1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "TestDialect.h"
10 #include "mlir/Dialect/MemRef/IR/MemRef.h"
11 #include "mlir/Dialect/StandardOps/IR/Ops.h"
12 #include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
13 #include "mlir/IR/Matchers.h"
14 #include "mlir/Pass/Pass.h"
15 #include "mlir/Transforms/DialectConversion.h"
16 #include "mlir/Transforms/FoldUtils.h"
17 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
18 
19 using namespace mlir;
20 using namespace mlir::test;
21 
22 // Native function for testing NativeCodeCall
23 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
24   return choice.getValue() ? input1 : input2;
25 }
26 
27 static void createOpI(PatternRewriter &rewriter, Location loc, Value input) {
28   rewriter.create<OpI>(loc, input);
29 }
30 
31 static void handleNoResultOp(PatternRewriter &rewriter,
32                              OpSymbolBindingNoResult op) {
33   // Turn the no result op to a one-result op.
34   rewriter.create<OpSymbolBindingB>(op.getLoc(), op.operand().getType(),
35                                     op.operand());
36 }
37 
38 static bool getFirstI32Result(Operation *op, Value &value) {
39   if (!Type(op->getResult(0).getType()).isSignlessInteger(32))
40     return false;
41   value = op->getResult(0);
42   return true;
43 }
44 
45 static Value bindNativeCodeCallResult(Value value) { return value; }
46 
47 // Test that natives calls are only called once during rewrites.
48 // OpM_Test will return Pi, increased by 1 for each subsequent calls.
49 // This let us check the number of times OpM_Test was called by inspecting
50 // the returned value in the MLIR output.
51 static int64_t opMIncreasingValue = 314159265;
52 static Attribute OpMTest(PatternRewriter &rewriter, Value val) {
53   int64_t i = opMIncreasingValue++;
54   return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i);
55 }
56 
57 namespace {
58 #include "TestPatterns.inc"
59 } // end anonymous namespace
60 
61 //===----------------------------------------------------------------------===//
62 // Canonicalizer Driver.
63 //===----------------------------------------------------------------------===//
64 
65 namespace {
66 struct FoldingPattern : public RewritePattern {
67 public:
68   FoldingPattern(MLIRContext *context)
69       : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(),
70                        /*benefit=*/1, context) {}
71 
72   LogicalResult matchAndRewrite(Operation *op,
73                                 PatternRewriter &rewriter) const override {
74     // Exercise OperationFolder API for a single-result operation that is folded
75     // upon construction. The operation being created through the folder has an
76     // in-place folder, and it should be still present in the output.
77     // Furthermore, the folder should not crash when attempting to recover the
78     // (unchanged) operation result.
79     OperationFolder folder(op->getContext());
80     Value result = folder.create<TestOpInPlaceFold>(
81         rewriter, op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0),
82         rewriter.getI32IntegerAttr(0));
83     assert(result);
84     rewriter.replaceOp(op, result);
85     return success();
86   }
87 };
88 
89 struct TestPatternDriver : public PassWrapper<TestPatternDriver, FunctionPass> {
90   void runOnFunction() override {
91     mlir::RewritePatternSet patterns(&getContext());
92     populateWithGenerated(patterns);
93 
94     // Verify named pattern is generated with expected name.
95     patterns.add<FoldingPattern, TestNamedPatternRule>(&getContext());
96 
97     (void)applyPatternsAndFoldGreedily(getFunction(), std::move(patterns));
98   }
99 };
100 } // end anonymous namespace
101 
102 //===----------------------------------------------------------------------===//
103 // ReturnType Driver.
104 //===----------------------------------------------------------------------===//
105 
106 namespace {
107 // Generate ops for each instance where the type can be successfully inferred.
108 template <typename OpTy>
109 static void invokeCreateWithInferredReturnType(Operation *op) {
110   auto *context = op->getContext();
111   auto fop = op->getParentOfType<FuncOp>();
112   auto location = UnknownLoc::get(context);
113   OpBuilder b(op);
114   b.setInsertionPointAfter(op);
115 
116   // Use permutations of 2 args as operands.
117   assert(fop.getNumArguments() >= 2);
118   for (int i = 0, e = fop.getNumArguments(); i < e; ++i) {
119     for (int j = 0; j < e; ++j) {
120       std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}};
121       SmallVector<Type, 2> inferredReturnTypes;
122       if (succeeded(OpTy::inferReturnTypes(
123               context, llvm::None, values, op->getAttrDictionary(),
124               op->getRegions(), inferredReturnTypes))) {
125         OperationState state(location, OpTy::getOperationName());
126         // TODO: Expand to regions.
127         OpTy::build(b, state, values, op->getAttrs());
128         (void)b.createOperation(state);
129       }
130     }
131   }
132 }
133 
134 static void reifyReturnShape(Operation *op) {
135   OpBuilder b(op);
136 
137   // Use permutations of 2 args as operands.
138   auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op);
139   SmallVector<Value, 2> shapes;
140   if (failed(shapedOp.reifyReturnTypeShapes(b, op->getOperands(), shapes)) ||
141       !llvm::hasSingleElement(shapes))
142     return;
143   for (auto it : llvm::enumerate(shapes)) {
144     op->emitRemark() << "value " << it.index() << ": "
145                      << it.value().getDefiningOp();
146   }
147 }
148 
149 struct TestReturnTypeDriver
150     : public PassWrapper<TestReturnTypeDriver, FunctionPass> {
151   void getDependentDialects(DialectRegistry &registry) const override {
152     registry.insert<memref::MemRefDialect>();
153   }
154 
155   void runOnFunction() override {
156     if (getFunction().getName() == "testCreateFunctions") {
157       std::vector<Operation *> ops;
158       // Collect ops to avoid triggering on inserted ops.
159       for (auto &op : getFunction().getBody().front())
160         ops.push_back(&op);
161       // Generate test patterns for each, but skip terminator.
162       for (auto *op : llvm::makeArrayRef(ops).drop_back()) {
163         // Test create method of each of the Op classes below. The resultant
164         // output would be in reverse order underneath `op` from which
165         // the attributes and regions are used.
166         invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op);
167         invokeCreateWithInferredReturnType<
168             OpWithShapedTypeInferTypeInterfaceOp>(op);
169       };
170       return;
171     }
172     if (getFunction().getName() == "testReifyFunctions") {
173       std::vector<Operation *> ops;
174       // Collect ops to avoid triggering on inserted ops.
175       for (auto &op : getFunction().getBody().front())
176         if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op))
177           ops.push_back(&op);
178       // Generate test patterns for each, but skip terminator.
179       for (auto *op : ops)
180         reifyReturnShape(op);
181     }
182   }
183 };
184 } // end anonymous namespace
185 
186 namespace {
187 struct TestDerivedAttributeDriver
188     : public PassWrapper<TestDerivedAttributeDriver, FunctionPass> {
189   void runOnFunction() override;
190 };
191 } // end anonymous namespace
192 
193 void TestDerivedAttributeDriver::runOnFunction() {
194   getFunction().walk([](DerivedAttributeOpInterface dOp) {
195     auto dAttr = dOp.materializeDerivedAttributes();
196     if (!dAttr)
197       return;
198     for (auto d : dAttr)
199       dOp.emitRemark() << d.first << " = " << d.second;
200   });
201 }
202 
203 //===----------------------------------------------------------------------===//
204 // Legalization Driver.
205 //===----------------------------------------------------------------------===//
206 
207 namespace {
208 //===----------------------------------------------------------------------===//
209 // Region-Block Rewrite Testing
210 
211 /// This pattern is a simple pattern that inlines the first region of a given
212 /// operation into the parent region.
213 struct TestRegionRewriteBlockMovement : public ConversionPattern {
214   TestRegionRewriteBlockMovement(MLIRContext *ctx)
215       : ConversionPattern("test.region", 1, ctx) {}
216 
217   LogicalResult
218   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
219                   ConversionPatternRewriter &rewriter) const final {
220     // Inline this region into the parent region.
221     auto &parentRegion = *op->getParentRegion();
222     auto &opRegion = op->getRegion(0);
223     if (op->getAttr("legalizer.should_clone"))
224       rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end());
225     else
226       rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end());
227 
228     if (op->getAttr("legalizer.erase_old_blocks")) {
229       while (!opRegion.empty())
230         rewriter.eraseBlock(&opRegion.front());
231     }
232 
233     // Drop this operation.
234     rewriter.eraseOp(op);
235     return success();
236   }
237 };
238 /// This pattern is a simple pattern that generates a region containing an
239 /// illegal operation.
240 struct TestRegionRewriteUndo : public RewritePattern {
241   TestRegionRewriteUndo(MLIRContext *ctx)
242       : RewritePattern("test.region_builder", 1, ctx) {}
243 
244   LogicalResult matchAndRewrite(Operation *op,
245                                 PatternRewriter &rewriter) const final {
246     // Create the region operation with an entry block containing arguments.
247     OperationState newRegion(op->getLoc(), "test.region");
248     newRegion.addRegion();
249     auto *regionOp = rewriter.createOperation(newRegion);
250     auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
251     entryBlock->addArgument(rewriter.getIntegerType(64));
252 
253     // Add an explicitly illegal operation to ensure the conversion fails.
254     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
255     rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());
256 
257     // Drop this operation.
258     rewriter.eraseOp(op);
259     return success();
260   }
261 };
262 /// A simple pattern that creates a block at the end of the parent region of the
263 /// matched operation.
264 struct TestCreateBlock : public RewritePattern {
265   TestCreateBlock(MLIRContext *ctx)
266       : RewritePattern("test.create_block", /*benefit=*/1, ctx) {}
267 
268   LogicalResult matchAndRewrite(Operation *op,
269                                 PatternRewriter &rewriter) const final {
270     Region &region = *op->getParentRegion();
271     Type i32Type = rewriter.getIntegerType(32);
272     rewriter.createBlock(&region, region.end(), {i32Type, i32Type});
273     rewriter.create<TerminatorOp>(op->getLoc());
274     rewriter.replaceOp(op, {});
275     return success();
276   }
277 };
278 
279 /// A simple pattern that creates a block containing an invalid operation in
280 /// order to trigger the block creation undo mechanism.
281 struct TestCreateIllegalBlock : public RewritePattern {
282   TestCreateIllegalBlock(MLIRContext *ctx)
283       : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {}
284 
285   LogicalResult matchAndRewrite(Operation *op,
286                                 PatternRewriter &rewriter) const final {
287     Region &region = *op->getParentRegion();
288     Type i32Type = rewriter.getIntegerType(32);
289     rewriter.createBlock(&region, region.end(), {i32Type, i32Type});
290     // Create an illegal op to ensure the conversion fails.
291     rewriter.create<ILLegalOpF>(op->getLoc(), i32Type);
292     rewriter.create<TerminatorOp>(op->getLoc());
293     rewriter.replaceOp(op, {});
294     return success();
295   }
296 };
297 
298 /// A simple pattern that tests the undo mechanism when replacing the uses of a
299 /// block argument.
300 struct TestUndoBlockArgReplace : public ConversionPattern {
301   TestUndoBlockArgReplace(MLIRContext *ctx)
302       : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {}
303 
304   LogicalResult
305   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
306                   ConversionPatternRewriter &rewriter) const final {
307     auto illegalOp =
308         rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
309     rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0),
310                                         illegalOp);
311     rewriter.updateRootInPlace(op, [] {});
312     return success();
313   }
314 };
315 
316 /// A rewrite pattern that tests the undo mechanism when erasing a block.
317 struct TestUndoBlockErase : public ConversionPattern {
318   TestUndoBlockErase(MLIRContext *ctx)
319       : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {}
320 
321   LogicalResult
322   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
323                   ConversionPatternRewriter &rewriter) const final {
324     Block *secondBlock = &*std::next(op->getRegion(0).begin());
325     rewriter.setInsertionPointToStart(secondBlock);
326     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
327     rewriter.eraseBlock(secondBlock);
328     rewriter.updateRootInPlace(op, [] {});
329     return success();
330   }
331 };
332 
333 //===----------------------------------------------------------------------===//
334 // Type-Conversion Rewrite Testing
335 
336 /// This patterns erases a region operation that has had a type conversion.
337 struct TestDropOpSignatureConversion : public ConversionPattern {
338   TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
339       : ConversionPattern(converter, "test.drop_region_op", 1, ctx) {}
340   LogicalResult
341   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
342                   ConversionPatternRewriter &rewriter) const override {
343     Region &region = op->getRegion(0);
344     Block *entry = &region.front();
345 
346     // Convert the original entry arguments.
347     TypeConverter &converter = *getTypeConverter();
348     TypeConverter::SignatureConversion result(entry->getNumArguments());
349     if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(),
350                                               result)) ||
351         failed(rewriter.convertRegionTypes(&region, converter, &result)))
352       return failure();
353 
354     // Convert the region signature and just drop the operation.
355     rewriter.eraseOp(op);
356     return success();
357   }
358 };
359 /// This pattern simply updates the operands of the given operation.
360 struct TestPassthroughInvalidOp : public ConversionPattern {
361   TestPassthroughInvalidOp(MLIRContext *ctx)
362       : ConversionPattern("test.invalid", 1, ctx) {}
363   LogicalResult
364   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
365                   ConversionPatternRewriter &rewriter) const final {
366     rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands,
367                                              llvm::None);
368     return success();
369   }
370 };
371 /// This pattern handles the case of a split return value.
372 struct TestSplitReturnType : public ConversionPattern {
373   TestSplitReturnType(MLIRContext *ctx)
374       : ConversionPattern("test.return", 1, ctx) {}
375   LogicalResult
376   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
377                   ConversionPatternRewriter &rewriter) const final {
378     // Check for a return of F32.
379     if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
380       return failure();
381 
382     // Check if the first operation is a cast operation, if it is we use the
383     // results directly.
384     auto *defOp = operands[0].getDefiningOp();
385     if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) {
386       rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
387       return success();
388     }
389 
390     // Otherwise, fail to match.
391     return failure();
392   }
393 };
394 
395 //===----------------------------------------------------------------------===//
396 // Multi-Level Type-Conversion Rewrite Testing
397 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
398   TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
399       : ConversionPattern("test.type_producer", 1, ctx) {}
400   LogicalResult
401   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
402                   ConversionPatternRewriter &rewriter) const final {
403     // If the type is I32, change the type to F32.
404     if (!Type(*op->result_type_begin()).isSignlessInteger(32))
405       return failure();
406     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
407     return success();
408   }
409 };
410 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
411   TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
412       : ConversionPattern("test.type_producer", 1, ctx) {}
413   LogicalResult
414   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
415                   ConversionPatternRewriter &rewriter) const final {
416     // If the type is F32, change the type to F64.
417     if (!Type(*op->result_type_begin()).isF32())
418       return rewriter.notifyMatchFailure(op, "expected single f32 operand");
419     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
420     return success();
421   }
422 };
423 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
424   TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
425       : ConversionPattern("test.type_producer", 10, ctx) {}
426   LogicalResult
427   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
428                   ConversionPatternRewriter &rewriter) const final {
429     // Always convert to B16, even though it is not a legal type. This tests
430     // that values are unmapped correctly.
431     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
432     return success();
433   }
434 };
435 struct TestUpdateConsumerType : public ConversionPattern {
436   TestUpdateConsumerType(MLIRContext *ctx)
437       : ConversionPattern("test.type_consumer", 1, ctx) {}
438   LogicalResult
439   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
440                   ConversionPatternRewriter &rewriter) const final {
441     // Verify that the incoming operand has been successfully remapped to F64.
442     if (!operands[0].getType().isF64())
443       return failure();
444     rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
445     return success();
446   }
447 };
448 
449 //===----------------------------------------------------------------------===//
450 // Non-Root Replacement Rewrite Testing
451 /// This pattern generates an invalid operation, but replaces it before the
452 /// pattern is finished. This checks that we don't need to legalize the
453 /// temporary op.
454 struct TestNonRootReplacement : public RewritePattern {
455   TestNonRootReplacement(MLIRContext *ctx)
456       : RewritePattern("test.replace_non_root", 1, ctx) {}
457 
458   LogicalResult matchAndRewrite(Operation *op,
459                                 PatternRewriter &rewriter) const final {
460     auto resultType = *op->result_type_begin();
461     auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
462     auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
463 
464     rewriter.replaceOp(illegalOp, {legalOp});
465     rewriter.replaceOp(op, {illegalOp});
466     return success();
467   }
468 };
469 
470 //===----------------------------------------------------------------------===//
471 // Recursive Rewrite Testing
472 /// This pattern is applied to the same operation multiple times, but has a
473 /// bounded recursion.
474 struct TestBoundedRecursiveRewrite
475     : public OpRewritePattern<TestRecursiveRewriteOp> {
476   using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern;
477 
478   void initialize() {
479     // The conversion target handles bounding the recursion of this pattern.
480     setHasBoundedRewriteRecursion();
481   }
482 
483   LogicalResult matchAndRewrite(TestRecursiveRewriteOp op,
484                                 PatternRewriter &rewriter) const final {
485     // Decrement the depth of the op in-place.
486     rewriter.updateRootInPlace(op, [&] {
487       op->setAttr("depth", rewriter.getI64IntegerAttr(op.depth() - 1));
488     });
489     return success();
490   }
491 };
492 
493 struct TestNestedOpCreationUndoRewrite
494     : public OpRewritePattern<IllegalOpWithRegionAnchor> {
495   using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern;
496 
497   LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op,
498                                 PatternRewriter &rewriter) const final {
499     // rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
500     rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
501     return success();
502   };
503 };
504 
505 // This pattern matches `test.blackhole` and delete this op and its producer.
506 struct TestReplaceEraseOp : public OpRewritePattern<BlackHoleOp> {
507   using OpRewritePattern<BlackHoleOp>::OpRewritePattern;
508 
509   LogicalResult matchAndRewrite(BlackHoleOp op,
510                                 PatternRewriter &rewriter) const final {
511     Operation *producer = op.getOperand().getDefiningOp();
512     // Always erase the user before the producer, the framework should handle
513     // this correctly.
514     rewriter.eraseOp(op);
515     rewriter.eraseOp(producer);
516     return success();
517   };
518 };
519 } // namespace
520 
521 namespace {
522 struct TestTypeConverter : public TypeConverter {
523   using TypeConverter::TypeConverter;
524   TestTypeConverter() {
525     addConversion(convertType);
526     addArgumentMaterialization(materializeCast);
527     addSourceMaterialization(materializeCast);
528 
529     /// Materialize the cast for one-to-one conversion from i64 to f64.
530     const auto materializeOneToOneCast =
531         [](OpBuilder &builder, IntegerType resultType, ValueRange inputs,
532            Location loc) -> Optional<Value> {
533       if (resultType.getWidth() == 42 && inputs.size() == 1)
534         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
535       return llvm::None;
536     };
537     addArgumentMaterialization(materializeOneToOneCast);
538   }
539 
540   static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
541     // Drop I16 types.
542     if (t.isSignlessInteger(16))
543       return success();
544 
545     // Convert I64 to F64.
546     if (t.isSignlessInteger(64)) {
547       results.push_back(FloatType::getF64(t.getContext()));
548       return success();
549     }
550 
551     // Convert I42 to I43.
552     if (t.isInteger(42)) {
553       results.push_back(IntegerType::get(t.getContext(), 43));
554       return success();
555     }
556 
557     // Split F32 into F16,F16.
558     if (t.isF32()) {
559       results.assign(2, FloatType::getF16(t.getContext()));
560       return success();
561     }
562 
563     // Otherwise, convert the type directly.
564     results.push_back(t);
565     return success();
566   }
567 
568   /// Hook for materializing a conversion. This is necessary because we generate
569   /// 1->N type mappings.
570   static Optional<Value> materializeCast(OpBuilder &builder, Type resultType,
571                                          ValueRange inputs, Location loc) {
572     if (inputs.size() == 1)
573       return inputs[0];
574     return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
575   }
576 };
577 
578 struct TestLegalizePatternDriver
579     : public PassWrapper<TestLegalizePatternDriver, OperationPass<ModuleOp>> {
580   /// The mode of conversion to use with the driver.
581   enum class ConversionMode { Analysis, Full, Partial };
582 
583   TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
584 
585   void runOnOperation() override {
586     TestTypeConverter converter;
587     mlir::RewritePatternSet patterns(&getContext());
588     populateWithGenerated(patterns);
589     patterns
590         .add<TestRegionRewriteBlockMovement, TestRegionRewriteUndo,
591              TestCreateBlock, TestCreateIllegalBlock, TestUndoBlockArgReplace,
592              TestUndoBlockErase, TestPassthroughInvalidOp, TestSplitReturnType,
593              TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
594              TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
595              TestNonRootReplacement, TestBoundedRecursiveRewrite,
596              TestNestedOpCreationUndoRewrite, TestReplaceEraseOp>(
597             &getContext());
598     patterns.add<TestDropOpSignatureConversion>(&getContext(), converter);
599     mlir::populateFuncOpTypeConversionPattern(patterns, converter);
600     mlir::populateCallOpTypeConversionPattern(patterns, converter);
601 
602     // Define the conversion target used for the test.
603     ConversionTarget target(getContext());
604     target.addLegalOp<ModuleOp>();
605     target.addLegalOp<LegalOpA, LegalOpB, TestCastOp, TestValidOp,
606                       TerminatorOp>();
607     target
608         .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
609     target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
610       // Don't allow F32 operands.
611       return llvm::none_of(op.getOperandTypes(),
612                            [](Type type) { return type.isF32(); });
613     });
614     target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
615       return converter.isSignatureLegal(op.getType()) &&
616              converter.isLegal(&op.getBody());
617     });
618 
619     // Expect the type_producer/type_consumer operations to only operate on f64.
620     target.addDynamicallyLegalOp<TestTypeProducerOp>(
621         [](TestTypeProducerOp op) { return op.getType().isF64(); });
622     target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
623       return op.getOperand().getType().isF64();
624     });
625 
626     // Check support for marking certain operations as recursively legal.
627     target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) {
628       return static_cast<bool>(
629           op->getAttrOfType<UnitAttr>("test.recursively_legal"));
630     });
631 
632     // Mark the bound recursion operation as dynamically legal.
633     target.addDynamicallyLegalOp<TestRecursiveRewriteOp>(
634         [](TestRecursiveRewriteOp op) { return op.depth() == 0; });
635 
636     // Handle a partial conversion.
637     if (mode == ConversionMode::Partial) {
638       DenseSet<Operation *> unlegalizedOps;
639       (void)applyPartialConversion(getOperation(), target, std::move(patterns),
640                                    &unlegalizedOps);
641       // Emit remarks for each legalizable operation.
642       for (auto *op : unlegalizedOps)
643         op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
644       return;
645     }
646 
647     // Handle a full conversion.
648     if (mode == ConversionMode::Full) {
649       // Check support for marking unknown operations as dynamically legal.
650       target.markUnknownOpDynamicallyLegal([](Operation *op) {
651         return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal");
652       });
653 
654       (void)applyFullConversion(getOperation(), target, std::move(patterns));
655       return;
656     }
657 
658     // Otherwise, handle an analysis conversion.
659     assert(mode == ConversionMode::Analysis);
660 
661     // Analyze the convertible operations.
662     DenseSet<Operation *> legalizedOps;
663     if (failed(applyAnalysisConversion(getOperation(), target,
664                                        std::move(patterns), legalizedOps)))
665       return signalPassFailure();
666 
667     // Emit remarks for each legalizable operation.
668     for (auto *op : legalizedOps)
669       op->emitRemark() << "op '" << op->getName() << "' is legalizable";
670   }
671 
672   /// The mode of conversion to use.
673   ConversionMode mode;
674 };
675 } // end anonymous namespace
676 
677 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
678     legalizerConversionMode(
679         "test-legalize-mode",
680         llvm::cl::desc("The legalization mode to use with the test driver"),
681         llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
682         llvm::cl::values(
683             clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
684                        "analysis", "Perform an analysis conversion"),
685             clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
686                        "Perform a full conversion"),
687             clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
688                        "partial", "Perform a partial conversion")));
689 
690 //===----------------------------------------------------------------------===//
691 // ConversionPatternRewriter::getRemappedValue testing. This method is used
692 // to get the remapped value of an original value that was replaced using
693 // ConversionPatternRewriter.
694 namespace {
695 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
696 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
697 /// operand twice.
698 ///
699 /// Example:
700 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0)
701 /// is replaced with:
702 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
703 struct OneVResOneVOperandOp1Converter
704     : public OpConversionPattern<OneVResOneVOperandOp1> {
705   using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
706 
707   LogicalResult
708   matchAndRewrite(OneVResOneVOperandOp1 op, ArrayRef<Value> operands,
709                   ConversionPatternRewriter &rewriter) const override {
710     auto origOps = op.getOperands();
711     assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
712            "One operand expected");
713     Value origOp = *origOps.begin();
714     SmallVector<Value, 2> remappedOperands;
715     // Replicate the remapped original operand twice. Note that we don't used
716     // the remapped 'operand' since the goal is testing 'getRemappedValue'.
717     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
718     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
719 
720     rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(),
721                                                        remappedOperands);
722     return success();
723   }
724 };
725 
726 struct TestRemappedValue
727     : public mlir::PassWrapper<TestRemappedValue, FunctionPass> {
728   void runOnFunction() override {
729     mlir::RewritePatternSet patterns(&getContext());
730     patterns.add<OneVResOneVOperandOp1Converter>(&getContext());
731 
732     mlir::ConversionTarget target(getContext());
733     target.addLegalOp<ModuleOp, FuncOp, TestReturnOp>();
734     // We make OneVResOneVOperandOp1 legal only when it has more that one
735     // operand. This will trigger the conversion that will replace one-operand
736     // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
737     target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
738         [](Operation *op) -> bool {
739           return std::distance(op->operand_begin(), op->operand_end()) > 1;
740         });
741 
742     if (failed(mlir::applyFullConversion(getFunction(), target,
743                                          std::move(patterns)))) {
744       signalPassFailure();
745     }
746   }
747 };
748 } // end anonymous namespace
749 
750 //===----------------------------------------------------------------------===//
751 // Test patterns without a specific root operation kind
752 //===----------------------------------------------------------------------===//
753 
754 namespace {
755 /// This pattern matches and removes any operation in the test dialect.
756 struct RemoveTestDialectOps : public RewritePattern {
757   RemoveTestDialectOps(MLIRContext *context)
758       : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
759 
760   LogicalResult matchAndRewrite(Operation *op,
761                                 PatternRewriter &rewriter) const override {
762     if (!isa<TestDialect>(op->getDialect()))
763       return failure();
764     rewriter.eraseOp(op);
765     return success();
766   }
767 };
768 
769 struct TestUnknownRootOpDriver
770     : public mlir::PassWrapper<TestUnknownRootOpDriver, FunctionPass> {
771   void runOnFunction() override {
772     mlir::RewritePatternSet patterns(&getContext());
773     patterns.add<RemoveTestDialectOps>(&getContext());
774 
775     mlir::ConversionTarget target(getContext());
776     target.addIllegalDialect<TestDialect>();
777     if (failed(
778             applyPartialConversion(getFunction(), target, std::move(patterns))))
779       signalPassFailure();
780   }
781 };
782 } // end anonymous namespace
783 
784 //===----------------------------------------------------------------------===//
785 // Test type conversions
786 //===----------------------------------------------------------------------===//
787 
788 namespace {
789 struct TestTypeConversionProducer
790     : public OpConversionPattern<TestTypeProducerOp> {
791   using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern;
792   LogicalResult
793   matchAndRewrite(TestTypeProducerOp op, ArrayRef<Value> operands,
794                   ConversionPatternRewriter &rewriter) const final {
795     Type resultType = op.getType();
796     if (resultType.isa<FloatType>())
797       resultType = rewriter.getF64Type();
798     else if (resultType.isInteger(16))
799       resultType = rewriter.getIntegerType(64);
800     else
801       return failure();
802 
803     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType);
804     return success();
805   }
806 };
807 
808 /// Call signature conversion and then fail the rewrite to trigger the undo
809 /// mechanism.
810 struct TestSignatureConversionUndo
811     : public OpConversionPattern<TestSignatureConversionUndoOp> {
812   using OpConversionPattern<TestSignatureConversionUndoOp>::OpConversionPattern;
813 
814   LogicalResult
815   matchAndRewrite(TestSignatureConversionUndoOp op, ArrayRef<Value> operands,
816                   ConversionPatternRewriter &rewriter) const final {
817     (void)rewriter.convertRegionTypes(&op->getRegion(0), *getTypeConverter());
818     return failure();
819   }
820 };
821 
822 /// Just forward the operands to the root op. This is essentially a no-op
823 /// pattern that is used to trigger target materialization.
824 struct TestTypeConsumerForward
825     : public OpConversionPattern<TestTypeConsumerOp> {
826   using OpConversionPattern<TestTypeConsumerOp>::OpConversionPattern;
827 
828   LogicalResult
829   matchAndRewrite(TestTypeConsumerOp op, ArrayRef<Value> operands,
830                   ConversionPatternRewriter &rewriter) const final {
831     rewriter.updateRootInPlace(op, [&] { op->setOperands(operands); });
832     return success();
833   }
834 };
835 
836 struct TestTypeConversionAnotherProducer
837     : public OpRewritePattern<TestAnotherTypeProducerOp> {
838   using OpRewritePattern<TestAnotherTypeProducerOp>::OpRewritePattern;
839 
840   LogicalResult matchAndRewrite(TestAnotherTypeProducerOp op,
841                                 PatternRewriter &rewriter) const final {
842     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, op.getType());
843     return success();
844   }
845 };
846 
847 struct TestTypeConversionDriver
848     : public PassWrapper<TestTypeConversionDriver, OperationPass<ModuleOp>> {
849   void getDependentDialects(DialectRegistry &registry) const override {
850     registry.insert<TestDialect>();
851   }
852 
853   void runOnOperation() override {
854     // Initialize the type converter.
855     TypeConverter converter;
856 
857     /// Add the legal set of type conversions.
858     converter.addConversion([](Type type) -> Type {
859       // Treat F64 as legal.
860       if (type.isF64())
861         return type;
862       // Allow converting BF16/F16/F32 to F64.
863       if (type.isBF16() || type.isF16() || type.isF32())
864         return FloatType::getF64(type.getContext());
865       // Otherwise, the type is illegal.
866       return nullptr;
867     });
868     converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) {
869       // Drop all integer types.
870       return success();
871     });
872 
873     /// Add the legal set of type materializations.
874     converter.addSourceMaterialization([](OpBuilder &builder, Type resultType,
875                                           ValueRange inputs,
876                                           Location loc) -> Value {
877       // Allow casting from F64 back to F32.
878       if (!resultType.isF16() && inputs.size() == 1 &&
879           inputs[0].getType().isF64())
880         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
881       // Allow producing an i32 or i64 from nothing.
882       if ((resultType.isInteger(32) || resultType.isInteger(64)) &&
883           inputs.empty())
884         return builder.create<TestTypeProducerOp>(loc, resultType);
885       // Allow producing an i64 from an integer.
886       if (resultType.isa<IntegerType>() && inputs.size() == 1 &&
887           inputs[0].getType().isa<IntegerType>())
888         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
889       // Otherwise, fail.
890       return nullptr;
891     });
892 
893     // Initialize the conversion target.
894     mlir::ConversionTarget target(getContext());
895     target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) {
896       return op.getType().isF64() || op.getType().isInteger(64);
897     });
898     target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
899       return converter.isSignatureLegal(op.getType()) &&
900              converter.isLegal(&op.getBody());
901     });
902     target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) {
903       // Allow casts from F64 to F32.
904       return (*op.operand_type_begin()).isF64() && op.getType().isF32();
905     });
906 
907     // Initialize the set of rewrite patterns.
908     RewritePatternSet patterns(&getContext());
909     patterns.add<TestTypeConsumerForward, TestTypeConversionProducer,
910                  TestSignatureConversionUndo>(converter, &getContext());
911     patterns.add<TestTypeConversionAnotherProducer>(&getContext());
912     mlir::populateFuncOpTypeConversionPattern(patterns, converter);
913 
914     if (failed(applyPartialConversion(getOperation(), target,
915                                       std::move(patterns))))
916       signalPassFailure();
917   }
918 };
919 } // end anonymous namespace
920 
921 //===----------------------------------------------------------------------===//
922 // Test Block Merging
923 //===----------------------------------------------------------------------===//
924 
925 namespace {
926 /// A rewriter pattern that tests that blocks can be merged.
927 struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> {
928   using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern;
929 
930   LogicalResult
931   matchAndRewrite(TestMergeBlocksOp op, ArrayRef<Value> operands,
932                   ConversionPatternRewriter &rewriter) const final {
933     Block &firstBlock = op.body().front();
934     Operation *branchOp = firstBlock.getTerminator();
935     Block *secondBlock = &*(std::next(op.body().begin()));
936     auto succOperands = branchOp->getOperands();
937     SmallVector<Value, 2> replacements(succOperands);
938     rewriter.eraseOp(branchOp);
939     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
940     rewriter.updateRootInPlace(op, [] {});
941     return success();
942   }
943 };
944 
945 /// A rewrite pattern to tests the undo mechanism of blocks being merged.
946 struct TestUndoBlocksMerge : public ConversionPattern {
947   TestUndoBlocksMerge(MLIRContext *ctx)
948       : ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {}
949   LogicalResult
950   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
951                   ConversionPatternRewriter &rewriter) const final {
952     Block &firstBlock = op->getRegion(0).front();
953     Operation *branchOp = firstBlock.getTerminator();
954     Block *secondBlock = &*(std::next(op->getRegion(0).begin()));
955     rewriter.setInsertionPointToStart(secondBlock);
956     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
957     auto succOperands = branchOp->getOperands();
958     SmallVector<Value, 2> replacements(succOperands);
959     rewriter.eraseOp(branchOp);
960     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
961     rewriter.updateRootInPlace(op, [] {});
962     return success();
963   }
964 };
965 
966 /// A rewrite mechanism to inline the body of the op into its parent, when both
967 /// ops can have a single block.
968 struct TestMergeSingleBlockOps
969     : public OpConversionPattern<SingleBlockImplicitTerminatorOp> {
970   using OpConversionPattern<
971       SingleBlockImplicitTerminatorOp>::OpConversionPattern;
972 
973   LogicalResult
974   matchAndRewrite(SingleBlockImplicitTerminatorOp op, ArrayRef<Value> operands,
975                   ConversionPatternRewriter &rewriter) const final {
976     SingleBlockImplicitTerminatorOp parentOp =
977         op->getParentOfType<SingleBlockImplicitTerminatorOp>();
978     if (!parentOp)
979       return failure();
980     Block &innerBlock = op.region().front();
981     TerminatorOp innerTerminator =
982         cast<TerminatorOp>(innerBlock.getTerminator());
983     rewriter.mergeBlockBefore(&innerBlock, op);
984     rewriter.eraseOp(innerTerminator);
985     rewriter.eraseOp(op);
986     rewriter.updateRootInPlace(op, [] {});
987     return success();
988   }
989 };
990 
991 struct TestMergeBlocksPatternDriver
992     : public PassWrapper<TestMergeBlocksPatternDriver,
993                          OperationPass<ModuleOp>> {
994   void runOnOperation() override {
995     MLIRContext *context = &getContext();
996     mlir::RewritePatternSet patterns(context);
997     patterns.add<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>(
998         context);
999     ConversionTarget target(*context);
1000     target.addLegalOp<FuncOp, ModuleOp, TerminatorOp, TestBranchOp,
1001                       TestTypeConsumerOp, TestTypeProducerOp, TestReturnOp>();
1002     target.addIllegalOp<ILLegalOpF>();
1003 
1004     /// Expect the op to have a single block after legalization.
1005     target.addDynamicallyLegalOp<TestMergeBlocksOp>(
1006         [&](TestMergeBlocksOp op) -> bool {
1007           return llvm::hasSingleElement(op.body());
1008         });
1009 
1010     /// Only allow `test.br` within test.merge_blocks op.
1011     target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool {
1012       return op->getParentOfType<TestMergeBlocksOp>();
1013     });
1014 
1015     /// Expect that all nested test.SingleBlockImplicitTerminator ops are
1016     /// inlined.
1017     target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>(
1018         [&](SingleBlockImplicitTerminatorOp op) -> bool {
1019           return !op->getParentOfType<SingleBlockImplicitTerminatorOp>();
1020         });
1021 
1022     DenseSet<Operation *> unlegalizedOps;
1023     (void)applyPartialConversion(getOperation(), target, std::move(patterns),
1024                                  &unlegalizedOps);
1025     for (auto *op : unlegalizedOps)
1026       op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
1027   }
1028 };
1029 } // namespace
1030 
1031 //===----------------------------------------------------------------------===//
1032 // Test Selective Replacement
1033 //===----------------------------------------------------------------------===//
1034 
1035 namespace {
1036 /// A rewrite mechanism to inline the body of the op into its parent, when both
1037 /// ops can have a single block.
1038 struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> {
1039   using OpRewritePattern<TestCastOp>::OpRewritePattern;
1040 
1041   LogicalResult matchAndRewrite(TestCastOp op,
1042                                 PatternRewriter &rewriter) const final {
1043     if (op.getNumOperands() != 2)
1044       return failure();
1045     OperandRange operands = op.getOperands();
1046 
1047     // Replace non-terminator uses with the first operand.
1048     rewriter.replaceOpWithIf(op, operands[0], [](OpOperand &operand) {
1049       return operand.getOwner()->hasTrait<OpTrait::IsTerminator>();
1050     });
1051     // Replace everything else with the second operand if the operation isn't
1052     // dead.
1053     rewriter.replaceOp(op, op.getOperand(1));
1054     return success();
1055   }
1056 };
1057 
1058 struct TestSelectiveReplacementPatternDriver
1059     : public PassWrapper<TestSelectiveReplacementPatternDriver,
1060                          OperationPass<>> {
1061   void runOnOperation() override {
1062     MLIRContext *context = &getContext();
1063     mlir::RewritePatternSet patterns(context);
1064     patterns.add<TestSelectiveOpReplacementPattern>(context);
1065     (void)applyPatternsAndFoldGreedily(getOperation()->getRegions(),
1066                                        std::move(patterns));
1067   }
1068 };
1069 } // namespace
1070 
1071 //===----------------------------------------------------------------------===//
1072 // PassRegistration
1073 //===----------------------------------------------------------------------===//
1074 
1075 namespace mlir {
1076 namespace test {
1077 void registerPatternsTestPass() {
1078   PassRegistration<TestReturnTypeDriver>("test-return-type",
1079                                          "Run return type functions");
1080 
1081   PassRegistration<TestDerivedAttributeDriver>("test-derived-attr",
1082                                                "Run test derived attributes");
1083 
1084   PassRegistration<TestPatternDriver>("test-patterns",
1085                                       "Run test dialect patterns");
1086 
1087   PassRegistration<TestLegalizePatternDriver>(
1088       "test-legalize-patterns", "Run test dialect legalization patterns", [] {
1089         return std::make_unique<TestLegalizePatternDriver>(
1090             legalizerConversionMode);
1091       });
1092 
1093   PassRegistration<TestRemappedValue>(
1094       "test-remapped-value",
1095       "Test public remapped value mechanism in ConversionPatternRewriter");
1096 
1097   PassRegistration<TestUnknownRootOpDriver>(
1098       "test-legalize-unknown-root-patterns",
1099       "Test public remapped value mechanism in ConversionPatternRewriter");
1100 
1101   PassRegistration<TestTypeConversionDriver>(
1102       "test-legalize-type-conversion",
1103       "Test various type conversion functionalities in DialectConversion");
1104 
1105   PassRegistration<TestMergeBlocksPatternDriver>{
1106       "test-merge-blocks",
1107       "Test Merging operation in ConversionPatternRewriter"};
1108   PassRegistration<TestSelectiveReplacementPatternDriver>{
1109       "test-pattern-selective-replacement",
1110       "Test selective replacement in the PatternRewriter"};
1111 }
1112 } // namespace test
1113 } // namespace mlir
1114