1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "TestDialect.h"
10 #include "TestTypes.h"
11 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
12 #include "mlir/Dialect/Func/IR/FuncOps.h"
13 #include "mlir/Dialect/Func/Transforms/FuncConversions.h"
14 #include "mlir/Dialect/Tensor/IR/Tensor.h"
15 #include "mlir/IR/Matchers.h"
16 #include "mlir/Pass/Pass.h"
17 #include "mlir/Transforms/DialectConversion.h"
18 #include "mlir/Transforms/FoldUtils.h"
19 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
20 
21 using namespace mlir;
22 using namespace test;
23 
24 // Native function for testing NativeCodeCall
25 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
26   return choice.getValue() ? input1 : input2;
27 }
28 
29 static void createOpI(PatternRewriter &rewriter, Location loc, Value input) {
30   rewriter.create<OpI>(loc, input);
31 }
32 
33 static void handleNoResultOp(PatternRewriter &rewriter,
34                              OpSymbolBindingNoResult op) {
35   // Turn the no result op to a one-result op.
36   rewriter.create<OpSymbolBindingB>(op.getLoc(), op.getOperand().getType(),
37                                     op.getOperand());
38 }
39 
40 static bool getFirstI32Result(Operation *op, Value &value) {
41   if (!Type(op->getResult(0).getType()).isSignlessInteger(32))
42     return false;
43   value = op->getResult(0);
44   return true;
45 }
46 
47 static Value bindNativeCodeCallResult(Value value) { return value; }
48 
49 static SmallVector<Value, 2> bindMultipleNativeCodeCallResult(Value input1,
50                                                               Value input2) {
51   return SmallVector<Value, 2>({input2, input1});
52 }
53 
54 // Test that natives calls are only called once during rewrites.
55 // OpM_Test will return Pi, increased by 1 for each subsequent calls.
56 // This let us check the number of times OpM_Test was called by inspecting
57 // the returned value in the MLIR output.
58 static int64_t opMIncreasingValue = 314159265;
59 static Attribute opMTest(PatternRewriter &rewriter, Value val) {
60   int64_t i = opMIncreasingValue++;
61   return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i);
62 }
63 
64 namespace {
65 #include "TestPatterns.inc"
66 } // namespace
67 
68 //===----------------------------------------------------------------------===//
69 // Test Reduce Pattern Interface
70 //===----------------------------------------------------------------------===//
71 
72 void test::populateTestReductionPatterns(RewritePatternSet &patterns) {
73   populateWithGenerated(patterns);
74 }
75 
76 //===----------------------------------------------------------------------===//
77 // Canonicalizer Driver.
78 //===----------------------------------------------------------------------===//
79 
80 namespace {
81 struct FoldingPattern : public RewritePattern {
82 public:
83   FoldingPattern(MLIRContext *context)
84       : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(),
85                        /*benefit=*/1, context) {}
86 
87   LogicalResult matchAndRewrite(Operation *op,
88                                 PatternRewriter &rewriter) const override {
89     // Exercise OperationFolder API for a single-result operation that is folded
90     // upon construction. The operation being created through the folder has an
91     // in-place folder, and it should be still present in the output.
92     // Furthermore, the folder should not crash when attempting to recover the
93     // (unchanged) operation result.
94     OperationFolder folder(op->getContext());
95     Value result = folder.create<TestOpInPlaceFold>(
96         rewriter, op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0),
97         rewriter.getI32IntegerAttr(0));
98     assert(result);
99     rewriter.replaceOp(op, result);
100     return success();
101   }
102 };
103 
104 /// This pattern creates a foldable operation at the entry point of the block.
105 /// This tests the situation where the operation folder will need to replace an
106 /// operation with a previously created constant that does not initially
107 /// dominate the operation to replace.
108 struct FolderInsertBeforePreviouslyFoldedConstantPattern
109     : public OpRewritePattern<TestCastOp> {
110 public:
111   using OpRewritePattern<TestCastOp>::OpRewritePattern;
112 
113   LogicalResult matchAndRewrite(TestCastOp op,
114                                 PatternRewriter &rewriter) const override {
115     if (!op->hasAttr("test_fold_before_previously_folded_op"))
116       return failure();
117     rewriter.setInsertionPointToStart(op->getBlock());
118 
119     auto constOp = rewriter.create<arith::ConstantOp>(
120         op.getLoc(), rewriter.getBoolAttr(true));
121     rewriter.replaceOpWithNewOp<TestCastOp>(op, rewriter.getI32Type(),
122                                             Value(constOp));
123     return success();
124   }
125 };
126 
127 /// This pattern matches test.op_commutative2 with the first operand being
128 /// another test.op_commutative2 with a constant on the right side and fold it
129 /// away by propagating it as its result. This is intend to check that patterns
130 /// are applied after the commutative property moves constant to the right.
131 struct FolderCommutativeOp2WithConstant
132     : public OpRewritePattern<TestCommutative2Op> {
133 public:
134   using OpRewritePattern<TestCommutative2Op>::OpRewritePattern;
135 
136   LogicalResult matchAndRewrite(TestCommutative2Op op,
137                                 PatternRewriter &rewriter) const override {
138     auto operand =
139         dyn_cast_or_null<TestCommutative2Op>(op->getOperand(0).getDefiningOp());
140     if (!operand)
141       return failure();
142     Attribute constInput;
143     if (!matchPattern(operand->getOperand(1), m_Constant(&constInput)))
144       return failure();
145     rewriter.replaceOp(op, operand->getOperand(1));
146     return success();
147   }
148 };
149 
150 struct TestPatternDriver
151     : public PassWrapper<TestPatternDriver, OperationPass<FuncOp>> {
152   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestPatternDriver)
153 
154   StringRef getArgument() const final { return "test-patterns"; }
155   StringRef getDescription() const final { return "Run test dialect patterns"; }
156   void runOnOperation() override {
157     mlir::RewritePatternSet patterns(&getContext());
158     populateWithGenerated(patterns);
159 
160     // Verify named pattern is generated with expected name.
161     patterns.add<FoldingPattern, TestNamedPatternRule,
162                  FolderInsertBeforePreviouslyFoldedConstantPattern,
163                  FolderCommutativeOp2WithConstant>(&getContext());
164 
165     (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
166   }
167 };
168 } // namespace
169 
170 //===----------------------------------------------------------------------===//
171 // ReturnType Driver.
172 //===----------------------------------------------------------------------===//
173 
174 namespace {
175 // Generate ops for each instance where the type can be successfully inferred.
176 template <typename OpTy>
177 static void invokeCreateWithInferredReturnType(Operation *op) {
178   auto *context = op->getContext();
179   auto fop = op->getParentOfType<FuncOp>();
180   auto location = UnknownLoc::get(context);
181   OpBuilder b(op);
182   b.setInsertionPointAfter(op);
183 
184   // Use permutations of 2 args as operands.
185   assert(fop.getNumArguments() >= 2);
186   for (int i = 0, e = fop.getNumArguments(); i < e; ++i) {
187     for (int j = 0; j < e; ++j) {
188       std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}};
189       SmallVector<Type, 2> inferredReturnTypes;
190       if (succeeded(OpTy::inferReturnTypes(
191               context, llvm::None, values, op->getAttrDictionary(),
192               op->getRegions(), inferredReturnTypes))) {
193         OperationState state(location, OpTy::getOperationName());
194         // TODO: Expand to regions.
195         OpTy::build(b, state, values, op->getAttrs());
196         (void)b.create(state);
197       }
198     }
199   }
200 }
201 
202 static void reifyReturnShape(Operation *op) {
203   OpBuilder b(op);
204 
205   // Use permutations of 2 args as operands.
206   auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op);
207   SmallVector<Value, 2> shapes;
208   if (failed(shapedOp.reifyReturnTypeShapes(b, op->getOperands(), shapes)) ||
209       !llvm::hasSingleElement(shapes))
210     return;
211   for (const auto &it : llvm::enumerate(shapes)) {
212     op->emitRemark() << "value " << it.index() << ": "
213                      << it.value().getDefiningOp();
214   }
215 }
216 
217 struct TestReturnTypeDriver
218     : public PassWrapper<TestReturnTypeDriver, OperationPass<FuncOp>> {
219   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestReturnTypeDriver)
220 
221   void getDependentDialects(DialectRegistry &registry) const override {
222     registry.insert<tensor::TensorDialect>();
223   }
224   StringRef getArgument() const final { return "test-return-type"; }
225   StringRef getDescription() const final { return "Run return type functions"; }
226 
227   void runOnOperation() override {
228     if (getOperation().getName() == "testCreateFunctions") {
229       std::vector<Operation *> ops;
230       // Collect ops to avoid triggering on inserted ops.
231       for (auto &op : getOperation().getBody().front())
232         ops.push_back(&op);
233       // Generate test patterns for each, but skip terminator.
234       for (auto *op : llvm::makeArrayRef(ops).drop_back()) {
235         // Test create method of each of the Op classes below. The resultant
236         // output would be in reverse order underneath `op` from which
237         // the attributes and regions are used.
238         invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op);
239         invokeCreateWithInferredReturnType<
240             OpWithShapedTypeInferTypeInterfaceOp>(op);
241       };
242       return;
243     }
244     if (getOperation().getName() == "testReifyFunctions") {
245       std::vector<Operation *> ops;
246       // Collect ops to avoid triggering on inserted ops.
247       for (auto &op : getOperation().getBody().front())
248         if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op))
249           ops.push_back(&op);
250       // Generate test patterns for each, but skip terminator.
251       for (auto *op : ops)
252         reifyReturnShape(op);
253     }
254   }
255 };
256 } // namespace
257 
258 namespace {
259 struct TestDerivedAttributeDriver
260     : public PassWrapper<TestDerivedAttributeDriver, OperationPass<FuncOp>> {
261   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestDerivedAttributeDriver)
262 
263   StringRef getArgument() const final { return "test-derived-attr"; }
264   StringRef getDescription() const final {
265     return "Run test derived attributes";
266   }
267   void runOnOperation() override;
268 };
269 } // namespace
270 
271 void TestDerivedAttributeDriver::runOnOperation() {
272   getOperation().walk([](DerivedAttributeOpInterface dOp) {
273     auto dAttr = dOp.materializeDerivedAttributes();
274     if (!dAttr)
275       return;
276     for (auto d : dAttr)
277       dOp.emitRemark() << d.getName().getValue() << " = " << d.getValue();
278   });
279 }
280 
281 //===----------------------------------------------------------------------===//
282 // Legalization Driver.
283 //===----------------------------------------------------------------------===//
284 
285 namespace {
286 //===----------------------------------------------------------------------===//
287 // Region-Block Rewrite Testing
288 
289 /// This pattern is a simple pattern that inlines the first region of a given
290 /// operation into the parent region.
291 struct TestRegionRewriteBlockMovement : public ConversionPattern {
292   TestRegionRewriteBlockMovement(MLIRContext *ctx)
293       : ConversionPattern("test.region", 1, ctx) {}
294 
295   LogicalResult
296   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
297                   ConversionPatternRewriter &rewriter) const final {
298     // Inline this region into the parent region.
299     auto &parentRegion = *op->getParentRegion();
300     auto &opRegion = op->getRegion(0);
301     if (op->getAttr("legalizer.should_clone"))
302       rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end());
303     else
304       rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end());
305 
306     if (op->getAttr("legalizer.erase_old_blocks")) {
307       while (!opRegion.empty())
308         rewriter.eraseBlock(&opRegion.front());
309     }
310 
311     // Drop this operation.
312     rewriter.eraseOp(op);
313     return success();
314   }
315 };
316 /// This pattern is a simple pattern that generates a region containing an
317 /// illegal operation.
318 struct TestRegionRewriteUndo : public RewritePattern {
319   TestRegionRewriteUndo(MLIRContext *ctx)
320       : RewritePattern("test.region_builder", 1, ctx) {}
321 
322   LogicalResult matchAndRewrite(Operation *op,
323                                 PatternRewriter &rewriter) const final {
324     // Create the region operation with an entry block containing arguments.
325     OperationState newRegion(op->getLoc(), "test.region");
326     newRegion.addRegion();
327     auto *regionOp = rewriter.create(newRegion);
328     auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
329     entryBlock->addArgument(rewriter.getIntegerType(64),
330                             rewriter.getUnknownLoc());
331 
332     // Add an explicitly illegal operation to ensure the conversion fails.
333     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
334     rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());
335 
336     // Drop this operation.
337     rewriter.eraseOp(op);
338     return success();
339   }
340 };
341 /// A simple pattern that creates a block at the end of the parent region of the
342 /// matched operation.
343 struct TestCreateBlock : public RewritePattern {
344   TestCreateBlock(MLIRContext *ctx)
345       : RewritePattern("test.create_block", /*benefit=*/1, ctx) {}
346 
347   LogicalResult matchAndRewrite(Operation *op,
348                                 PatternRewriter &rewriter) const final {
349     Region &region = *op->getParentRegion();
350     Type i32Type = rewriter.getIntegerType(32);
351     Location loc = op->getLoc();
352     rewriter.createBlock(&region, region.end(), {i32Type, i32Type}, {loc, loc});
353     rewriter.create<TerminatorOp>(loc);
354     rewriter.replaceOp(op, {});
355     return success();
356   }
357 };
358 
359 /// A simple pattern that creates a block containing an invalid operation in
360 /// order to trigger the block creation undo mechanism.
361 struct TestCreateIllegalBlock : public RewritePattern {
362   TestCreateIllegalBlock(MLIRContext *ctx)
363       : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {}
364 
365   LogicalResult matchAndRewrite(Operation *op,
366                                 PatternRewriter &rewriter) const final {
367     Region &region = *op->getParentRegion();
368     Type i32Type = rewriter.getIntegerType(32);
369     Location loc = op->getLoc();
370     rewriter.createBlock(&region, region.end(), {i32Type, i32Type}, {loc, loc});
371     // Create an illegal op to ensure the conversion fails.
372     rewriter.create<ILLegalOpF>(loc, i32Type);
373     rewriter.create<TerminatorOp>(loc);
374     rewriter.replaceOp(op, {});
375     return success();
376   }
377 };
378 
379 /// A simple pattern that tests the undo mechanism when replacing the uses of a
380 /// block argument.
381 struct TestUndoBlockArgReplace : public ConversionPattern {
382   TestUndoBlockArgReplace(MLIRContext *ctx)
383       : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {}
384 
385   LogicalResult
386   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
387                   ConversionPatternRewriter &rewriter) const final {
388     auto illegalOp =
389         rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
390     rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0),
391                                         illegalOp);
392     rewriter.updateRootInPlace(op, [] {});
393     return success();
394   }
395 };
396 
397 /// A rewrite pattern that tests the undo mechanism when erasing a block.
398 struct TestUndoBlockErase : public ConversionPattern {
399   TestUndoBlockErase(MLIRContext *ctx)
400       : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {}
401 
402   LogicalResult
403   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
404                   ConversionPatternRewriter &rewriter) const final {
405     Block *secondBlock = &*std::next(op->getRegion(0).begin());
406     rewriter.setInsertionPointToStart(secondBlock);
407     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
408     rewriter.eraseBlock(secondBlock);
409     rewriter.updateRootInPlace(op, [] {});
410     return success();
411   }
412 };
413 
414 //===----------------------------------------------------------------------===//
415 // Type-Conversion Rewrite Testing
416 
417 /// This patterns erases a region operation that has had a type conversion.
418 struct TestDropOpSignatureConversion : public ConversionPattern {
419   TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
420       : ConversionPattern(converter, "test.drop_region_op", 1, ctx) {}
421   LogicalResult
422   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
423                   ConversionPatternRewriter &rewriter) const override {
424     Region &region = op->getRegion(0);
425     Block *entry = &region.front();
426 
427     // Convert the original entry arguments.
428     TypeConverter &converter = *getTypeConverter();
429     TypeConverter::SignatureConversion result(entry->getNumArguments());
430     if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(),
431                                               result)) ||
432         failed(rewriter.convertRegionTypes(&region, converter, &result)))
433       return failure();
434 
435     // Convert the region signature and just drop the operation.
436     rewriter.eraseOp(op);
437     return success();
438   }
439 };
440 /// This pattern simply updates the operands of the given operation.
441 struct TestPassthroughInvalidOp : public ConversionPattern {
442   TestPassthroughInvalidOp(MLIRContext *ctx)
443       : ConversionPattern("test.invalid", 1, ctx) {}
444   LogicalResult
445   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
446                   ConversionPatternRewriter &rewriter) const final {
447     rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands,
448                                              llvm::None);
449     return success();
450   }
451 };
452 /// This pattern handles the case of a split return value.
453 struct TestSplitReturnType : public ConversionPattern {
454   TestSplitReturnType(MLIRContext *ctx)
455       : ConversionPattern("test.return", 1, ctx) {}
456   LogicalResult
457   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
458                   ConversionPatternRewriter &rewriter) const final {
459     // Check for a return of F32.
460     if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
461       return failure();
462 
463     // Check if the first operation is a cast operation, if it is we use the
464     // results directly.
465     auto *defOp = operands[0].getDefiningOp();
466     if (auto packerOp =
467             llvm::dyn_cast_or_null<UnrealizedConversionCastOp>(defOp)) {
468       rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
469       return success();
470     }
471 
472     // Otherwise, fail to match.
473     return failure();
474   }
475 };
476 
477 //===----------------------------------------------------------------------===//
478 // Multi-Level Type-Conversion Rewrite Testing
479 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
480   TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
481       : ConversionPattern("test.type_producer", 1, ctx) {}
482   LogicalResult
483   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
484                   ConversionPatternRewriter &rewriter) const final {
485     // If the type is I32, change the type to F32.
486     if (!Type(*op->result_type_begin()).isSignlessInteger(32))
487       return failure();
488     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
489     return success();
490   }
491 };
492 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
493   TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
494       : ConversionPattern("test.type_producer", 1, ctx) {}
495   LogicalResult
496   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
497                   ConversionPatternRewriter &rewriter) const final {
498     // If the type is F32, change the type to F64.
499     if (!Type(*op->result_type_begin()).isF32())
500       return rewriter.notifyMatchFailure(op, "expected single f32 operand");
501     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
502     return success();
503   }
504 };
505 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
506   TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
507       : ConversionPattern("test.type_producer", 10, ctx) {}
508   LogicalResult
509   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
510                   ConversionPatternRewriter &rewriter) const final {
511     // Always convert to B16, even though it is not a legal type. This tests
512     // that values are unmapped correctly.
513     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
514     return success();
515   }
516 };
517 struct TestUpdateConsumerType : public ConversionPattern {
518   TestUpdateConsumerType(MLIRContext *ctx)
519       : ConversionPattern("test.type_consumer", 1, ctx) {}
520   LogicalResult
521   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
522                   ConversionPatternRewriter &rewriter) const final {
523     // Verify that the incoming operand has been successfully remapped to F64.
524     if (!operands[0].getType().isF64())
525       return failure();
526     rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
527     return success();
528   }
529 };
530 
531 //===----------------------------------------------------------------------===//
532 // Non-Root Replacement Rewrite Testing
533 /// This pattern generates an invalid operation, but replaces it before the
534 /// pattern is finished. This checks that we don't need to legalize the
535 /// temporary op.
536 struct TestNonRootReplacement : public RewritePattern {
537   TestNonRootReplacement(MLIRContext *ctx)
538       : RewritePattern("test.replace_non_root", 1, ctx) {}
539 
540   LogicalResult matchAndRewrite(Operation *op,
541                                 PatternRewriter &rewriter) const final {
542     auto resultType = *op->result_type_begin();
543     auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
544     auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
545 
546     rewriter.replaceOp(illegalOp, {legalOp});
547     rewriter.replaceOp(op, {illegalOp});
548     return success();
549   }
550 };
551 
552 //===----------------------------------------------------------------------===//
553 // Recursive Rewrite Testing
554 /// This pattern is applied to the same operation multiple times, but has a
555 /// bounded recursion.
556 struct TestBoundedRecursiveRewrite
557     : public OpRewritePattern<TestRecursiveRewriteOp> {
558   using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern;
559 
560   void initialize() {
561     // The conversion target handles bounding the recursion of this pattern.
562     setHasBoundedRewriteRecursion();
563   }
564 
565   LogicalResult matchAndRewrite(TestRecursiveRewriteOp op,
566                                 PatternRewriter &rewriter) const final {
567     // Decrement the depth of the op in-place.
568     rewriter.updateRootInPlace(op, [&] {
569       op->setAttr("depth", rewriter.getI64IntegerAttr(op.getDepth() - 1));
570     });
571     return success();
572   }
573 };
574 
575 struct TestNestedOpCreationUndoRewrite
576     : public OpRewritePattern<IllegalOpWithRegionAnchor> {
577   using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern;
578 
579   LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op,
580                                 PatternRewriter &rewriter) const final {
581     // rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
582     rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
583     return success();
584   };
585 };
586 
587 // This pattern matches `test.blackhole` and delete this op and its producer.
588 struct TestReplaceEraseOp : public OpRewritePattern<BlackHoleOp> {
589   using OpRewritePattern<BlackHoleOp>::OpRewritePattern;
590 
591   LogicalResult matchAndRewrite(BlackHoleOp op,
592                                 PatternRewriter &rewriter) const final {
593     Operation *producer = op.getOperand().getDefiningOp();
594     // Always erase the user before the producer, the framework should handle
595     // this correctly.
596     rewriter.eraseOp(op);
597     rewriter.eraseOp(producer);
598     return success();
599   };
600 };
601 
602 // This pattern replaces explicitly illegal op with explicitly legal op,
603 // but in addition creates unregistered operation.
604 struct TestCreateUnregisteredOp : public OpRewritePattern<ILLegalOpG> {
605   using OpRewritePattern<ILLegalOpG>::OpRewritePattern;
606 
607   LogicalResult matchAndRewrite(ILLegalOpG op,
608                                 PatternRewriter &rewriter) const final {
609     IntegerAttr attr = rewriter.getI32IntegerAttr(0);
610     Value val = rewriter.create<arith::ConstantOp>(op->getLoc(), attr);
611     rewriter.replaceOpWithNewOp<LegalOpC>(op, val);
612     return success();
613   };
614 };
615 } // namespace
616 
617 namespace {
618 struct TestTypeConverter : public TypeConverter {
619   using TypeConverter::TypeConverter;
620   TestTypeConverter() {
621     addConversion(convertType);
622     addArgumentMaterialization(materializeCast);
623     addSourceMaterialization(materializeCast);
624   }
625 
626   static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
627     // Drop I16 types.
628     if (t.isSignlessInteger(16))
629       return success();
630 
631     // Convert I64 to F64.
632     if (t.isSignlessInteger(64)) {
633       results.push_back(FloatType::getF64(t.getContext()));
634       return success();
635     }
636 
637     // Convert I42 to I43.
638     if (t.isInteger(42)) {
639       results.push_back(IntegerType::get(t.getContext(), 43));
640       return success();
641     }
642 
643     // Split F32 into F16,F16.
644     if (t.isF32()) {
645       results.assign(2, FloatType::getF16(t.getContext()));
646       return success();
647     }
648 
649     // Otherwise, convert the type directly.
650     results.push_back(t);
651     return success();
652   }
653 
654   /// Hook for materializing a conversion. This is necessary because we generate
655   /// 1->N type mappings.
656   static Optional<Value> materializeCast(OpBuilder &builder, Type resultType,
657                                          ValueRange inputs, Location loc) {
658     return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
659   }
660 };
661 
662 struct TestLegalizePatternDriver
663     : public PassWrapper<TestLegalizePatternDriver, OperationPass<ModuleOp>> {
664   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestLegalizePatternDriver)
665 
666   StringRef getArgument() const final { return "test-legalize-patterns"; }
667   StringRef getDescription() const final {
668     return "Run test dialect legalization patterns";
669   }
670   /// The mode of conversion to use with the driver.
671   enum class ConversionMode { Analysis, Full, Partial };
672 
673   TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
674 
675   void getDependentDialects(DialectRegistry &registry) const override {
676     registry.insert<func::FuncDialect>();
677   }
678 
679   void runOnOperation() override {
680     TestTypeConverter converter;
681     mlir::RewritePatternSet patterns(&getContext());
682     populateWithGenerated(patterns);
683     patterns
684         .add<TestRegionRewriteBlockMovement, TestRegionRewriteUndo,
685              TestCreateBlock, TestCreateIllegalBlock, TestUndoBlockArgReplace,
686              TestUndoBlockErase, TestPassthroughInvalidOp, TestSplitReturnType,
687              TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
688              TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
689              TestNonRootReplacement, TestBoundedRecursiveRewrite,
690              TestNestedOpCreationUndoRewrite, TestReplaceEraseOp,
691              TestCreateUnregisteredOp>(&getContext());
692     patterns.add<TestDropOpSignatureConversion>(&getContext(), converter);
693     mlir::populateFunctionOpInterfaceTypeConversionPattern<FuncOp>(patterns,
694                                                                    converter);
695     mlir::populateCallOpTypeConversionPattern(patterns, converter);
696 
697     // Define the conversion target used for the test.
698     ConversionTarget target(getContext());
699     target.addLegalOp<ModuleOp>();
700     target.addLegalOp<LegalOpA, LegalOpB, LegalOpC, TestCastOp, TestValidOp,
701                       TerminatorOp>();
702     target
703         .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
704     target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
705       // Don't allow F32 operands.
706       return llvm::none_of(op.getOperandTypes(),
707                            [](Type type) { return type.isF32(); });
708     });
709     target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
710       return converter.isSignatureLegal(op.getFunctionType()) &&
711              converter.isLegal(&op.getBody());
712     });
713     target.addDynamicallyLegalOp<func::CallOp>(
714         [&](func::CallOp op) { return converter.isLegal(op); });
715 
716     // TestCreateUnregisteredOp creates `arith.constant` operation,
717     // which was not added to target intentionally to test
718     // correct error code from conversion driver.
719     target.addDynamicallyLegalOp<ILLegalOpG>([](ILLegalOpG) { return false; });
720 
721     // Expect the type_producer/type_consumer operations to only operate on f64.
722     target.addDynamicallyLegalOp<TestTypeProducerOp>(
723         [](TestTypeProducerOp op) { return op.getType().isF64(); });
724     target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
725       return op.getOperand().getType().isF64();
726     });
727 
728     // Check support for marking certain operations as recursively legal.
729     target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) {
730       return static_cast<bool>(
731           op->getAttrOfType<UnitAttr>("test.recursively_legal"));
732     });
733 
734     // Mark the bound recursion operation as dynamically legal.
735     target.addDynamicallyLegalOp<TestRecursiveRewriteOp>(
736         [](TestRecursiveRewriteOp op) { return op.getDepth() == 0; });
737 
738     // Handle a partial conversion.
739     if (mode == ConversionMode::Partial) {
740       DenseSet<Operation *> unlegalizedOps;
741       if (failed(applyPartialConversion(
742               getOperation(), target, std::move(patterns), &unlegalizedOps))) {
743         getOperation()->emitRemark() << "applyPartialConversion failed";
744       }
745       // Emit remarks for each legalizable operation.
746       for (auto *op : unlegalizedOps)
747         op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
748       return;
749     }
750 
751     // Handle a full conversion.
752     if (mode == ConversionMode::Full) {
753       // Check support for marking unknown operations as dynamically legal.
754       target.markUnknownOpDynamicallyLegal([](Operation *op) {
755         return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal");
756       });
757 
758       if (failed(applyFullConversion(getOperation(), target,
759                                      std::move(patterns)))) {
760         getOperation()->emitRemark() << "applyFullConversion failed";
761       }
762       return;
763     }
764 
765     // Otherwise, handle an analysis conversion.
766     assert(mode == ConversionMode::Analysis);
767 
768     // Analyze the convertible operations.
769     DenseSet<Operation *> legalizedOps;
770     if (failed(applyAnalysisConversion(getOperation(), target,
771                                        std::move(patterns), legalizedOps)))
772       return signalPassFailure();
773 
774     // Emit remarks for each legalizable operation.
775     for (auto *op : legalizedOps)
776       op->emitRemark() << "op '" << op->getName() << "' is legalizable";
777   }
778 
779   /// The mode of conversion to use.
780   ConversionMode mode;
781 };
782 } // namespace
783 
784 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
785     legalizerConversionMode(
786         "test-legalize-mode",
787         llvm::cl::desc("The legalization mode to use with the test driver"),
788         llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
789         llvm::cl::values(
790             clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
791                        "analysis", "Perform an analysis conversion"),
792             clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
793                        "Perform a full conversion"),
794             clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
795                        "partial", "Perform a partial conversion")));
796 
797 //===----------------------------------------------------------------------===//
798 // ConversionPatternRewriter::getRemappedValue testing. This method is used
799 // to get the remapped value of an original value that was replaced using
800 // ConversionPatternRewriter.
801 namespace {
802 struct TestRemapValueTypeConverter : public TypeConverter {
803   using TypeConverter::TypeConverter;
804 
805   TestRemapValueTypeConverter() {
806     addConversion(
807         [](Float32Type type) { return Float64Type::get(type.getContext()); });
808     addConversion([](Type type) { return type; });
809   }
810 };
811 
812 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
813 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
814 /// operand twice.
815 ///
816 /// Example:
817 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0)
818 /// is replaced with:
819 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
820 struct OneVResOneVOperandOp1Converter
821     : public OpConversionPattern<OneVResOneVOperandOp1> {
822   using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
823 
824   LogicalResult
825   matchAndRewrite(OneVResOneVOperandOp1 op, OpAdaptor adaptor,
826                   ConversionPatternRewriter &rewriter) const override {
827     auto origOps = op.getOperands();
828     assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
829            "One operand expected");
830     Value origOp = *origOps.begin();
831     SmallVector<Value, 2> remappedOperands;
832     // Replicate the remapped original operand twice. Note that we don't used
833     // the remapped 'operand' since the goal is testing 'getRemappedValue'.
834     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
835     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
836 
837     rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(),
838                                                        remappedOperands);
839     return success();
840   }
841 };
842 
843 /// A rewriter pattern that tests that blocks can be merged.
844 struct TestRemapValueInRegion
845     : public OpConversionPattern<TestRemappedValueRegionOp> {
846   using OpConversionPattern<TestRemappedValueRegionOp>::OpConversionPattern;
847 
848   LogicalResult
849   matchAndRewrite(TestRemappedValueRegionOp op, OpAdaptor adaptor,
850                   ConversionPatternRewriter &rewriter) const final {
851     Block &block = op.getBody().front();
852     Operation *terminator = block.getTerminator();
853 
854     // Merge the block into the parent region.
855     Block *parentBlock = op->getBlock();
856     Block *finalBlock = rewriter.splitBlock(parentBlock, op->getIterator());
857     rewriter.mergeBlocks(&block, parentBlock, ValueRange());
858     rewriter.mergeBlocks(finalBlock, parentBlock, ValueRange());
859 
860     // Replace the results of this operation with the remapped terminator
861     // values.
862     SmallVector<Value> terminatorOperands;
863     if (failed(rewriter.getRemappedValues(terminator->getOperands(),
864                                           terminatorOperands)))
865       return failure();
866 
867     rewriter.eraseOp(terminator);
868     rewriter.replaceOp(op, terminatorOperands);
869     return success();
870   }
871 };
872 
873 struct TestRemappedValue
874     : public mlir::PassWrapper<TestRemappedValue, OperationPass<FuncOp>> {
875   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestRemappedValue)
876 
877   StringRef getArgument() const final { return "test-remapped-value"; }
878   StringRef getDescription() const final {
879     return "Test public remapped value mechanism in ConversionPatternRewriter";
880   }
881   void runOnOperation() override {
882     TestRemapValueTypeConverter typeConverter;
883 
884     mlir::RewritePatternSet patterns(&getContext());
885     patterns.add<OneVResOneVOperandOp1Converter>(&getContext());
886     patterns.add<TestChangeProducerTypeF32ToF64, TestUpdateConsumerType>(
887         &getContext());
888     patterns.add<TestRemapValueInRegion>(typeConverter, &getContext());
889 
890     mlir::ConversionTarget target(getContext());
891     target.addLegalOp<ModuleOp, FuncOp, TestReturnOp>();
892 
893     // Expect the type_producer/type_consumer operations to only operate on f64.
894     target.addDynamicallyLegalOp<TestTypeProducerOp>(
895         [](TestTypeProducerOp op) { return op.getType().isF64(); });
896     target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
897       return op.getOperand().getType().isF64();
898     });
899 
900     // We make OneVResOneVOperandOp1 legal only when it has more that one
901     // operand. This will trigger the conversion that will replace one-operand
902     // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
903     target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
904         [](Operation *op) { return op->getNumOperands() > 1; });
905 
906     if (failed(mlir::applyFullConversion(getOperation(), target,
907                                          std::move(patterns)))) {
908       signalPassFailure();
909     }
910   }
911 };
912 } // namespace
913 
914 //===----------------------------------------------------------------------===//
915 // Test patterns without a specific root operation kind
916 //===----------------------------------------------------------------------===//
917 
918 namespace {
919 /// This pattern matches and removes any operation in the test dialect.
920 struct RemoveTestDialectOps : public RewritePattern {
921   RemoveTestDialectOps(MLIRContext *context)
922       : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
923 
924   LogicalResult matchAndRewrite(Operation *op,
925                                 PatternRewriter &rewriter) const override {
926     if (!isa<TestDialect>(op->getDialect()))
927       return failure();
928     rewriter.eraseOp(op);
929     return success();
930   }
931 };
932 
933 struct TestUnknownRootOpDriver
934     : public mlir::PassWrapper<TestUnknownRootOpDriver, OperationPass<FuncOp>> {
935   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestUnknownRootOpDriver)
936 
937   StringRef getArgument() const final {
938     return "test-legalize-unknown-root-patterns";
939   }
940   StringRef getDescription() const final {
941     return "Test public remapped value mechanism in ConversionPatternRewriter";
942   }
943   void runOnOperation() override {
944     mlir::RewritePatternSet patterns(&getContext());
945     patterns.add<RemoveTestDialectOps>(&getContext());
946 
947     mlir::ConversionTarget target(getContext());
948     target.addIllegalDialect<TestDialect>();
949     if (failed(applyPartialConversion(getOperation(), target,
950                                       std::move(patterns))))
951       signalPassFailure();
952   }
953 };
954 } // namespace
955 
956 //===----------------------------------------------------------------------===//
957 // Test type conversions
958 //===----------------------------------------------------------------------===//
959 
960 namespace {
961 struct TestTypeConversionProducer
962     : public OpConversionPattern<TestTypeProducerOp> {
963   using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern;
964   LogicalResult
965   matchAndRewrite(TestTypeProducerOp op, OpAdaptor adaptor,
966                   ConversionPatternRewriter &rewriter) const final {
967     Type resultType = op.getType();
968     Type convertedType = getTypeConverter()
969                              ? getTypeConverter()->convertType(resultType)
970                              : resultType;
971     if (resultType.isa<FloatType>())
972       resultType = rewriter.getF64Type();
973     else if (resultType.isInteger(16))
974       resultType = rewriter.getIntegerType(64);
975     else if (resultType.isa<test::TestRecursiveType>() &&
976              convertedType != resultType)
977       resultType = convertedType;
978     else
979       return failure();
980 
981     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType);
982     return success();
983   }
984 };
985 
986 /// Call signature conversion and then fail the rewrite to trigger the undo
987 /// mechanism.
988 struct TestSignatureConversionUndo
989     : public OpConversionPattern<TestSignatureConversionUndoOp> {
990   using OpConversionPattern<TestSignatureConversionUndoOp>::OpConversionPattern;
991 
992   LogicalResult
993   matchAndRewrite(TestSignatureConversionUndoOp op, OpAdaptor adaptor,
994                   ConversionPatternRewriter &rewriter) const final {
995     (void)rewriter.convertRegionTypes(&op->getRegion(0), *getTypeConverter());
996     return failure();
997   }
998 };
999 
1000 /// Call signature conversion without providing a type converter to handle
1001 /// materializations.
1002 struct TestTestSignatureConversionNoConverter
1003     : public OpConversionPattern<TestSignatureConversionNoConverterOp> {
1004   TestTestSignatureConversionNoConverter(TypeConverter &converter,
1005                                          MLIRContext *context)
1006       : OpConversionPattern<TestSignatureConversionNoConverterOp>(context),
1007         converter(converter) {}
1008 
1009   LogicalResult
1010   matchAndRewrite(TestSignatureConversionNoConverterOp op, OpAdaptor adaptor,
1011                   ConversionPatternRewriter &rewriter) const final {
1012     Region &region = op->getRegion(0);
1013     Block *entry = &region.front();
1014 
1015     // Convert the original entry arguments.
1016     TypeConverter::SignatureConversion result(entry->getNumArguments());
1017     if (failed(
1018             converter.convertSignatureArgs(entry->getArgumentTypes(), result)))
1019       return failure();
1020     rewriter.updateRootInPlace(
1021         op, [&] { rewriter.applySignatureConversion(&region, result); });
1022     return success();
1023   }
1024 
1025   TypeConverter &converter;
1026 };
1027 
1028 /// Just forward the operands to the root op. This is essentially a no-op
1029 /// pattern that is used to trigger target materialization.
1030 struct TestTypeConsumerForward
1031     : public OpConversionPattern<TestTypeConsumerOp> {
1032   using OpConversionPattern<TestTypeConsumerOp>::OpConversionPattern;
1033 
1034   LogicalResult
1035   matchAndRewrite(TestTypeConsumerOp op, OpAdaptor adaptor,
1036                   ConversionPatternRewriter &rewriter) const final {
1037     rewriter.updateRootInPlace(op,
1038                                [&] { op->setOperands(adaptor.getOperands()); });
1039     return success();
1040   }
1041 };
1042 
1043 struct TestTypeConversionAnotherProducer
1044     : public OpRewritePattern<TestAnotherTypeProducerOp> {
1045   using OpRewritePattern<TestAnotherTypeProducerOp>::OpRewritePattern;
1046 
1047   LogicalResult matchAndRewrite(TestAnotherTypeProducerOp op,
1048                                 PatternRewriter &rewriter) const final {
1049     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, op.getType());
1050     return success();
1051   }
1052 };
1053 
1054 struct TestTypeConversionDriver
1055     : public PassWrapper<TestTypeConversionDriver, OperationPass<ModuleOp>> {
1056   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestTypeConversionDriver)
1057 
1058   void getDependentDialects(DialectRegistry &registry) const override {
1059     registry.insert<TestDialect>();
1060   }
1061   StringRef getArgument() const final {
1062     return "test-legalize-type-conversion";
1063   }
1064   StringRef getDescription() const final {
1065     return "Test various type conversion functionalities in DialectConversion";
1066   }
1067 
1068   void runOnOperation() override {
1069     // Initialize the type converter.
1070     TypeConverter converter;
1071 
1072     /// Add the legal set of type conversions.
1073     converter.addConversion([](Type type) -> Type {
1074       // Treat F64 as legal.
1075       if (type.isF64())
1076         return type;
1077       // Allow converting BF16/F16/F32 to F64.
1078       if (type.isBF16() || type.isF16() || type.isF32())
1079         return FloatType::getF64(type.getContext());
1080       // Otherwise, the type is illegal.
1081       return nullptr;
1082     });
1083     converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) {
1084       // Drop all integer types.
1085       return success();
1086     });
1087     converter.addConversion(
1088         // Convert a recursive self-referring type into a non-self-referring
1089         // type named "outer_converted_type" that contains a SimpleAType.
1090         [&](test::TestRecursiveType type, SmallVectorImpl<Type> &results,
1091             ArrayRef<Type> callStack) -> Optional<LogicalResult> {
1092           // If the type is already converted, return it to indicate that it is
1093           // legal.
1094           if (type.getName() == "outer_converted_type") {
1095             results.push_back(type);
1096             return success();
1097           }
1098 
1099           // If the type is on the call stack more than once (it is there at
1100           // least once because of the _current_ call, which is always the last
1101           // element on the stack), we've hit the recursive case. Just return
1102           // SimpleAType here to create a non-recursive type as a result.
1103           if (llvm::is_contained(callStack.drop_back(), type)) {
1104             results.push_back(test::SimpleAType::get(type.getContext()));
1105             return success();
1106           }
1107 
1108           // Convert the body recursively.
1109           auto result = test::TestRecursiveType::get(type.getContext(),
1110                                                      "outer_converted_type");
1111           if (failed(result.setBody(converter.convertType(type.getBody()))))
1112             return failure();
1113           results.push_back(result);
1114           return success();
1115         });
1116 
1117     /// Add the legal set of type materializations.
1118     converter.addSourceMaterialization([](OpBuilder &builder, Type resultType,
1119                                           ValueRange inputs,
1120                                           Location loc) -> Value {
1121       // Allow casting from F64 back to F32.
1122       if (!resultType.isF16() && inputs.size() == 1 &&
1123           inputs[0].getType().isF64())
1124         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
1125       // Allow producing an i32 or i64 from nothing.
1126       if ((resultType.isInteger(32) || resultType.isInteger(64)) &&
1127           inputs.empty())
1128         return builder.create<TestTypeProducerOp>(loc, resultType);
1129       // Allow producing an i64 from an integer.
1130       if (resultType.isa<IntegerType>() && inputs.size() == 1 &&
1131           inputs[0].getType().isa<IntegerType>())
1132         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
1133       // Otherwise, fail.
1134       return nullptr;
1135     });
1136 
1137     // Initialize the conversion target.
1138     mlir::ConversionTarget target(getContext());
1139     target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) {
1140       auto recursiveType = op.getType().dyn_cast<test::TestRecursiveType>();
1141       return op.getType().isF64() || op.getType().isInteger(64) ||
1142              (recursiveType &&
1143               recursiveType.getName() == "outer_converted_type");
1144     });
1145     target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
1146       return converter.isSignatureLegal(op.getFunctionType()) &&
1147              converter.isLegal(&op.getBody());
1148     });
1149     target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) {
1150       // Allow casts from F64 to F32.
1151       return (*op.operand_type_begin()).isF64() && op.getType().isF32();
1152     });
1153     target.addDynamicallyLegalOp<TestSignatureConversionNoConverterOp>(
1154         [&](TestSignatureConversionNoConverterOp op) {
1155           return converter.isLegal(op.getRegion().front().getArgumentTypes());
1156         });
1157 
1158     // Initialize the set of rewrite patterns.
1159     RewritePatternSet patterns(&getContext());
1160     patterns.add<TestTypeConsumerForward, TestTypeConversionProducer,
1161                  TestSignatureConversionUndo,
1162                  TestTestSignatureConversionNoConverter>(converter,
1163                                                          &getContext());
1164     patterns.add<TestTypeConversionAnotherProducer>(&getContext());
1165     mlir::populateFunctionOpInterfaceTypeConversionPattern<FuncOp>(patterns,
1166                                                                    converter);
1167 
1168     if (failed(applyPartialConversion(getOperation(), target,
1169                                       std::move(patterns))))
1170       signalPassFailure();
1171   }
1172 };
1173 } // namespace
1174 
1175 //===----------------------------------------------------------------------===//
1176 // Test Target Materialization With No Uses
1177 //===----------------------------------------------------------------------===//
1178 
1179 namespace {
1180 struct ForwardOperandPattern : public OpConversionPattern<TestTypeChangerOp> {
1181   using OpConversionPattern<TestTypeChangerOp>::OpConversionPattern;
1182 
1183   LogicalResult
1184   matchAndRewrite(TestTypeChangerOp op, OpAdaptor adaptor,
1185                   ConversionPatternRewriter &rewriter) const final {
1186     rewriter.replaceOp(op, adaptor.getOperands());
1187     return success();
1188   }
1189 };
1190 
1191 struct TestTargetMaterializationWithNoUses
1192     : public PassWrapper<TestTargetMaterializationWithNoUses,
1193                          OperationPass<ModuleOp>> {
1194   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(
1195       TestTargetMaterializationWithNoUses)
1196 
1197   StringRef getArgument() const final {
1198     return "test-target-materialization-with-no-uses";
1199   }
1200   StringRef getDescription() const final {
1201     return "Test a special case of target materialization in DialectConversion";
1202   }
1203 
1204   void runOnOperation() override {
1205     TypeConverter converter;
1206     converter.addConversion([](Type t) { return t; });
1207     converter.addConversion([](IntegerType intTy) -> Type {
1208       if (intTy.getWidth() == 16)
1209         return IntegerType::get(intTy.getContext(), 64);
1210       return intTy;
1211     });
1212     converter.addTargetMaterialization(
1213         [](OpBuilder &builder, Type type, ValueRange inputs, Location loc) {
1214           return builder.create<TestCastOp>(loc, type, inputs).getResult();
1215         });
1216 
1217     ConversionTarget target(getContext());
1218     target.addIllegalOp<TestTypeChangerOp>();
1219 
1220     RewritePatternSet patterns(&getContext());
1221     patterns.add<ForwardOperandPattern>(converter, &getContext());
1222 
1223     if (failed(applyPartialConversion(getOperation(), target,
1224                                       std::move(patterns))))
1225       signalPassFailure();
1226   }
1227 };
1228 } // namespace
1229 
1230 //===----------------------------------------------------------------------===//
1231 // Test Block Merging
1232 //===----------------------------------------------------------------------===//
1233 
1234 namespace {
1235 /// A rewriter pattern that tests that blocks can be merged.
1236 struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> {
1237   using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern;
1238 
1239   LogicalResult
1240   matchAndRewrite(TestMergeBlocksOp op, OpAdaptor adaptor,
1241                   ConversionPatternRewriter &rewriter) const final {
1242     Block &firstBlock = op.getBody().front();
1243     Operation *branchOp = firstBlock.getTerminator();
1244     Block *secondBlock = &*(std::next(op.getBody().begin()));
1245     auto succOperands = branchOp->getOperands();
1246     SmallVector<Value, 2> replacements(succOperands);
1247     rewriter.eraseOp(branchOp);
1248     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
1249     rewriter.updateRootInPlace(op, [] {});
1250     return success();
1251   }
1252 };
1253 
1254 /// A rewrite pattern to tests the undo mechanism of blocks being merged.
1255 struct TestUndoBlocksMerge : public ConversionPattern {
1256   TestUndoBlocksMerge(MLIRContext *ctx)
1257       : ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {}
1258   LogicalResult
1259   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
1260                   ConversionPatternRewriter &rewriter) const final {
1261     Block &firstBlock = op->getRegion(0).front();
1262     Operation *branchOp = firstBlock.getTerminator();
1263     Block *secondBlock = &*(std::next(op->getRegion(0).begin()));
1264     rewriter.setInsertionPointToStart(secondBlock);
1265     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
1266     auto succOperands = branchOp->getOperands();
1267     SmallVector<Value, 2> replacements(succOperands);
1268     rewriter.eraseOp(branchOp);
1269     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
1270     rewriter.updateRootInPlace(op, [] {});
1271     return success();
1272   }
1273 };
1274 
1275 /// A rewrite mechanism to inline the body of the op into its parent, when both
1276 /// ops can have a single block.
1277 struct TestMergeSingleBlockOps
1278     : public OpConversionPattern<SingleBlockImplicitTerminatorOp> {
1279   using OpConversionPattern<
1280       SingleBlockImplicitTerminatorOp>::OpConversionPattern;
1281 
1282   LogicalResult
1283   matchAndRewrite(SingleBlockImplicitTerminatorOp op, OpAdaptor adaptor,
1284                   ConversionPatternRewriter &rewriter) const final {
1285     SingleBlockImplicitTerminatorOp parentOp =
1286         op->getParentOfType<SingleBlockImplicitTerminatorOp>();
1287     if (!parentOp)
1288       return failure();
1289     Block &innerBlock = op.getRegion().front();
1290     TerminatorOp innerTerminator =
1291         cast<TerminatorOp>(innerBlock.getTerminator());
1292     rewriter.mergeBlockBefore(&innerBlock, op);
1293     rewriter.eraseOp(innerTerminator);
1294     rewriter.eraseOp(op);
1295     rewriter.updateRootInPlace(op, [] {});
1296     return success();
1297   }
1298 };
1299 
1300 struct TestMergeBlocksPatternDriver
1301     : public PassWrapper<TestMergeBlocksPatternDriver,
1302                          OperationPass<ModuleOp>> {
1303   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestMergeBlocksPatternDriver)
1304 
1305   StringRef getArgument() const final { return "test-merge-blocks"; }
1306   StringRef getDescription() const final {
1307     return "Test Merging operation in ConversionPatternRewriter";
1308   }
1309   void runOnOperation() override {
1310     MLIRContext *context = &getContext();
1311     mlir::RewritePatternSet patterns(context);
1312     patterns.add<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>(
1313         context);
1314     ConversionTarget target(*context);
1315     target.addLegalOp<FuncOp, ModuleOp, TerminatorOp, TestBranchOp,
1316                       TestTypeConsumerOp, TestTypeProducerOp, TestReturnOp>();
1317     target.addIllegalOp<ILLegalOpF>();
1318 
1319     /// Expect the op to have a single block after legalization.
1320     target.addDynamicallyLegalOp<TestMergeBlocksOp>(
1321         [&](TestMergeBlocksOp op) -> bool {
1322           return llvm::hasSingleElement(op.getBody());
1323         });
1324 
1325     /// Only allow `test.br` within test.merge_blocks op.
1326     target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool {
1327       return op->getParentOfType<TestMergeBlocksOp>();
1328     });
1329 
1330     /// Expect that all nested test.SingleBlockImplicitTerminator ops are
1331     /// inlined.
1332     target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>(
1333         [&](SingleBlockImplicitTerminatorOp op) -> bool {
1334           return !op->getParentOfType<SingleBlockImplicitTerminatorOp>();
1335         });
1336 
1337     DenseSet<Operation *> unlegalizedOps;
1338     (void)applyPartialConversion(getOperation(), target, std::move(patterns),
1339                                  &unlegalizedOps);
1340     for (auto *op : unlegalizedOps)
1341       op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
1342   }
1343 };
1344 } // namespace
1345 
1346 //===----------------------------------------------------------------------===//
1347 // Test Selective Replacement
1348 //===----------------------------------------------------------------------===//
1349 
1350 namespace {
1351 /// A rewrite mechanism to inline the body of the op into its parent, when both
1352 /// ops can have a single block.
1353 struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> {
1354   using OpRewritePattern<TestCastOp>::OpRewritePattern;
1355 
1356   LogicalResult matchAndRewrite(TestCastOp op,
1357                                 PatternRewriter &rewriter) const final {
1358     if (op.getNumOperands() != 2)
1359       return failure();
1360     OperandRange operands = op.getOperands();
1361 
1362     // Replace non-terminator uses with the first operand.
1363     rewriter.replaceOpWithIf(op, operands[0], [](OpOperand &operand) {
1364       return operand.getOwner()->hasTrait<OpTrait::IsTerminator>();
1365     });
1366     // Replace everything else with the second operand if the operation isn't
1367     // dead.
1368     rewriter.replaceOp(op, op.getOperand(1));
1369     return success();
1370   }
1371 };
1372 
1373 struct TestSelectiveReplacementPatternDriver
1374     : public PassWrapper<TestSelectiveReplacementPatternDriver,
1375                          OperationPass<>> {
1376   MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(
1377       TestSelectiveReplacementPatternDriver)
1378 
1379   StringRef getArgument() const final {
1380     return "test-pattern-selective-replacement";
1381   }
1382   StringRef getDescription() const final {
1383     return "Test selective replacement in the PatternRewriter";
1384   }
1385   void runOnOperation() override {
1386     MLIRContext *context = &getContext();
1387     mlir::RewritePatternSet patterns(context);
1388     patterns.add<TestSelectiveOpReplacementPattern>(context);
1389     (void)applyPatternsAndFoldGreedily(getOperation()->getRegions(),
1390                                        std::move(patterns));
1391   }
1392 };
1393 } // namespace
1394 
1395 //===----------------------------------------------------------------------===//
1396 // PassRegistration
1397 //===----------------------------------------------------------------------===//
1398 
1399 namespace mlir {
1400 namespace test {
1401 void registerPatternsTestPass() {
1402   PassRegistration<TestReturnTypeDriver>();
1403 
1404   PassRegistration<TestDerivedAttributeDriver>();
1405 
1406   PassRegistration<TestPatternDriver>();
1407 
1408   PassRegistration<TestLegalizePatternDriver>([] {
1409     return std::make_unique<TestLegalizePatternDriver>(legalizerConversionMode);
1410   });
1411 
1412   PassRegistration<TestRemappedValue>();
1413 
1414   PassRegistration<TestUnknownRootOpDriver>();
1415 
1416   PassRegistration<TestTypeConversionDriver>();
1417   PassRegistration<TestTargetMaterializationWithNoUses>();
1418 
1419   PassRegistration<TestMergeBlocksPatternDriver>();
1420   PassRegistration<TestSelectiveReplacementPatternDriver>();
1421 }
1422 } // namespace test
1423 } // namespace mlir
1424