1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "TestDialect.h" 10 #include "TestTypes.h" 11 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 12 #include "mlir/Dialect/StandardOps/IR/Ops.h" 13 #include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h" 14 #include "mlir/Dialect/Tensor/IR/Tensor.h" 15 #include "mlir/IR/Matchers.h" 16 #include "mlir/Pass/Pass.h" 17 #include "mlir/Transforms/DialectConversion.h" 18 #include "mlir/Transforms/FoldUtils.h" 19 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 20 21 using namespace mlir; 22 using namespace test; 23 24 // Native function for testing NativeCodeCall 25 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) { 26 return choice.getValue() ? input1 : input2; 27 } 28 29 static void createOpI(PatternRewriter &rewriter, Location loc, Value input) { 30 rewriter.create<OpI>(loc, input); 31 } 32 33 static void handleNoResultOp(PatternRewriter &rewriter, 34 OpSymbolBindingNoResult op) { 35 // Turn the no result op to a one-result op. 36 rewriter.create<OpSymbolBindingB>(op.getLoc(), op.getOperand().getType(), 37 op.getOperand()); 38 } 39 40 static bool getFirstI32Result(Operation *op, Value &value) { 41 if (!Type(op->getResult(0).getType()).isSignlessInteger(32)) 42 return false; 43 value = op->getResult(0); 44 return true; 45 } 46 47 static Value bindNativeCodeCallResult(Value value) { return value; } 48 49 static SmallVector<Value, 2> bindMultipleNativeCodeCallResult(Value input1, 50 Value input2) { 51 return SmallVector<Value, 2>({input2, input1}); 52 } 53 54 // Test that natives calls are only called once during rewrites. 55 // OpM_Test will return Pi, increased by 1 for each subsequent calls. 56 // This let us check the number of times OpM_Test was called by inspecting 57 // the returned value in the MLIR output. 58 static int64_t opMIncreasingValue = 314159265; 59 static Attribute opMTest(PatternRewriter &rewriter, Value val) { 60 int64_t i = opMIncreasingValue++; 61 return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i); 62 } 63 64 namespace { 65 #include "TestPatterns.inc" 66 } // namespace 67 68 //===----------------------------------------------------------------------===// 69 // Test Reduce Pattern Interface 70 //===----------------------------------------------------------------------===// 71 72 void test::populateTestReductionPatterns(RewritePatternSet &patterns) { 73 populateWithGenerated(patterns); 74 } 75 76 //===----------------------------------------------------------------------===// 77 // Canonicalizer Driver. 78 //===----------------------------------------------------------------------===// 79 80 namespace { 81 struct FoldingPattern : public RewritePattern { 82 public: 83 FoldingPattern(MLIRContext *context) 84 : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(), 85 /*benefit=*/1, context) {} 86 87 LogicalResult matchAndRewrite(Operation *op, 88 PatternRewriter &rewriter) const override { 89 // Exercise OperationFolder API for a single-result operation that is folded 90 // upon construction. The operation being created through the folder has an 91 // in-place folder, and it should be still present in the output. 92 // Furthermore, the folder should not crash when attempting to recover the 93 // (unchanged) operation result. 94 OperationFolder folder(op->getContext()); 95 Value result = folder.create<TestOpInPlaceFold>( 96 rewriter, op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0), 97 rewriter.getI32IntegerAttr(0)); 98 assert(result); 99 rewriter.replaceOp(op, result); 100 return success(); 101 } 102 }; 103 104 /// This pattern creates a foldable operation at the entry point of the block. 105 /// This tests the situation where the operation folder will need to replace an 106 /// operation with a previously created constant that does not initially 107 /// dominate the operation to replace. 108 struct FolderInsertBeforePreviouslyFoldedConstantPattern 109 : public OpRewritePattern<TestCastOp> { 110 public: 111 using OpRewritePattern<TestCastOp>::OpRewritePattern; 112 113 LogicalResult matchAndRewrite(TestCastOp op, 114 PatternRewriter &rewriter) const override { 115 if (!op->hasAttr("test_fold_before_previously_folded_op")) 116 return failure(); 117 rewriter.setInsertionPointToStart(op->getBlock()); 118 119 auto constOp = rewriter.create<arith::ConstantOp>( 120 op.getLoc(), rewriter.getBoolAttr(true)); 121 rewriter.replaceOpWithNewOp<TestCastOp>(op, rewriter.getI32Type(), 122 Value(constOp)); 123 return success(); 124 } 125 }; 126 127 struct TestPatternDriver 128 : public PassWrapper<TestPatternDriver, OperationPass<FuncOp>> { 129 StringRef getArgument() const final { return "test-patterns"; } 130 StringRef getDescription() const final { return "Run test dialect patterns"; } 131 void runOnOperation() override { 132 mlir::RewritePatternSet patterns(&getContext()); 133 populateWithGenerated(patterns); 134 135 // Verify named pattern is generated with expected name. 136 patterns.add<FoldingPattern, TestNamedPatternRule, 137 FolderInsertBeforePreviouslyFoldedConstantPattern>( 138 &getContext()); 139 140 (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)); 141 } 142 }; 143 } // namespace 144 145 //===----------------------------------------------------------------------===// 146 // ReturnType Driver. 147 //===----------------------------------------------------------------------===// 148 149 namespace { 150 // Generate ops for each instance where the type can be successfully inferred. 151 template <typename OpTy> 152 static void invokeCreateWithInferredReturnType(Operation *op) { 153 auto *context = op->getContext(); 154 auto fop = op->getParentOfType<FuncOp>(); 155 auto location = UnknownLoc::get(context); 156 OpBuilder b(op); 157 b.setInsertionPointAfter(op); 158 159 // Use permutations of 2 args as operands. 160 assert(fop.getNumArguments() >= 2); 161 for (int i = 0, e = fop.getNumArguments(); i < e; ++i) { 162 for (int j = 0; j < e; ++j) { 163 std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}}; 164 SmallVector<Type, 2> inferredReturnTypes; 165 if (succeeded(OpTy::inferReturnTypes( 166 context, llvm::None, values, op->getAttrDictionary(), 167 op->getRegions(), inferredReturnTypes))) { 168 OperationState state(location, OpTy::getOperationName()); 169 // TODO: Expand to regions. 170 OpTy::build(b, state, values, op->getAttrs()); 171 (void)b.createOperation(state); 172 } 173 } 174 } 175 } 176 177 static void reifyReturnShape(Operation *op) { 178 OpBuilder b(op); 179 180 // Use permutations of 2 args as operands. 181 auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op); 182 SmallVector<Value, 2> shapes; 183 if (failed(shapedOp.reifyReturnTypeShapes(b, op->getOperands(), shapes)) || 184 !llvm::hasSingleElement(shapes)) 185 return; 186 for (const auto &it : llvm::enumerate(shapes)) { 187 op->emitRemark() << "value " << it.index() << ": " 188 << it.value().getDefiningOp(); 189 } 190 } 191 192 struct TestReturnTypeDriver 193 : public PassWrapper<TestReturnTypeDriver, OperationPass<FuncOp>> { 194 void getDependentDialects(DialectRegistry ®istry) const override { 195 registry.insert<tensor::TensorDialect>(); 196 } 197 StringRef getArgument() const final { return "test-return-type"; } 198 StringRef getDescription() const final { return "Run return type functions"; } 199 200 void runOnOperation() override { 201 if (getOperation().getName() == "testCreateFunctions") { 202 std::vector<Operation *> ops; 203 // Collect ops to avoid triggering on inserted ops. 204 for (auto &op : getOperation().getBody().front()) 205 ops.push_back(&op); 206 // Generate test patterns for each, but skip terminator. 207 for (auto *op : llvm::makeArrayRef(ops).drop_back()) { 208 // Test create method of each of the Op classes below. The resultant 209 // output would be in reverse order underneath `op` from which 210 // the attributes and regions are used. 211 invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op); 212 invokeCreateWithInferredReturnType< 213 OpWithShapedTypeInferTypeInterfaceOp>(op); 214 }; 215 return; 216 } 217 if (getOperation().getName() == "testReifyFunctions") { 218 std::vector<Operation *> ops; 219 // Collect ops to avoid triggering on inserted ops. 220 for (auto &op : getOperation().getBody().front()) 221 if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op)) 222 ops.push_back(&op); 223 // Generate test patterns for each, but skip terminator. 224 for (auto *op : ops) 225 reifyReturnShape(op); 226 } 227 } 228 }; 229 } // namespace 230 231 namespace { 232 struct TestDerivedAttributeDriver 233 : public PassWrapper<TestDerivedAttributeDriver, OperationPass<FuncOp>> { 234 StringRef getArgument() const final { return "test-derived-attr"; } 235 StringRef getDescription() const final { 236 return "Run test derived attributes"; 237 } 238 void runOnOperation() override; 239 }; 240 } // namespace 241 242 void TestDerivedAttributeDriver::runOnOperation() { 243 getOperation().walk([](DerivedAttributeOpInterface dOp) { 244 auto dAttr = dOp.materializeDerivedAttributes(); 245 if (!dAttr) 246 return; 247 for (auto d : dAttr) 248 dOp.emitRemark() << d.getName().getValue() << " = " << d.getValue(); 249 }); 250 } 251 252 //===----------------------------------------------------------------------===// 253 // Legalization Driver. 254 //===----------------------------------------------------------------------===// 255 256 namespace { 257 //===----------------------------------------------------------------------===// 258 // Region-Block Rewrite Testing 259 260 /// This pattern is a simple pattern that inlines the first region of a given 261 /// operation into the parent region. 262 struct TestRegionRewriteBlockMovement : public ConversionPattern { 263 TestRegionRewriteBlockMovement(MLIRContext *ctx) 264 : ConversionPattern("test.region", 1, ctx) {} 265 266 LogicalResult 267 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 268 ConversionPatternRewriter &rewriter) const final { 269 // Inline this region into the parent region. 270 auto &parentRegion = *op->getParentRegion(); 271 auto &opRegion = op->getRegion(0); 272 if (op->getAttr("legalizer.should_clone")) 273 rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end()); 274 else 275 rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end()); 276 277 if (op->getAttr("legalizer.erase_old_blocks")) { 278 while (!opRegion.empty()) 279 rewriter.eraseBlock(&opRegion.front()); 280 } 281 282 // Drop this operation. 283 rewriter.eraseOp(op); 284 return success(); 285 } 286 }; 287 /// This pattern is a simple pattern that generates a region containing an 288 /// illegal operation. 289 struct TestRegionRewriteUndo : public RewritePattern { 290 TestRegionRewriteUndo(MLIRContext *ctx) 291 : RewritePattern("test.region_builder", 1, ctx) {} 292 293 LogicalResult matchAndRewrite(Operation *op, 294 PatternRewriter &rewriter) const final { 295 // Create the region operation with an entry block containing arguments. 296 OperationState newRegion(op->getLoc(), "test.region"); 297 newRegion.addRegion(); 298 auto *regionOp = rewriter.createOperation(newRegion); 299 auto *entryBlock = rewriter.createBlock(®ionOp->getRegion(0)); 300 entryBlock->addArgument(rewriter.getIntegerType(64)); 301 302 // Add an explicitly illegal operation to ensure the conversion fails. 303 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32)); 304 rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>()); 305 306 // Drop this operation. 307 rewriter.eraseOp(op); 308 return success(); 309 } 310 }; 311 /// A simple pattern that creates a block at the end of the parent region of the 312 /// matched operation. 313 struct TestCreateBlock : public RewritePattern { 314 TestCreateBlock(MLIRContext *ctx) 315 : RewritePattern("test.create_block", /*benefit=*/1, ctx) {} 316 317 LogicalResult matchAndRewrite(Operation *op, 318 PatternRewriter &rewriter) const final { 319 Region ®ion = *op->getParentRegion(); 320 Type i32Type = rewriter.getIntegerType(32); 321 rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}); 322 rewriter.create<TerminatorOp>(op->getLoc()); 323 rewriter.replaceOp(op, {}); 324 return success(); 325 } 326 }; 327 328 /// A simple pattern that creates a block containing an invalid operation in 329 /// order to trigger the block creation undo mechanism. 330 struct TestCreateIllegalBlock : public RewritePattern { 331 TestCreateIllegalBlock(MLIRContext *ctx) 332 : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {} 333 334 LogicalResult matchAndRewrite(Operation *op, 335 PatternRewriter &rewriter) const final { 336 Region ®ion = *op->getParentRegion(); 337 Type i32Type = rewriter.getIntegerType(32); 338 rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}); 339 // Create an illegal op to ensure the conversion fails. 340 rewriter.create<ILLegalOpF>(op->getLoc(), i32Type); 341 rewriter.create<TerminatorOp>(op->getLoc()); 342 rewriter.replaceOp(op, {}); 343 return success(); 344 } 345 }; 346 347 /// A simple pattern that tests the undo mechanism when replacing the uses of a 348 /// block argument. 349 struct TestUndoBlockArgReplace : public ConversionPattern { 350 TestUndoBlockArgReplace(MLIRContext *ctx) 351 : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {} 352 353 LogicalResult 354 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 355 ConversionPatternRewriter &rewriter) const final { 356 auto illegalOp = 357 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 358 rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0), 359 illegalOp); 360 rewriter.updateRootInPlace(op, [] {}); 361 return success(); 362 } 363 }; 364 365 /// A rewrite pattern that tests the undo mechanism when erasing a block. 366 struct TestUndoBlockErase : public ConversionPattern { 367 TestUndoBlockErase(MLIRContext *ctx) 368 : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {} 369 370 LogicalResult 371 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 372 ConversionPatternRewriter &rewriter) const final { 373 Block *secondBlock = &*std::next(op->getRegion(0).begin()); 374 rewriter.setInsertionPointToStart(secondBlock); 375 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 376 rewriter.eraseBlock(secondBlock); 377 rewriter.updateRootInPlace(op, [] {}); 378 return success(); 379 } 380 }; 381 382 //===----------------------------------------------------------------------===// 383 // Type-Conversion Rewrite Testing 384 385 /// This patterns erases a region operation that has had a type conversion. 386 struct TestDropOpSignatureConversion : public ConversionPattern { 387 TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter) 388 : ConversionPattern(converter, "test.drop_region_op", 1, ctx) {} 389 LogicalResult 390 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 391 ConversionPatternRewriter &rewriter) const override { 392 Region ®ion = op->getRegion(0); 393 Block *entry = ®ion.front(); 394 395 // Convert the original entry arguments. 396 TypeConverter &converter = *getTypeConverter(); 397 TypeConverter::SignatureConversion result(entry->getNumArguments()); 398 if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(), 399 result)) || 400 failed(rewriter.convertRegionTypes(®ion, converter, &result))) 401 return failure(); 402 403 // Convert the region signature and just drop the operation. 404 rewriter.eraseOp(op); 405 return success(); 406 } 407 }; 408 /// This pattern simply updates the operands of the given operation. 409 struct TestPassthroughInvalidOp : public ConversionPattern { 410 TestPassthroughInvalidOp(MLIRContext *ctx) 411 : ConversionPattern("test.invalid", 1, ctx) {} 412 LogicalResult 413 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 414 ConversionPatternRewriter &rewriter) const final { 415 rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands, 416 llvm::None); 417 return success(); 418 } 419 }; 420 /// This pattern handles the case of a split return value. 421 struct TestSplitReturnType : public ConversionPattern { 422 TestSplitReturnType(MLIRContext *ctx) 423 : ConversionPattern("test.return", 1, ctx) {} 424 LogicalResult 425 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 426 ConversionPatternRewriter &rewriter) const final { 427 // Check for a return of F32. 428 if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32()) 429 return failure(); 430 431 // Check if the first operation is a cast operation, if it is we use the 432 // results directly. 433 auto *defOp = operands[0].getDefiningOp(); 434 if (auto packerOp = 435 llvm::dyn_cast_or_null<UnrealizedConversionCastOp>(defOp)) { 436 rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands()); 437 return success(); 438 } 439 440 // Otherwise, fail to match. 441 return failure(); 442 } 443 }; 444 445 //===----------------------------------------------------------------------===// 446 // Multi-Level Type-Conversion Rewrite Testing 447 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern { 448 TestChangeProducerTypeI32ToF32(MLIRContext *ctx) 449 : ConversionPattern("test.type_producer", 1, ctx) {} 450 LogicalResult 451 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 452 ConversionPatternRewriter &rewriter) const final { 453 // If the type is I32, change the type to F32. 454 if (!Type(*op->result_type_begin()).isSignlessInteger(32)) 455 return failure(); 456 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type()); 457 return success(); 458 } 459 }; 460 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern { 461 TestChangeProducerTypeF32ToF64(MLIRContext *ctx) 462 : ConversionPattern("test.type_producer", 1, ctx) {} 463 LogicalResult 464 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 465 ConversionPatternRewriter &rewriter) const final { 466 // If the type is F32, change the type to F64. 467 if (!Type(*op->result_type_begin()).isF32()) 468 return rewriter.notifyMatchFailure(op, "expected single f32 operand"); 469 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type()); 470 return success(); 471 } 472 }; 473 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern { 474 TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx) 475 : ConversionPattern("test.type_producer", 10, ctx) {} 476 LogicalResult 477 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 478 ConversionPatternRewriter &rewriter) const final { 479 // Always convert to B16, even though it is not a legal type. This tests 480 // that values are unmapped correctly. 481 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type()); 482 return success(); 483 } 484 }; 485 struct TestUpdateConsumerType : public ConversionPattern { 486 TestUpdateConsumerType(MLIRContext *ctx) 487 : ConversionPattern("test.type_consumer", 1, ctx) {} 488 LogicalResult 489 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 490 ConversionPatternRewriter &rewriter) const final { 491 // Verify that the incoming operand has been successfully remapped to F64. 492 if (!operands[0].getType().isF64()) 493 return failure(); 494 rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]); 495 return success(); 496 } 497 }; 498 499 //===----------------------------------------------------------------------===// 500 // Non-Root Replacement Rewrite Testing 501 /// This pattern generates an invalid operation, but replaces it before the 502 /// pattern is finished. This checks that we don't need to legalize the 503 /// temporary op. 504 struct TestNonRootReplacement : public RewritePattern { 505 TestNonRootReplacement(MLIRContext *ctx) 506 : RewritePattern("test.replace_non_root", 1, ctx) {} 507 508 LogicalResult matchAndRewrite(Operation *op, 509 PatternRewriter &rewriter) const final { 510 auto resultType = *op->result_type_begin(); 511 auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType); 512 auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType); 513 514 rewriter.replaceOp(illegalOp, {legalOp}); 515 rewriter.replaceOp(op, {illegalOp}); 516 return success(); 517 } 518 }; 519 520 //===----------------------------------------------------------------------===// 521 // Recursive Rewrite Testing 522 /// This pattern is applied to the same operation multiple times, but has a 523 /// bounded recursion. 524 struct TestBoundedRecursiveRewrite 525 : public OpRewritePattern<TestRecursiveRewriteOp> { 526 using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern; 527 528 void initialize() { 529 // The conversion target handles bounding the recursion of this pattern. 530 setHasBoundedRewriteRecursion(); 531 } 532 533 LogicalResult matchAndRewrite(TestRecursiveRewriteOp op, 534 PatternRewriter &rewriter) const final { 535 // Decrement the depth of the op in-place. 536 rewriter.updateRootInPlace(op, [&] { 537 op->setAttr("depth", rewriter.getI64IntegerAttr(op.getDepth() - 1)); 538 }); 539 return success(); 540 } 541 }; 542 543 struct TestNestedOpCreationUndoRewrite 544 : public OpRewritePattern<IllegalOpWithRegionAnchor> { 545 using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern; 546 547 LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op, 548 PatternRewriter &rewriter) const final { 549 // rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op); 550 rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op); 551 return success(); 552 }; 553 }; 554 555 // This pattern matches `test.blackhole` and delete this op and its producer. 556 struct TestReplaceEraseOp : public OpRewritePattern<BlackHoleOp> { 557 using OpRewritePattern<BlackHoleOp>::OpRewritePattern; 558 559 LogicalResult matchAndRewrite(BlackHoleOp op, 560 PatternRewriter &rewriter) const final { 561 Operation *producer = op.getOperand().getDefiningOp(); 562 // Always erase the user before the producer, the framework should handle 563 // this correctly. 564 rewriter.eraseOp(op); 565 rewriter.eraseOp(producer); 566 return success(); 567 }; 568 }; 569 570 // This pattern replaces explicitly illegal op with explicitly legal op, 571 // but in addition creates unregistered operation. 572 struct TestCreateUnregisteredOp : public OpRewritePattern<ILLegalOpG> { 573 using OpRewritePattern<ILLegalOpG>::OpRewritePattern; 574 575 LogicalResult matchAndRewrite(ILLegalOpG op, 576 PatternRewriter &rewriter) const final { 577 IntegerAttr attr = rewriter.getI32IntegerAttr(0); 578 Value val = rewriter.create<ConstantOp>(op->getLoc(), attr); 579 rewriter.replaceOpWithNewOp<LegalOpC>(op, val); 580 return success(); 581 }; 582 }; 583 } // namespace 584 585 namespace { 586 struct TestTypeConverter : public TypeConverter { 587 using TypeConverter::TypeConverter; 588 TestTypeConverter() { 589 addConversion(convertType); 590 addArgumentMaterialization(materializeCast); 591 addSourceMaterialization(materializeCast); 592 } 593 594 static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) { 595 // Drop I16 types. 596 if (t.isSignlessInteger(16)) 597 return success(); 598 599 // Convert I64 to F64. 600 if (t.isSignlessInteger(64)) { 601 results.push_back(FloatType::getF64(t.getContext())); 602 return success(); 603 } 604 605 // Convert I42 to I43. 606 if (t.isInteger(42)) { 607 results.push_back(IntegerType::get(t.getContext(), 43)); 608 return success(); 609 } 610 611 // Split F32 into F16,F16. 612 if (t.isF32()) { 613 results.assign(2, FloatType::getF16(t.getContext())); 614 return success(); 615 } 616 617 // Otherwise, convert the type directly. 618 results.push_back(t); 619 return success(); 620 } 621 622 /// Hook for materializing a conversion. This is necessary because we generate 623 /// 1->N type mappings. 624 static Optional<Value> materializeCast(OpBuilder &builder, Type resultType, 625 ValueRange inputs, Location loc) { 626 return builder.create<TestCastOp>(loc, resultType, inputs).getResult(); 627 } 628 }; 629 630 struct TestLegalizePatternDriver 631 : public PassWrapper<TestLegalizePatternDriver, OperationPass<ModuleOp>> { 632 StringRef getArgument() const final { return "test-legalize-patterns"; } 633 StringRef getDescription() const final { 634 return "Run test dialect legalization patterns"; 635 } 636 /// The mode of conversion to use with the driver. 637 enum class ConversionMode { Analysis, Full, Partial }; 638 639 TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {} 640 641 void getDependentDialects(DialectRegistry ®istry) const override { 642 registry.insert<StandardOpsDialect>(); 643 } 644 645 void runOnOperation() override { 646 TestTypeConverter converter; 647 mlir::RewritePatternSet patterns(&getContext()); 648 populateWithGenerated(patterns); 649 patterns 650 .add<TestRegionRewriteBlockMovement, TestRegionRewriteUndo, 651 TestCreateBlock, TestCreateIllegalBlock, TestUndoBlockArgReplace, 652 TestUndoBlockErase, TestPassthroughInvalidOp, TestSplitReturnType, 653 TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64, 654 TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType, 655 TestNonRootReplacement, TestBoundedRecursiveRewrite, 656 TestNestedOpCreationUndoRewrite, TestReplaceEraseOp, 657 TestCreateUnregisteredOp>(&getContext()); 658 patterns.add<TestDropOpSignatureConversion>(&getContext(), converter); 659 mlir::populateFunctionOpInterfaceTypeConversionPattern<FuncOp>(patterns, 660 converter); 661 mlir::populateCallOpTypeConversionPattern(patterns, converter); 662 663 // Define the conversion target used for the test. 664 ConversionTarget target(getContext()); 665 target.addLegalOp<ModuleOp>(); 666 target.addLegalOp<LegalOpA, LegalOpB, LegalOpC, TestCastOp, TestValidOp, 667 TerminatorOp>(); 668 target 669 .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>(); 670 target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) { 671 // Don't allow F32 operands. 672 return llvm::none_of(op.getOperandTypes(), 673 [](Type type) { return type.isF32(); }); 674 }); 675 target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) { 676 return converter.isSignatureLegal(op.getType()) && 677 converter.isLegal(&op.getBody()); 678 }); 679 target.addDynamicallyLegalOp<CallOp>( 680 [&](CallOp op) { return converter.isLegal(op); }); 681 682 // TestCreateUnregisteredOp creates `arith.constant` operation, 683 // which was not added to target intentionally to test 684 // correct error code from conversion driver. 685 target.addDynamicallyLegalOp<ILLegalOpG>([](ILLegalOpG) { return false; }); 686 687 // Expect the type_producer/type_consumer operations to only operate on f64. 688 target.addDynamicallyLegalOp<TestTypeProducerOp>( 689 [](TestTypeProducerOp op) { return op.getType().isF64(); }); 690 target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) { 691 return op.getOperand().getType().isF64(); 692 }); 693 694 // Check support for marking certain operations as recursively legal. 695 target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) { 696 return static_cast<bool>( 697 op->getAttrOfType<UnitAttr>("test.recursively_legal")); 698 }); 699 700 // Mark the bound recursion operation as dynamically legal. 701 target.addDynamicallyLegalOp<TestRecursiveRewriteOp>( 702 [](TestRecursiveRewriteOp op) { return op.getDepth() == 0; }); 703 704 // Handle a partial conversion. 705 if (mode == ConversionMode::Partial) { 706 DenseSet<Operation *> unlegalizedOps; 707 if (failed(applyPartialConversion( 708 getOperation(), target, std::move(patterns), &unlegalizedOps))) { 709 getOperation()->emitRemark() << "applyPartialConversion failed"; 710 } 711 // Emit remarks for each legalizable operation. 712 for (auto *op : unlegalizedOps) 713 op->emitRemark() << "op '" << op->getName() << "' is not legalizable"; 714 return; 715 } 716 717 // Handle a full conversion. 718 if (mode == ConversionMode::Full) { 719 // Check support for marking unknown operations as dynamically legal. 720 target.markUnknownOpDynamicallyLegal([](Operation *op) { 721 return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal"); 722 }); 723 724 if (failed(applyFullConversion(getOperation(), target, 725 std::move(patterns)))) { 726 getOperation()->emitRemark() << "applyFullConversion failed"; 727 } 728 return; 729 } 730 731 // Otherwise, handle an analysis conversion. 732 assert(mode == ConversionMode::Analysis); 733 734 // Analyze the convertible operations. 735 DenseSet<Operation *> legalizedOps; 736 if (failed(applyAnalysisConversion(getOperation(), target, 737 std::move(patterns), legalizedOps))) 738 return signalPassFailure(); 739 740 // Emit remarks for each legalizable operation. 741 for (auto *op : legalizedOps) 742 op->emitRemark() << "op '" << op->getName() << "' is legalizable"; 743 } 744 745 /// The mode of conversion to use. 746 ConversionMode mode; 747 }; 748 } // namespace 749 750 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode> 751 legalizerConversionMode( 752 "test-legalize-mode", 753 llvm::cl::desc("The legalization mode to use with the test driver"), 754 llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial), 755 llvm::cl::values( 756 clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis, 757 "analysis", "Perform an analysis conversion"), 758 clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full", 759 "Perform a full conversion"), 760 clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial, 761 "partial", "Perform a partial conversion"))); 762 763 //===----------------------------------------------------------------------===// 764 // ConversionPatternRewriter::getRemappedValue testing. This method is used 765 // to get the remapped value of an original value that was replaced using 766 // ConversionPatternRewriter. 767 namespace { 768 struct TestRemapValueTypeConverter : public TypeConverter { 769 using TypeConverter::TypeConverter; 770 771 TestRemapValueTypeConverter() { 772 addConversion( 773 [](Float32Type type) { return Float64Type::get(type.getContext()); }); 774 addConversion([](Type type) { return type; }); 775 } 776 }; 777 778 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with 779 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original 780 /// operand twice. 781 /// 782 /// Example: 783 /// %1 = test.one_variadic_out_one_variadic_in1"(%0) 784 /// is replaced with: 785 /// %1 = test.one_variadic_out_one_variadic_in1"(%0, %0) 786 struct OneVResOneVOperandOp1Converter 787 : public OpConversionPattern<OneVResOneVOperandOp1> { 788 using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern; 789 790 LogicalResult 791 matchAndRewrite(OneVResOneVOperandOp1 op, OpAdaptor adaptor, 792 ConversionPatternRewriter &rewriter) const override { 793 auto origOps = op.getOperands(); 794 assert(std::distance(origOps.begin(), origOps.end()) == 1 && 795 "One operand expected"); 796 Value origOp = *origOps.begin(); 797 SmallVector<Value, 2> remappedOperands; 798 // Replicate the remapped original operand twice. Note that we don't used 799 // the remapped 'operand' since the goal is testing 'getRemappedValue'. 800 remappedOperands.push_back(rewriter.getRemappedValue(origOp)); 801 remappedOperands.push_back(rewriter.getRemappedValue(origOp)); 802 803 rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(), 804 remappedOperands); 805 return success(); 806 } 807 }; 808 809 /// A rewriter pattern that tests that blocks can be merged. 810 struct TestRemapValueInRegion 811 : public OpConversionPattern<TestRemappedValueRegionOp> { 812 using OpConversionPattern<TestRemappedValueRegionOp>::OpConversionPattern; 813 814 LogicalResult 815 matchAndRewrite(TestRemappedValueRegionOp op, OpAdaptor adaptor, 816 ConversionPatternRewriter &rewriter) const final { 817 Block &block = op.getBody().front(); 818 Operation *terminator = block.getTerminator(); 819 820 // Merge the block into the parent region. 821 Block *parentBlock = op->getBlock(); 822 Block *finalBlock = rewriter.splitBlock(parentBlock, op->getIterator()); 823 rewriter.mergeBlocks(&block, parentBlock, ValueRange()); 824 rewriter.mergeBlocks(finalBlock, parentBlock, ValueRange()); 825 826 // Replace the results of this operation with the remapped terminator 827 // values. 828 SmallVector<Value> terminatorOperands; 829 if (failed(rewriter.getRemappedValues(terminator->getOperands(), 830 terminatorOperands))) 831 return failure(); 832 833 rewriter.eraseOp(terminator); 834 rewriter.replaceOp(op, terminatorOperands); 835 return success(); 836 } 837 }; 838 839 struct TestRemappedValue 840 : public mlir::PassWrapper<TestRemappedValue, OperationPass<FuncOp>> { 841 StringRef getArgument() const final { return "test-remapped-value"; } 842 StringRef getDescription() const final { 843 return "Test public remapped value mechanism in ConversionPatternRewriter"; 844 } 845 void runOnOperation() override { 846 TestRemapValueTypeConverter typeConverter; 847 848 mlir::RewritePatternSet patterns(&getContext()); 849 patterns.add<OneVResOneVOperandOp1Converter>(&getContext()); 850 patterns.add<TestChangeProducerTypeF32ToF64, TestUpdateConsumerType>( 851 &getContext()); 852 patterns.add<TestRemapValueInRegion>(typeConverter, &getContext()); 853 854 mlir::ConversionTarget target(getContext()); 855 target.addLegalOp<ModuleOp, FuncOp, TestReturnOp>(); 856 857 // Expect the type_producer/type_consumer operations to only operate on f64. 858 target.addDynamicallyLegalOp<TestTypeProducerOp>( 859 [](TestTypeProducerOp op) { return op.getType().isF64(); }); 860 target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) { 861 return op.getOperand().getType().isF64(); 862 }); 863 864 // We make OneVResOneVOperandOp1 legal only when it has more that one 865 // operand. This will trigger the conversion that will replace one-operand 866 // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1. 867 target.addDynamicallyLegalOp<OneVResOneVOperandOp1>( 868 [](Operation *op) { return op->getNumOperands() > 1; }); 869 870 if (failed(mlir::applyFullConversion(getOperation(), target, 871 std::move(patterns)))) { 872 signalPassFailure(); 873 } 874 } 875 }; 876 } // namespace 877 878 //===----------------------------------------------------------------------===// 879 // Test patterns without a specific root operation kind 880 //===----------------------------------------------------------------------===// 881 882 namespace { 883 /// This pattern matches and removes any operation in the test dialect. 884 struct RemoveTestDialectOps : public RewritePattern { 885 RemoveTestDialectOps(MLIRContext *context) 886 : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {} 887 888 LogicalResult matchAndRewrite(Operation *op, 889 PatternRewriter &rewriter) const override { 890 if (!isa<TestDialect>(op->getDialect())) 891 return failure(); 892 rewriter.eraseOp(op); 893 return success(); 894 } 895 }; 896 897 struct TestUnknownRootOpDriver 898 : public mlir::PassWrapper<TestUnknownRootOpDriver, OperationPass<FuncOp>> { 899 StringRef getArgument() const final { 900 return "test-legalize-unknown-root-patterns"; 901 } 902 StringRef getDescription() const final { 903 return "Test public remapped value mechanism in ConversionPatternRewriter"; 904 } 905 void runOnOperation() override { 906 mlir::RewritePatternSet patterns(&getContext()); 907 patterns.add<RemoveTestDialectOps>(&getContext()); 908 909 mlir::ConversionTarget target(getContext()); 910 target.addIllegalDialect<TestDialect>(); 911 if (failed(applyPartialConversion(getOperation(), target, 912 std::move(patterns)))) 913 signalPassFailure(); 914 } 915 }; 916 } // namespace 917 918 //===----------------------------------------------------------------------===// 919 // Test type conversions 920 //===----------------------------------------------------------------------===// 921 922 namespace { 923 struct TestTypeConversionProducer 924 : public OpConversionPattern<TestTypeProducerOp> { 925 using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern; 926 LogicalResult 927 matchAndRewrite(TestTypeProducerOp op, OpAdaptor adaptor, 928 ConversionPatternRewriter &rewriter) const final { 929 Type resultType = op.getType(); 930 Type convertedType = getTypeConverter() 931 ? getTypeConverter()->convertType(resultType) 932 : resultType; 933 if (resultType.isa<FloatType>()) 934 resultType = rewriter.getF64Type(); 935 else if (resultType.isInteger(16)) 936 resultType = rewriter.getIntegerType(64); 937 else if (resultType.isa<test::TestRecursiveType>() && 938 convertedType != resultType) 939 resultType = convertedType; 940 else 941 return failure(); 942 943 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType); 944 return success(); 945 } 946 }; 947 948 /// Call signature conversion and then fail the rewrite to trigger the undo 949 /// mechanism. 950 struct TestSignatureConversionUndo 951 : public OpConversionPattern<TestSignatureConversionUndoOp> { 952 using OpConversionPattern<TestSignatureConversionUndoOp>::OpConversionPattern; 953 954 LogicalResult 955 matchAndRewrite(TestSignatureConversionUndoOp op, OpAdaptor adaptor, 956 ConversionPatternRewriter &rewriter) const final { 957 (void)rewriter.convertRegionTypes(&op->getRegion(0), *getTypeConverter()); 958 return failure(); 959 } 960 }; 961 962 /// Call signature conversion without providing a type converter to handle 963 /// materializations. 964 struct TestTestSignatureConversionNoConverter 965 : public OpConversionPattern<TestSignatureConversionNoConverterOp> { 966 TestTestSignatureConversionNoConverter(TypeConverter &converter, 967 MLIRContext *context) 968 : OpConversionPattern<TestSignatureConversionNoConverterOp>(context), 969 converter(converter) {} 970 971 LogicalResult 972 matchAndRewrite(TestSignatureConversionNoConverterOp op, OpAdaptor adaptor, 973 ConversionPatternRewriter &rewriter) const final { 974 Region ®ion = op->getRegion(0); 975 Block *entry = ®ion.front(); 976 977 // Convert the original entry arguments. 978 TypeConverter::SignatureConversion result(entry->getNumArguments()); 979 if (failed( 980 converter.convertSignatureArgs(entry->getArgumentTypes(), result))) 981 return failure(); 982 rewriter.updateRootInPlace( 983 op, [&] { rewriter.applySignatureConversion(®ion, result); }); 984 return success(); 985 } 986 987 TypeConverter &converter; 988 }; 989 990 /// Just forward the operands to the root op. This is essentially a no-op 991 /// pattern that is used to trigger target materialization. 992 struct TestTypeConsumerForward 993 : public OpConversionPattern<TestTypeConsumerOp> { 994 using OpConversionPattern<TestTypeConsumerOp>::OpConversionPattern; 995 996 LogicalResult 997 matchAndRewrite(TestTypeConsumerOp op, OpAdaptor adaptor, 998 ConversionPatternRewriter &rewriter) const final { 999 rewriter.updateRootInPlace(op, 1000 [&] { op->setOperands(adaptor.getOperands()); }); 1001 return success(); 1002 } 1003 }; 1004 1005 struct TestTypeConversionAnotherProducer 1006 : public OpRewritePattern<TestAnotherTypeProducerOp> { 1007 using OpRewritePattern<TestAnotherTypeProducerOp>::OpRewritePattern; 1008 1009 LogicalResult matchAndRewrite(TestAnotherTypeProducerOp op, 1010 PatternRewriter &rewriter) const final { 1011 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, op.getType()); 1012 return success(); 1013 } 1014 }; 1015 1016 struct TestTypeConversionDriver 1017 : public PassWrapper<TestTypeConversionDriver, OperationPass<ModuleOp>> { 1018 void getDependentDialects(DialectRegistry ®istry) const override { 1019 registry.insert<TestDialect>(); 1020 } 1021 StringRef getArgument() const final { 1022 return "test-legalize-type-conversion"; 1023 } 1024 StringRef getDescription() const final { 1025 return "Test various type conversion functionalities in DialectConversion"; 1026 } 1027 1028 void runOnOperation() override { 1029 // Initialize the type converter. 1030 TypeConverter converter; 1031 1032 /// Add the legal set of type conversions. 1033 converter.addConversion([](Type type) -> Type { 1034 // Treat F64 as legal. 1035 if (type.isF64()) 1036 return type; 1037 // Allow converting BF16/F16/F32 to F64. 1038 if (type.isBF16() || type.isF16() || type.isF32()) 1039 return FloatType::getF64(type.getContext()); 1040 // Otherwise, the type is illegal. 1041 return nullptr; 1042 }); 1043 converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) { 1044 // Drop all integer types. 1045 return success(); 1046 }); 1047 converter.addConversion( 1048 // Convert a recursive self-referring type into a non-self-referring 1049 // type named "outer_converted_type" that contains a SimpleAType. 1050 [&](test::TestRecursiveType type, SmallVectorImpl<Type> &results, 1051 ArrayRef<Type> callStack) -> Optional<LogicalResult> { 1052 // If the type is already converted, return it to indicate that it is 1053 // legal. 1054 if (type.getName() == "outer_converted_type") { 1055 results.push_back(type); 1056 return success(); 1057 } 1058 1059 // If the type is on the call stack more than once (it is there at 1060 // least once because of the _current_ call, which is always the last 1061 // element on the stack), we've hit the recursive case. Just return 1062 // SimpleAType here to create a non-recursive type as a result. 1063 if (llvm::is_contained(callStack.drop_back(), type)) { 1064 results.push_back(test::SimpleAType::get(type.getContext())); 1065 return success(); 1066 } 1067 1068 // Convert the body recursively. 1069 auto result = test::TestRecursiveType::get(type.getContext(), 1070 "outer_converted_type"); 1071 if (failed(result.setBody(converter.convertType(type.getBody())))) 1072 return failure(); 1073 results.push_back(result); 1074 return success(); 1075 }); 1076 1077 /// Add the legal set of type materializations. 1078 converter.addSourceMaterialization([](OpBuilder &builder, Type resultType, 1079 ValueRange inputs, 1080 Location loc) -> Value { 1081 // Allow casting from F64 back to F32. 1082 if (!resultType.isF16() && inputs.size() == 1 && 1083 inputs[0].getType().isF64()) 1084 return builder.create<TestCastOp>(loc, resultType, inputs).getResult(); 1085 // Allow producing an i32 or i64 from nothing. 1086 if ((resultType.isInteger(32) || resultType.isInteger(64)) && 1087 inputs.empty()) 1088 return builder.create<TestTypeProducerOp>(loc, resultType); 1089 // Allow producing an i64 from an integer. 1090 if (resultType.isa<IntegerType>() && inputs.size() == 1 && 1091 inputs[0].getType().isa<IntegerType>()) 1092 return builder.create<TestCastOp>(loc, resultType, inputs).getResult(); 1093 // Otherwise, fail. 1094 return nullptr; 1095 }); 1096 1097 // Initialize the conversion target. 1098 mlir::ConversionTarget target(getContext()); 1099 target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) { 1100 auto recursiveType = op.getType().dyn_cast<test::TestRecursiveType>(); 1101 return op.getType().isF64() || op.getType().isInteger(64) || 1102 (recursiveType && 1103 recursiveType.getName() == "outer_converted_type"); 1104 }); 1105 target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) { 1106 return converter.isSignatureLegal(op.getType()) && 1107 converter.isLegal(&op.getBody()); 1108 }); 1109 target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) { 1110 // Allow casts from F64 to F32. 1111 return (*op.operand_type_begin()).isF64() && op.getType().isF32(); 1112 }); 1113 target.addDynamicallyLegalOp<TestSignatureConversionNoConverterOp>( 1114 [&](TestSignatureConversionNoConverterOp op) { 1115 return converter.isLegal(op.getRegion().front().getArgumentTypes()); 1116 }); 1117 1118 // Initialize the set of rewrite patterns. 1119 RewritePatternSet patterns(&getContext()); 1120 patterns.add<TestTypeConsumerForward, TestTypeConversionProducer, 1121 TestSignatureConversionUndo, 1122 TestTestSignatureConversionNoConverter>(converter, 1123 &getContext()); 1124 patterns.add<TestTypeConversionAnotherProducer>(&getContext()); 1125 mlir::populateFunctionOpInterfaceTypeConversionPattern<FuncOp>(patterns, 1126 converter); 1127 1128 if (failed(applyPartialConversion(getOperation(), target, 1129 std::move(patterns)))) 1130 signalPassFailure(); 1131 } 1132 }; 1133 } // namespace 1134 1135 //===----------------------------------------------------------------------===// 1136 // Test Block Merging 1137 //===----------------------------------------------------------------------===// 1138 1139 namespace { 1140 /// A rewriter pattern that tests that blocks can be merged. 1141 struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> { 1142 using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern; 1143 1144 LogicalResult 1145 matchAndRewrite(TestMergeBlocksOp op, OpAdaptor adaptor, 1146 ConversionPatternRewriter &rewriter) const final { 1147 Block &firstBlock = op.getBody().front(); 1148 Operation *branchOp = firstBlock.getTerminator(); 1149 Block *secondBlock = &*(std::next(op.getBody().begin())); 1150 auto succOperands = branchOp->getOperands(); 1151 SmallVector<Value, 2> replacements(succOperands); 1152 rewriter.eraseOp(branchOp); 1153 rewriter.mergeBlocks(secondBlock, &firstBlock, replacements); 1154 rewriter.updateRootInPlace(op, [] {}); 1155 return success(); 1156 } 1157 }; 1158 1159 /// A rewrite pattern to tests the undo mechanism of blocks being merged. 1160 struct TestUndoBlocksMerge : public ConversionPattern { 1161 TestUndoBlocksMerge(MLIRContext *ctx) 1162 : ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {} 1163 LogicalResult 1164 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 1165 ConversionPatternRewriter &rewriter) const final { 1166 Block &firstBlock = op->getRegion(0).front(); 1167 Operation *branchOp = firstBlock.getTerminator(); 1168 Block *secondBlock = &*(std::next(op->getRegion(0).begin())); 1169 rewriter.setInsertionPointToStart(secondBlock); 1170 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 1171 auto succOperands = branchOp->getOperands(); 1172 SmallVector<Value, 2> replacements(succOperands); 1173 rewriter.eraseOp(branchOp); 1174 rewriter.mergeBlocks(secondBlock, &firstBlock, replacements); 1175 rewriter.updateRootInPlace(op, [] {}); 1176 return success(); 1177 } 1178 }; 1179 1180 /// A rewrite mechanism to inline the body of the op into its parent, when both 1181 /// ops can have a single block. 1182 struct TestMergeSingleBlockOps 1183 : public OpConversionPattern<SingleBlockImplicitTerminatorOp> { 1184 using OpConversionPattern< 1185 SingleBlockImplicitTerminatorOp>::OpConversionPattern; 1186 1187 LogicalResult 1188 matchAndRewrite(SingleBlockImplicitTerminatorOp op, OpAdaptor adaptor, 1189 ConversionPatternRewriter &rewriter) const final { 1190 SingleBlockImplicitTerminatorOp parentOp = 1191 op->getParentOfType<SingleBlockImplicitTerminatorOp>(); 1192 if (!parentOp) 1193 return failure(); 1194 Block &innerBlock = op.getRegion().front(); 1195 TerminatorOp innerTerminator = 1196 cast<TerminatorOp>(innerBlock.getTerminator()); 1197 rewriter.mergeBlockBefore(&innerBlock, op); 1198 rewriter.eraseOp(innerTerminator); 1199 rewriter.eraseOp(op); 1200 rewriter.updateRootInPlace(op, [] {}); 1201 return success(); 1202 } 1203 }; 1204 1205 struct TestMergeBlocksPatternDriver 1206 : public PassWrapper<TestMergeBlocksPatternDriver, 1207 OperationPass<ModuleOp>> { 1208 StringRef getArgument() const final { return "test-merge-blocks"; } 1209 StringRef getDescription() const final { 1210 return "Test Merging operation in ConversionPatternRewriter"; 1211 } 1212 void runOnOperation() override { 1213 MLIRContext *context = &getContext(); 1214 mlir::RewritePatternSet patterns(context); 1215 patterns.add<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>( 1216 context); 1217 ConversionTarget target(*context); 1218 target.addLegalOp<FuncOp, ModuleOp, TerminatorOp, TestBranchOp, 1219 TestTypeConsumerOp, TestTypeProducerOp, TestReturnOp>(); 1220 target.addIllegalOp<ILLegalOpF>(); 1221 1222 /// Expect the op to have a single block after legalization. 1223 target.addDynamicallyLegalOp<TestMergeBlocksOp>( 1224 [&](TestMergeBlocksOp op) -> bool { 1225 return llvm::hasSingleElement(op.getBody()); 1226 }); 1227 1228 /// Only allow `test.br` within test.merge_blocks op. 1229 target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool { 1230 return op->getParentOfType<TestMergeBlocksOp>(); 1231 }); 1232 1233 /// Expect that all nested test.SingleBlockImplicitTerminator ops are 1234 /// inlined. 1235 target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>( 1236 [&](SingleBlockImplicitTerminatorOp op) -> bool { 1237 return !op->getParentOfType<SingleBlockImplicitTerminatorOp>(); 1238 }); 1239 1240 DenseSet<Operation *> unlegalizedOps; 1241 (void)applyPartialConversion(getOperation(), target, std::move(patterns), 1242 &unlegalizedOps); 1243 for (auto *op : unlegalizedOps) 1244 op->emitRemark() << "op '" << op->getName() << "' is not legalizable"; 1245 } 1246 }; 1247 } // namespace 1248 1249 //===----------------------------------------------------------------------===// 1250 // Test Selective Replacement 1251 //===----------------------------------------------------------------------===// 1252 1253 namespace { 1254 /// A rewrite mechanism to inline the body of the op into its parent, when both 1255 /// ops can have a single block. 1256 struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> { 1257 using OpRewritePattern<TestCastOp>::OpRewritePattern; 1258 1259 LogicalResult matchAndRewrite(TestCastOp op, 1260 PatternRewriter &rewriter) const final { 1261 if (op.getNumOperands() != 2) 1262 return failure(); 1263 OperandRange operands = op.getOperands(); 1264 1265 // Replace non-terminator uses with the first operand. 1266 rewriter.replaceOpWithIf(op, operands[0], [](OpOperand &operand) { 1267 return operand.getOwner()->hasTrait<OpTrait::IsTerminator>(); 1268 }); 1269 // Replace everything else with the second operand if the operation isn't 1270 // dead. 1271 rewriter.replaceOp(op, op.getOperand(1)); 1272 return success(); 1273 } 1274 }; 1275 1276 struct TestSelectiveReplacementPatternDriver 1277 : public PassWrapper<TestSelectiveReplacementPatternDriver, 1278 OperationPass<>> { 1279 StringRef getArgument() const final { 1280 return "test-pattern-selective-replacement"; 1281 } 1282 StringRef getDescription() const final { 1283 return "Test selective replacement in the PatternRewriter"; 1284 } 1285 void runOnOperation() override { 1286 MLIRContext *context = &getContext(); 1287 mlir::RewritePatternSet patterns(context); 1288 patterns.add<TestSelectiveOpReplacementPattern>(context); 1289 (void)applyPatternsAndFoldGreedily(getOperation()->getRegions(), 1290 std::move(patterns)); 1291 } 1292 }; 1293 } // namespace 1294 1295 //===----------------------------------------------------------------------===// 1296 // PassRegistration 1297 //===----------------------------------------------------------------------===// 1298 1299 namespace mlir { 1300 namespace test { 1301 void registerPatternsTestPass() { 1302 PassRegistration<TestReturnTypeDriver>(); 1303 1304 PassRegistration<TestDerivedAttributeDriver>(); 1305 1306 PassRegistration<TestPatternDriver>(); 1307 1308 PassRegistration<TestLegalizePatternDriver>([] { 1309 return std::make_unique<TestLegalizePatternDriver>(legalizerConversionMode); 1310 }); 1311 1312 PassRegistration<TestRemappedValue>(); 1313 1314 PassRegistration<TestUnknownRootOpDriver>(); 1315 1316 PassRegistration<TestTypeConversionDriver>(); 1317 1318 PassRegistration<TestMergeBlocksPatternDriver>(); 1319 PassRegistration<TestSelectiveReplacementPatternDriver>(); 1320 } 1321 } // namespace test 1322 } // namespace mlir 1323