1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "TestDialect.h"
10 #include "mlir/Dialect/MemRef/IR/MemRef.h"
11 #include "mlir/Dialect/StandardOps/IR/Ops.h"
12 #include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
13 #include "mlir/IR/Matchers.h"
14 #include "mlir/Pass/Pass.h"
15 #include "mlir/Transforms/DialectConversion.h"
16 #include "mlir/Transforms/FoldUtils.h"
17 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
18 
19 using namespace mlir;
20 using namespace mlir::test;
21 
22 // Native function for testing NativeCodeCall
23 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
24   return choice.getValue() ? input1 : input2;
25 }
26 
27 static void createOpI(PatternRewriter &rewriter, Location loc, Value input) {
28   rewriter.create<OpI>(loc, input);
29 }
30 
31 static void handleNoResultOp(PatternRewriter &rewriter,
32                              OpSymbolBindingNoResult op) {
33   // Turn the no result op to a one-result op.
34   rewriter.create<OpSymbolBindingB>(op.getLoc(), op.operand().getType(),
35                                     op.operand());
36 }
37 
38 static bool getFirstI32Result(Operation *op, Value &value) {
39   if (!Type(op->getResult(0).getType()).isSignlessInteger(32))
40     return false;
41   value = op->getResult(0);
42   return true;
43 }
44 
45 static Value bindNativeCodeCallResult(Value value) { return value; }
46 
47 // Test that natives calls are only called once during rewrites.
48 // OpM_Test will return Pi, increased by 1 for each subsequent calls.
49 // This let us check the number of times OpM_Test was called by inspecting
50 // the returned value in the MLIR output.
51 static int64_t opMIncreasingValue = 314159265;
52 static Attribute OpMTest(PatternRewriter &rewriter, Value val) {
53   int64_t i = opMIncreasingValue++;
54   return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i);
55 }
56 
57 namespace {
58 #include "TestPatterns.inc"
59 } // end anonymous namespace
60 
61 //===----------------------------------------------------------------------===//
62 // Test Reduce Pattern Interface
63 //===----------------------------------------------------------------------===//
64 
65 void mlir::test::populateTestReductionPatterns(RewritePatternSet &patterns) {
66   populateWithGenerated(patterns);
67 }
68 
69 //===----------------------------------------------------------------------===//
70 // Canonicalizer Driver.
71 //===----------------------------------------------------------------------===//
72 
73 namespace {
74 struct FoldingPattern : public RewritePattern {
75 public:
76   FoldingPattern(MLIRContext *context)
77       : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(),
78                        /*benefit=*/1, context) {}
79 
80   LogicalResult matchAndRewrite(Operation *op,
81                                 PatternRewriter &rewriter) const override {
82     // Exercise OperationFolder API for a single-result operation that is folded
83     // upon construction. The operation being created through the folder has an
84     // in-place folder, and it should be still present in the output.
85     // Furthermore, the folder should not crash when attempting to recover the
86     // (unchanged) operation result.
87     OperationFolder folder(op->getContext());
88     Value result = folder.create<TestOpInPlaceFold>(
89         rewriter, op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0),
90         rewriter.getI32IntegerAttr(0));
91     assert(result);
92     rewriter.replaceOp(op, result);
93     return success();
94   }
95 };
96 
97 struct TestPatternDriver : public PassWrapper<TestPatternDriver, FunctionPass> {
98   void runOnFunction() override {
99     mlir::RewritePatternSet patterns(&getContext());
100     populateWithGenerated(patterns);
101 
102     // Verify named pattern is generated with expected name.
103     patterns.add<FoldingPattern, TestNamedPatternRule>(&getContext());
104 
105     (void)applyPatternsAndFoldGreedily(getFunction(), std::move(patterns));
106   }
107 };
108 } // end anonymous namespace
109 
110 //===----------------------------------------------------------------------===//
111 // ReturnType Driver.
112 //===----------------------------------------------------------------------===//
113 
114 namespace {
115 // Generate ops for each instance where the type can be successfully inferred.
116 template <typename OpTy>
117 static void invokeCreateWithInferredReturnType(Operation *op) {
118   auto *context = op->getContext();
119   auto fop = op->getParentOfType<FuncOp>();
120   auto location = UnknownLoc::get(context);
121   OpBuilder b(op);
122   b.setInsertionPointAfter(op);
123 
124   // Use permutations of 2 args as operands.
125   assert(fop.getNumArguments() >= 2);
126   for (int i = 0, e = fop.getNumArguments(); i < e; ++i) {
127     for (int j = 0; j < e; ++j) {
128       std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}};
129       SmallVector<Type, 2> inferredReturnTypes;
130       if (succeeded(OpTy::inferReturnTypes(
131               context, llvm::None, values, op->getAttrDictionary(),
132               op->getRegions(), inferredReturnTypes))) {
133         OperationState state(location, OpTy::getOperationName());
134         // TODO: Expand to regions.
135         OpTy::build(b, state, values, op->getAttrs());
136         (void)b.createOperation(state);
137       }
138     }
139   }
140 }
141 
142 static void reifyReturnShape(Operation *op) {
143   OpBuilder b(op);
144 
145   // Use permutations of 2 args as operands.
146   auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op);
147   SmallVector<Value, 2> shapes;
148   if (failed(shapedOp.reifyReturnTypeShapes(b, op->getOperands(), shapes)) ||
149       !llvm::hasSingleElement(shapes))
150     return;
151   for (auto it : llvm::enumerate(shapes)) {
152     op->emitRemark() << "value " << it.index() << ": "
153                      << it.value().getDefiningOp();
154   }
155 }
156 
157 struct TestReturnTypeDriver
158     : public PassWrapper<TestReturnTypeDriver, FunctionPass> {
159   void getDependentDialects(DialectRegistry &registry) const override {
160     registry.insert<memref::MemRefDialect>();
161   }
162 
163   void runOnFunction() override {
164     if (getFunction().getName() == "testCreateFunctions") {
165       std::vector<Operation *> ops;
166       // Collect ops to avoid triggering on inserted ops.
167       for (auto &op : getFunction().getBody().front())
168         ops.push_back(&op);
169       // Generate test patterns for each, but skip terminator.
170       for (auto *op : llvm::makeArrayRef(ops).drop_back()) {
171         // Test create method of each of the Op classes below. The resultant
172         // output would be in reverse order underneath `op` from which
173         // the attributes and regions are used.
174         invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op);
175         invokeCreateWithInferredReturnType<
176             OpWithShapedTypeInferTypeInterfaceOp>(op);
177       };
178       return;
179     }
180     if (getFunction().getName() == "testReifyFunctions") {
181       std::vector<Operation *> ops;
182       // Collect ops to avoid triggering on inserted ops.
183       for (auto &op : getFunction().getBody().front())
184         if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op))
185           ops.push_back(&op);
186       // Generate test patterns for each, but skip terminator.
187       for (auto *op : ops)
188         reifyReturnShape(op);
189     }
190   }
191 };
192 } // end anonymous namespace
193 
194 namespace {
195 struct TestDerivedAttributeDriver
196     : public PassWrapper<TestDerivedAttributeDriver, FunctionPass> {
197   void runOnFunction() override;
198 };
199 } // end anonymous namespace
200 
201 void TestDerivedAttributeDriver::runOnFunction() {
202   getFunction().walk([](DerivedAttributeOpInterface dOp) {
203     auto dAttr = dOp.materializeDerivedAttributes();
204     if (!dAttr)
205       return;
206     for (auto d : dAttr)
207       dOp.emitRemark() << d.first << " = " << d.second;
208   });
209 }
210 
211 //===----------------------------------------------------------------------===//
212 // Legalization Driver.
213 //===----------------------------------------------------------------------===//
214 
215 namespace {
216 //===----------------------------------------------------------------------===//
217 // Region-Block Rewrite Testing
218 
219 /// This pattern is a simple pattern that inlines the first region of a given
220 /// operation into the parent region.
221 struct TestRegionRewriteBlockMovement : public ConversionPattern {
222   TestRegionRewriteBlockMovement(MLIRContext *ctx)
223       : ConversionPattern("test.region", 1, ctx) {}
224 
225   LogicalResult
226   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
227                   ConversionPatternRewriter &rewriter) const final {
228     // Inline this region into the parent region.
229     auto &parentRegion = *op->getParentRegion();
230     auto &opRegion = op->getRegion(0);
231     if (op->getAttr("legalizer.should_clone"))
232       rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end());
233     else
234       rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end());
235 
236     if (op->getAttr("legalizer.erase_old_blocks")) {
237       while (!opRegion.empty())
238         rewriter.eraseBlock(&opRegion.front());
239     }
240 
241     // Drop this operation.
242     rewriter.eraseOp(op);
243     return success();
244   }
245 };
246 /// This pattern is a simple pattern that generates a region containing an
247 /// illegal operation.
248 struct TestRegionRewriteUndo : public RewritePattern {
249   TestRegionRewriteUndo(MLIRContext *ctx)
250       : RewritePattern("test.region_builder", 1, ctx) {}
251 
252   LogicalResult matchAndRewrite(Operation *op,
253                                 PatternRewriter &rewriter) const final {
254     // Create the region operation with an entry block containing arguments.
255     OperationState newRegion(op->getLoc(), "test.region");
256     newRegion.addRegion();
257     auto *regionOp = rewriter.createOperation(newRegion);
258     auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
259     entryBlock->addArgument(rewriter.getIntegerType(64));
260 
261     // Add an explicitly illegal operation to ensure the conversion fails.
262     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
263     rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());
264 
265     // Drop this operation.
266     rewriter.eraseOp(op);
267     return success();
268   }
269 };
270 /// A simple pattern that creates a block at the end of the parent region of the
271 /// matched operation.
272 struct TestCreateBlock : public RewritePattern {
273   TestCreateBlock(MLIRContext *ctx)
274       : RewritePattern("test.create_block", /*benefit=*/1, ctx) {}
275 
276   LogicalResult matchAndRewrite(Operation *op,
277                                 PatternRewriter &rewriter) const final {
278     Region &region = *op->getParentRegion();
279     Type i32Type = rewriter.getIntegerType(32);
280     rewriter.createBlock(&region, region.end(), {i32Type, i32Type});
281     rewriter.create<TerminatorOp>(op->getLoc());
282     rewriter.replaceOp(op, {});
283     return success();
284   }
285 };
286 
287 /// A simple pattern that creates a block containing an invalid operation in
288 /// order to trigger the block creation undo mechanism.
289 struct TestCreateIllegalBlock : public RewritePattern {
290   TestCreateIllegalBlock(MLIRContext *ctx)
291       : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {}
292 
293   LogicalResult matchAndRewrite(Operation *op,
294                                 PatternRewriter &rewriter) const final {
295     Region &region = *op->getParentRegion();
296     Type i32Type = rewriter.getIntegerType(32);
297     rewriter.createBlock(&region, region.end(), {i32Type, i32Type});
298     // Create an illegal op to ensure the conversion fails.
299     rewriter.create<ILLegalOpF>(op->getLoc(), i32Type);
300     rewriter.create<TerminatorOp>(op->getLoc());
301     rewriter.replaceOp(op, {});
302     return success();
303   }
304 };
305 
306 /// A simple pattern that tests the undo mechanism when replacing the uses of a
307 /// block argument.
308 struct TestUndoBlockArgReplace : public ConversionPattern {
309   TestUndoBlockArgReplace(MLIRContext *ctx)
310       : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {}
311 
312   LogicalResult
313   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
314                   ConversionPatternRewriter &rewriter) const final {
315     auto illegalOp =
316         rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
317     rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0),
318                                         illegalOp);
319     rewriter.updateRootInPlace(op, [] {});
320     return success();
321   }
322 };
323 
324 /// A rewrite pattern that tests the undo mechanism when erasing a block.
325 struct TestUndoBlockErase : public ConversionPattern {
326   TestUndoBlockErase(MLIRContext *ctx)
327       : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {}
328 
329   LogicalResult
330   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
331                   ConversionPatternRewriter &rewriter) const final {
332     Block *secondBlock = &*std::next(op->getRegion(0).begin());
333     rewriter.setInsertionPointToStart(secondBlock);
334     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
335     rewriter.eraseBlock(secondBlock);
336     rewriter.updateRootInPlace(op, [] {});
337     return success();
338   }
339 };
340 
341 //===----------------------------------------------------------------------===//
342 // Type-Conversion Rewrite Testing
343 
344 /// This patterns erases a region operation that has had a type conversion.
345 struct TestDropOpSignatureConversion : public ConversionPattern {
346   TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
347       : ConversionPattern(converter, "test.drop_region_op", 1, ctx) {}
348   LogicalResult
349   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
350                   ConversionPatternRewriter &rewriter) const override {
351     Region &region = op->getRegion(0);
352     Block *entry = &region.front();
353 
354     // Convert the original entry arguments.
355     TypeConverter &converter = *getTypeConverter();
356     TypeConverter::SignatureConversion result(entry->getNumArguments());
357     if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(),
358                                               result)) ||
359         failed(rewriter.convertRegionTypes(&region, converter, &result)))
360       return failure();
361 
362     // Convert the region signature and just drop the operation.
363     rewriter.eraseOp(op);
364     return success();
365   }
366 };
367 /// This pattern simply updates the operands of the given operation.
368 struct TestPassthroughInvalidOp : public ConversionPattern {
369   TestPassthroughInvalidOp(MLIRContext *ctx)
370       : ConversionPattern("test.invalid", 1, ctx) {}
371   LogicalResult
372   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
373                   ConversionPatternRewriter &rewriter) const final {
374     rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands,
375                                              llvm::None);
376     return success();
377   }
378 };
379 /// This pattern handles the case of a split return value.
380 struct TestSplitReturnType : public ConversionPattern {
381   TestSplitReturnType(MLIRContext *ctx)
382       : ConversionPattern("test.return", 1, ctx) {}
383   LogicalResult
384   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
385                   ConversionPatternRewriter &rewriter) const final {
386     // Check for a return of F32.
387     if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
388       return failure();
389 
390     // Check if the first operation is a cast operation, if it is we use the
391     // results directly.
392     auto *defOp = operands[0].getDefiningOp();
393     if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) {
394       rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
395       return success();
396     }
397 
398     // Otherwise, fail to match.
399     return failure();
400   }
401 };
402 
403 //===----------------------------------------------------------------------===//
404 // Multi-Level Type-Conversion Rewrite Testing
405 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
406   TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
407       : ConversionPattern("test.type_producer", 1, ctx) {}
408   LogicalResult
409   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
410                   ConversionPatternRewriter &rewriter) const final {
411     // If the type is I32, change the type to F32.
412     if (!Type(*op->result_type_begin()).isSignlessInteger(32))
413       return failure();
414     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
415     return success();
416   }
417 };
418 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
419   TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
420       : ConversionPattern("test.type_producer", 1, ctx) {}
421   LogicalResult
422   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
423                   ConversionPatternRewriter &rewriter) const final {
424     // If the type is F32, change the type to F64.
425     if (!Type(*op->result_type_begin()).isF32())
426       return rewriter.notifyMatchFailure(op, "expected single f32 operand");
427     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
428     return success();
429   }
430 };
431 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
432   TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
433       : ConversionPattern("test.type_producer", 10, ctx) {}
434   LogicalResult
435   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
436                   ConversionPatternRewriter &rewriter) const final {
437     // Always convert to B16, even though it is not a legal type. This tests
438     // that values are unmapped correctly.
439     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
440     return success();
441   }
442 };
443 struct TestUpdateConsumerType : public ConversionPattern {
444   TestUpdateConsumerType(MLIRContext *ctx)
445       : ConversionPattern("test.type_consumer", 1, ctx) {}
446   LogicalResult
447   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
448                   ConversionPatternRewriter &rewriter) const final {
449     // Verify that the incoming operand has been successfully remapped to F64.
450     if (!operands[0].getType().isF64())
451       return failure();
452     rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
453     return success();
454   }
455 };
456 
457 //===----------------------------------------------------------------------===//
458 // Non-Root Replacement Rewrite Testing
459 /// This pattern generates an invalid operation, but replaces it before the
460 /// pattern is finished. This checks that we don't need to legalize the
461 /// temporary op.
462 struct TestNonRootReplacement : public RewritePattern {
463   TestNonRootReplacement(MLIRContext *ctx)
464       : RewritePattern("test.replace_non_root", 1, ctx) {}
465 
466   LogicalResult matchAndRewrite(Operation *op,
467                                 PatternRewriter &rewriter) const final {
468     auto resultType = *op->result_type_begin();
469     auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
470     auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
471 
472     rewriter.replaceOp(illegalOp, {legalOp});
473     rewriter.replaceOp(op, {illegalOp});
474     return success();
475   }
476 };
477 
478 //===----------------------------------------------------------------------===//
479 // Recursive Rewrite Testing
480 /// This pattern is applied to the same operation multiple times, but has a
481 /// bounded recursion.
482 struct TestBoundedRecursiveRewrite
483     : public OpRewritePattern<TestRecursiveRewriteOp> {
484   using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern;
485 
486   void initialize() {
487     // The conversion target handles bounding the recursion of this pattern.
488     setHasBoundedRewriteRecursion();
489   }
490 
491   LogicalResult matchAndRewrite(TestRecursiveRewriteOp op,
492                                 PatternRewriter &rewriter) const final {
493     // Decrement the depth of the op in-place.
494     rewriter.updateRootInPlace(op, [&] {
495       op->setAttr("depth", rewriter.getI64IntegerAttr(op.depth() - 1));
496     });
497     return success();
498   }
499 };
500 
501 struct TestNestedOpCreationUndoRewrite
502     : public OpRewritePattern<IllegalOpWithRegionAnchor> {
503   using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern;
504 
505   LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op,
506                                 PatternRewriter &rewriter) const final {
507     // rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
508     rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
509     return success();
510   };
511 };
512 
513 // This pattern matches `test.blackhole` and delete this op and its producer.
514 struct TestReplaceEraseOp : public OpRewritePattern<BlackHoleOp> {
515   using OpRewritePattern<BlackHoleOp>::OpRewritePattern;
516 
517   LogicalResult matchAndRewrite(BlackHoleOp op,
518                                 PatternRewriter &rewriter) const final {
519     Operation *producer = op.getOperand().getDefiningOp();
520     // Always erase the user before the producer, the framework should handle
521     // this correctly.
522     rewriter.eraseOp(op);
523     rewriter.eraseOp(producer);
524     return success();
525   };
526 };
527 } // namespace
528 
529 namespace {
530 struct TestTypeConverter : public TypeConverter {
531   using TypeConverter::TypeConverter;
532   TestTypeConverter() {
533     addConversion(convertType);
534     addArgumentMaterialization(materializeCast);
535     addSourceMaterialization(materializeCast);
536 
537     /// Materialize the cast for one-to-one conversion from i64 to f64.
538     const auto materializeOneToOneCast =
539         [](OpBuilder &builder, IntegerType resultType, ValueRange inputs,
540            Location loc) -> Optional<Value> {
541       if (resultType.getWidth() == 42 && inputs.size() == 1)
542         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
543       return llvm::None;
544     };
545     addArgumentMaterialization(materializeOneToOneCast);
546   }
547 
548   static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
549     // Drop I16 types.
550     if (t.isSignlessInteger(16))
551       return success();
552 
553     // Convert I64 to F64.
554     if (t.isSignlessInteger(64)) {
555       results.push_back(FloatType::getF64(t.getContext()));
556       return success();
557     }
558 
559     // Convert I42 to I43.
560     if (t.isInteger(42)) {
561       results.push_back(IntegerType::get(t.getContext(), 43));
562       return success();
563     }
564 
565     // Split F32 into F16,F16.
566     if (t.isF32()) {
567       results.assign(2, FloatType::getF16(t.getContext()));
568       return success();
569     }
570 
571     // Otherwise, convert the type directly.
572     results.push_back(t);
573     return success();
574   }
575 
576   /// Hook for materializing a conversion. This is necessary because we generate
577   /// 1->N type mappings.
578   static Optional<Value> materializeCast(OpBuilder &builder, Type resultType,
579                                          ValueRange inputs, Location loc) {
580     if (inputs.size() == 1)
581       return inputs[0];
582     return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
583   }
584 };
585 
586 struct TestLegalizePatternDriver
587     : public PassWrapper<TestLegalizePatternDriver, OperationPass<ModuleOp>> {
588   /// The mode of conversion to use with the driver.
589   enum class ConversionMode { Analysis, Full, Partial };
590 
591   TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
592 
593   void runOnOperation() override {
594     TestTypeConverter converter;
595     mlir::RewritePatternSet patterns(&getContext());
596     populateWithGenerated(patterns);
597     patterns
598         .add<TestRegionRewriteBlockMovement, TestRegionRewriteUndo,
599              TestCreateBlock, TestCreateIllegalBlock, TestUndoBlockArgReplace,
600              TestUndoBlockErase, TestPassthroughInvalidOp, TestSplitReturnType,
601              TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
602              TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
603              TestNonRootReplacement, TestBoundedRecursiveRewrite,
604              TestNestedOpCreationUndoRewrite, TestReplaceEraseOp>(
605             &getContext());
606     patterns.add<TestDropOpSignatureConversion>(&getContext(), converter);
607     mlir::populateFuncOpTypeConversionPattern(patterns, converter);
608     mlir::populateCallOpTypeConversionPattern(patterns, converter);
609 
610     // Define the conversion target used for the test.
611     ConversionTarget target(getContext());
612     target.addLegalOp<ModuleOp>();
613     target.addLegalOp<LegalOpA, LegalOpB, TestCastOp, TestValidOp,
614                       TerminatorOp>();
615     target
616         .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
617     target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
618       // Don't allow F32 operands.
619       return llvm::none_of(op.getOperandTypes(),
620                            [](Type type) { return type.isF32(); });
621     });
622     target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
623       return converter.isSignatureLegal(op.getType()) &&
624              converter.isLegal(&op.getBody());
625     });
626 
627     // Expect the type_producer/type_consumer operations to only operate on f64.
628     target.addDynamicallyLegalOp<TestTypeProducerOp>(
629         [](TestTypeProducerOp op) { return op.getType().isF64(); });
630     target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
631       return op.getOperand().getType().isF64();
632     });
633 
634     // Check support for marking certain operations as recursively legal.
635     target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) {
636       return static_cast<bool>(
637           op->getAttrOfType<UnitAttr>("test.recursively_legal"));
638     });
639 
640     // Mark the bound recursion operation as dynamically legal.
641     target.addDynamicallyLegalOp<TestRecursiveRewriteOp>(
642         [](TestRecursiveRewriteOp op) { return op.depth() == 0; });
643 
644     // Handle a partial conversion.
645     if (mode == ConversionMode::Partial) {
646       DenseSet<Operation *> unlegalizedOps;
647       (void)applyPartialConversion(getOperation(), target, std::move(patterns),
648                                    &unlegalizedOps);
649       // Emit remarks for each legalizable operation.
650       for (auto *op : unlegalizedOps)
651         op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
652       return;
653     }
654 
655     // Handle a full conversion.
656     if (mode == ConversionMode::Full) {
657       // Check support for marking unknown operations as dynamically legal.
658       target.markUnknownOpDynamicallyLegal([](Operation *op) {
659         return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal");
660       });
661 
662       (void)applyFullConversion(getOperation(), target, std::move(patterns));
663       return;
664     }
665 
666     // Otherwise, handle an analysis conversion.
667     assert(mode == ConversionMode::Analysis);
668 
669     // Analyze the convertible operations.
670     DenseSet<Operation *> legalizedOps;
671     if (failed(applyAnalysisConversion(getOperation(), target,
672                                        std::move(patterns), legalizedOps)))
673       return signalPassFailure();
674 
675     // Emit remarks for each legalizable operation.
676     for (auto *op : legalizedOps)
677       op->emitRemark() << "op '" << op->getName() << "' is legalizable";
678   }
679 
680   /// The mode of conversion to use.
681   ConversionMode mode;
682 };
683 } // end anonymous namespace
684 
685 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
686     legalizerConversionMode(
687         "test-legalize-mode",
688         llvm::cl::desc("The legalization mode to use with the test driver"),
689         llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
690         llvm::cl::values(
691             clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
692                        "analysis", "Perform an analysis conversion"),
693             clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
694                        "Perform a full conversion"),
695             clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
696                        "partial", "Perform a partial conversion")));
697 
698 //===----------------------------------------------------------------------===//
699 // ConversionPatternRewriter::getRemappedValue testing. This method is used
700 // to get the remapped value of an original value that was replaced using
701 // ConversionPatternRewriter.
702 namespace {
703 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
704 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
705 /// operand twice.
706 ///
707 /// Example:
708 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0)
709 /// is replaced with:
710 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
711 struct OneVResOneVOperandOp1Converter
712     : public OpConversionPattern<OneVResOneVOperandOp1> {
713   using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
714 
715   LogicalResult
716   matchAndRewrite(OneVResOneVOperandOp1 op, ArrayRef<Value> operands,
717                   ConversionPatternRewriter &rewriter) const override {
718     auto origOps = op.getOperands();
719     assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
720            "One operand expected");
721     Value origOp = *origOps.begin();
722     SmallVector<Value, 2> remappedOperands;
723     // Replicate the remapped original operand twice. Note that we don't used
724     // the remapped 'operand' since the goal is testing 'getRemappedValue'.
725     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
726     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
727 
728     rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(),
729                                                        remappedOperands);
730     return success();
731   }
732 };
733 
734 struct TestRemappedValue
735     : public mlir::PassWrapper<TestRemappedValue, FunctionPass> {
736   void runOnFunction() override {
737     mlir::RewritePatternSet patterns(&getContext());
738     patterns.add<OneVResOneVOperandOp1Converter>(&getContext());
739 
740     mlir::ConversionTarget target(getContext());
741     target.addLegalOp<ModuleOp, FuncOp, TestReturnOp>();
742     // We make OneVResOneVOperandOp1 legal only when it has more that one
743     // operand. This will trigger the conversion that will replace one-operand
744     // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
745     target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
746         [](Operation *op) -> bool {
747           return std::distance(op->operand_begin(), op->operand_end()) > 1;
748         });
749 
750     if (failed(mlir::applyFullConversion(getFunction(), target,
751                                          std::move(patterns)))) {
752       signalPassFailure();
753     }
754   }
755 };
756 } // end anonymous namespace
757 
758 //===----------------------------------------------------------------------===//
759 // Test patterns without a specific root operation kind
760 //===----------------------------------------------------------------------===//
761 
762 namespace {
763 /// This pattern matches and removes any operation in the test dialect.
764 struct RemoveTestDialectOps : public RewritePattern {
765   RemoveTestDialectOps(MLIRContext *context)
766       : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
767 
768   LogicalResult matchAndRewrite(Operation *op,
769                                 PatternRewriter &rewriter) const override {
770     if (!isa<TestDialect>(op->getDialect()))
771       return failure();
772     rewriter.eraseOp(op);
773     return success();
774   }
775 };
776 
777 struct TestUnknownRootOpDriver
778     : public mlir::PassWrapper<TestUnknownRootOpDriver, FunctionPass> {
779   void runOnFunction() override {
780     mlir::RewritePatternSet patterns(&getContext());
781     patterns.add<RemoveTestDialectOps>(&getContext());
782 
783     mlir::ConversionTarget target(getContext());
784     target.addIllegalDialect<TestDialect>();
785     if (failed(
786             applyPartialConversion(getFunction(), target, std::move(patterns))))
787       signalPassFailure();
788   }
789 };
790 } // end anonymous namespace
791 
792 //===----------------------------------------------------------------------===//
793 // Test type conversions
794 //===----------------------------------------------------------------------===//
795 
796 namespace {
797 struct TestTypeConversionProducer
798     : public OpConversionPattern<TestTypeProducerOp> {
799   using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern;
800   LogicalResult
801   matchAndRewrite(TestTypeProducerOp op, ArrayRef<Value> operands,
802                   ConversionPatternRewriter &rewriter) const final {
803     Type resultType = op.getType();
804     if (resultType.isa<FloatType>())
805       resultType = rewriter.getF64Type();
806     else if (resultType.isInteger(16))
807       resultType = rewriter.getIntegerType(64);
808     else
809       return failure();
810 
811     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType);
812     return success();
813   }
814 };
815 
816 /// Call signature conversion and then fail the rewrite to trigger the undo
817 /// mechanism.
818 struct TestSignatureConversionUndo
819     : public OpConversionPattern<TestSignatureConversionUndoOp> {
820   using OpConversionPattern<TestSignatureConversionUndoOp>::OpConversionPattern;
821 
822   LogicalResult
823   matchAndRewrite(TestSignatureConversionUndoOp op, ArrayRef<Value> operands,
824                   ConversionPatternRewriter &rewriter) const final {
825     (void)rewriter.convertRegionTypes(&op->getRegion(0), *getTypeConverter());
826     return failure();
827   }
828 };
829 
830 /// Just forward the operands to the root op. This is essentially a no-op
831 /// pattern that is used to trigger target materialization.
832 struct TestTypeConsumerForward
833     : public OpConversionPattern<TestTypeConsumerOp> {
834   using OpConversionPattern<TestTypeConsumerOp>::OpConversionPattern;
835 
836   LogicalResult
837   matchAndRewrite(TestTypeConsumerOp op, ArrayRef<Value> operands,
838                   ConversionPatternRewriter &rewriter) const final {
839     rewriter.updateRootInPlace(op, [&] { op->setOperands(operands); });
840     return success();
841   }
842 };
843 
844 struct TestTypeConversionAnotherProducer
845     : public OpRewritePattern<TestAnotherTypeProducerOp> {
846   using OpRewritePattern<TestAnotherTypeProducerOp>::OpRewritePattern;
847 
848   LogicalResult matchAndRewrite(TestAnotherTypeProducerOp op,
849                                 PatternRewriter &rewriter) const final {
850     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, op.getType());
851     return success();
852   }
853 };
854 
855 struct TestTypeConversionDriver
856     : public PassWrapper<TestTypeConversionDriver, OperationPass<ModuleOp>> {
857   void getDependentDialects(DialectRegistry &registry) const override {
858     registry.insert<TestDialect>();
859   }
860 
861   void runOnOperation() override {
862     // Initialize the type converter.
863     TypeConverter converter;
864 
865     /// Add the legal set of type conversions.
866     converter.addConversion([](Type type) -> Type {
867       // Treat F64 as legal.
868       if (type.isF64())
869         return type;
870       // Allow converting BF16/F16/F32 to F64.
871       if (type.isBF16() || type.isF16() || type.isF32())
872         return FloatType::getF64(type.getContext());
873       // Otherwise, the type is illegal.
874       return nullptr;
875     });
876     converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) {
877       // Drop all integer types.
878       return success();
879     });
880 
881     /// Add the legal set of type materializations.
882     converter.addSourceMaterialization([](OpBuilder &builder, Type resultType,
883                                           ValueRange inputs,
884                                           Location loc) -> Value {
885       // Allow casting from F64 back to F32.
886       if (!resultType.isF16() && inputs.size() == 1 &&
887           inputs[0].getType().isF64())
888         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
889       // Allow producing an i32 or i64 from nothing.
890       if ((resultType.isInteger(32) || resultType.isInteger(64)) &&
891           inputs.empty())
892         return builder.create<TestTypeProducerOp>(loc, resultType);
893       // Allow producing an i64 from an integer.
894       if (resultType.isa<IntegerType>() && inputs.size() == 1 &&
895           inputs[0].getType().isa<IntegerType>())
896         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
897       // Otherwise, fail.
898       return nullptr;
899     });
900 
901     // Initialize the conversion target.
902     mlir::ConversionTarget target(getContext());
903     target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) {
904       return op.getType().isF64() || op.getType().isInteger(64);
905     });
906     target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
907       return converter.isSignatureLegal(op.getType()) &&
908              converter.isLegal(&op.getBody());
909     });
910     target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) {
911       // Allow casts from F64 to F32.
912       return (*op.operand_type_begin()).isF64() && op.getType().isF32();
913     });
914 
915     // Initialize the set of rewrite patterns.
916     RewritePatternSet patterns(&getContext());
917     patterns.add<TestTypeConsumerForward, TestTypeConversionProducer,
918                  TestSignatureConversionUndo>(converter, &getContext());
919     patterns.add<TestTypeConversionAnotherProducer>(&getContext());
920     mlir::populateFuncOpTypeConversionPattern(patterns, converter);
921 
922     if (failed(applyPartialConversion(getOperation(), target,
923                                       std::move(patterns))))
924       signalPassFailure();
925   }
926 };
927 } // end anonymous namespace
928 
929 //===----------------------------------------------------------------------===//
930 // Test Block Merging
931 //===----------------------------------------------------------------------===//
932 
933 namespace {
934 /// A rewriter pattern that tests that blocks can be merged.
935 struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> {
936   using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern;
937 
938   LogicalResult
939   matchAndRewrite(TestMergeBlocksOp op, ArrayRef<Value> operands,
940                   ConversionPatternRewriter &rewriter) const final {
941     Block &firstBlock = op.body().front();
942     Operation *branchOp = firstBlock.getTerminator();
943     Block *secondBlock = &*(std::next(op.body().begin()));
944     auto succOperands = branchOp->getOperands();
945     SmallVector<Value, 2> replacements(succOperands);
946     rewriter.eraseOp(branchOp);
947     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
948     rewriter.updateRootInPlace(op, [] {});
949     return success();
950   }
951 };
952 
953 /// A rewrite pattern to tests the undo mechanism of blocks being merged.
954 struct TestUndoBlocksMerge : public ConversionPattern {
955   TestUndoBlocksMerge(MLIRContext *ctx)
956       : ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {}
957   LogicalResult
958   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
959                   ConversionPatternRewriter &rewriter) const final {
960     Block &firstBlock = op->getRegion(0).front();
961     Operation *branchOp = firstBlock.getTerminator();
962     Block *secondBlock = &*(std::next(op->getRegion(0).begin()));
963     rewriter.setInsertionPointToStart(secondBlock);
964     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
965     auto succOperands = branchOp->getOperands();
966     SmallVector<Value, 2> replacements(succOperands);
967     rewriter.eraseOp(branchOp);
968     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
969     rewriter.updateRootInPlace(op, [] {});
970     return success();
971   }
972 };
973 
974 /// A rewrite mechanism to inline the body of the op into its parent, when both
975 /// ops can have a single block.
976 struct TestMergeSingleBlockOps
977     : public OpConversionPattern<SingleBlockImplicitTerminatorOp> {
978   using OpConversionPattern<
979       SingleBlockImplicitTerminatorOp>::OpConversionPattern;
980 
981   LogicalResult
982   matchAndRewrite(SingleBlockImplicitTerminatorOp op, ArrayRef<Value> operands,
983                   ConversionPatternRewriter &rewriter) const final {
984     SingleBlockImplicitTerminatorOp parentOp =
985         op->getParentOfType<SingleBlockImplicitTerminatorOp>();
986     if (!parentOp)
987       return failure();
988     Block &innerBlock = op.region().front();
989     TerminatorOp innerTerminator =
990         cast<TerminatorOp>(innerBlock.getTerminator());
991     rewriter.mergeBlockBefore(&innerBlock, op);
992     rewriter.eraseOp(innerTerminator);
993     rewriter.eraseOp(op);
994     rewriter.updateRootInPlace(op, [] {});
995     return success();
996   }
997 };
998 
999 struct TestMergeBlocksPatternDriver
1000     : public PassWrapper<TestMergeBlocksPatternDriver,
1001                          OperationPass<ModuleOp>> {
1002   void runOnOperation() override {
1003     MLIRContext *context = &getContext();
1004     mlir::RewritePatternSet patterns(context);
1005     patterns.add<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>(
1006         context);
1007     ConversionTarget target(*context);
1008     target.addLegalOp<FuncOp, ModuleOp, TerminatorOp, TestBranchOp,
1009                       TestTypeConsumerOp, TestTypeProducerOp, TestReturnOp>();
1010     target.addIllegalOp<ILLegalOpF>();
1011 
1012     /// Expect the op to have a single block after legalization.
1013     target.addDynamicallyLegalOp<TestMergeBlocksOp>(
1014         [&](TestMergeBlocksOp op) -> bool {
1015           return llvm::hasSingleElement(op.body());
1016         });
1017 
1018     /// Only allow `test.br` within test.merge_blocks op.
1019     target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool {
1020       return op->getParentOfType<TestMergeBlocksOp>();
1021     });
1022 
1023     /// Expect that all nested test.SingleBlockImplicitTerminator ops are
1024     /// inlined.
1025     target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>(
1026         [&](SingleBlockImplicitTerminatorOp op) -> bool {
1027           return !op->getParentOfType<SingleBlockImplicitTerminatorOp>();
1028         });
1029 
1030     DenseSet<Operation *> unlegalizedOps;
1031     (void)applyPartialConversion(getOperation(), target, std::move(patterns),
1032                                  &unlegalizedOps);
1033     for (auto *op : unlegalizedOps)
1034       op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
1035   }
1036 };
1037 } // namespace
1038 
1039 //===----------------------------------------------------------------------===//
1040 // Test Selective Replacement
1041 //===----------------------------------------------------------------------===//
1042 
1043 namespace {
1044 /// A rewrite mechanism to inline the body of the op into its parent, when both
1045 /// ops can have a single block.
1046 struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> {
1047   using OpRewritePattern<TestCastOp>::OpRewritePattern;
1048 
1049   LogicalResult matchAndRewrite(TestCastOp op,
1050                                 PatternRewriter &rewriter) const final {
1051     if (op.getNumOperands() != 2)
1052       return failure();
1053     OperandRange operands = op.getOperands();
1054 
1055     // Replace non-terminator uses with the first operand.
1056     rewriter.replaceOpWithIf(op, operands[0], [](OpOperand &operand) {
1057       return operand.getOwner()->hasTrait<OpTrait::IsTerminator>();
1058     });
1059     // Replace everything else with the second operand if the operation isn't
1060     // dead.
1061     rewriter.replaceOp(op, op.getOperand(1));
1062     return success();
1063   }
1064 };
1065 
1066 struct TestSelectiveReplacementPatternDriver
1067     : public PassWrapper<TestSelectiveReplacementPatternDriver,
1068                          OperationPass<>> {
1069   void runOnOperation() override {
1070     MLIRContext *context = &getContext();
1071     mlir::RewritePatternSet patterns(context);
1072     patterns.add<TestSelectiveOpReplacementPattern>(context);
1073     (void)applyPatternsAndFoldGreedily(getOperation()->getRegions(),
1074                                        std::move(patterns));
1075   }
1076 };
1077 } // namespace
1078 
1079 //===----------------------------------------------------------------------===//
1080 // PassRegistration
1081 //===----------------------------------------------------------------------===//
1082 
1083 namespace mlir {
1084 namespace test {
1085 void registerPatternsTestPass() {
1086   PassRegistration<TestReturnTypeDriver>("test-return-type",
1087                                          "Run return type functions");
1088 
1089   PassRegistration<TestDerivedAttributeDriver>("test-derived-attr",
1090                                                "Run test derived attributes");
1091 
1092   PassRegistration<TestPatternDriver>("test-patterns",
1093                                       "Run test dialect patterns");
1094 
1095   PassRegistration<TestLegalizePatternDriver>(
1096       "test-legalize-patterns", "Run test dialect legalization patterns", [] {
1097         return std::make_unique<TestLegalizePatternDriver>(
1098             legalizerConversionMode);
1099       });
1100 
1101   PassRegistration<TestRemappedValue>(
1102       "test-remapped-value",
1103       "Test public remapped value mechanism in ConversionPatternRewriter");
1104 
1105   PassRegistration<TestUnknownRootOpDriver>(
1106       "test-legalize-unknown-root-patterns",
1107       "Test public remapped value mechanism in ConversionPatternRewriter");
1108 
1109   PassRegistration<TestTypeConversionDriver>(
1110       "test-legalize-type-conversion",
1111       "Test various type conversion functionalities in DialectConversion");
1112 
1113   PassRegistration<TestMergeBlocksPatternDriver>{
1114       "test-merge-blocks",
1115       "Test Merging operation in ConversionPatternRewriter"};
1116   PassRegistration<TestSelectiveReplacementPatternDriver>{
1117       "test-pattern-selective-replacement",
1118       "Test selective replacement in the PatternRewriter"};
1119 }
1120 } // namespace test
1121 } // namespace mlir
1122