RTLDeviceInfoTy::Max_WG_Size); 1905 DP("RTLDeviceInfoTy::Default_WG_Size: %d\n", 1906 RTLDeviceInfoTy::Default_WG_Size); 1907 DP("thread_limit: %d\n", thread_limit); 1908 DP("threadsPerGroup: %d\n", threadsPerGroup); 1909 DP("ConstWGSize: %d\n", ConstWGSize); 1910 } 1911 // check for thread_limit() clause 1912 if (thread_limit > 0) { 1913 threadsPerGroup = thread_limit; 1914 DP("Setting threads per block to requested %d\n", thread_limit); 1915 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC 1916 threadsPerGroup += RTLDeviceInfoTy::Warp_Size; 1917 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size); 1918 } 1919 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max 1920 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size; 1921 DP("Setting threads per block to maximum %d\n", threadsPerGroup); 1922 } 1923 } 1924 // check flat_max_work_group_size attr here 1925 if (threadsPerGroup > ConstWGSize) { 1926 threadsPerGroup = ConstWGSize; 1927 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n", 1928 threadsPerGroup); 1929 } 1930 if (print_kernel_trace & STARTUP_DETAILS) 1931 DP("threadsPerGroup: %d\n", threadsPerGroup); 1932 DP("Preparing %d threads\n", threadsPerGroup); 1933 1934 // Set default num_groups (teams) 1935 if (Env.TeamLimit > 0) 1936 num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit; 1937 else 1938 num_groups = Max_Teams; 1939 DP("Set default num of groups %d\n", num_groups); 1940 1941 if (print_kernel_trace & STARTUP_DETAILS) { 1942 DP("num_groups: %d\n", num_groups); 1943 DP("num_teams: %d\n", num_teams); 1944 } 1945 1946 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size 1947 // This reduction is typical for default case (no thread_limit clause). 1948 // or when user goes crazy with num_teams clause. 1949 // FIXME: We cant distinguish between a constant or variable thread limit. 1950 // So we only handle constant thread_limits. 1951 if (threadsPerGroup > 1952 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024 1953 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size 1954 // here? 1955 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup; 1956 1957 // check for num_teams() clause 1958 if (num_teams > 0) { 1959 num_groups = (num_teams < num_groups) ? num_teams : num_groups; 1960 } 1961 if (print_kernel_trace & STARTUP_DETAILS) { 1962 DP("num_groups: %d\n", num_groups); 1963 DP("Env.NumTeams %d\n", Env.NumTeams); 1964 DP("Env.TeamLimit %d\n", Env.TeamLimit); 1965 } 1966 1967 if (Env.NumTeams > 0) { 1968 num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups; 1969 DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams); 1970 } else if (Env.TeamLimit > 0) { 1971 num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups; 1972 DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit); 1973 } else { 1974 if (num_teams <= 0) { 1975 if (loop_tripcount > 0) { 1976 if (ExecutionMode == SPMD) { 1977 // round up to the nearest integer 1978 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1; 1979 } else if (ExecutionMode == GENERIC) { 1980 num_groups = loop_tripcount; 1981 } else /* ExecutionMode == SPMD_GENERIC */ { 1982 // This is a generic kernel that was transformed to use SPMD-mode 1983 // execution but uses Generic-mode semantics for scheduling. 1984 num_groups = loop_tripcount; 1985 } 1986 DP("Using %d teams due to loop trip count %" PRIu64 " and number of " 1987 "threads per block %d\n", 1988 num_groups, loop_tripcount, threadsPerGroup); 1989 } 1990 } else { 1991 num_groups = num_teams; 1992 } 1993 if (num_groups > Max_Teams) { 1994 num_groups = Max_Teams; 1995 if (print_kernel_trace & STARTUP_DETAILS) 1996 DP("Limiting num_groups %d to Max_Teams %d \n", num_groups, Max_Teams); 1997 } 1998 if (num_groups > num_teams && num_teams > 0) { 1999 num_groups = num_teams; 2000 if (print_kernel_trace & STARTUP_DETAILS) 2001 DP("Limiting num_groups %d to clause num_teams %d \n", num_groups, 2002 num_teams); 2003 } 2004 } 2005 2006 // num_teams clause always honored, no matter what, unless DEFAULT is active. 2007 if (num_teams > 0) { 2008 num_groups = num_teams; 2009 // Cap num_groups to EnvMaxTeamsDefault if set. 2010 if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault) 2011 num_groups = Env.MaxTeamsDefault; 2012 } 2013 if (print_kernel_trace & STARTUP_DETAILS) { 2014 DP("threadsPerGroup: %d\n", threadsPerGroup); 2015 DP("num_groups: %d\n", num_groups); 2016 DP("loop_tripcount: %ld\n", loop_tripcount); 2017 } 2018 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups, 2019 threadsPerGroup); 2020 2021 launchVals res; 2022 res.WorkgroupSize = threadsPerGroup; 2023 res.GridSize = threadsPerGroup * num_groups; 2024 return res; 2025 } 2026 2027 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) { 2028 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1); 2029 bool full = true; 2030 while (full) { 2031 full = 2032 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue)); 2033 } 2034 return packet_id; 2035 } 2036 2037 static int32_t __tgt_rtl_run_target_team_region_locked( 2038 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2039 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2040 int32_t thread_limit, uint64_t loop_tripcount); 2041 2042 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr, 2043 void **tgt_args, 2044 ptrdiff_t *tgt_offsets, 2045 int32_t arg_num, int32_t num_teams, 2046 int32_t thread_limit, 2047 uint64_t loop_tripcount) { 2048 2049 DeviceInfo.load_run_lock.lock_shared(); 2050 int32_t res = __tgt_rtl_run_target_team_region_locked( 2051 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams, 2052 thread_limit, loop_tripcount); 2053 2054 DeviceInfo.load_run_lock.unlock_shared(); 2055 return res; 2056 } 2057 2058 int32_t __tgt_rtl_run_target_team_region_locked( 2059 int32_t device_id, void *tgt_entry_ptr, void **tgt_args, 2060 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams, 2061 int32_t thread_limit, uint64_t loop_tripcount) { 2062 // Set the context we are using 2063 // update thread limit content in gpu memory if un-initialized or specified 2064 // from host 2065 2066 DP("Run target team region thread_limit %d\n", thread_limit); 2067 2068 // All args are references. 2069 std::vector<void *> args(arg_num); 2070 std::vector<void *> ptrs(arg_num); 2071 2072 DP("Arg_num: %d\n", arg_num); 2073 for (int32_t i = 0; i < arg_num; ++i) { 2074 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]); 2075 args[i] = &ptrs[i]; 2076 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i])); 2077 } 2078 2079 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr; 2080 2081 std::string kernel_name = std::string(KernelInfo->Name); 2082 auto &KernelInfoTable = DeviceInfo.KernelInfoTable; 2083 if (KernelInfoTable[device_id].find(kernel_name) == 2084 KernelInfoTable[device_id].end()) { 2085 DP("Kernel %s not found\n", kernel_name.c_str()); 2086 return OFFLOAD_FAIL; 2087 } 2088 2089 const atl_kernel_info_t KernelInfoEntry = 2090 KernelInfoTable[device_id][kernel_name]; 2091 const uint32_t group_segment_size = KernelInfoEntry.group_segment_size; 2092 const uint32_t sgpr_count = KernelInfoEntry.sgpr_count; 2093 const uint32_t vgpr_count = KernelInfoEntry.vgpr_count; 2094 const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count; 2095 const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count; 2096 2097 assert(arg_num == (int)KernelInfoEntry.num_args); 2098 2099 /* 2100 * Set limit based on ThreadsPerGroup and GroupsPerDevice 2101 */ 2102 launchVals LV = getLaunchVals(DeviceInfo.Env, KernelInfo->ConstWGSize, 2103 KernelInfo->ExecutionMode, 2104 num_teams, // From run_region arg 2105 thread_limit, // From run_region arg 2106 loop_tripcount, // From run_region arg 2107 DeviceInfo.NumTeams[KernelInfo->device_id]); 2108 const int GridSize = LV.GridSize; 2109 const int WorkgroupSize = LV.WorkgroupSize; 2110 2111 if (print_kernel_trace >= LAUNCH) { 2112 int num_groups = GridSize / WorkgroupSize; 2113 // enum modes are SPMD, GENERIC, NONE 0,1,2 2114 // if doing rtl timing, print to stderr, unless stdout requested. 2115 bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING); 2116 fprintf(traceToStdout ? stdout : stderr, 2117 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) " 2118 "reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u " 2119 "sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n", 2120 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize, 2121 arg_num, num_groups, WorkgroupSize, num_teams, thread_limit, 2122 group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count, 2123 vgpr_spill_count, loop_tripcount, KernelInfo->Name); 2124 } 2125 2126 // Run on the device. 2127 { 2128 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id]; 2129 if (!queue) { 2130 return OFFLOAD_FAIL; 2131 } 2132 uint64_t packet_id = acquire_available_packet_id(queue); 2133 2134 const uint32_t mask = queue->size - 1; // size is a power of 2 2135 hsa_kernel_dispatch_packet_t *packet = 2136 (hsa_kernel_dispatch_packet_t *)queue->base_address + 2137 (packet_id & mask); 2138 2139 // packet->header is written last 2140 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS; 2141 packet->workgroup_size_x = WorkgroupSize; 2142 packet->workgroup_size_y = 1; 2143 packet->workgroup_size_z = 1; 2144 packet->reserved0 = 0; 2145 packet->grid_size_x = GridSize; 2146 packet->grid_size_y = 1; 2147 packet->grid_size_z = 1; 2148 packet->private_segment_size = KernelInfoEntry.private_segment_size; 2149 packet->group_segment_size = KernelInfoEntry.group_segment_size; 2150 packet->kernel_object = KernelInfoEntry.kernel_object; 2151 packet->kernarg_address = 0; // use the block allocator 2152 packet->reserved2 = 0; // atmi writes id_ here 2153 packet->completion_signal = {0}; // may want a pool of signals 2154 2155 KernelArgPool *ArgPool = nullptr; 2156 { 2157 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name)); 2158 if (it != KernelArgPoolMap.end()) { 2159 ArgPool = (it->second).get(); 2160 } 2161 } 2162 if (!ArgPool) { 2163 DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name, 2164 device_id); 2165 } 2166 { 2167 void *kernarg = nullptr; 2168 if (ArgPool) { 2169 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *))); 2170 kernarg = ArgPool->allocate(arg_num); 2171 } 2172 if (!kernarg) { 2173 DP("Allocate kernarg failed\n"); 2174 return OFFLOAD_FAIL; 2175 } 2176 2177 // Copy explicit arguments 2178 for (int i = 0; i < arg_num; i++) { 2179 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *)); 2180 } 2181 2182 // Initialize implicit arguments. ATMI seems to leave most fields 2183 // uninitialized 2184 atmi_implicit_args_t *impl_args = 2185 reinterpret_cast<atmi_implicit_args_t *>( 2186 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size); 2187 memset(impl_args, 0, 2188 sizeof(atmi_implicit_args_t)); // may not be necessary 2189 impl_args->offset_x = 0; 2190 impl_args->offset_y = 0; 2191 impl_args->offset_z = 0; 2192 2193 // assign a hostcall buffer for the selected Q 2194 if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) { 2195 // hostrpc_assign_buffer is not thread safe, and this function is 2196 // under a multiple reader lock, not a writer lock. 2197 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER; 2198 pthread_mutex_lock(&hostcall_init_lock); 2199 impl_args->hostcall_ptr = hostrpc_assign_buffer( 2200 DeviceInfo.HSAAgents[device_id], queue, device_id); 2201 pthread_mutex_unlock(&hostcall_init_lock); 2202 if (!impl_args->hostcall_ptr) { 2203 DP("hostrpc_assign_buffer failed, gpu would dereference null and " 2204 "error\n"); 2205 return OFFLOAD_FAIL; 2206 } 2207 } 2208 2209 packet->kernarg_address = kernarg; 2210 } 2211 2212 { 2213 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop(); 2214 if (s.handle == 0) { 2215 DP("Failed to get signal instance\n"); 2216 return OFFLOAD_FAIL; 2217 } 2218 packet->completion_signal = s; 2219 hsa_signal_store_relaxed(packet->completion_signal, 1); 2220 } 2221 2222 core::packet_store_release(reinterpret_cast<uint32_t *>(packet), 2223 core::create_header(), packet->setup); 2224 2225 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id); 2226 2227 while (hsa_signal_wait_scacquire(packet->completion_signal, 2228 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX, 2229 HSA_WAIT_STATE_BLOCKED) != 0) 2230 ; 2231 2232 assert(ArgPool); 2233 ArgPool->deallocate(packet->kernarg_address); 2234 DeviceInfo.FreeSignalPool.push(packet->completion_signal); 2235 } 2236 2237 DP("Kernel completed\n"); 2238 return OFFLOAD_SUCCESS; 2239 } 2240 2241 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr, 2242 void **tgt_args, ptrdiff_t *tgt_offsets, 2243 int32_t arg_num) { 2244 // use one team and one thread 2245 // fix thread num 2246 int32_t team_num = 1; 2247 int32_t thread_limit = 0; // use default 2248 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2249 tgt_offsets, arg_num, team_num, 2250 thread_limit, 0); 2251 } 2252 2253 int32_t __tgt_rtl_run_target_region_async(int32_t device_id, 2254 void *tgt_entry_ptr, void **tgt_args, 2255 ptrdiff_t *tgt_offsets, 2256 int32_t arg_num, 2257 __tgt_async_info *AsyncInfo) { 2258 assert(AsyncInfo && "AsyncInfo is nullptr"); 2259 initAsyncInfo(AsyncInfo); 2260 2261 // use one team and one thread 2262 // fix thread num 2263 int32_t team_num = 1; 2264 int32_t thread_limit = 0; // use default 2265 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args, 2266 tgt_offsets, arg_num, team_num, 2267 thread_limit, 0); 2268 } 2269 2270 int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) { 2271 assert(AsyncInfo && "AsyncInfo is nullptr"); 2272 2273 // Cuda asserts that AsyncInfo->Queue is non-null, but this invariant 2274 // is not ensured by devices.cpp for amdgcn 2275 // assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr"); 2276 if (AsyncInfo->Queue) { 2277 finiAsyncInfo(AsyncInfo); 2278 } 2279 return OFFLOAD_SUCCESS; 2280 } 2281 2282 namespace core { 2283 hsa_status_t allow_access_to_all_gpu_agents(void *ptr) { 2284 return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(), 2285 &DeviceInfo.HSAAgents[0], NULL, ptr); 2286 } 2287 2288 } // namespace core 2289