1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "TestDialect.h" 10 #include "TestTypes.h" 11 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 12 #include "mlir/Dialect/Func/IR/FuncOps.h" 13 #include "mlir/Dialect/Func/Transforms/FuncConversions.h" 14 #include "mlir/Dialect/Tensor/IR/Tensor.h" 15 #include "mlir/IR/Matchers.h" 16 #include "mlir/Pass/Pass.h" 17 #include "mlir/Transforms/DialectConversion.h" 18 #include "mlir/Transforms/FoldUtils.h" 19 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 20 21 using namespace mlir; 22 using namespace test; 23 24 // Native function for testing NativeCodeCall 25 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) { 26 return choice.getValue() ? input1 : input2; 27 } 28 29 static void createOpI(PatternRewriter &rewriter, Location loc, Value input) { 30 rewriter.create<OpI>(loc, input); 31 } 32 33 static void handleNoResultOp(PatternRewriter &rewriter, 34 OpSymbolBindingNoResult op) { 35 // Turn the no result op to a one-result op. 36 rewriter.create<OpSymbolBindingB>(op.getLoc(), op.getOperand().getType(), 37 op.getOperand()); 38 } 39 40 static bool getFirstI32Result(Operation *op, Value &value) { 41 if (!Type(op->getResult(0).getType()).isSignlessInteger(32)) 42 return false; 43 value = op->getResult(0); 44 return true; 45 } 46 47 static Value bindNativeCodeCallResult(Value value) { return value; } 48 49 static SmallVector<Value, 2> bindMultipleNativeCodeCallResult(Value input1, 50 Value input2) { 51 return SmallVector<Value, 2>({input2, input1}); 52 } 53 54 // Test that natives calls are only called once during rewrites. 55 // OpM_Test will return Pi, increased by 1 for each subsequent calls. 56 // This let us check the number of times OpM_Test was called by inspecting 57 // the returned value in the MLIR output. 58 static int64_t opMIncreasingValue = 314159265; 59 static Attribute opMTest(PatternRewriter &rewriter, Value val) { 60 int64_t i = opMIncreasingValue++; 61 return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i); 62 } 63 64 namespace { 65 #include "TestPatterns.inc" 66 } // namespace 67 68 //===----------------------------------------------------------------------===// 69 // Test Reduce Pattern Interface 70 //===----------------------------------------------------------------------===// 71 72 void test::populateTestReductionPatterns(RewritePatternSet &patterns) { 73 populateWithGenerated(patterns); 74 } 75 76 //===----------------------------------------------------------------------===// 77 // Canonicalizer Driver. 78 //===----------------------------------------------------------------------===// 79 80 namespace { 81 struct FoldingPattern : public RewritePattern { 82 public: 83 FoldingPattern(MLIRContext *context) 84 : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(), 85 /*benefit=*/1, context) {} 86 87 LogicalResult matchAndRewrite(Operation *op, 88 PatternRewriter &rewriter) const override { 89 // Exercise OperationFolder API for a single-result operation that is folded 90 // upon construction. The operation being created through the folder has an 91 // in-place folder, and it should be still present in the output. 92 // Furthermore, the folder should not crash when attempting to recover the 93 // (unchanged) operation result. 94 OperationFolder folder(op->getContext()); 95 Value result = folder.create<TestOpInPlaceFold>( 96 rewriter, op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0), 97 rewriter.getI32IntegerAttr(0)); 98 assert(result); 99 rewriter.replaceOp(op, result); 100 return success(); 101 } 102 }; 103 104 /// This pattern creates a foldable operation at the entry point of the block. 105 /// This tests the situation where the operation folder will need to replace an 106 /// operation with a previously created constant that does not initially 107 /// dominate the operation to replace. 108 struct FolderInsertBeforePreviouslyFoldedConstantPattern 109 : public OpRewritePattern<TestCastOp> { 110 public: 111 using OpRewritePattern<TestCastOp>::OpRewritePattern; 112 113 LogicalResult matchAndRewrite(TestCastOp op, 114 PatternRewriter &rewriter) const override { 115 if (!op->hasAttr("test_fold_before_previously_folded_op")) 116 return failure(); 117 rewriter.setInsertionPointToStart(op->getBlock()); 118 119 auto constOp = rewriter.create<arith::ConstantOp>( 120 op.getLoc(), rewriter.getBoolAttr(true)); 121 rewriter.replaceOpWithNewOp<TestCastOp>(op, rewriter.getI32Type(), 122 Value(constOp)); 123 return success(); 124 } 125 }; 126 127 /// This pattern matches test.op_commutative2 with the first operand being 128 /// another test.op_commutative2 with a constant on the right side and fold it 129 /// away by propagating it as its result. This is intend to check that patterns 130 /// are applied after the commutative property moves constant to the right. 131 struct FolderCommutativeOp2WithConstant 132 : public OpRewritePattern<TestCommutative2Op> { 133 public: 134 using OpRewritePattern<TestCommutative2Op>::OpRewritePattern; 135 136 LogicalResult matchAndRewrite(TestCommutative2Op op, 137 PatternRewriter &rewriter) const override { 138 auto operand = 139 dyn_cast_or_null<TestCommutative2Op>(op->getOperand(0).getDefiningOp()); 140 if (!operand) 141 return failure(); 142 Attribute constInput; 143 if (!matchPattern(operand->getOperand(1), m_Constant(&constInput))) 144 return failure(); 145 rewriter.replaceOp(op, operand->getOperand(1)); 146 return success(); 147 } 148 }; 149 150 struct TestPatternDriver 151 : public PassWrapper<TestPatternDriver, OperationPass<func::FuncOp>> { 152 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestPatternDriver) 153 154 TestPatternDriver() = default; 155 TestPatternDriver(const TestPatternDriver &other) : PassWrapper(other) {} 156 157 StringRef getArgument() const final { return "test-patterns"; } 158 StringRef getDescription() const final { return "Run test dialect patterns"; } 159 void runOnOperation() override { 160 mlir::RewritePatternSet patterns(&getContext()); 161 populateWithGenerated(patterns); 162 163 // Verify named pattern is generated with expected name. 164 patterns.add<FoldingPattern, TestNamedPatternRule, 165 FolderInsertBeforePreviouslyFoldedConstantPattern, 166 FolderCommutativeOp2WithConstant>(&getContext()); 167 168 GreedyRewriteConfig config; 169 config.useTopDownTraversal = this->useTopDownTraversal; 170 (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns), 171 config); 172 } 173 174 Option<bool> useTopDownTraversal{ 175 *this, "top-down", 176 llvm::cl::desc("Seed the worklist in general top-down order"), 177 llvm::cl::init(GreedyRewriteConfig().useTopDownTraversal)}; 178 }; 179 } // namespace 180 181 //===----------------------------------------------------------------------===// 182 // ReturnType Driver. 183 //===----------------------------------------------------------------------===// 184 185 namespace { 186 // Generate ops for each instance where the type can be successfully inferred. 187 template <typename OpTy> 188 static void invokeCreateWithInferredReturnType(Operation *op) { 189 auto *context = op->getContext(); 190 auto fop = op->getParentOfType<func::FuncOp>(); 191 auto location = UnknownLoc::get(context); 192 OpBuilder b(op); 193 b.setInsertionPointAfter(op); 194 195 // Use permutations of 2 args as operands. 196 assert(fop.getNumArguments() >= 2); 197 for (int i = 0, e = fop.getNumArguments(); i < e; ++i) { 198 for (int j = 0; j < e; ++j) { 199 std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}}; 200 SmallVector<Type, 2> inferredReturnTypes; 201 if (succeeded(OpTy::inferReturnTypes( 202 context, llvm::None, values, op->getAttrDictionary(), 203 op->getRegions(), inferredReturnTypes))) { 204 OperationState state(location, OpTy::getOperationName()); 205 // TODO: Expand to regions. 206 OpTy::build(b, state, values, op->getAttrs()); 207 (void)b.create(state); 208 } 209 } 210 } 211 } 212 213 static void reifyReturnShape(Operation *op) { 214 OpBuilder b(op); 215 216 // Use permutations of 2 args as operands. 217 auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op); 218 SmallVector<Value, 2> shapes; 219 if (failed(shapedOp.reifyReturnTypeShapes(b, op->getOperands(), shapes)) || 220 !llvm::hasSingleElement(shapes)) 221 return; 222 for (const auto &it : llvm::enumerate(shapes)) { 223 op->emitRemark() << "value " << it.index() << ": " 224 << it.value().getDefiningOp(); 225 } 226 } 227 228 struct TestReturnTypeDriver 229 : public PassWrapper<TestReturnTypeDriver, OperationPass<func::FuncOp>> { 230 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestReturnTypeDriver) 231 232 void getDependentDialects(DialectRegistry ®istry) const override { 233 registry.insert<tensor::TensorDialect>(); 234 } 235 StringRef getArgument() const final { return "test-return-type"; } 236 StringRef getDescription() const final { return "Run return type functions"; } 237 238 void runOnOperation() override { 239 if (getOperation().getName() == "testCreateFunctions") { 240 std::vector<Operation *> ops; 241 // Collect ops to avoid triggering on inserted ops. 242 for (auto &op : getOperation().getBody().front()) 243 ops.push_back(&op); 244 // Generate test patterns for each, but skip terminator. 245 for (auto *op : llvm::makeArrayRef(ops).drop_back()) { 246 // Test create method of each of the Op classes below. The resultant 247 // output would be in reverse order underneath `op` from which 248 // the attributes and regions are used. 249 invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op); 250 invokeCreateWithInferredReturnType< 251 OpWithShapedTypeInferTypeInterfaceOp>(op); 252 }; 253 return; 254 } 255 if (getOperation().getName() == "testReifyFunctions") { 256 std::vector<Operation *> ops; 257 // Collect ops to avoid triggering on inserted ops. 258 for (auto &op : getOperation().getBody().front()) 259 if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op)) 260 ops.push_back(&op); 261 // Generate test patterns for each, but skip terminator. 262 for (auto *op : ops) 263 reifyReturnShape(op); 264 } 265 } 266 }; 267 } // namespace 268 269 namespace { 270 struct TestDerivedAttributeDriver 271 : public PassWrapper<TestDerivedAttributeDriver, 272 OperationPass<func::FuncOp>> { 273 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestDerivedAttributeDriver) 274 275 StringRef getArgument() const final { return "test-derived-attr"; } 276 StringRef getDescription() const final { 277 return "Run test derived attributes"; 278 } 279 void runOnOperation() override; 280 }; 281 } // namespace 282 283 void TestDerivedAttributeDriver::runOnOperation() { 284 getOperation().walk([](DerivedAttributeOpInterface dOp) { 285 auto dAttr = dOp.materializeDerivedAttributes(); 286 if (!dAttr) 287 return; 288 for (auto d : dAttr) 289 dOp.emitRemark() << d.getName().getValue() << " = " << d.getValue(); 290 }); 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Legalization Driver. 295 //===----------------------------------------------------------------------===// 296 297 namespace { 298 //===----------------------------------------------------------------------===// 299 // Region-Block Rewrite Testing 300 301 /// This pattern is a simple pattern that inlines the first region of a given 302 /// operation into the parent region. 303 struct TestRegionRewriteBlockMovement : public ConversionPattern { 304 TestRegionRewriteBlockMovement(MLIRContext *ctx) 305 : ConversionPattern("test.region", 1, ctx) {} 306 307 LogicalResult 308 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 309 ConversionPatternRewriter &rewriter) const final { 310 // Inline this region into the parent region. 311 auto &parentRegion = *op->getParentRegion(); 312 auto &opRegion = op->getRegion(0); 313 if (op->getAttr("legalizer.should_clone")) 314 rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end()); 315 else 316 rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end()); 317 318 if (op->getAttr("legalizer.erase_old_blocks")) { 319 while (!opRegion.empty()) 320 rewriter.eraseBlock(&opRegion.front()); 321 } 322 323 // Drop this operation. 324 rewriter.eraseOp(op); 325 return success(); 326 } 327 }; 328 /// This pattern is a simple pattern that generates a region containing an 329 /// illegal operation. 330 struct TestRegionRewriteUndo : public RewritePattern { 331 TestRegionRewriteUndo(MLIRContext *ctx) 332 : RewritePattern("test.region_builder", 1, ctx) {} 333 334 LogicalResult matchAndRewrite(Operation *op, 335 PatternRewriter &rewriter) const final { 336 // Create the region operation with an entry block containing arguments. 337 OperationState newRegion(op->getLoc(), "test.region"); 338 newRegion.addRegion(); 339 auto *regionOp = rewriter.create(newRegion); 340 auto *entryBlock = rewriter.createBlock(®ionOp->getRegion(0)); 341 entryBlock->addArgument(rewriter.getIntegerType(64), 342 rewriter.getUnknownLoc()); 343 344 // Add an explicitly illegal operation to ensure the conversion fails. 345 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32)); 346 rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>()); 347 348 // Drop this operation. 349 rewriter.eraseOp(op); 350 return success(); 351 } 352 }; 353 /// A simple pattern that creates a block at the end of the parent region of the 354 /// matched operation. 355 struct TestCreateBlock : public RewritePattern { 356 TestCreateBlock(MLIRContext *ctx) 357 : RewritePattern("test.create_block", /*benefit=*/1, ctx) {} 358 359 LogicalResult matchAndRewrite(Operation *op, 360 PatternRewriter &rewriter) const final { 361 Region ®ion = *op->getParentRegion(); 362 Type i32Type = rewriter.getIntegerType(32); 363 Location loc = op->getLoc(); 364 rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}, {loc, loc}); 365 rewriter.create<TerminatorOp>(loc); 366 rewriter.replaceOp(op, {}); 367 return success(); 368 } 369 }; 370 371 /// A simple pattern that creates a block containing an invalid operation in 372 /// order to trigger the block creation undo mechanism. 373 struct TestCreateIllegalBlock : public RewritePattern { 374 TestCreateIllegalBlock(MLIRContext *ctx) 375 : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {} 376 377 LogicalResult matchAndRewrite(Operation *op, 378 PatternRewriter &rewriter) const final { 379 Region ®ion = *op->getParentRegion(); 380 Type i32Type = rewriter.getIntegerType(32); 381 Location loc = op->getLoc(); 382 rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}, {loc, loc}); 383 // Create an illegal op to ensure the conversion fails. 384 rewriter.create<ILLegalOpF>(loc, i32Type); 385 rewriter.create<TerminatorOp>(loc); 386 rewriter.replaceOp(op, {}); 387 return success(); 388 } 389 }; 390 391 /// A simple pattern that tests the undo mechanism when replacing the uses of a 392 /// block argument. 393 struct TestUndoBlockArgReplace : public ConversionPattern { 394 TestUndoBlockArgReplace(MLIRContext *ctx) 395 : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {} 396 397 LogicalResult 398 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 399 ConversionPatternRewriter &rewriter) const final { 400 auto illegalOp = 401 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 402 rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0), 403 illegalOp); 404 rewriter.updateRootInPlace(op, [] {}); 405 return success(); 406 } 407 }; 408 409 /// A rewrite pattern that tests the undo mechanism when erasing a block. 410 struct TestUndoBlockErase : public ConversionPattern { 411 TestUndoBlockErase(MLIRContext *ctx) 412 : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {} 413 414 LogicalResult 415 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 416 ConversionPatternRewriter &rewriter) const final { 417 Block *secondBlock = &*std::next(op->getRegion(0).begin()); 418 rewriter.setInsertionPointToStart(secondBlock); 419 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 420 rewriter.eraseBlock(secondBlock); 421 rewriter.updateRootInPlace(op, [] {}); 422 return success(); 423 } 424 }; 425 426 //===----------------------------------------------------------------------===// 427 // Type-Conversion Rewrite Testing 428 429 /// This patterns erases a region operation that has had a type conversion. 430 struct TestDropOpSignatureConversion : public ConversionPattern { 431 TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter) 432 : ConversionPattern(converter, "test.drop_region_op", 1, ctx) {} 433 LogicalResult 434 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 435 ConversionPatternRewriter &rewriter) const override { 436 Region ®ion = op->getRegion(0); 437 Block *entry = ®ion.front(); 438 439 // Convert the original entry arguments. 440 TypeConverter &converter = *getTypeConverter(); 441 TypeConverter::SignatureConversion result(entry->getNumArguments()); 442 if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(), 443 result)) || 444 failed(rewriter.convertRegionTypes(®ion, converter, &result))) 445 return failure(); 446 447 // Convert the region signature and just drop the operation. 448 rewriter.eraseOp(op); 449 return success(); 450 } 451 }; 452 /// This pattern simply updates the operands of the given operation. 453 struct TestPassthroughInvalidOp : public ConversionPattern { 454 TestPassthroughInvalidOp(MLIRContext *ctx) 455 : ConversionPattern("test.invalid", 1, ctx) {} 456 LogicalResult 457 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 458 ConversionPatternRewriter &rewriter) const final { 459 rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands, 460 llvm::None); 461 return success(); 462 } 463 }; 464 /// This pattern handles the case of a split return value. 465 struct TestSplitReturnType : public ConversionPattern { 466 TestSplitReturnType(MLIRContext *ctx) 467 : ConversionPattern("test.return", 1, ctx) {} 468 LogicalResult 469 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 470 ConversionPatternRewriter &rewriter) const final { 471 // Check for a return of F32. 472 if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32()) 473 return failure(); 474 475 // Check if the first operation is a cast operation, if it is we use the 476 // results directly. 477 auto *defOp = operands[0].getDefiningOp(); 478 if (auto packerOp = 479 llvm::dyn_cast_or_null<UnrealizedConversionCastOp>(defOp)) { 480 rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands()); 481 return success(); 482 } 483 484 // Otherwise, fail to match. 485 return failure(); 486 } 487 }; 488 489 //===----------------------------------------------------------------------===// 490 // Multi-Level Type-Conversion Rewrite Testing 491 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern { 492 TestChangeProducerTypeI32ToF32(MLIRContext *ctx) 493 : ConversionPattern("test.type_producer", 1, ctx) {} 494 LogicalResult 495 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 496 ConversionPatternRewriter &rewriter) const final { 497 // If the type is I32, change the type to F32. 498 if (!Type(*op->result_type_begin()).isSignlessInteger(32)) 499 return failure(); 500 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type()); 501 return success(); 502 } 503 }; 504 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern { 505 TestChangeProducerTypeF32ToF64(MLIRContext *ctx) 506 : ConversionPattern("test.type_producer", 1, ctx) {} 507 LogicalResult 508 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 509 ConversionPatternRewriter &rewriter) const final { 510 // If the type is F32, change the type to F64. 511 if (!Type(*op->result_type_begin()).isF32()) 512 return rewriter.notifyMatchFailure(op, "expected single f32 operand"); 513 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type()); 514 return success(); 515 } 516 }; 517 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern { 518 TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx) 519 : ConversionPattern("test.type_producer", 10, ctx) {} 520 LogicalResult 521 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 522 ConversionPatternRewriter &rewriter) const final { 523 // Always convert to B16, even though it is not a legal type. This tests 524 // that values are unmapped correctly. 525 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type()); 526 return success(); 527 } 528 }; 529 struct TestUpdateConsumerType : public ConversionPattern { 530 TestUpdateConsumerType(MLIRContext *ctx) 531 : ConversionPattern("test.type_consumer", 1, ctx) {} 532 LogicalResult 533 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 534 ConversionPatternRewriter &rewriter) const final { 535 // Verify that the incoming operand has been successfully remapped to F64. 536 if (!operands[0].getType().isF64()) 537 return failure(); 538 rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]); 539 return success(); 540 } 541 }; 542 543 //===----------------------------------------------------------------------===// 544 // Non-Root Replacement Rewrite Testing 545 /// This pattern generates an invalid operation, but replaces it before the 546 /// pattern is finished. This checks that we don't need to legalize the 547 /// temporary op. 548 struct TestNonRootReplacement : public RewritePattern { 549 TestNonRootReplacement(MLIRContext *ctx) 550 : RewritePattern("test.replace_non_root", 1, ctx) {} 551 552 LogicalResult matchAndRewrite(Operation *op, 553 PatternRewriter &rewriter) const final { 554 auto resultType = *op->result_type_begin(); 555 auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType); 556 auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType); 557 558 rewriter.replaceOp(illegalOp, {legalOp}); 559 rewriter.replaceOp(op, {illegalOp}); 560 return success(); 561 } 562 }; 563 564 //===----------------------------------------------------------------------===// 565 // Recursive Rewrite Testing 566 /// This pattern is applied to the same operation multiple times, but has a 567 /// bounded recursion. 568 struct TestBoundedRecursiveRewrite 569 : public OpRewritePattern<TestRecursiveRewriteOp> { 570 using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern; 571 572 void initialize() { 573 // The conversion target handles bounding the recursion of this pattern. 574 setHasBoundedRewriteRecursion(); 575 } 576 577 LogicalResult matchAndRewrite(TestRecursiveRewriteOp op, 578 PatternRewriter &rewriter) const final { 579 // Decrement the depth of the op in-place. 580 rewriter.updateRootInPlace(op, [&] { 581 op->setAttr("depth", rewriter.getI64IntegerAttr(op.getDepth() - 1)); 582 }); 583 return success(); 584 } 585 }; 586 587 struct TestNestedOpCreationUndoRewrite 588 : public OpRewritePattern<IllegalOpWithRegionAnchor> { 589 using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern; 590 591 LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op, 592 PatternRewriter &rewriter) const final { 593 // rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op); 594 rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op); 595 return success(); 596 }; 597 }; 598 599 // This pattern matches `test.blackhole` and delete this op and its producer. 600 struct TestReplaceEraseOp : public OpRewritePattern<BlackHoleOp> { 601 using OpRewritePattern<BlackHoleOp>::OpRewritePattern; 602 603 LogicalResult matchAndRewrite(BlackHoleOp op, 604 PatternRewriter &rewriter) const final { 605 Operation *producer = op.getOperand().getDefiningOp(); 606 // Always erase the user before the producer, the framework should handle 607 // this correctly. 608 rewriter.eraseOp(op); 609 rewriter.eraseOp(producer); 610 return success(); 611 }; 612 }; 613 614 // This pattern replaces explicitly illegal op with explicitly legal op, 615 // but in addition creates unregistered operation. 616 struct TestCreateUnregisteredOp : public OpRewritePattern<ILLegalOpG> { 617 using OpRewritePattern<ILLegalOpG>::OpRewritePattern; 618 619 LogicalResult matchAndRewrite(ILLegalOpG op, 620 PatternRewriter &rewriter) const final { 621 IntegerAttr attr = rewriter.getI32IntegerAttr(0); 622 Value val = rewriter.create<arith::ConstantOp>(op->getLoc(), attr); 623 rewriter.replaceOpWithNewOp<LegalOpC>(op, val); 624 return success(); 625 }; 626 }; 627 } // namespace 628 629 namespace { 630 struct TestTypeConverter : public TypeConverter { 631 using TypeConverter::TypeConverter; 632 TestTypeConverter() { 633 addConversion(convertType); 634 addArgumentMaterialization(materializeCast); 635 addSourceMaterialization(materializeCast); 636 } 637 638 static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) { 639 // Drop I16 types. 640 if (t.isSignlessInteger(16)) 641 return success(); 642 643 // Convert I64 to F64. 644 if (t.isSignlessInteger(64)) { 645 results.push_back(FloatType::getF64(t.getContext())); 646 return success(); 647 } 648 649 // Convert I42 to I43. 650 if (t.isInteger(42)) { 651 results.push_back(IntegerType::get(t.getContext(), 43)); 652 return success(); 653 } 654 655 // Split F32 into F16,F16. 656 if (t.isF32()) { 657 results.assign(2, FloatType::getF16(t.getContext())); 658 return success(); 659 } 660 661 // Otherwise, convert the type directly. 662 results.push_back(t); 663 return success(); 664 } 665 666 /// Hook for materializing a conversion. This is necessary because we generate 667 /// 1->N type mappings. 668 static Optional<Value> materializeCast(OpBuilder &builder, Type resultType, 669 ValueRange inputs, Location loc) { 670 return builder.create<TestCastOp>(loc, resultType, inputs).getResult(); 671 } 672 }; 673 674 struct TestLegalizePatternDriver 675 : public PassWrapper<TestLegalizePatternDriver, OperationPass<ModuleOp>> { 676 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestLegalizePatternDriver) 677 678 StringRef getArgument() const final { return "test-legalize-patterns"; } 679 StringRef getDescription() const final { 680 return "Run test dialect legalization patterns"; 681 } 682 /// The mode of conversion to use with the driver. 683 enum class ConversionMode { Analysis, Full, Partial }; 684 685 TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {} 686 687 void getDependentDialects(DialectRegistry ®istry) const override { 688 registry.insert<func::FuncDialect>(); 689 } 690 691 void runOnOperation() override { 692 TestTypeConverter converter; 693 mlir::RewritePatternSet patterns(&getContext()); 694 populateWithGenerated(patterns); 695 patterns 696 .add<TestRegionRewriteBlockMovement, TestRegionRewriteUndo, 697 TestCreateBlock, TestCreateIllegalBlock, TestUndoBlockArgReplace, 698 TestUndoBlockErase, TestPassthroughInvalidOp, TestSplitReturnType, 699 TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64, 700 TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType, 701 TestNonRootReplacement, TestBoundedRecursiveRewrite, 702 TestNestedOpCreationUndoRewrite, TestReplaceEraseOp, 703 TestCreateUnregisteredOp>(&getContext()); 704 patterns.add<TestDropOpSignatureConversion>(&getContext(), converter); 705 mlir::populateFunctionOpInterfaceTypeConversionPattern<func::FuncOp>( 706 patterns, converter); 707 mlir::populateCallOpTypeConversionPattern(patterns, converter); 708 709 // Define the conversion target used for the test. 710 ConversionTarget target(getContext()); 711 target.addLegalOp<ModuleOp>(); 712 target.addLegalOp<LegalOpA, LegalOpB, LegalOpC, TestCastOp, TestValidOp, 713 TerminatorOp>(); 714 target 715 .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>(); 716 target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) { 717 // Don't allow F32 operands. 718 return llvm::none_of(op.getOperandTypes(), 719 [](Type type) { return type.isF32(); }); 720 }); 721 target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) { 722 return converter.isSignatureLegal(op.getFunctionType()) && 723 converter.isLegal(&op.getBody()); 724 }); 725 target.addDynamicallyLegalOp<func::CallOp>( 726 [&](func::CallOp op) { return converter.isLegal(op); }); 727 728 // TestCreateUnregisteredOp creates `arith.constant` operation, 729 // which was not added to target intentionally to test 730 // correct error code from conversion driver. 731 target.addDynamicallyLegalOp<ILLegalOpG>([](ILLegalOpG) { return false; }); 732 733 // Expect the type_producer/type_consumer operations to only operate on f64. 734 target.addDynamicallyLegalOp<TestTypeProducerOp>( 735 [](TestTypeProducerOp op) { return op.getType().isF64(); }); 736 target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) { 737 return op.getOperand().getType().isF64(); 738 }); 739 740 // Check support for marking certain operations as recursively legal. 741 target.markOpRecursivelyLegal<func::FuncOp, ModuleOp>([](Operation *op) { 742 return static_cast<bool>( 743 op->getAttrOfType<UnitAttr>("test.recursively_legal")); 744 }); 745 746 // Mark the bound recursion operation as dynamically legal. 747 target.addDynamicallyLegalOp<TestRecursiveRewriteOp>( 748 [](TestRecursiveRewriteOp op) { return op.getDepth() == 0; }); 749 750 // Handle a partial conversion. 751 if (mode == ConversionMode::Partial) { 752 DenseSet<Operation *> unlegalizedOps; 753 if (failed(applyPartialConversion( 754 getOperation(), target, std::move(patterns), &unlegalizedOps))) { 755 getOperation()->emitRemark() << "applyPartialConversion failed"; 756 } 757 // Emit remarks for each legalizable operation. 758 for (auto *op : unlegalizedOps) 759 op->emitRemark() << "op '" << op->getName() << "' is not legalizable"; 760 return; 761 } 762 763 // Handle a full conversion. 764 if (mode == ConversionMode::Full) { 765 // Check support for marking unknown operations as dynamically legal. 766 target.markUnknownOpDynamicallyLegal([](Operation *op) { 767 return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal"); 768 }); 769 770 if (failed(applyFullConversion(getOperation(), target, 771 std::move(patterns)))) { 772 getOperation()->emitRemark() << "applyFullConversion failed"; 773 } 774 return; 775 } 776 777 // Otherwise, handle an analysis conversion. 778 assert(mode == ConversionMode::Analysis); 779 780 // Analyze the convertible operations. 781 DenseSet<Operation *> legalizedOps; 782 if (failed(applyAnalysisConversion(getOperation(), target, 783 std::move(patterns), legalizedOps))) 784 return signalPassFailure(); 785 786 // Emit remarks for each legalizable operation. 787 for (auto *op : legalizedOps) 788 op->emitRemark() << "op '" << op->getName() << "' is legalizable"; 789 } 790 791 /// The mode of conversion to use. 792 ConversionMode mode; 793 }; 794 } // namespace 795 796 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode> 797 legalizerConversionMode( 798 "test-legalize-mode", 799 llvm::cl::desc("The legalization mode to use with the test driver"), 800 llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial), 801 llvm::cl::values( 802 clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis, 803 "analysis", "Perform an analysis conversion"), 804 clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full", 805 "Perform a full conversion"), 806 clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial, 807 "partial", "Perform a partial conversion"))); 808 809 //===----------------------------------------------------------------------===// 810 // ConversionPatternRewriter::getRemappedValue testing. This method is used 811 // to get the remapped value of an original value that was replaced using 812 // ConversionPatternRewriter. 813 namespace { 814 struct TestRemapValueTypeConverter : public TypeConverter { 815 using TypeConverter::TypeConverter; 816 817 TestRemapValueTypeConverter() { 818 addConversion( 819 [](Float32Type type) { return Float64Type::get(type.getContext()); }); 820 addConversion([](Type type) { return type; }); 821 } 822 }; 823 824 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with 825 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original 826 /// operand twice. 827 /// 828 /// Example: 829 /// %1 = test.one_variadic_out_one_variadic_in1"(%0) 830 /// is replaced with: 831 /// %1 = test.one_variadic_out_one_variadic_in1"(%0, %0) 832 struct OneVResOneVOperandOp1Converter 833 : public OpConversionPattern<OneVResOneVOperandOp1> { 834 using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern; 835 836 LogicalResult 837 matchAndRewrite(OneVResOneVOperandOp1 op, OpAdaptor adaptor, 838 ConversionPatternRewriter &rewriter) const override { 839 auto origOps = op.getOperands(); 840 assert(std::distance(origOps.begin(), origOps.end()) == 1 && 841 "One operand expected"); 842 Value origOp = *origOps.begin(); 843 SmallVector<Value, 2> remappedOperands; 844 // Replicate the remapped original operand twice. Note that we don't used 845 // the remapped 'operand' since the goal is testing 'getRemappedValue'. 846 remappedOperands.push_back(rewriter.getRemappedValue(origOp)); 847 remappedOperands.push_back(rewriter.getRemappedValue(origOp)); 848 849 rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(), 850 remappedOperands); 851 return success(); 852 } 853 }; 854 855 /// A rewriter pattern that tests that blocks can be merged. 856 struct TestRemapValueInRegion 857 : public OpConversionPattern<TestRemappedValueRegionOp> { 858 using OpConversionPattern<TestRemappedValueRegionOp>::OpConversionPattern; 859 860 LogicalResult 861 matchAndRewrite(TestRemappedValueRegionOp op, OpAdaptor adaptor, 862 ConversionPatternRewriter &rewriter) const final { 863 Block &block = op.getBody().front(); 864 Operation *terminator = block.getTerminator(); 865 866 // Merge the block into the parent region. 867 Block *parentBlock = op->getBlock(); 868 Block *finalBlock = rewriter.splitBlock(parentBlock, op->getIterator()); 869 rewriter.mergeBlocks(&block, parentBlock, ValueRange()); 870 rewriter.mergeBlocks(finalBlock, parentBlock, ValueRange()); 871 872 // Replace the results of this operation with the remapped terminator 873 // values. 874 SmallVector<Value> terminatorOperands; 875 if (failed(rewriter.getRemappedValues(terminator->getOperands(), 876 terminatorOperands))) 877 return failure(); 878 879 rewriter.eraseOp(terminator); 880 rewriter.replaceOp(op, terminatorOperands); 881 return success(); 882 } 883 }; 884 885 struct TestRemappedValue 886 : public mlir::PassWrapper<TestRemappedValue, OperationPass<func::FuncOp>> { 887 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestRemappedValue) 888 889 StringRef getArgument() const final { return "test-remapped-value"; } 890 StringRef getDescription() const final { 891 return "Test public remapped value mechanism in ConversionPatternRewriter"; 892 } 893 void runOnOperation() override { 894 TestRemapValueTypeConverter typeConverter; 895 896 mlir::RewritePatternSet patterns(&getContext()); 897 patterns.add<OneVResOneVOperandOp1Converter>(&getContext()); 898 patterns.add<TestChangeProducerTypeF32ToF64, TestUpdateConsumerType>( 899 &getContext()); 900 patterns.add<TestRemapValueInRegion>(typeConverter, &getContext()); 901 902 mlir::ConversionTarget target(getContext()); 903 target.addLegalOp<ModuleOp, func::FuncOp, TestReturnOp>(); 904 905 // Expect the type_producer/type_consumer operations to only operate on f64. 906 target.addDynamicallyLegalOp<TestTypeProducerOp>( 907 [](TestTypeProducerOp op) { return op.getType().isF64(); }); 908 target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) { 909 return op.getOperand().getType().isF64(); 910 }); 911 912 // We make OneVResOneVOperandOp1 legal only when it has more that one 913 // operand. This will trigger the conversion that will replace one-operand 914 // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1. 915 target.addDynamicallyLegalOp<OneVResOneVOperandOp1>( 916 [](Operation *op) { return op->getNumOperands() > 1; }); 917 918 if (failed(mlir::applyFullConversion(getOperation(), target, 919 std::move(patterns)))) { 920 signalPassFailure(); 921 } 922 } 923 }; 924 } // namespace 925 926 //===----------------------------------------------------------------------===// 927 // Test patterns without a specific root operation kind 928 //===----------------------------------------------------------------------===// 929 930 namespace { 931 /// This pattern matches and removes any operation in the test dialect. 932 struct RemoveTestDialectOps : public RewritePattern { 933 RemoveTestDialectOps(MLIRContext *context) 934 : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {} 935 936 LogicalResult matchAndRewrite(Operation *op, 937 PatternRewriter &rewriter) const override { 938 if (!isa<TestDialect>(op->getDialect())) 939 return failure(); 940 rewriter.eraseOp(op); 941 return success(); 942 } 943 }; 944 945 struct TestUnknownRootOpDriver 946 : public mlir::PassWrapper<TestUnknownRootOpDriver, 947 OperationPass<func::FuncOp>> { 948 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestUnknownRootOpDriver) 949 950 StringRef getArgument() const final { 951 return "test-legalize-unknown-root-patterns"; 952 } 953 StringRef getDescription() const final { 954 return "Test public remapped value mechanism in ConversionPatternRewriter"; 955 } 956 void runOnOperation() override { 957 mlir::RewritePatternSet patterns(&getContext()); 958 patterns.add<RemoveTestDialectOps>(&getContext()); 959 960 mlir::ConversionTarget target(getContext()); 961 target.addIllegalDialect<TestDialect>(); 962 if (failed(applyPartialConversion(getOperation(), target, 963 std::move(patterns)))) 964 signalPassFailure(); 965 } 966 }; 967 } // namespace 968 969 //===----------------------------------------------------------------------===// 970 // Test patterns that uses operations and types defined at runtime 971 //===----------------------------------------------------------------------===// 972 973 namespace { 974 /// This pattern matches dynamic operations 'test.one_operand_two_results' and 975 /// replace them with dynamic operations 'test.generic_dynamic_op'. 976 struct RewriteDynamicOp : public RewritePattern { 977 RewriteDynamicOp(MLIRContext *context) 978 : RewritePattern("test.dynamic_one_operand_two_results", /*benefit=*/1, 979 context) {} 980 981 LogicalResult matchAndRewrite(Operation *op, 982 PatternRewriter &rewriter) const override { 983 assert(op->getName().getStringRef() == 984 "test.dynamic_one_operand_two_results" && 985 "rewrite pattern should only match operations with the right name"); 986 987 OperationState state(op->getLoc(), "test.dynamic_generic", 988 op->getOperands(), op->getResultTypes(), 989 op->getAttrs()); 990 auto *newOp = rewriter.create(state); 991 rewriter.replaceOp(op, newOp->getResults()); 992 return success(); 993 } 994 }; 995 996 struct TestRewriteDynamicOpDriver 997 : public PassWrapper<TestRewriteDynamicOpDriver, 998 OperationPass<func::FuncOp>> { 999 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestRewriteDynamicOpDriver) 1000 1001 void getDependentDialects(DialectRegistry ®istry) const override { 1002 registry.insert<TestDialect>(); 1003 } 1004 StringRef getArgument() const final { return "test-rewrite-dynamic-op"; } 1005 StringRef getDescription() const final { 1006 return "Test rewritting on dynamic operations"; 1007 } 1008 void runOnOperation() override { 1009 RewritePatternSet patterns(&getContext()); 1010 patterns.add<RewriteDynamicOp>(&getContext()); 1011 1012 ConversionTarget target(getContext()); 1013 target.addIllegalOp( 1014 OperationName("test.dynamic_one_operand_two_results", &getContext())); 1015 target.addLegalOp(OperationName("test.dynamic_generic", &getContext())); 1016 if (failed(applyPartialConversion(getOperation(), target, 1017 std::move(patterns)))) 1018 signalPassFailure(); 1019 } 1020 }; 1021 } // end anonymous namespace 1022 1023 //===----------------------------------------------------------------------===// 1024 // Test type conversions 1025 //===----------------------------------------------------------------------===// 1026 1027 namespace { 1028 struct TestTypeConversionProducer 1029 : public OpConversionPattern<TestTypeProducerOp> { 1030 using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern; 1031 LogicalResult 1032 matchAndRewrite(TestTypeProducerOp op, OpAdaptor adaptor, 1033 ConversionPatternRewriter &rewriter) const final { 1034 Type resultType = op.getType(); 1035 Type convertedType = getTypeConverter() 1036 ? getTypeConverter()->convertType(resultType) 1037 : resultType; 1038 if (resultType.isa<FloatType>()) 1039 resultType = rewriter.getF64Type(); 1040 else if (resultType.isInteger(16)) 1041 resultType = rewriter.getIntegerType(64); 1042 else if (resultType.isa<test::TestRecursiveType>() && 1043 convertedType != resultType) 1044 resultType = convertedType; 1045 else 1046 return failure(); 1047 1048 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType); 1049 return success(); 1050 } 1051 }; 1052 1053 /// Call signature conversion and then fail the rewrite to trigger the undo 1054 /// mechanism. 1055 struct TestSignatureConversionUndo 1056 : public OpConversionPattern<TestSignatureConversionUndoOp> { 1057 using OpConversionPattern<TestSignatureConversionUndoOp>::OpConversionPattern; 1058 1059 LogicalResult 1060 matchAndRewrite(TestSignatureConversionUndoOp op, OpAdaptor adaptor, 1061 ConversionPatternRewriter &rewriter) const final { 1062 (void)rewriter.convertRegionTypes(&op->getRegion(0), *getTypeConverter()); 1063 return failure(); 1064 } 1065 }; 1066 1067 /// Call signature conversion without providing a type converter to handle 1068 /// materializations. 1069 struct TestTestSignatureConversionNoConverter 1070 : public OpConversionPattern<TestSignatureConversionNoConverterOp> { 1071 TestTestSignatureConversionNoConverter(TypeConverter &converter, 1072 MLIRContext *context) 1073 : OpConversionPattern<TestSignatureConversionNoConverterOp>(context), 1074 converter(converter) {} 1075 1076 LogicalResult 1077 matchAndRewrite(TestSignatureConversionNoConverterOp op, OpAdaptor adaptor, 1078 ConversionPatternRewriter &rewriter) const final { 1079 Region ®ion = op->getRegion(0); 1080 Block *entry = ®ion.front(); 1081 1082 // Convert the original entry arguments. 1083 TypeConverter::SignatureConversion result(entry->getNumArguments()); 1084 if (failed( 1085 converter.convertSignatureArgs(entry->getArgumentTypes(), result))) 1086 return failure(); 1087 rewriter.updateRootInPlace( 1088 op, [&] { rewriter.applySignatureConversion(®ion, result); }); 1089 return success(); 1090 } 1091 1092 TypeConverter &converter; 1093 }; 1094 1095 /// Just forward the operands to the root op. This is essentially a no-op 1096 /// pattern that is used to trigger target materialization. 1097 struct TestTypeConsumerForward 1098 : public OpConversionPattern<TestTypeConsumerOp> { 1099 using OpConversionPattern<TestTypeConsumerOp>::OpConversionPattern; 1100 1101 LogicalResult 1102 matchAndRewrite(TestTypeConsumerOp op, OpAdaptor adaptor, 1103 ConversionPatternRewriter &rewriter) const final { 1104 rewriter.updateRootInPlace(op, 1105 [&] { op->setOperands(adaptor.getOperands()); }); 1106 return success(); 1107 } 1108 }; 1109 1110 struct TestTypeConversionAnotherProducer 1111 : public OpRewritePattern<TestAnotherTypeProducerOp> { 1112 using OpRewritePattern<TestAnotherTypeProducerOp>::OpRewritePattern; 1113 1114 LogicalResult matchAndRewrite(TestAnotherTypeProducerOp op, 1115 PatternRewriter &rewriter) const final { 1116 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, op.getType()); 1117 return success(); 1118 } 1119 }; 1120 1121 struct TestTypeConversionDriver 1122 : public PassWrapper<TestTypeConversionDriver, OperationPass<ModuleOp>> { 1123 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestTypeConversionDriver) 1124 1125 void getDependentDialects(DialectRegistry ®istry) const override { 1126 registry.insert<TestDialect>(); 1127 } 1128 StringRef getArgument() const final { 1129 return "test-legalize-type-conversion"; 1130 } 1131 StringRef getDescription() const final { 1132 return "Test various type conversion functionalities in DialectConversion"; 1133 } 1134 1135 void runOnOperation() override { 1136 // Initialize the type converter. 1137 TypeConverter converter; 1138 1139 /// Add the legal set of type conversions. 1140 converter.addConversion([](Type type) -> Type { 1141 // Treat F64 as legal. 1142 if (type.isF64()) 1143 return type; 1144 // Allow converting BF16/F16/F32 to F64. 1145 if (type.isBF16() || type.isF16() || type.isF32()) 1146 return FloatType::getF64(type.getContext()); 1147 // Otherwise, the type is illegal. 1148 return nullptr; 1149 }); 1150 converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) { 1151 // Drop all integer types. 1152 return success(); 1153 }); 1154 converter.addConversion( 1155 // Convert a recursive self-referring type into a non-self-referring 1156 // type named "outer_converted_type" that contains a SimpleAType. 1157 [&](test::TestRecursiveType type, SmallVectorImpl<Type> &results, 1158 ArrayRef<Type> callStack) -> Optional<LogicalResult> { 1159 // If the type is already converted, return it to indicate that it is 1160 // legal. 1161 if (type.getName() == "outer_converted_type") { 1162 results.push_back(type); 1163 return success(); 1164 } 1165 1166 // If the type is on the call stack more than once (it is there at 1167 // least once because of the _current_ call, which is always the last 1168 // element on the stack), we've hit the recursive case. Just return 1169 // SimpleAType here to create a non-recursive type as a result. 1170 if (llvm::is_contained(callStack.drop_back(), type)) { 1171 results.push_back(test::SimpleAType::get(type.getContext())); 1172 return success(); 1173 } 1174 1175 // Convert the body recursively. 1176 auto result = test::TestRecursiveType::get(type.getContext(), 1177 "outer_converted_type"); 1178 if (failed(result.setBody(converter.convertType(type.getBody())))) 1179 return failure(); 1180 results.push_back(result); 1181 return success(); 1182 }); 1183 1184 /// Add the legal set of type materializations. 1185 converter.addSourceMaterialization([](OpBuilder &builder, Type resultType, 1186 ValueRange inputs, 1187 Location loc) -> Value { 1188 // Allow casting from F64 back to F32. 1189 if (!resultType.isF16() && inputs.size() == 1 && 1190 inputs[0].getType().isF64()) 1191 return builder.create<TestCastOp>(loc, resultType, inputs).getResult(); 1192 // Allow producing an i32 or i64 from nothing. 1193 if ((resultType.isInteger(32) || resultType.isInteger(64)) && 1194 inputs.empty()) 1195 return builder.create<TestTypeProducerOp>(loc, resultType); 1196 // Allow producing an i64 from an integer. 1197 if (resultType.isa<IntegerType>() && inputs.size() == 1 && 1198 inputs[0].getType().isa<IntegerType>()) 1199 return builder.create<TestCastOp>(loc, resultType, inputs).getResult(); 1200 // Otherwise, fail. 1201 return nullptr; 1202 }); 1203 1204 // Initialize the conversion target. 1205 mlir::ConversionTarget target(getContext()); 1206 target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) { 1207 auto recursiveType = op.getType().dyn_cast<test::TestRecursiveType>(); 1208 return op.getType().isF64() || op.getType().isInteger(64) || 1209 (recursiveType && 1210 recursiveType.getName() == "outer_converted_type"); 1211 }); 1212 target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) { 1213 return converter.isSignatureLegal(op.getFunctionType()) && 1214 converter.isLegal(&op.getBody()); 1215 }); 1216 target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) { 1217 // Allow casts from F64 to F32. 1218 return (*op.operand_type_begin()).isF64() && op.getType().isF32(); 1219 }); 1220 target.addDynamicallyLegalOp<TestSignatureConversionNoConverterOp>( 1221 [&](TestSignatureConversionNoConverterOp op) { 1222 return converter.isLegal(op.getRegion().front().getArgumentTypes()); 1223 }); 1224 1225 // Initialize the set of rewrite patterns. 1226 RewritePatternSet patterns(&getContext()); 1227 patterns.add<TestTypeConsumerForward, TestTypeConversionProducer, 1228 TestSignatureConversionUndo, 1229 TestTestSignatureConversionNoConverter>(converter, 1230 &getContext()); 1231 patterns.add<TestTypeConversionAnotherProducer>(&getContext()); 1232 mlir::populateFunctionOpInterfaceTypeConversionPattern<func::FuncOp>( 1233 patterns, converter); 1234 1235 if (failed(applyPartialConversion(getOperation(), target, 1236 std::move(patterns)))) 1237 signalPassFailure(); 1238 } 1239 }; 1240 } // namespace 1241 1242 //===----------------------------------------------------------------------===// 1243 // Test Target Materialization With No Uses 1244 //===----------------------------------------------------------------------===// 1245 1246 namespace { 1247 struct ForwardOperandPattern : public OpConversionPattern<TestTypeChangerOp> { 1248 using OpConversionPattern<TestTypeChangerOp>::OpConversionPattern; 1249 1250 LogicalResult 1251 matchAndRewrite(TestTypeChangerOp op, OpAdaptor adaptor, 1252 ConversionPatternRewriter &rewriter) const final { 1253 rewriter.replaceOp(op, adaptor.getOperands()); 1254 return success(); 1255 } 1256 }; 1257 1258 struct TestTargetMaterializationWithNoUses 1259 : public PassWrapper<TestTargetMaterializationWithNoUses, 1260 OperationPass<ModuleOp>> { 1261 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID( 1262 TestTargetMaterializationWithNoUses) 1263 1264 StringRef getArgument() const final { 1265 return "test-target-materialization-with-no-uses"; 1266 } 1267 StringRef getDescription() const final { 1268 return "Test a special case of target materialization in DialectConversion"; 1269 } 1270 1271 void runOnOperation() override { 1272 TypeConverter converter; 1273 converter.addConversion([](Type t) { return t; }); 1274 converter.addConversion([](IntegerType intTy) -> Type { 1275 if (intTy.getWidth() == 16) 1276 return IntegerType::get(intTy.getContext(), 64); 1277 return intTy; 1278 }); 1279 converter.addTargetMaterialization( 1280 [](OpBuilder &builder, Type type, ValueRange inputs, Location loc) { 1281 return builder.create<TestCastOp>(loc, type, inputs).getResult(); 1282 }); 1283 1284 ConversionTarget target(getContext()); 1285 target.addIllegalOp<TestTypeChangerOp>(); 1286 1287 RewritePatternSet patterns(&getContext()); 1288 patterns.add<ForwardOperandPattern>(converter, &getContext()); 1289 1290 if (failed(applyPartialConversion(getOperation(), target, 1291 std::move(patterns)))) 1292 signalPassFailure(); 1293 } 1294 }; 1295 } // namespace 1296 1297 //===----------------------------------------------------------------------===// 1298 // Test Block Merging 1299 //===----------------------------------------------------------------------===// 1300 1301 namespace { 1302 /// A rewriter pattern that tests that blocks can be merged. 1303 struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> { 1304 using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern; 1305 1306 LogicalResult 1307 matchAndRewrite(TestMergeBlocksOp op, OpAdaptor adaptor, 1308 ConversionPatternRewriter &rewriter) const final { 1309 Block &firstBlock = op.getBody().front(); 1310 Operation *branchOp = firstBlock.getTerminator(); 1311 Block *secondBlock = &*(std::next(op.getBody().begin())); 1312 auto succOperands = branchOp->getOperands(); 1313 SmallVector<Value, 2> replacements(succOperands); 1314 rewriter.eraseOp(branchOp); 1315 rewriter.mergeBlocks(secondBlock, &firstBlock, replacements); 1316 rewriter.updateRootInPlace(op, [] {}); 1317 return success(); 1318 } 1319 }; 1320 1321 /// A rewrite pattern to tests the undo mechanism of blocks being merged. 1322 struct TestUndoBlocksMerge : public ConversionPattern { 1323 TestUndoBlocksMerge(MLIRContext *ctx) 1324 : ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {} 1325 LogicalResult 1326 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 1327 ConversionPatternRewriter &rewriter) const final { 1328 Block &firstBlock = op->getRegion(0).front(); 1329 Operation *branchOp = firstBlock.getTerminator(); 1330 Block *secondBlock = &*(std::next(op->getRegion(0).begin())); 1331 rewriter.setInsertionPointToStart(secondBlock); 1332 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 1333 auto succOperands = branchOp->getOperands(); 1334 SmallVector<Value, 2> replacements(succOperands); 1335 rewriter.eraseOp(branchOp); 1336 rewriter.mergeBlocks(secondBlock, &firstBlock, replacements); 1337 rewriter.updateRootInPlace(op, [] {}); 1338 return success(); 1339 } 1340 }; 1341 1342 /// A rewrite mechanism to inline the body of the op into its parent, when both 1343 /// ops can have a single block. 1344 struct TestMergeSingleBlockOps 1345 : public OpConversionPattern<SingleBlockImplicitTerminatorOp> { 1346 using OpConversionPattern< 1347 SingleBlockImplicitTerminatorOp>::OpConversionPattern; 1348 1349 LogicalResult 1350 matchAndRewrite(SingleBlockImplicitTerminatorOp op, OpAdaptor adaptor, 1351 ConversionPatternRewriter &rewriter) const final { 1352 SingleBlockImplicitTerminatorOp parentOp = 1353 op->getParentOfType<SingleBlockImplicitTerminatorOp>(); 1354 if (!parentOp) 1355 return failure(); 1356 Block &innerBlock = op.getRegion().front(); 1357 TerminatorOp innerTerminator = 1358 cast<TerminatorOp>(innerBlock.getTerminator()); 1359 rewriter.mergeBlockBefore(&innerBlock, op); 1360 rewriter.eraseOp(innerTerminator); 1361 rewriter.eraseOp(op); 1362 rewriter.updateRootInPlace(op, [] {}); 1363 return success(); 1364 } 1365 }; 1366 1367 struct TestMergeBlocksPatternDriver 1368 : public PassWrapper<TestMergeBlocksPatternDriver, 1369 OperationPass<ModuleOp>> { 1370 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestMergeBlocksPatternDriver) 1371 1372 StringRef getArgument() const final { return "test-merge-blocks"; } 1373 StringRef getDescription() const final { 1374 return "Test Merging operation in ConversionPatternRewriter"; 1375 } 1376 void runOnOperation() override { 1377 MLIRContext *context = &getContext(); 1378 mlir::RewritePatternSet patterns(context); 1379 patterns.add<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>( 1380 context); 1381 ConversionTarget target(*context); 1382 target.addLegalOp<func::FuncOp, ModuleOp, TerminatorOp, TestBranchOp, 1383 TestTypeConsumerOp, TestTypeProducerOp, TestReturnOp>(); 1384 target.addIllegalOp<ILLegalOpF>(); 1385 1386 /// Expect the op to have a single block after legalization. 1387 target.addDynamicallyLegalOp<TestMergeBlocksOp>( 1388 [&](TestMergeBlocksOp op) -> bool { 1389 return llvm::hasSingleElement(op.getBody()); 1390 }); 1391 1392 /// Only allow `test.br` within test.merge_blocks op. 1393 target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool { 1394 return op->getParentOfType<TestMergeBlocksOp>(); 1395 }); 1396 1397 /// Expect that all nested test.SingleBlockImplicitTerminator ops are 1398 /// inlined. 1399 target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>( 1400 [&](SingleBlockImplicitTerminatorOp op) -> bool { 1401 return !op->getParentOfType<SingleBlockImplicitTerminatorOp>(); 1402 }); 1403 1404 DenseSet<Operation *> unlegalizedOps; 1405 (void)applyPartialConversion(getOperation(), target, std::move(patterns), 1406 &unlegalizedOps); 1407 for (auto *op : unlegalizedOps) 1408 op->emitRemark() << "op '" << op->getName() << "' is not legalizable"; 1409 } 1410 }; 1411 } // namespace 1412 1413 //===----------------------------------------------------------------------===// 1414 // Test Selective Replacement 1415 //===----------------------------------------------------------------------===// 1416 1417 namespace { 1418 /// A rewrite mechanism to inline the body of the op into its parent, when both 1419 /// ops can have a single block. 1420 struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> { 1421 using OpRewritePattern<TestCastOp>::OpRewritePattern; 1422 1423 LogicalResult matchAndRewrite(TestCastOp op, 1424 PatternRewriter &rewriter) const final { 1425 if (op.getNumOperands() != 2) 1426 return failure(); 1427 OperandRange operands = op.getOperands(); 1428 1429 // Replace non-terminator uses with the first operand. 1430 rewriter.replaceOpWithIf(op, operands[0], [](OpOperand &operand) { 1431 return operand.getOwner()->hasTrait<OpTrait::IsTerminator>(); 1432 }); 1433 // Replace everything else with the second operand if the operation isn't 1434 // dead. 1435 rewriter.replaceOp(op, op.getOperand(1)); 1436 return success(); 1437 } 1438 }; 1439 1440 struct TestSelectiveReplacementPatternDriver 1441 : public PassWrapper<TestSelectiveReplacementPatternDriver, 1442 OperationPass<>> { 1443 MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID( 1444 TestSelectiveReplacementPatternDriver) 1445 1446 StringRef getArgument() const final { 1447 return "test-pattern-selective-replacement"; 1448 } 1449 StringRef getDescription() const final { 1450 return "Test selective replacement in the PatternRewriter"; 1451 } 1452 void runOnOperation() override { 1453 MLIRContext *context = &getContext(); 1454 mlir::RewritePatternSet patterns(context); 1455 patterns.add<TestSelectiveOpReplacementPattern>(context); 1456 (void)applyPatternsAndFoldGreedily(getOperation()->getRegions(), 1457 std::move(patterns)); 1458 } 1459 }; 1460 } // namespace 1461 1462 //===----------------------------------------------------------------------===// 1463 // PassRegistration 1464 //===----------------------------------------------------------------------===// 1465 1466 namespace mlir { 1467 namespace test { 1468 void registerPatternsTestPass() { 1469 PassRegistration<TestReturnTypeDriver>(); 1470 1471 PassRegistration<TestDerivedAttributeDriver>(); 1472 1473 PassRegistration<TestPatternDriver>(); 1474 1475 PassRegistration<TestLegalizePatternDriver>([] { 1476 return std::make_unique<TestLegalizePatternDriver>(legalizerConversionMode); 1477 }); 1478 1479 PassRegistration<TestRemappedValue>(); 1480 1481 PassRegistration<TestUnknownRootOpDriver>(); 1482 1483 PassRegistration<TestTypeConversionDriver>(); 1484 PassRegistration<TestTargetMaterializationWithNoUses>(); 1485 1486 PassRegistration<TestRewriteDynamicOpDriver>(); 1487 1488 PassRegistration<TestMergeBlocksPatternDriver>(); 1489 PassRegistration<TestSelectiveReplacementPatternDriver>(); 1490 } 1491 } // namespace test 1492 } // namespace mlir 1493