1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "TestDialect.h" 10 #include "mlir/Dialect/StandardOps/IR/Ops.h" 11 #include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h" 12 #include "mlir/IR/PatternMatch.h" 13 #include "mlir/Pass/Pass.h" 14 #include "mlir/Transforms/DialectConversion.h" 15 #include "mlir/Transforms/FoldUtils.h" 16 17 using namespace mlir; 18 19 // Native function for testing NativeCodeCall 20 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) { 21 return choice.getValue() ? input1 : input2; 22 } 23 24 static void createOpI(PatternRewriter &rewriter, Value input) { 25 rewriter.create<OpI>(rewriter.getUnknownLoc(), input); 26 } 27 28 static void handleNoResultOp(PatternRewriter &rewriter, 29 OpSymbolBindingNoResult op) { 30 // Turn the no result op to a one-result op. 31 rewriter.create<OpSymbolBindingB>(op.getLoc(), op.operand().getType(), 32 op.operand()); 33 } 34 35 namespace { 36 #include "TestPatterns.inc" 37 } // end anonymous namespace 38 39 //===----------------------------------------------------------------------===// 40 // Canonicalizer Driver. 41 //===----------------------------------------------------------------------===// 42 43 namespace { 44 struct FoldingPattern : public RewritePattern { 45 public: 46 FoldingPattern(MLIRContext *context) 47 : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(), 48 /*benefit=*/1, context) {} 49 50 LogicalResult matchAndRewrite(Operation *op, 51 PatternRewriter &rewriter) const override { 52 // Exercice OperationFolder API for a single-result operation that is folded 53 // upon construction. The operation being created through the folder has an 54 // in-place folder, and it should be still present in the output. 55 // Furthermore, the folder should not crash when attempting to recover the 56 // (unchanged) opeation result. 57 OperationFolder folder(op->getContext()); 58 Value result = folder.create<TestOpInPlaceFold>( 59 rewriter, op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0), 60 rewriter.getI32IntegerAttr(0)); 61 assert(result); 62 rewriter.replaceOp(op, result); 63 return success(); 64 } 65 }; 66 67 struct TestPatternDriver : public PassWrapper<TestPatternDriver, FunctionPass> { 68 void runOnFunction() override { 69 mlir::OwningRewritePatternList patterns; 70 populateWithGenerated(&getContext(), &patterns); 71 72 // Verify named pattern is generated with expected name. 73 patterns.insert<FoldingPattern, TestNamedPatternRule>(&getContext()); 74 75 applyPatternsAndFoldGreedily(getFunction(), patterns); 76 } 77 }; 78 } // end anonymous namespace 79 80 //===----------------------------------------------------------------------===// 81 // ReturnType Driver. 82 //===----------------------------------------------------------------------===// 83 84 namespace { 85 // Generate ops for each instance where the type can be successfully inferred. 86 template <typename OpTy> 87 static void invokeCreateWithInferredReturnType(Operation *op) { 88 auto *context = op->getContext(); 89 auto fop = op->getParentOfType<FuncOp>(); 90 auto location = UnknownLoc::get(context); 91 OpBuilder b(op); 92 b.setInsertionPointAfter(op); 93 94 // Use permutations of 2 args as operands. 95 assert(fop.getNumArguments() >= 2); 96 for (int i = 0, e = fop.getNumArguments(); i < e; ++i) { 97 for (int j = 0; j < e; ++j) { 98 std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}}; 99 SmallVector<Type, 2> inferredReturnTypes; 100 if (succeeded(OpTy::inferReturnTypes( 101 context, llvm::None, values, op->getAttrDictionary(), 102 op->getRegions(), inferredReturnTypes))) { 103 OperationState state(location, OpTy::getOperationName()); 104 // TODO(jpienaar): Expand to regions. 105 OpTy::build(b, state, values, op->getAttrs()); 106 (void)b.createOperation(state); 107 } 108 } 109 } 110 } 111 112 static void reifyReturnShape(Operation *op) { 113 OpBuilder b(op); 114 115 // Use permutations of 2 args as operands. 116 auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op); 117 SmallVector<Value, 2> shapes; 118 if (failed(shapedOp.reifyReturnTypeShapes(b, shapes))) 119 return; 120 for (auto it : llvm::enumerate(shapes)) 121 op->emitRemark() << "value " << it.index() << ": " 122 << it.value().getDefiningOp(); 123 } 124 125 struct TestReturnTypeDriver 126 : public PassWrapper<TestReturnTypeDriver, FunctionPass> { 127 void runOnFunction() override { 128 if (getFunction().getName() == "testCreateFunctions") { 129 std::vector<Operation *> ops; 130 // Collect ops to avoid triggering on inserted ops. 131 for (auto &op : getFunction().getBody().front()) 132 ops.push_back(&op); 133 // Generate test patterns for each, but skip terminator. 134 for (auto *op : llvm::makeArrayRef(ops).drop_back()) { 135 // Test create method of each of the Op classes below. The resultant 136 // output would be in reverse order underneath `op` from which 137 // the attributes and regions are used. 138 invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op); 139 invokeCreateWithInferredReturnType< 140 OpWithShapedTypeInferTypeInterfaceOp>(op); 141 }; 142 return; 143 } 144 if (getFunction().getName() == "testReifyFunctions") { 145 std::vector<Operation *> ops; 146 // Collect ops to avoid triggering on inserted ops. 147 for (auto &op : getFunction().getBody().front()) 148 if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op)) 149 ops.push_back(&op); 150 // Generate test patterns for each, but skip terminator. 151 for (auto *op : ops) 152 reifyReturnShape(op); 153 } 154 } 155 }; 156 } // end anonymous namespace 157 158 namespace { 159 struct TestDerivedAttributeDriver 160 : public PassWrapper<TestDerivedAttributeDriver, FunctionPass> { 161 void runOnFunction() override; 162 }; 163 } // end anonymous namespace 164 165 void TestDerivedAttributeDriver::runOnFunction() { 166 getFunction().walk([](DerivedAttributeOpInterface dOp) { 167 auto dAttr = dOp.materializeDerivedAttributes(); 168 if (!dAttr) 169 return; 170 for (auto d : dAttr) 171 dOp.emitRemark() << d.first << " = " << d.second; 172 }); 173 } 174 175 //===----------------------------------------------------------------------===// 176 // Legalization Driver. 177 //===----------------------------------------------------------------------===// 178 179 namespace { 180 //===----------------------------------------------------------------------===// 181 // Region-Block Rewrite Testing 182 183 /// This pattern is a simple pattern that inlines the first region of a given 184 /// operation into the parent region. 185 struct TestRegionRewriteBlockMovement : public ConversionPattern { 186 TestRegionRewriteBlockMovement(MLIRContext *ctx) 187 : ConversionPattern("test.region", 1, ctx) {} 188 189 LogicalResult 190 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 191 ConversionPatternRewriter &rewriter) const final { 192 // Inline this region into the parent region. 193 auto &parentRegion = *op->getParentRegion(); 194 if (op->getAttr("legalizer.should_clone")) 195 rewriter.cloneRegionBefore(op->getRegion(0), parentRegion, 196 parentRegion.end()); 197 else 198 rewriter.inlineRegionBefore(op->getRegion(0), parentRegion, 199 parentRegion.end()); 200 201 // Drop this operation. 202 rewriter.eraseOp(op); 203 return success(); 204 } 205 }; 206 /// This pattern is a simple pattern that generates a region containing an 207 /// illegal operation. 208 struct TestRegionRewriteUndo : public RewritePattern { 209 TestRegionRewriteUndo(MLIRContext *ctx) 210 : RewritePattern("test.region_builder", 1, ctx) {} 211 212 LogicalResult matchAndRewrite(Operation *op, 213 PatternRewriter &rewriter) const final { 214 // Create the region operation with an entry block containing arguments. 215 OperationState newRegion(op->getLoc(), "test.region"); 216 newRegion.addRegion(); 217 auto *regionOp = rewriter.createOperation(newRegion); 218 auto *entryBlock = rewriter.createBlock(®ionOp->getRegion(0)); 219 entryBlock->addArgument(rewriter.getIntegerType(64)); 220 221 // Add an explicitly illegal operation to ensure the conversion fails. 222 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32)); 223 rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>()); 224 225 // Drop this operation. 226 rewriter.eraseOp(op); 227 return success(); 228 } 229 }; 230 /// A simple pattern that creates a block at the end of the parent region of the 231 /// matched operation. 232 struct TestCreateBlock : public RewritePattern { 233 TestCreateBlock(MLIRContext *ctx) 234 : RewritePattern("test.create_block", /*benefit=*/1, ctx) {} 235 236 LogicalResult matchAndRewrite(Operation *op, 237 PatternRewriter &rewriter) const final { 238 Region ®ion = *op->getParentRegion(); 239 Type i32Type = rewriter.getIntegerType(32); 240 rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}); 241 rewriter.create<TerminatorOp>(op->getLoc()); 242 rewriter.replaceOp(op, {}); 243 return success(); 244 } 245 }; 246 247 /// A simple pattern that creates a block containing an invalid operaiton in 248 /// order to trigger the block creation undo mechanism. 249 struct TestCreateIllegalBlock : public RewritePattern { 250 TestCreateIllegalBlock(MLIRContext *ctx) 251 : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {} 252 253 LogicalResult matchAndRewrite(Operation *op, 254 PatternRewriter &rewriter) const final { 255 Region ®ion = *op->getParentRegion(); 256 Type i32Type = rewriter.getIntegerType(32); 257 rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}); 258 // Create an illegal op to ensure the conversion fails. 259 rewriter.create<ILLegalOpF>(op->getLoc(), i32Type); 260 rewriter.create<TerminatorOp>(op->getLoc()); 261 rewriter.replaceOp(op, {}); 262 return success(); 263 } 264 }; 265 266 /// A simple pattern that tests the undo mechanism when replacing the uses of a 267 /// block argument. 268 struct TestUndoBlockArgReplace : public ConversionPattern { 269 TestUndoBlockArgReplace(MLIRContext *ctx) 270 : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {} 271 272 LogicalResult 273 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 274 ConversionPatternRewriter &rewriter) const final { 275 auto illegalOp = 276 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 277 rewriter.replaceUsesOfBlockArgument(op->getRegion(0).front().getArgument(0), 278 illegalOp); 279 rewriter.updateRootInPlace(op, [] {}); 280 return success(); 281 } 282 }; 283 284 /// A rewrite pattern that tests the undo mechanism when erasing a block. 285 struct TestUndoBlockErase : public ConversionPattern { 286 TestUndoBlockErase(MLIRContext *ctx) 287 : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {} 288 289 LogicalResult 290 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 291 ConversionPatternRewriter &rewriter) const final { 292 Block *secondBlock = &*std::next(op->getRegion(0).begin()); 293 rewriter.setInsertionPointToStart(secondBlock); 294 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 295 rewriter.eraseBlock(secondBlock); 296 rewriter.updateRootInPlace(op, [] {}); 297 return success(); 298 } 299 }; 300 301 //===----------------------------------------------------------------------===// 302 // Type-Conversion Rewrite Testing 303 304 /// This patterns erases a region operation that has had a type conversion. 305 struct TestDropOpSignatureConversion : public ConversionPattern { 306 TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter) 307 : ConversionPattern("test.drop_region_op", 1, ctx), converter(converter) { 308 } 309 LogicalResult 310 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 311 ConversionPatternRewriter &rewriter) const override { 312 Region ®ion = op->getRegion(0); 313 Block *entry = ®ion.front(); 314 315 // Convert the original entry arguments. 316 TypeConverter::SignatureConversion result(entry->getNumArguments()); 317 for (unsigned i = 0, e = entry->getNumArguments(); i != e; ++i) 318 if (failed(converter.convertSignatureArg( 319 i, entry->getArgument(i).getType(), result))) 320 return failure(); 321 322 // Convert the region signature and just drop the operation. 323 rewriter.applySignatureConversion(®ion, result); 324 rewriter.eraseOp(op); 325 return success(); 326 } 327 328 /// The type converter to use when rewriting the signature. 329 TypeConverter &converter; 330 }; 331 /// This pattern simply updates the operands of the given operation. 332 struct TestPassthroughInvalidOp : public ConversionPattern { 333 TestPassthroughInvalidOp(MLIRContext *ctx) 334 : ConversionPattern("test.invalid", 1, ctx) {} 335 LogicalResult 336 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 337 ConversionPatternRewriter &rewriter) const final { 338 rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands, 339 llvm::None); 340 return success(); 341 } 342 }; 343 /// This pattern handles the case of a split return value. 344 struct TestSplitReturnType : public ConversionPattern { 345 TestSplitReturnType(MLIRContext *ctx) 346 : ConversionPattern("test.return", 1, ctx) {} 347 LogicalResult 348 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 349 ConversionPatternRewriter &rewriter) const final { 350 // Check for a return of F32. 351 if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32()) 352 return failure(); 353 354 // Check if the first operation is a cast operation, if it is we use the 355 // results directly. 356 auto *defOp = operands[0].getDefiningOp(); 357 if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) { 358 rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands()); 359 return success(); 360 } 361 362 // Otherwise, fail to match. 363 return failure(); 364 } 365 }; 366 367 //===----------------------------------------------------------------------===// 368 // Multi-Level Type-Conversion Rewrite Testing 369 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern { 370 TestChangeProducerTypeI32ToF32(MLIRContext *ctx) 371 : ConversionPattern("test.type_producer", 1, ctx) {} 372 LogicalResult 373 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 374 ConversionPatternRewriter &rewriter) const final { 375 // If the type is I32, change the type to F32. 376 if (!Type(*op->result_type_begin()).isSignlessInteger(32)) 377 return failure(); 378 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type()); 379 return success(); 380 } 381 }; 382 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern { 383 TestChangeProducerTypeF32ToF64(MLIRContext *ctx) 384 : ConversionPattern("test.type_producer", 1, ctx) {} 385 LogicalResult 386 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 387 ConversionPatternRewriter &rewriter) const final { 388 // If the type is F32, change the type to F64. 389 if (!Type(*op->result_type_begin()).isF32()) 390 return rewriter.notifyMatchFailure(op, "expected single f32 operand"); 391 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type()); 392 return success(); 393 } 394 }; 395 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern { 396 TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx) 397 : ConversionPattern("test.type_producer", 10, ctx) {} 398 LogicalResult 399 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 400 ConversionPatternRewriter &rewriter) const final { 401 // Always convert to B16, even though it is not a legal type. This tests 402 // that values are unmapped correctly. 403 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type()); 404 return success(); 405 } 406 }; 407 struct TestUpdateConsumerType : public ConversionPattern { 408 TestUpdateConsumerType(MLIRContext *ctx) 409 : ConversionPattern("test.type_consumer", 1, ctx) {} 410 LogicalResult 411 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 412 ConversionPatternRewriter &rewriter) const final { 413 // Verify that the incoming operand has been successfully remapped to F64. 414 if (!operands[0].getType().isF64()) 415 return failure(); 416 rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]); 417 return success(); 418 } 419 }; 420 421 //===----------------------------------------------------------------------===// 422 // Non-Root Replacement Rewrite Testing 423 /// This pattern generates an invalid operation, but replaces it before the 424 /// pattern is finished. This checks that we don't need to legalize the 425 /// temporary op. 426 struct TestNonRootReplacement : public RewritePattern { 427 TestNonRootReplacement(MLIRContext *ctx) 428 : RewritePattern("test.replace_non_root", 1, ctx) {} 429 430 LogicalResult matchAndRewrite(Operation *op, 431 PatternRewriter &rewriter) const final { 432 auto resultType = *op->result_type_begin(); 433 auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType); 434 auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType); 435 436 rewriter.replaceOp(illegalOp, {legalOp}); 437 rewriter.replaceOp(op, {illegalOp}); 438 return success(); 439 } 440 }; 441 442 //===----------------------------------------------------------------------===// 443 // Recursive Rewrite Testing 444 /// This pattern is applied to the same operation multiple times, but has a 445 /// bounded recursion. 446 struct TestBoundedRecursiveRewrite 447 : public OpRewritePattern<TestRecursiveRewriteOp> { 448 using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern; 449 450 LogicalResult matchAndRewrite(TestRecursiveRewriteOp op, 451 PatternRewriter &rewriter) const final { 452 // Decrement the depth of the op in-place. 453 rewriter.updateRootInPlace(op, [&] { 454 op.setAttr("depth", 455 rewriter.getI64IntegerAttr(op.depth().getSExtValue() - 1)); 456 }); 457 return success(); 458 } 459 460 /// The conversion target handles bounding the recursion of this pattern. 461 bool hasBoundedRewriteRecursion() const final { return true; } 462 }; 463 464 struct TestNestedOpCreationUndoRewrite 465 : public OpRewritePattern<IllegalOpWithRegionAnchor> { 466 using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern; 467 468 LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op, 469 PatternRewriter &rewriter) const final { 470 // rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op); 471 rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op); 472 return success(); 473 }; 474 }; 475 } // namespace 476 477 namespace { 478 struct TestTypeConverter : public TypeConverter { 479 using TypeConverter::TypeConverter; 480 TestTypeConverter() { 481 addConversion(convertType); 482 addMaterialization(materializeCast); 483 addMaterialization(materializeOneToOneCast); 484 } 485 486 static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) { 487 // Drop I16 types. 488 if (t.isSignlessInteger(16)) 489 return success(); 490 491 // Convert I64 to F64. 492 if (t.isSignlessInteger(64)) { 493 results.push_back(FloatType::getF64(t.getContext())); 494 return success(); 495 } 496 497 // Convert I42 to I43. 498 if (t.isInteger(42)) { 499 results.push_back(IntegerType::get(43, t.getContext())); 500 return success(); 501 } 502 503 // Split F32 into F16,F16. 504 if (t.isF32()) { 505 results.assign(2, FloatType::getF16(t.getContext())); 506 return success(); 507 } 508 509 // Otherwise, convert the type directly. 510 results.push_back(t); 511 return success(); 512 } 513 514 /// Hook for materializing a conversion. This is necessary because we generate 515 /// 1->N type mappings. 516 static Optional<Value> materializeCast(PatternRewriter &rewriter, 517 Type resultType, ValueRange inputs, 518 Location loc) { 519 if (inputs.size() == 1) 520 return inputs[0]; 521 return rewriter.create<TestCastOp>(loc, resultType, inputs).getResult(); 522 } 523 524 /// Materialize the cast for one-to-one conversion from i64 to f64. 525 static Optional<Value> materializeOneToOneCast(PatternRewriter &rewriter, 526 IntegerType resultType, 527 ValueRange inputs, 528 Location loc) { 529 if (resultType.getWidth() == 42 && inputs.size() == 1) 530 return rewriter.create<TestCastOp>(loc, resultType, inputs).getResult(); 531 return llvm::None; 532 } 533 }; 534 535 struct TestLegalizePatternDriver 536 : public PassWrapper<TestLegalizePatternDriver, OperationPass<ModuleOp>> { 537 /// The mode of conversion to use with the driver. 538 enum class ConversionMode { Analysis, Full, Partial }; 539 540 TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {} 541 542 void runOnOperation() override { 543 TestTypeConverter converter; 544 mlir::OwningRewritePatternList patterns; 545 populateWithGenerated(&getContext(), &patterns); 546 patterns.insert< 547 TestRegionRewriteBlockMovement, TestRegionRewriteUndo, TestCreateBlock, 548 TestCreateIllegalBlock, TestUndoBlockArgReplace, TestUndoBlockErase, 549 TestPassthroughInvalidOp, TestSplitReturnType, 550 TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64, 551 TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType, 552 TestNonRootReplacement, TestBoundedRecursiveRewrite, 553 TestNestedOpCreationUndoRewrite>(&getContext()); 554 patterns.insert<TestDropOpSignatureConversion>(&getContext(), converter); 555 mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(), 556 converter); 557 mlir::populateCallOpTypeConversionPattern(patterns, &getContext(), 558 converter); 559 560 // Define the conversion target used for the test. 561 ConversionTarget target(getContext()); 562 target.addLegalOp<ModuleOp, ModuleTerminatorOp>(); 563 target.addLegalOp<LegalOpA, LegalOpB, TestCastOp, TestValidOp, 564 TerminatorOp>(); 565 target 566 .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>(); 567 target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) { 568 // Don't allow F32 operands. 569 return llvm::none_of(op.getOperandTypes(), 570 [](Type type) { return type.isF32(); }); 571 }); 572 target.addDynamicallyLegalOp<FuncOp>( 573 [&](FuncOp op) { return converter.isSignatureLegal(op.getType()); }); 574 575 // Expect the type_producer/type_consumer operations to only operate on f64. 576 target.addDynamicallyLegalOp<TestTypeProducerOp>( 577 [](TestTypeProducerOp op) { return op.getType().isF64(); }); 578 target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) { 579 return op.getOperand().getType().isF64(); 580 }); 581 582 // Check support for marking certain operations as recursively legal. 583 target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) { 584 return static_cast<bool>( 585 op->getAttrOfType<UnitAttr>("test.recursively_legal")); 586 }); 587 588 // Mark the bound recursion operation as dynamically legal. 589 target.addDynamicallyLegalOp<TestRecursiveRewriteOp>( 590 [](TestRecursiveRewriteOp op) { return op.depth() == 0; }); 591 592 // Handle a partial conversion. 593 if (mode == ConversionMode::Partial) { 594 DenseSet<Operation *> unlegalizedOps; 595 (void)applyPartialConversion(getOperation(), target, patterns, &converter, 596 &unlegalizedOps); 597 // Emit remarks for each legalizable operation. 598 for (auto *op : unlegalizedOps) 599 op->emitRemark() << "op '" << op->getName() << "' is not legalizable"; 600 return; 601 } 602 603 // Handle a full conversion. 604 if (mode == ConversionMode::Full) { 605 // Check support for marking unknown operations as dynamically legal. 606 target.markUnknownOpDynamicallyLegal([](Operation *op) { 607 return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal"); 608 }); 609 610 (void)applyFullConversion(getOperation(), target, patterns, &converter); 611 return; 612 } 613 614 // Otherwise, handle an analysis conversion. 615 assert(mode == ConversionMode::Analysis); 616 617 // Analyze the convertible operations. 618 DenseSet<Operation *> legalizedOps; 619 if (failed(applyAnalysisConversion(getOperation(), target, patterns, 620 legalizedOps, &converter))) 621 return signalPassFailure(); 622 623 // Emit remarks for each legalizable operation. 624 for (auto *op : legalizedOps) 625 op->emitRemark() << "op '" << op->getName() << "' is legalizable"; 626 } 627 628 /// The mode of conversion to use. 629 ConversionMode mode; 630 }; 631 } // end anonymous namespace 632 633 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode> 634 legalizerConversionMode( 635 "test-legalize-mode", 636 llvm::cl::desc("The legalization mode to use with the test driver"), 637 llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial), 638 llvm::cl::values( 639 clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis, 640 "analysis", "Perform an analysis conversion"), 641 clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full", 642 "Perform a full conversion"), 643 clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial, 644 "partial", "Perform a partial conversion"))); 645 646 //===----------------------------------------------------------------------===// 647 // ConversionPatternRewriter::getRemappedValue testing. This method is used 648 // to get the remapped value of an original value that was replaced using 649 // ConversionPatternRewriter. 650 namespace { 651 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with 652 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original 653 /// operand twice. 654 /// 655 /// Example: 656 /// %1 = test.one_variadic_out_one_variadic_in1"(%0) 657 /// is replaced with: 658 /// %1 = test.one_variadic_out_one_variadic_in1"(%0, %0) 659 struct OneVResOneVOperandOp1Converter 660 : public OpConversionPattern<OneVResOneVOperandOp1> { 661 using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern; 662 663 LogicalResult 664 matchAndRewrite(OneVResOneVOperandOp1 op, ArrayRef<Value> operands, 665 ConversionPatternRewriter &rewriter) const override { 666 auto origOps = op.getOperands(); 667 assert(std::distance(origOps.begin(), origOps.end()) == 1 && 668 "One operand expected"); 669 Value origOp = *origOps.begin(); 670 SmallVector<Value, 2> remappedOperands; 671 // Replicate the remapped original operand twice. Note that we don't used 672 // the remapped 'operand' since the goal is testing 'getRemappedValue'. 673 remappedOperands.push_back(rewriter.getRemappedValue(origOp)); 674 remappedOperands.push_back(rewriter.getRemappedValue(origOp)); 675 676 rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(), 677 remappedOperands); 678 return success(); 679 } 680 }; 681 682 struct TestRemappedValue 683 : public mlir::PassWrapper<TestRemappedValue, FunctionPass> { 684 void runOnFunction() override { 685 mlir::OwningRewritePatternList patterns; 686 patterns.insert<OneVResOneVOperandOp1Converter>(&getContext()); 687 688 mlir::ConversionTarget target(getContext()); 689 target.addLegalOp<ModuleOp, ModuleTerminatorOp, FuncOp, TestReturnOp>(); 690 // We make OneVResOneVOperandOp1 legal only when it has more that one 691 // operand. This will trigger the conversion that will replace one-operand 692 // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1. 693 target.addDynamicallyLegalOp<OneVResOneVOperandOp1>( 694 [](Operation *op) -> bool { 695 return std::distance(op->operand_begin(), op->operand_end()) > 1; 696 }); 697 698 if (failed(mlir::applyFullConversion(getFunction(), target, patterns))) { 699 signalPassFailure(); 700 } 701 } 702 }; 703 } // end anonymous namespace 704 705 namespace mlir { 706 void registerPatternsTestPass() { 707 mlir::PassRegistration<TestReturnTypeDriver>("test-return-type", 708 "Run return type functions"); 709 710 mlir::PassRegistration<TestDerivedAttributeDriver>( 711 "test-derived-attr", "Run test derived attributes"); 712 713 mlir::PassRegistration<TestPatternDriver>("test-patterns", 714 "Run test dialect patterns"); 715 716 mlir::PassRegistration<TestLegalizePatternDriver>( 717 "test-legalize-patterns", "Run test dialect legalization patterns", [] { 718 return std::make_unique<TestLegalizePatternDriver>( 719 legalizerConversionMode); 720 }); 721 722 PassRegistration<TestRemappedValue>( 723 "test-remapped-value", 724 "Test public remapped value mechanism in ConversionPatternRewriter"); 725 } 726 } // namespace mlir 727