1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "TestDialect.h"
10 #include "mlir/Dialect/StandardOps/IR/Ops.h"
11 #include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
12 #include "mlir/Dialect/Tensor/IR/Tensor.h"
13 #include "mlir/IR/Matchers.h"
14 #include "mlir/Pass/Pass.h"
15 #include "mlir/Transforms/DialectConversion.h"
16 #include "mlir/Transforms/FoldUtils.h"
17 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
18 
19 using namespace mlir;
20 using namespace test;
21 
22 // Native function for testing NativeCodeCall
23 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
24   return choice.getValue() ? input1 : input2;
25 }
26 
27 static void createOpI(PatternRewriter &rewriter, Location loc, Value input) {
28   rewriter.create<OpI>(loc, input);
29 }
30 
31 static void handleNoResultOp(PatternRewriter &rewriter,
32                              OpSymbolBindingNoResult op) {
33   // Turn the no result op to a one-result op.
34   rewriter.create<OpSymbolBindingB>(op.getLoc(), op.operand().getType(),
35                                     op.operand());
36 }
37 
38 static bool getFirstI32Result(Operation *op, Value &value) {
39   if (!Type(op->getResult(0).getType()).isSignlessInteger(32))
40     return false;
41   value = op->getResult(0);
42   return true;
43 }
44 
45 static Value bindNativeCodeCallResult(Value value) { return value; }
46 
47 static SmallVector<Value, 2> bindMultipleNativeCodeCallResult(Value input1,
48                                                               Value input2) {
49   return SmallVector<Value, 2>({input2, input1});
50 }
51 
52 // Test that natives calls are only called once during rewrites.
53 // OpM_Test will return Pi, increased by 1 for each subsequent calls.
54 // This let us check the number of times OpM_Test was called by inspecting
55 // the returned value in the MLIR output.
56 static int64_t opMIncreasingValue = 314159265;
57 static Attribute OpMTest(PatternRewriter &rewriter, Value val) {
58   int64_t i = opMIncreasingValue++;
59   return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i);
60 }
61 
62 namespace {
63 #include "TestPatterns.inc"
64 } // end anonymous namespace
65 
66 //===----------------------------------------------------------------------===//
67 // Test Reduce Pattern Interface
68 //===----------------------------------------------------------------------===//
69 
70 void test::populateTestReductionPatterns(RewritePatternSet &patterns) {
71   populateWithGenerated(patterns);
72 }
73 
74 //===----------------------------------------------------------------------===//
75 // Canonicalizer Driver.
76 //===----------------------------------------------------------------------===//
77 
78 namespace {
79 struct FoldingPattern : public RewritePattern {
80 public:
81   FoldingPattern(MLIRContext *context)
82       : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(),
83                        /*benefit=*/1, context) {}
84 
85   LogicalResult matchAndRewrite(Operation *op,
86                                 PatternRewriter &rewriter) const override {
87     // Exercise OperationFolder API for a single-result operation that is folded
88     // upon construction. The operation being created through the folder has an
89     // in-place folder, and it should be still present in the output.
90     // Furthermore, the folder should not crash when attempting to recover the
91     // (unchanged) operation result.
92     OperationFolder folder(op->getContext());
93     Value result = folder.create<TestOpInPlaceFold>(
94         rewriter, op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0),
95         rewriter.getI32IntegerAttr(0));
96     assert(result);
97     rewriter.replaceOp(op, result);
98     return success();
99   }
100 };
101 
102 /// This pattern creates a foldable operation at the entry point of the block.
103 /// This tests the situation where the operation folder will need to replace an
104 /// operation with a previously created constant that does not initially
105 /// dominate the operation to replace.
106 struct FolderInsertBeforePreviouslyFoldedConstantPattern
107     : public OpRewritePattern<TestCastOp> {
108 public:
109   using OpRewritePattern<TestCastOp>::OpRewritePattern;
110 
111   LogicalResult matchAndRewrite(TestCastOp op,
112                                 PatternRewriter &rewriter) const override {
113     if (!op->hasAttr("test_fold_before_previously_folded_op"))
114       return failure();
115     rewriter.setInsertionPointToStart(op->getBlock());
116 
117     auto constOp =
118         rewriter.create<ConstantOp>(op.getLoc(), rewriter.getBoolAttr(true));
119     rewriter.replaceOpWithNewOp<TestCastOp>(op, rewriter.getI32Type(),
120                                             Value(constOp));
121     return success();
122   }
123 };
124 
125 struct TestPatternDriver : public PassWrapper<TestPatternDriver, FunctionPass> {
126   StringRef getArgument() const final { return "test-patterns"; }
127   StringRef getDescription() const final { return "Run test dialect patterns"; }
128   void runOnFunction() override {
129     mlir::RewritePatternSet patterns(&getContext());
130     populateWithGenerated(patterns);
131 
132     // Verify named pattern is generated with expected name.
133     patterns.add<FoldingPattern, TestNamedPatternRule,
134                  FolderInsertBeforePreviouslyFoldedConstantPattern>(
135         &getContext());
136 
137     (void)applyPatternsAndFoldGreedily(getFunction(), std::move(patterns));
138   }
139 };
140 } // end anonymous namespace
141 
142 //===----------------------------------------------------------------------===//
143 // ReturnType Driver.
144 //===----------------------------------------------------------------------===//
145 
146 namespace {
147 // Generate ops for each instance where the type can be successfully inferred.
148 template <typename OpTy>
149 static void invokeCreateWithInferredReturnType(Operation *op) {
150   auto *context = op->getContext();
151   auto fop = op->getParentOfType<FuncOp>();
152   auto location = UnknownLoc::get(context);
153   OpBuilder b(op);
154   b.setInsertionPointAfter(op);
155 
156   // Use permutations of 2 args as operands.
157   assert(fop.getNumArguments() >= 2);
158   for (int i = 0, e = fop.getNumArguments(); i < e; ++i) {
159     for (int j = 0; j < e; ++j) {
160       std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}};
161       SmallVector<Type, 2> inferredReturnTypes;
162       if (succeeded(OpTy::inferReturnTypes(
163               context, llvm::None, values, op->getAttrDictionary(),
164               op->getRegions(), inferredReturnTypes))) {
165         OperationState state(location, OpTy::getOperationName());
166         // TODO: Expand to regions.
167         OpTy::build(b, state, values, op->getAttrs());
168         (void)b.createOperation(state);
169       }
170     }
171   }
172 }
173 
174 static void reifyReturnShape(Operation *op) {
175   OpBuilder b(op);
176 
177   // Use permutations of 2 args as operands.
178   auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op);
179   SmallVector<Value, 2> shapes;
180   if (failed(shapedOp.reifyReturnTypeShapes(b, op->getOperands(), shapes)) ||
181       !llvm::hasSingleElement(shapes))
182     return;
183   for (auto it : llvm::enumerate(shapes)) {
184     op->emitRemark() << "value " << it.index() << ": "
185                      << it.value().getDefiningOp();
186   }
187 }
188 
189 struct TestReturnTypeDriver
190     : public PassWrapper<TestReturnTypeDriver, FunctionPass> {
191   void getDependentDialects(DialectRegistry &registry) const override {
192     registry.insert<tensor::TensorDialect>();
193   }
194   StringRef getArgument() const final { return "test-return-type"; }
195   StringRef getDescription() const final { return "Run return type functions"; }
196 
197   void runOnFunction() override {
198     if (getFunction().getName() == "testCreateFunctions") {
199       std::vector<Operation *> ops;
200       // Collect ops to avoid triggering on inserted ops.
201       for (auto &op : getFunction().getBody().front())
202         ops.push_back(&op);
203       // Generate test patterns for each, but skip terminator.
204       for (auto *op : llvm::makeArrayRef(ops).drop_back()) {
205         // Test create method of each of the Op classes below. The resultant
206         // output would be in reverse order underneath `op` from which
207         // the attributes and regions are used.
208         invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op);
209         invokeCreateWithInferredReturnType<
210             OpWithShapedTypeInferTypeInterfaceOp>(op);
211       };
212       return;
213     }
214     if (getFunction().getName() == "testReifyFunctions") {
215       std::vector<Operation *> ops;
216       // Collect ops to avoid triggering on inserted ops.
217       for (auto &op : getFunction().getBody().front())
218         if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op))
219           ops.push_back(&op);
220       // Generate test patterns for each, but skip terminator.
221       for (auto *op : ops)
222         reifyReturnShape(op);
223     }
224   }
225 };
226 } // end anonymous namespace
227 
228 namespace {
229 struct TestDerivedAttributeDriver
230     : public PassWrapper<TestDerivedAttributeDriver, FunctionPass> {
231   StringRef getArgument() const final { return "test-derived-attr"; }
232   StringRef getDescription() const final {
233     return "Run test derived attributes";
234   }
235   void runOnFunction() override;
236 };
237 } // end anonymous namespace
238 
239 void TestDerivedAttributeDriver::runOnFunction() {
240   getFunction().walk([](DerivedAttributeOpInterface dOp) {
241     auto dAttr = dOp.materializeDerivedAttributes();
242     if (!dAttr)
243       return;
244     for (auto d : dAttr)
245       dOp.emitRemark() << d.first << " = " << d.second;
246   });
247 }
248 
249 //===----------------------------------------------------------------------===//
250 // Legalization Driver.
251 //===----------------------------------------------------------------------===//
252 
253 namespace {
254 //===----------------------------------------------------------------------===//
255 // Region-Block Rewrite Testing
256 
257 /// This pattern is a simple pattern that inlines the first region of a given
258 /// operation into the parent region.
259 struct TestRegionRewriteBlockMovement : public ConversionPattern {
260   TestRegionRewriteBlockMovement(MLIRContext *ctx)
261       : ConversionPattern("test.region", 1, ctx) {}
262 
263   LogicalResult
264   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
265                   ConversionPatternRewriter &rewriter) const final {
266     // Inline this region into the parent region.
267     auto &parentRegion = *op->getParentRegion();
268     auto &opRegion = op->getRegion(0);
269     if (op->getAttr("legalizer.should_clone"))
270       rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end());
271     else
272       rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end());
273 
274     if (op->getAttr("legalizer.erase_old_blocks")) {
275       while (!opRegion.empty())
276         rewriter.eraseBlock(&opRegion.front());
277     }
278 
279     // Drop this operation.
280     rewriter.eraseOp(op);
281     return success();
282   }
283 };
284 /// This pattern is a simple pattern that generates a region containing an
285 /// illegal operation.
286 struct TestRegionRewriteUndo : public RewritePattern {
287   TestRegionRewriteUndo(MLIRContext *ctx)
288       : RewritePattern("test.region_builder", 1, ctx) {}
289 
290   LogicalResult matchAndRewrite(Operation *op,
291                                 PatternRewriter &rewriter) const final {
292     // Create the region operation with an entry block containing arguments.
293     OperationState newRegion(op->getLoc(), "test.region");
294     newRegion.addRegion();
295     auto *regionOp = rewriter.createOperation(newRegion);
296     auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
297     entryBlock->addArgument(rewriter.getIntegerType(64));
298 
299     // Add an explicitly illegal operation to ensure the conversion fails.
300     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
301     rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());
302 
303     // Drop this operation.
304     rewriter.eraseOp(op);
305     return success();
306   }
307 };
308 /// A simple pattern that creates a block at the end of the parent region of the
309 /// matched operation.
310 struct TestCreateBlock : public RewritePattern {
311   TestCreateBlock(MLIRContext *ctx)
312       : RewritePattern("test.create_block", /*benefit=*/1, ctx) {}
313 
314   LogicalResult matchAndRewrite(Operation *op,
315                                 PatternRewriter &rewriter) const final {
316     Region &region = *op->getParentRegion();
317     Type i32Type = rewriter.getIntegerType(32);
318     rewriter.createBlock(&region, region.end(), {i32Type, i32Type});
319     rewriter.create<TerminatorOp>(op->getLoc());
320     rewriter.replaceOp(op, {});
321     return success();
322   }
323 };
324 
325 /// A simple pattern that creates a block containing an invalid operation in
326 /// order to trigger the block creation undo mechanism.
327 struct TestCreateIllegalBlock : public RewritePattern {
328   TestCreateIllegalBlock(MLIRContext *ctx)
329       : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {}
330 
331   LogicalResult matchAndRewrite(Operation *op,
332                                 PatternRewriter &rewriter) const final {
333     Region &region = *op->getParentRegion();
334     Type i32Type = rewriter.getIntegerType(32);
335     rewriter.createBlock(&region, region.end(), {i32Type, i32Type});
336     // Create an illegal op to ensure the conversion fails.
337     rewriter.create<ILLegalOpF>(op->getLoc(), i32Type);
338     rewriter.create<TerminatorOp>(op->getLoc());
339     rewriter.replaceOp(op, {});
340     return success();
341   }
342 };
343 
344 /// A simple pattern that tests the undo mechanism when replacing the uses of a
345 /// block argument.
346 struct TestUndoBlockArgReplace : public ConversionPattern {
347   TestUndoBlockArgReplace(MLIRContext *ctx)
348       : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {}
349 
350   LogicalResult
351   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
352                   ConversionPatternRewriter &rewriter) const final {
353     auto illegalOp =
354         rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
355     rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0),
356                                         illegalOp);
357     rewriter.updateRootInPlace(op, [] {});
358     return success();
359   }
360 };
361 
362 /// A rewrite pattern that tests the undo mechanism when erasing a block.
363 struct TestUndoBlockErase : public ConversionPattern {
364   TestUndoBlockErase(MLIRContext *ctx)
365       : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {}
366 
367   LogicalResult
368   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
369                   ConversionPatternRewriter &rewriter) const final {
370     Block *secondBlock = &*std::next(op->getRegion(0).begin());
371     rewriter.setInsertionPointToStart(secondBlock);
372     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
373     rewriter.eraseBlock(secondBlock);
374     rewriter.updateRootInPlace(op, [] {});
375     return success();
376   }
377 };
378 
379 //===----------------------------------------------------------------------===//
380 // Type-Conversion Rewrite Testing
381 
382 /// This patterns erases a region operation that has had a type conversion.
383 struct TestDropOpSignatureConversion : public ConversionPattern {
384   TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
385       : ConversionPattern(converter, "test.drop_region_op", 1, ctx) {}
386   LogicalResult
387   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
388                   ConversionPatternRewriter &rewriter) const override {
389     Region &region = op->getRegion(0);
390     Block *entry = &region.front();
391 
392     // Convert the original entry arguments.
393     TypeConverter &converter = *getTypeConverter();
394     TypeConverter::SignatureConversion result(entry->getNumArguments());
395     if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(),
396                                               result)) ||
397         failed(rewriter.convertRegionTypes(&region, converter, &result)))
398       return failure();
399 
400     // Convert the region signature and just drop the operation.
401     rewriter.eraseOp(op);
402     return success();
403   }
404 };
405 /// This pattern simply updates the operands of the given operation.
406 struct TestPassthroughInvalidOp : public ConversionPattern {
407   TestPassthroughInvalidOp(MLIRContext *ctx)
408       : ConversionPattern("test.invalid", 1, ctx) {}
409   LogicalResult
410   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
411                   ConversionPatternRewriter &rewriter) const final {
412     rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands,
413                                              llvm::None);
414     return success();
415   }
416 };
417 /// This pattern handles the case of a split return value.
418 struct TestSplitReturnType : public ConversionPattern {
419   TestSplitReturnType(MLIRContext *ctx)
420       : ConversionPattern("test.return", 1, ctx) {}
421   LogicalResult
422   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
423                   ConversionPatternRewriter &rewriter) const final {
424     // Check for a return of F32.
425     if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
426       return failure();
427 
428     // Check if the first operation is a cast operation, if it is we use the
429     // results directly.
430     auto *defOp = operands[0].getDefiningOp();
431     if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) {
432       rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
433       return success();
434     }
435 
436     // Otherwise, fail to match.
437     return failure();
438   }
439 };
440 
441 //===----------------------------------------------------------------------===//
442 // Multi-Level Type-Conversion Rewrite Testing
443 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
444   TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
445       : ConversionPattern("test.type_producer", 1, ctx) {}
446   LogicalResult
447   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
448                   ConversionPatternRewriter &rewriter) const final {
449     // If the type is I32, change the type to F32.
450     if (!Type(*op->result_type_begin()).isSignlessInteger(32))
451       return failure();
452     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
453     return success();
454   }
455 };
456 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
457   TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
458       : ConversionPattern("test.type_producer", 1, ctx) {}
459   LogicalResult
460   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
461                   ConversionPatternRewriter &rewriter) const final {
462     // If the type is F32, change the type to F64.
463     if (!Type(*op->result_type_begin()).isF32())
464       return rewriter.notifyMatchFailure(op, "expected single f32 operand");
465     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
466     return success();
467   }
468 };
469 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
470   TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
471       : ConversionPattern("test.type_producer", 10, ctx) {}
472   LogicalResult
473   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
474                   ConversionPatternRewriter &rewriter) const final {
475     // Always convert to B16, even though it is not a legal type. This tests
476     // that values are unmapped correctly.
477     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
478     return success();
479   }
480 };
481 struct TestUpdateConsumerType : public ConversionPattern {
482   TestUpdateConsumerType(MLIRContext *ctx)
483       : ConversionPattern("test.type_consumer", 1, ctx) {}
484   LogicalResult
485   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
486                   ConversionPatternRewriter &rewriter) const final {
487     // Verify that the incoming operand has been successfully remapped to F64.
488     if (!operands[0].getType().isF64())
489       return failure();
490     rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
491     return success();
492   }
493 };
494 
495 //===----------------------------------------------------------------------===//
496 // Non-Root Replacement Rewrite Testing
497 /// This pattern generates an invalid operation, but replaces it before the
498 /// pattern is finished. This checks that we don't need to legalize the
499 /// temporary op.
500 struct TestNonRootReplacement : public RewritePattern {
501   TestNonRootReplacement(MLIRContext *ctx)
502       : RewritePattern("test.replace_non_root", 1, ctx) {}
503 
504   LogicalResult matchAndRewrite(Operation *op,
505                                 PatternRewriter &rewriter) const final {
506     auto resultType = *op->result_type_begin();
507     auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
508     auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
509 
510     rewriter.replaceOp(illegalOp, {legalOp});
511     rewriter.replaceOp(op, {illegalOp});
512     return success();
513   }
514 };
515 
516 //===----------------------------------------------------------------------===//
517 // Recursive Rewrite Testing
518 /// This pattern is applied to the same operation multiple times, but has a
519 /// bounded recursion.
520 struct TestBoundedRecursiveRewrite
521     : public OpRewritePattern<TestRecursiveRewriteOp> {
522   using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern;
523 
524   void initialize() {
525     // The conversion target handles bounding the recursion of this pattern.
526     setHasBoundedRewriteRecursion();
527   }
528 
529   LogicalResult matchAndRewrite(TestRecursiveRewriteOp op,
530                                 PatternRewriter &rewriter) const final {
531     // Decrement the depth of the op in-place.
532     rewriter.updateRootInPlace(op, [&] {
533       op->setAttr("depth", rewriter.getI64IntegerAttr(op.depth() - 1));
534     });
535     return success();
536   }
537 };
538 
539 struct TestNestedOpCreationUndoRewrite
540     : public OpRewritePattern<IllegalOpWithRegionAnchor> {
541   using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern;
542 
543   LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op,
544                                 PatternRewriter &rewriter) const final {
545     // rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
546     rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
547     return success();
548   };
549 };
550 
551 // This pattern matches `test.blackhole` and delete this op and its producer.
552 struct TestReplaceEraseOp : public OpRewritePattern<BlackHoleOp> {
553   using OpRewritePattern<BlackHoleOp>::OpRewritePattern;
554 
555   LogicalResult matchAndRewrite(BlackHoleOp op,
556                                 PatternRewriter &rewriter) const final {
557     Operation *producer = op.getOperand().getDefiningOp();
558     // Always erase the user before the producer, the framework should handle
559     // this correctly.
560     rewriter.eraseOp(op);
561     rewriter.eraseOp(producer);
562     return success();
563   };
564 };
565 } // namespace
566 
567 namespace {
568 struct TestTypeConverter : public TypeConverter {
569   using TypeConverter::TypeConverter;
570   TestTypeConverter() {
571     addConversion(convertType);
572     addArgumentMaterialization(materializeCast);
573     addSourceMaterialization(materializeCast);
574 
575     /// Materialize the cast for one-to-one conversion from i64 to f64.
576     const auto materializeOneToOneCast =
577         [](OpBuilder &builder, IntegerType resultType, ValueRange inputs,
578            Location loc) -> Optional<Value> {
579       if (resultType.getWidth() == 42 && inputs.size() == 1)
580         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
581       return llvm::None;
582     };
583     addArgumentMaterialization(materializeOneToOneCast);
584   }
585 
586   static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
587     // Drop I16 types.
588     if (t.isSignlessInteger(16))
589       return success();
590 
591     // Convert I64 to F64.
592     if (t.isSignlessInteger(64)) {
593       results.push_back(FloatType::getF64(t.getContext()));
594       return success();
595     }
596 
597     // Convert I42 to I43.
598     if (t.isInteger(42)) {
599       results.push_back(IntegerType::get(t.getContext(), 43));
600       return success();
601     }
602 
603     // Split F32 into F16,F16.
604     if (t.isF32()) {
605       results.assign(2, FloatType::getF16(t.getContext()));
606       return success();
607     }
608 
609     // Otherwise, convert the type directly.
610     results.push_back(t);
611     return success();
612   }
613 
614   /// Hook for materializing a conversion. This is necessary because we generate
615   /// 1->N type mappings.
616   static Optional<Value> materializeCast(OpBuilder &builder, Type resultType,
617                                          ValueRange inputs, Location loc) {
618     if (inputs.size() == 1)
619       return inputs[0];
620     return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
621   }
622 };
623 
624 struct TestLegalizePatternDriver
625     : public PassWrapper<TestLegalizePatternDriver, OperationPass<ModuleOp>> {
626   StringRef getArgument() const final { return "test-legalize-patterns"; }
627   StringRef getDescription() const final {
628     return "Run test dialect legalization patterns";
629   }
630   /// The mode of conversion to use with the driver.
631   enum class ConversionMode { Analysis, Full, Partial };
632 
633   TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
634 
635   void runOnOperation() override {
636     TestTypeConverter converter;
637     mlir::RewritePatternSet patterns(&getContext());
638     populateWithGenerated(patterns);
639     patterns
640         .add<TestRegionRewriteBlockMovement, TestRegionRewriteUndo,
641              TestCreateBlock, TestCreateIllegalBlock, TestUndoBlockArgReplace,
642              TestUndoBlockErase, TestPassthroughInvalidOp, TestSplitReturnType,
643              TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
644              TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
645              TestNonRootReplacement, TestBoundedRecursiveRewrite,
646              TestNestedOpCreationUndoRewrite, TestReplaceEraseOp>(
647             &getContext());
648     patterns.add<TestDropOpSignatureConversion>(&getContext(), converter);
649     mlir::populateFuncOpTypeConversionPattern(patterns, converter);
650     mlir::populateCallOpTypeConversionPattern(patterns, converter);
651 
652     // Define the conversion target used for the test.
653     ConversionTarget target(getContext());
654     target.addLegalOp<ModuleOp>();
655     target.addLegalOp<LegalOpA, LegalOpB, TestCastOp, TestValidOp,
656                       TerminatorOp>();
657     target
658         .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
659     target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
660       // Don't allow F32 operands.
661       return llvm::none_of(op.getOperandTypes(),
662                            [](Type type) { return type.isF32(); });
663     });
664     target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
665       return converter.isSignatureLegal(op.getType()) &&
666              converter.isLegal(&op.getBody());
667     });
668 
669     // Expect the type_producer/type_consumer operations to only operate on f64.
670     target.addDynamicallyLegalOp<TestTypeProducerOp>(
671         [](TestTypeProducerOp op) { return op.getType().isF64(); });
672     target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
673       return op.getOperand().getType().isF64();
674     });
675 
676     // Check support for marking certain operations as recursively legal.
677     target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) {
678       return static_cast<bool>(
679           op->getAttrOfType<UnitAttr>("test.recursively_legal"));
680     });
681 
682     // Mark the bound recursion operation as dynamically legal.
683     target.addDynamicallyLegalOp<TestRecursiveRewriteOp>(
684         [](TestRecursiveRewriteOp op) { return op.depth() == 0; });
685 
686     // Handle a partial conversion.
687     if (mode == ConversionMode::Partial) {
688       DenseSet<Operation *> unlegalizedOps;
689       (void)applyPartialConversion(getOperation(), target, std::move(patterns),
690                                    &unlegalizedOps);
691       // Emit remarks for each legalizable operation.
692       for (auto *op : unlegalizedOps)
693         op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
694       return;
695     }
696 
697     // Handle a full conversion.
698     if (mode == ConversionMode::Full) {
699       // Check support for marking unknown operations as dynamically legal.
700       target.markUnknownOpDynamicallyLegal([](Operation *op) {
701         return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal");
702       });
703 
704       (void)applyFullConversion(getOperation(), target, std::move(patterns));
705       return;
706     }
707 
708     // Otherwise, handle an analysis conversion.
709     assert(mode == ConversionMode::Analysis);
710 
711     // Analyze the convertible operations.
712     DenseSet<Operation *> legalizedOps;
713     if (failed(applyAnalysisConversion(getOperation(), target,
714                                        std::move(patterns), legalizedOps)))
715       return signalPassFailure();
716 
717     // Emit remarks for each legalizable operation.
718     for (auto *op : legalizedOps)
719       op->emitRemark() << "op '" << op->getName() << "' is legalizable";
720   }
721 
722   /// The mode of conversion to use.
723   ConversionMode mode;
724 };
725 } // end anonymous namespace
726 
727 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
728     legalizerConversionMode(
729         "test-legalize-mode",
730         llvm::cl::desc("The legalization mode to use with the test driver"),
731         llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
732         llvm::cl::values(
733             clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
734                        "analysis", "Perform an analysis conversion"),
735             clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
736                        "Perform a full conversion"),
737             clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
738                        "partial", "Perform a partial conversion")));
739 
740 //===----------------------------------------------------------------------===//
741 // ConversionPatternRewriter::getRemappedValue testing. This method is used
742 // to get the remapped value of an original value that was replaced using
743 // ConversionPatternRewriter.
744 namespace {
745 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
746 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
747 /// operand twice.
748 ///
749 /// Example:
750 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0)
751 /// is replaced with:
752 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
753 struct OneVResOneVOperandOp1Converter
754     : public OpConversionPattern<OneVResOneVOperandOp1> {
755   using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
756 
757   LogicalResult
758   matchAndRewrite(OneVResOneVOperandOp1 op, ArrayRef<Value> operands,
759                   ConversionPatternRewriter &rewriter) const override {
760     auto origOps = op.getOperands();
761     assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
762            "One operand expected");
763     Value origOp = *origOps.begin();
764     SmallVector<Value, 2> remappedOperands;
765     // Replicate the remapped original operand twice. Note that we don't used
766     // the remapped 'operand' since the goal is testing 'getRemappedValue'.
767     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
768     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
769 
770     rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(),
771                                                        remappedOperands);
772     return success();
773   }
774 };
775 
776 struct TestRemappedValue
777     : public mlir::PassWrapper<TestRemappedValue, FunctionPass> {
778   StringRef getArgument() const final { return "test-remapped-value"; }
779   StringRef getDescription() const final {
780     return "Test public remapped value mechanism in ConversionPatternRewriter";
781   }
782   void runOnFunction() override {
783     mlir::RewritePatternSet patterns(&getContext());
784     patterns.add<OneVResOneVOperandOp1Converter>(&getContext());
785 
786     mlir::ConversionTarget target(getContext());
787     target.addLegalOp<ModuleOp, FuncOp, TestReturnOp>();
788     // We make OneVResOneVOperandOp1 legal only when it has more that one
789     // operand. This will trigger the conversion that will replace one-operand
790     // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
791     target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
792         [](Operation *op) -> bool {
793           return std::distance(op->operand_begin(), op->operand_end()) > 1;
794         });
795 
796     if (failed(mlir::applyFullConversion(getFunction(), target,
797                                          std::move(patterns)))) {
798       signalPassFailure();
799     }
800   }
801 };
802 } // end anonymous namespace
803 
804 //===----------------------------------------------------------------------===//
805 // Test patterns without a specific root operation kind
806 //===----------------------------------------------------------------------===//
807 
808 namespace {
809 /// This pattern matches and removes any operation in the test dialect.
810 struct RemoveTestDialectOps : public RewritePattern {
811   RemoveTestDialectOps(MLIRContext *context)
812       : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
813 
814   LogicalResult matchAndRewrite(Operation *op,
815                                 PatternRewriter &rewriter) const override {
816     if (!isa<TestDialect>(op->getDialect()))
817       return failure();
818     rewriter.eraseOp(op);
819     return success();
820   }
821 };
822 
823 struct TestUnknownRootOpDriver
824     : public mlir::PassWrapper<TestUnknownRootOpDriver, FunctionPass> {
825   StringRef getArgument() const final {
826     return "test-legalize-unknown-root-patterns";
827   }
828   StringRef getDescription() const final {
829     return "Test public remapped value mechanism in ConversionPatternRewriter";
830   }
831   void runOnFunction() override {
832     mlir::RewritePatternSet patterns(&getContext());
833     patterns.add<RemoveTestDialectOps>(&getContext());
834 
835     mlir::ConversionTarget target(getContext());
836     target.addIllegalDialect<TestDialect>();
837     if (failed(
838             applyPartialConversion(getFunction(), target, std::move(patterns))))
839       signalPassFailure();
840   }
841 };
842 } // end anonymous namespace
843 
844 //===----------------------------------------------------------------------===//
845 // Test type conversions
846 //===----------------------------------------------------------------------===//
847 
848 namespace {
849 struct TestTypeConversionProducer
850     : public OpConversionPattern<TestTypeProducerOp> {
851   using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern;
852   LogicalResult
853   matchAndRewrite(TestTypeProducerOp op, ArrayRef<Value> operands,
854                   ConversionPatternRewriter &rewriter) const final {
855     Type resultType = op.getType();
856     if (resultType.isa<FloatType>())
857       resultType = rewriter.getF64Type();
858     else if (resultType.isInteger(16))
859       resultType = rewriter.getIntegerType(64);
860     else
861       return failure();
862 
863     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType);
864     return success();
865   }
866 };
867 
868 /// Call signature conversion and then fail the rewrite to trigger the undo
869 /// mechanism.
870 struct TestSignatureConversionUndo
871     : public OpConversionPattern<TestSignatureConversionUndoOp> {
872   using OpConversionPattern<TestSignatureConversionUndoOp>::OpConversionPattern;
873 
874   LogicalResult
875   matchAndRewrite(TestSignatureConversionUndoOp op, ArrayRef<Value> operands,
876                   ConversionPatternRewriter &rewriter) const final {
877     (void)rewriter.convertRegionTypes(&op->getRegion(0), *getTypeConverter());
878     return failure();
879   }
880 };
881 
882 /// Just forward the operands to the root op. This is essentially a no-op
883 /// pattern that is used to trigger target materialization.
884 struct TestTypeConsumerForward
885     : public OpConversionPattern<TestTypeConsumerOp> {
886   using OpConversionPattern<TestTypeConsumerOp>::OpConversionPattern;
887 
888   LogicalResult
889   matchAndRewrite(TestTypeConsumerOp op, ArrayRef<Value> operands,
890                   ConversionPatternRewriter &rewriter) const final {
891     rewriter.updateRootInPlace(op, [&] { op->setOperands(operands); });
892     return success();
893   }
894 };
895 
896 struct TestTypeConversionAnotherProducer
897     : public OpRewritePattern<TestAnotherTypeProducerOp> {
898   using OpRewritePattern<TestAnotherTypeProducerOp>::OpRewritePattern;
899 
900   LogicalResult matchAndRewrite(TestAnotherTypeProducerOp op,
901                                 PatternRewriter &rewriter) const final {
902     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, op.getType());
903     return success();
904   }
905 };
906 
907 struct TestTypeConversionDriver
908     : public PassWrapper<TestTypeConversionDriver, OperationPass<ModuleOp>> {
909   void getDependentDialects(DialectRegistry &registry) const override {
910     registry.insert<TestDialect>();
911   }
912   StringRef getArgument() const final {
913     return "test-legalize-type-conversion";
914   }
915   StringRef getDescription() const final {
916     return "Test various type conversion functionalities in DialectConversion";
917   }
918 
919   void runOnOperation() override {
920     // Initialize the type converter.
921     TypeConverter converter;
922 
923     /// Add the legal set of type conversions.
924     converter.addConversion([](Type type) -> Type {
925       // Treat F64 as legal.
926       if (type.isF64())
927         return type;
928       // Allow converting BF16/F16/F32 to F64.
929       if (type.isBF16() || type.isF16() || type.isF32())
930         return FloatType::getF64(type.getContext());
931       // Otherwise, the type is illegal.
932       return nullptr;
933     });
934     converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) {
935       // Drop all integer types.
936       return success();
937     });
938 
939     /// Add the legal set of type materializations.
940     converter.addSourceMaterialization([](OpBuilder &builder, Type resultType,
941                                           ValueRange inputs,
942                                           Location loc) -> Value {
943       // Allow casting from F64 back to F32.
944       if (!resultType.isF16() && inputs.size() == 1 &&
945           inputs[0].getType().isF64())
946         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
947       // Allow producing an i32 or i64 from nothing.
948       if ((resultType.isInteger(32) || resultType.isInteger(64)) &&
949           inputs.empty())
950         return builder.create<TestTypeProducerOp>(loc, resultType);
951       // Allow producing an i64 from an integer.
952       if (resultType.isa<IntegerType>() && inputs.size() == 1 &&
953           inputs[0].getType().isa<IntegerType>())
954         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
955       // Otherwise, fail.
956       return nullptr;
957     });
958 
959     // Initialize the conversion target.
960     mlir::ConversionTarget target(getContext());
961     target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) {
962       return op.getType().isF64() || op.getType().isInteger(64);
963     });
964     target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
965       return converter.isSignatureLegal(op.getType()) &&
966              converter.isLegal(&op.getBody());
967     });
968     target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) {
969       // Allow casts from F64 to F32.
970       return (*op.operand_type_begin()).isF64() && op.getType().isF32();
971     });
972 
973     // Initialize the set of rewrite patterns.
974     RewritePatternSet patterns(&getContext());
975     patterns.add<TestTypeConsumerForward, TestTypeConversionProducer,
976                  TestSignatureConversionUndo>(converter, &getContext());
977     patterns.add<TestTypeConversionAnotherProducer>(&getContext());
978     mlir::populateFuncOpTypeConversionPattern(patterns, converter);
979 
980     if (failed(applyPartialConversion(getOperation(), target,
981                                       std::move(patterns))))
982       signalPassFailure();
983   }
984 };
985 } // end anonymous namespace
986 
987 //===----------------------------------------------------------------------===//
988 // Test Block Merging
989 //===----------------------------------------------------------------------===//
990 
991 namespace {
992 /// A rewriter pattern that tests that blocks can be merged.
993 struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> {
994   using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern;
995 
996   LogicalResult
997   matchAndRewrite(TestMergeBlocksOp op, ArrayRef<Value> operands,
998                   ConversionPatternRewriter &rewriter) const final {
999     Block &firstBlock = op.body().front();
1000     Operation *branchOp = firstBlock.getTerminator();
1001     Block *secondBlock = &*(std::next(op.body().begin()));
1002     auto succOperands = branchOp->getOperands();
1003     SmallVector<Value, 2> replacements(succOperands);
1004     rewriter.eraseOp(branchOp);
1005     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
1006     rewriter.updateRootInPlace(op, [] {});
1007     return success();
1008   }
1009 };
1010 
1011 /// A rewrite pattern to tests the undo mechanism of blocks being merged.
1012 struct TestUndoBlocksMerge : public ConversionPattern {
1013   TestUndoBlocksMerge(MLIRContext *ctx)
1014       : ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {}
1015   LogicalResult
1016   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
1017                   ConversionPatternRewriter &rewriter) const final {
1018     Block &firstBlock = op->getRegion(0).front();
1019     Operation *branchOp = firstBlock.getTerminator();
1020     Block *secondBlock = &*(std::next(op->getRegion(0).begin()));
1021     rewriter.setInsertionPointToStart(secondBlock);
1022     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
1023     auto succOperands = branchOp->getOperands();
1024     SmallVector<Value, 2> replacements(succOperands);
1025     rewriter.eraseOp(branchOp);
1026     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
1027     rewriter.updateRootInPlace(op, [] {});
1028     return success();
1029   }
1030 };
1031 
1032 /// A rewrite mechanism to inline the body of the op into its parent, when both
1033 /// ops can have a single block.
1034 struct TestMergeSingleBlockOps
1035     : public OpConversionPattern<SingleBlockImplicitTerminatorOp> {
1036   using OpConversionPattern<
1037       SingleBlockImplicitTerminatorOp>::OpConversionPattern;
1038 
1039   LogicalResult
1040   matchAndRewrite(SingleBlockImplicitTerminatorOp op, ArrayRef<Value> operands,
1041                   ConversionPatternRewriter &rewriter) const final {
1042     SingleBlockImplicitTerminatorOp parentOp =
1043         op->getParentOfType<SingleBlockImplicitTerminatorOp>();
1044     if (!parentOp)
1045       return failure();
1046     Block &innerBlock = op.region().front();
1047     TerminatorOp innerTerminator =
1048         cast<TerminatorOp>(innerBlock.getTerminator());
1049     rewriter.mergeBlockBefore(&innerBlock, op);
1050     rewriter.eraseOp(innerTerminator);
1051     rewriter.eraseOp(op);
1052     rewriter.updateRootInPlace(op, [] {});
1053     return success();
1054   }
1055 };
1056 
1057 struct TestMergeBlocksPatternDriver
1058     : public PassWrapper<TestMergeBlocksPatternDriver,
1059                          OperationPass<ModuleOp>> {
1060   StringRef getArgument() const final { return "test-merge-blocks"; }
1061   StringRef getDescription() const final {
1062     return "Test Merging operation in ConversionPatternRewriter";
1063   }
1064   void runOnOperation() override {
1065     MLIRContext *context = &getContext();
1066     mlir::RewritePatternSet patterns(context);
1067     patterns.add<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>(
1068         context);
1069     ConversionTarget target(*context);
1070     target.addLegalOp<FuncOp, ModuleOp, TerminatorOp, TestBranchOp,
1071                       TestTypeConsumerOp, TestTypeProducerOp, TestReturnOp>();
1072     target.addIllegalOp<ILLegalOpF>();
1073 
1074     /// Expect the op to have a single block after legalization.
1075     target.addDynamicallyLegalOp<TestMergeBlocksOp>(
1076         [&](TestMergeBlocksOp op) -> bool {
1077           return llvm::hasSingleElement(op.body());
1078         });
1079 
1080     /// Only allow `test.br` within test.merge_blocks op.
1081     target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool {
1082       return op->getParentOfType<TestMergeBlocksOp>();
1083     });
1084 
1085     /// Expect that all nested test.SingleBlockImplicitTerminator ops are
1086     /// inlined.
1087     target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>(
1088         [&](SingleBlockImplicitTerminatorOp op) -> bool {
1089           return !op->getParentOfType<SingleBlockImplicitTerminatorOp>();
1090         });
1091 
1092     DenseSet<Operation *> unlegalizedOps;
1093     (void)applyPartialConversion(getOperation(), target, std::move(patterns),
1094                                  &unlegalizedOps);
1095     for (auto *op : unlegalizedOps)
1096       op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
1097   }
1098 };
1099 } // namespace
1100 
1101 //===----------------------------------------------------------------------===//
1102 // Test Selective Replacement
1103 //===----------------------------------------------------------------------===//
1104 
1105 namespace {
1106 /// A rewrite mechanism to inline the body of the op into its parent, when both
1107 /// ops can have a single block.
1108 struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> {
1109   using OpRewritePattern<TestCastOp>::OpRewritePattern;
1110 
1111   LogicalResult matchAndRewrite(TestCastOp op,
1112                                 PatternRewriter &rewriter) const final {
1113     if (op.getNumOperands() != 2)
1114       return failure();
1115     OperandRange operands = op.getOperands();
1116 
1117     // Replace non-terminator uses with the first operand.
1118     rewriter.replaceOpWithIf(op, operands[0], [](OpOperand &operand) {
1119       return operand.getOwner()->hasTrait<OpTrait::IsTerminator>();
1120     });
1121     // Replace everything else with the second operand if the operation isn't
1122     // dead.
1123     rewriter.replaceOp(op, op.getOperand(1));
1124     return success();
1125   }
1126 };
1127 
1128 struct TestSelectiveReplacementPatternDriver
1129     : public PassWrapper<TestSelectiveReplacementPatternDriver,
1130                          OperationPass<>> {
1131   StringRef getArgument() const final {
1132     return "test-pattern-selective-replacement";
1133   }
1134   StringRef getDescription() const final {
1135     return "Test selective replacement in the PatternRewriter";
1136   }
1137   void runOnOperation() override {
1138     MLIRContext *context = &getContext();
1139     mlir::RewritePatternSet patterns(context);
1140     patterns.add<TestSelectiveOpReplacementPattern>(context);
1141     (void)applyPatternsAndFoldGreedily(getOperation()->getRegions(),
1142                                        std::move(patterns));
1143   }
1144 };
1145 } // namespace
1146 
1147 //===----------------------------------------------------------------------===//
1148 // PassRegistration
1149 //===----------------------------------------------------------------------===//
1150 
1151 namespace mlir {
1152 namespace test {
1153 void registerPatternsTestPass() {
1154   PassRegistration<TestReturnTypeDriver>();
1155 
1156   PassRegistration<TestDerivedAttributeDriver>();
1157 
1158   PassRegistration<TestPatternDriver>();
1159 
1160   PassRegistration<TestLegalizePatternDriver>([] {
1161     return std::make_unique<TestLegalizePatternDriver>(legalizerConversionMode);
1162   });
1163 
1164   PassRegistration<TestRemappedValue>();
1165 
1166   PassRegistration<TestUnknownRootOpDriver>();
1167 
1168   PassRegistration<TestTypeConversionDriver>();
1169 
1170   PassRegistration<TestMergeBlocksPatternDriver>();
1171   PassRegistration<TestSelectiveReplacementPatternDriver>();
1172 }
1173 } // namespace test
1174 } // namespace mlir
1175