1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "TestDialect.h"
10 #include "TestTypes.h"
11 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
12 #include "mlir/Dialect/StandardOps/IR/Ops.h"
13 #include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
14 #include "mlir/Dialect/Tensor/IR/Tensor.h"
15 #include "mlir/IR/Matchers.h"
16 #include "mlir/Pass/Pass.h"
17 #include "mlir/Transforms/DialectConversion.h"
18 #include "mlir/Transforms/FoldUtils.h"
19 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
20 
21 using namespace mlir;
22 using namespace test;
23 
24 // Native function for testing NativeCodeCall
25 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
26   return choice.getValue() ? input1 : input2;
27 }
28 
29 static void createOpI(PatternRewriter &rewriter, Location loc, Value input) {
30   rewriter.create<OpI>(loc, input);
31 }
32 
33 static void handleNoResultOp(PatternRewriter &rewriter,
34                              OpSymbolBindingNoResult op) {
35   // Turn the no result op to a one-result op.
36   rewriter.create<OpSymbolBindingB>(op.getLoc(), op.getOperand().getType(),
37                                     op.getOperand());
38 }
39 
40 static bool getFirstI32Result(Operation *op, Value &value) {
41   if (!Type(op->getResult(0).getType()).isSignlessInteger(32))
42     return false;
43   value = op->getResult(0);
44   return true;
45 }
46 
47 static Value bindNativeCodeCallResult(Value value) { return value; }
48 
49 static SmallVector<Value, 2> bindMultipleNativeCodeCallResult(Value input1,
50                                                               Value input2) {
51   return SmallVector<Value, 2>({input2, input1});
52 }
53 
54 // Test that natives calls are only called once during rewrites.
55 // OpM_Test will return Pi, increased by 1 for each subsequent calls.
56 // This let us check the number of times OpM_Test was called by inspecting
57 // the returned value in the MLIR output.
58 static int64_t opMIncreasingValue = 314159265;
59 static Attribute opMTest(PatternRewriter &rewriter, Value val) {
60   int64_t i = opMIncreasingValue++;
61   return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i);
62 }
63 
64 namespace {
65 #include "TestPatterns.inc"
66 } // namespace
67 
68 //===----------------------------------------------------------------------===//
69 // Test Reduce Pattern Interface
70 //===----------------------------------------------------------------------===//
71 
72 void test::populateTestReductionPatterns(RewritePatternSet &patterns) {
73   populateWithGenerated(patterns);
74 }
75 
76 //===----------------------------------------------------------------------===//
77 // Canonicalizer Driver.
78 //===----------------------------------------------------------------------===//
79 
80 namespace {
81 struct FoldingPattern : public RewritePattern {
82 public:
83   FoldingPattern(MLIRContext *context)
84       : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(),
85                        /*benefit=*/1, context) {}
86 
87   LogicalResult matchAndRewrite(Operation *op,
88                                 PatternRewriter &rewriter) const override {
89     // Exercise OperationFolder API for a single-result operation that is folded
90     // upon construction. The operation being created through the folder has an
91     // in-place folder, and it should be still present in the output.
92     // Furthermore, the folder should not crash when attempting to recover the
93     // (unchanged) operation result.
94     OperationFolder folder(op->getContext());
95     Value result = folder.create<TestOpInPlaceFold>(
96         rewriter, op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0),
97         rewriter.getI32IntegerAttr(0));
98     assert(result);
99     rewriter.replaceOp(op, result);
100     return success();
101   }
102 };
103 
104 /// This pattern creates a foldable operation at the entry point of the block.
105 /// This tests the situation where the operation folder will need to replace an
106 /// operation with a previously created constant that does not initially
107 /// dominate the operation to replace.
108 struct FolderInsertBeforePreviouslyFoldedConstantPattern
109     : public OpRewritePattern<TestCastOp> {
110 public:
111   using OpRewritePattern<TestCastOp>::OpRewritePattern;
112 
113   LogicalResult matchAndRewrite(TestCastOp op,
114                                 PatternRewriter &rewriter) const override {
115     if (!op->hasAttr("test_fold_before_previously_folded_op"))
116       return failure();
117     rewriter.setInsertionPointToStart(op->getBlock());
118 
119     auto constOp = rewriter.create<arith::ConstantOp>(
120         op.getLoc(), rewriter.getBoolAttr(true));
121     rewriter.replaceOpWithNewOp<TestCastOp>(op, rewriter.getI32Type(),
122                                             Value(constOp));
123     return success();
124   }
125 };
126 
127 struct TestPatternDriver
128     : public PassWrapper<TestPatternDriver, OperationPass<FuncOp>> {
129   StringRef getArgument() const final { return "test-patterns"; }
130   StringRef getDescription() const final { return "Run test dialect patterns"; }
131   void runOnOperation() override {
132     mlir::RewritePatternSet patterns(&getContext());
133     populateWithGenerated(patterns);
134 
135     // Verify named pattern is generated with expected name.
136     patterns.add<FoldingPattern, TestNamedPatternRule,
137                  FolderInsertBeforePreviouslyFoldedConstantPattern>(
138         &getContext());
139 
140     (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
141   }
142 };
143 } // namespace
144 
145 //===----------------------------------------------------------------------===//
146 // ReturnType Driver.
147 //===----------------------------------------------------------------------===//
148 
149 namespace {
150 // Generate ops for each instance where the type can be successfully inferred.
151 template <typename OpTy>
152 static void invokeCreateWithInferredReturnType(Operation *op) {
153   auto *context = op->getContext();
154   auto fop = op->getParentOfType<FuncOp>();
155   auto location = UnknownLoc::get(context);
156   OpBuilder b(op);
157   b.setInsertionPointAfter(op);
158 
159   // Use permutations of 2 args as operands.
160   assert(fop.getNumArguments() >= 2);
161   for (int i = 0, e = fop.getNumArguments(); i < e; ++i) {
162     for (int j = 0; j < e; ++j) {
163       std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}};
164       SmallVector<Type, 2> inferredReturnTypes;
165       if (succeeded(OpTy::inferReturnTypes(
166               context, llvm::None, values, op->getAttrDictionary(),
167               op->getRegions(), inferredReturnTypes))) {
168         OperationState state(location, OpTy::getOperationName());
169         // TODO: Expand to regions.
170         OpTy::build(b, state, values, op->getAttrs());
171         (void)b.createOperation(state);
172       }
173     }
174   }
175 }
176 
177 static void reifyReturnShape(Operation *op) {
178   OpBuilder b(op);
179 
180   // Use permutations of 2 args as operands.
181   auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op);
182   SmallVector<Value, 2> shapes;
183   if (failed(shapedOp.reifyReturnTypeShapes(b, op->getOperands(), shapes)) ||
184       !llvm::hasSingleElement(shapes))
185     return;
186   for (const auto &it : llvm::enumerate(shapes)) {
187     op->emitRemark() << "value " << it.index() << ": "
188                      << it.value().getDefiningOp();
189   }
190 }
191 
192 struct TestReturnTypeDriver
193     : public PassWrapper<TestReturnTypeDriver, OperationPass<FuncOp>> {
194   void getDependentDialects(DialectRegistry &registry) const override {
195     registry.insert<tensor::TensorDialect>();
196   }
197   StringRef getArgument() const final { return "test-return-type"; }
198   StringRef getDescription() const final { return "Run return type functions"; }
199 
200   void runOnOperation() override {
201     if (getOperation().getName() == "testCreateFunctions") {
202       std::vector<Operation *> ops;
203       // Collect ops to avoid triggering on inserted ops.
204       for (auto &op : getOperation().getBody().front())
205         ops.push_back(&op);
206       // Generate test patterns for each, but skip terminator.
207       for (auto *op : llvm::makeArrayRef(ops).drop_back()) {
208         // Test create method of each of the Op classes below. The resultant
209         // output would be in reverse order underneath `op` from which
210         // the attributes and regions are used.
211         invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op);
212         invokeCreateWithInferredReturnType<
213             OpWithShapedTypeInferTypeInterfaceOp>(op);
214       };
215       return;
216     }
217     if (getOperation().getName() == "testReifyFunctions") {
218       std::vector<Operation *> ops;
219       // Collect ops to avoid triggering on inserted ops.
220       for (auto &op : getOperation().getBody().front())
221         if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op))
222           ops.push_back(&op);
223       // Generate test patterns for each, but skip terminator.
224       for (auto *op : ops)
225         reifyReturnShape(op);
226     }
227   }
228 };
229 } // namespace
230 
231 namespace {
232 struct TestDerivedAttributeDriver
233     : public PassWrapper<TestDerivedAttributeDriver, OperationPass<FuncOp>> {
234   StringRef getArgument() const final { return "test-derived-attr"; }
235   StringRef getDescription() const final {
236     return "Run test derived attributes";
237   }
238   void runOnOperation() override;
239 };
240 } // namespace
241 
242 void TestDerivedAttributeDriver::runOnOperation() {
243   getOperation().walk([](DerivedAttributeOpInterface dOp) {
244     auto dAttr = dOp.materializeDerivedAttributes();
245     if (!dAttr)
246       return;
247     for (auto d : dAttr)
248       dOp.emitRemark() << d.getName().getValue() << " = " << d.getValue();
249   });
250 }
251 
252 //===----------------------------------------------------------------------===//
253 // Legalization Driver.
254 //===----------------------------------------------------------------------===//
255 
256 namespace {
257 //===----------------------------------------------------------------------===//
258 // Region-Block Rewrite Testing
259 
260 /// This pattern is a simple pattern that inlines the first region of a given
261 /// operation into the parent region.
262 struct TestRegionRewriteBlockMovement : public ConversionPattern {
263   TestRegionRewriteBlockMovement(MLIRContext *ctx)
264       : ConversionPattern("test.region", 1, ctx) {}
265 
266   LogicalResult
267   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
268                   ConversionPatternRewriter &rewriter) const final {
269     // Inline this region into the parent region.
270     auto &parentRegion = *op->getParentRegion();
271     auto &opRegion = op->getRegion(0);
272     if (op->getAttr("legalizer.should_clone"))
273       rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end());
274     else
275       rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end());
276 
277     if (op->getAttr("legalizer.erase_old_blocks")) {
278       while (!opRegion.empty())
279         rewriter.eraseBlock(&opRegion.front());
280     }
281 
282     // Drop this operation.
283     rewriter.eraseOp(op);
284     return success();
285   }
286 };
287 /// This pattern is a simple pattern that generates a region containing an
288 /// illegal operation.
289 struct TestRegionRewriteUndo : public RewritePattern {
290   TestRegionRewriteUndo(MLIRContext *ctx)
291       : RewritePattern("test.region_builder", 1, ctx) {}
292 
293   LogicalResult matchAndRewrite(Operation *op,
294                                 PatternRewriter &rewriter) const final {
295     // Create the region operation with an entry block containing arguments.
296     OperationState newRegion(op->getLoc(), "test.region");
297     newRegion.addRegion();
298     auto *regionOp = rewriter.createOperation(newRegion);
299     auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
300     entryBlock->addArgument(rewriter.getIntegerType(64));
301 
302     // Add an explicitly illegal operation to ensure the conversion fails.
303     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
304     rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());
305 
306     // Drop this operation.
307     rewriter.eraseOp(op);
308     return success();
309   }
310 };
311 /// A simple pattern that creates a block at the end of the parent region of the
312 /// matched operation.
313 struct TestCreateBlock : public RewritePattern {
314   TestCreateBlock(MLIRContext *ctx)
315       : RewritePattern("test.create_block", /*benefit=*/1, ctx) {}
316 
317   LogicalResult matchAndRewrite(Operation *op,
318                                 PatternRewriter &rewriter) const final {
319     Region &region = *op->getParentRegion();
320     Type i32Type = rewriter.getIntegerType(32);
321     rewriter.createBlock(&region, region.end(), {i32Type, i32Type});
322     rewriter.create<TerminatorOp>(op->getLoc());
323     rewriter.replaceOp(op, {});
324     return success();
325   }
326 };
327 
328 /// A simple pattern that creates a block containing an invalid operation in
329 /// order to trigger the block creation undo mechanism.
330 struct TestCreateIllegalBlock : public RewritePattern {
331   TestCreateIllegalBlock(MLIRContext *ctx)
332       : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {}
333 
334   LogicalResult matchAndRewrite(Operation *op,
335                                 PatternRewriter &rewriter) const final {
336     Region &region = *op->getParentRegion();
337     Type i32Type = rewriter.getIntegerType(32);
338     rewriter.createBlock(&region, region.end(), {i32Type, i32Type});
339     // Create an illegal op to ensure the conversion fails.
340     rewriter.create<ILLegalOpF>(op->getLoc(), i32Type);
341     rewriter.create<TerminatorOp>(op->getLoc());
342     rewriter.replaceOp(op, {});
343     return success();
344   }
345 };
346 
347 /// A simple pattern that tests the undo mechanism when replacing the uses of a
348 /// block argument.
349 struct TestUndoBlockArgReplace : public ConversionPattern {
350   TestUndoBlockArgReplace(MLIRContext *ctx)
351       : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {}
352 
353   LogicalResult
354   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
355                   ConversionPatternRewriter &rewriter) const final {
356     auto illegalOp =
357         rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
358     rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0),
359                                         illegalOp);
360     rewriter.updateRootInPlace(op, [] {});
361     return success();
362   }
363 };
364 
365 /// A rewrite pattern that tests the undo mechanism when erasing a block.
366 struct TestUndoBlockErase : public ConversionPattern {
367   TestUndoBlockErase(MLIRContext *ctx)
368       : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {}
369 
370   LogicalResult
371   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
372                   ConversionPatternRewriter &rewriter) const final {
373     Block *secondBlock = &*std::next(op->getRegion(0).begin());
374     rewriter.setInsertionPointToStart(secondBlock);
375     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
376     rewriter.eraseBlock(secondBlock);
377     rewriter.updateRootInPlace(op, [] {});
378     return success();
379   }
380 };
381 
382 //===----------------------------------------------------------------------===//
383 // Type-Conversion Rewrite Testing
384 
385 /// This patterns erases a region operation that has had a type conversion.
386 struct TestDropOpSignatureConversion : public ConversionPattern {
387   TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
388       : ConversionPattern(converter, "test.drop_region_op", 1, ctx) {}
389   LogicalResult
390   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
391                   ConversionPatternRewriter &rewriter) const override {
392     Region &region = op->getRegion(0);
393     Block *entry = &region.front();
394 
395     // Convert the original entry arguments.
396     TypeConverter &converter = *getTypeConverter();
397     TypeConverter::SignatureConversion result(entry->getNumArguments());
398     if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(),
399                                               result)) ||
400         failed(rewriter.convertRegionTypes(&region, converter, &result)))
401       return failure();
402 
403     // Convert the region signature and just drop the operation.
404     rewriter.eraseOp(op);
405     return success();
406   }
407 };
408 /// This pattern simply updates the operands of the given operation.
409 struct TestPassthroughInvalidOp : public ConversionPattern {
410   TestPassthroughInvalidOp(MLIRContext *ctx)
411       : ConversionPattern("test.invalid", 1, ctx) {}
412   LogicalResult
413   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
414                   ConversionPatternRewriter &rewriter) const final {
415     rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands,
416                                              llvm::None);
417     return success();
418   }
419 };
420 /// This pattern handles the case of a split return value.
421 struct TestSplitReturnType : public ConversionPattern {
422   TestSplitReturnType(MLIRContext *ctx)
423       : ConversionPattern("test.return", 1, ctx) {}
424   LogicalResult
425   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
426                   ConversionPatternRewriter &rewriter) const final {
427     // Check for a return of F32.
428     if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
429       return failure();
430 
431     // Check if the first operation is a cast operation, if it is we use the
432     // results directly.
433     auto *defOp = operands[0].getDefiningOp();
434     if (auto packerOp =
435             llvm::dyn_cast_or_null<UnrealizedConversionCastOp>(defOp)) {
436       rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
437       return success();
438     }
439 
440     // Otherwise, fail to match.
441     return failure();
442   }
443 };
444 
445 //===----------------------------------------------------------------------===//
446 // Multi-Level Type-Conversion Rewrite Testing
447 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
448   TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
449       : ConversionPattern("test.type_producer", 1, ctx) {}
450   LogicalResult
451   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
452                   ConversionPatternRewriter &rewriter) const final {
453     // If the type is I32, change the type to F32.
454     if (!Type(*op->result_type_begin()).isSignlessInteger(32))
455       return failure();
456     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
457     return success();
458   }
459 };
460 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
461   TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
462       : ConversionPattern("test.type_producer", 1, ctx) {}
463   LogicalResult
464   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
465                   ConversionPatternRewriter &rewriter) const final {
466     // If the type is F32, change the type to F64.
467     if (!Type(*op->result_type_begin()).isF32())
468       return rewriter.notifyMatchFailure(op, "expected single f32 operand");
469     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
470     return success();
471   }
472 };
473 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
474   TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
475       : ConversionPattern("test.type_producer", 10, ctx) {}
476   LogicalResult
477   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
478                   ConversionPatternRewriter &rewriter) const final {
479     // Always convert to B16, even though it is not a legal type. This tests
480     // that values are unmapped correctly.
481     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
482     return success();
483   }
484 };
485 struct TestUpdateConsumerType : public ConversionPattern {
486   TestUpdateConsumerType(MLIRContext *ctx)
487       : ConversionPattern("test.type_consumer", 1, ctx) {}
488   LogicalResult
489   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
490                   ConversionPatternRewriter &rewriter) const final {
491     // Verify that the incoming operand has been successfully remapped to F64.
492     if (!operands[0].getType().isF64())
493       return failure();
494     rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
495     return success();
496   }
497 };
498 
499 //===----------------------------------------------------------------------===//
500 // Non-Root Replacement Rewrite Testing
501 /// This pattern generates an invalid operation, but replaces it before the
502 /// pattern is finished. This checks that we don't need to legalize the
503 /// temporary op.
504 struct TestNonRootReplacement : public RewritePattern {
505   TestNonRootReplacement(MLIRContext *ctx)
506       : RewritePattern("test.replace_non_root", 1, ctx) {}
507 
508   LogicalResult matchAndRewrite(Operation *op,
509                                 PatternRewriter &rewriter) const final {
510     auto resultType = *op->result_type_begin();
511     auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
512     auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
513 
514     rewriter.replaceOp(illegalOp, {legalOp});
515     rewriter.replaceOp(op, {illegalOp});
516     return success();
517   }
518 };
519 
520 //===----------------------------------------------------------------------===//
521 // Recursive Rewrite Testing
522 /// This pattern is applied to the same operation multiple times, but has a
523 /// bounded recursion.
524 struct TestBoundedRecursiveRewrite
525     : public OpRewritePattern<TestRecursiveRewriteOp> {
526   using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern;
527 
528   void initialize() {
529     // The conversion target handles bounding the recursion of this pattern.
530     setHasBoundedRewriteRecursion();
531   }
532 
533   LogicalResult matchAndRewrite(TestRecursiveRewriteOp op,
534                                 PatternRewriter &rewriter) const final {
535     // Decrement the depth of the op in-place.
536     rewriter.updateRootInPlace(op, [&] {
537       op->setAttr("depth", rewriter.getI64IntegerAttr(op.getDepth() - 1));
538     });
539     return success();
540   }
541 };
542 
543 struct TestNestedOpCreationUndoRewrite
544     : public OpRewritePattern<IllegalOpWithRegionAnchor> {
545   using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern;
546 
547   LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op,
548                                 PatternRewriter &rewriter) const final {
549     // rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
550     rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
551     return success();
552   };
553 };
554 
555 // This pattern matches `test.blackhole` and delete this op and its producer.
556 struct TestReplaceEraseOp : public OpRewritePattern<BlackHoleOp> {
557   using OpRewritePattern<BlackHoleOp>::OpRewritePattern;
558 
559   LogicalResult matchAndRewrite(BlackHoleOp op,
560                                 PatternRewriter &rewriter) const final {
561     Operation *producer = op.getOperand().getDefiningOp();
562     // Always erase the user before the producer, the framework should handle
563     // this correctly.
564     rewriter.eraseOp(op);
565     rewriter.eraseOp(producer);
566     return success();
567   };
568 };
569 
570 // This pattern replaces explicitly illegal op with explicitly legal op,
571 // but in addition creates unregistered operation.
572 struct TestCreateUnregisteredOp : public OpRewritePattern<ILLegalOpG> {
573   using OpRewritePattern<ILLegalOpG>::OpRewritePattern;
574 
575   LogicalResult matchAndRewrite(ILLegalOpG op,
576                                 PatternRewriter &rewriter) const final {
577     IntegerAttr attr = rewriter.getI32IntegerAttr(0);
578     Value val = rewriter.create<ConstantOp>(op->getLoc(), attr);
579     rewriter.replaceOpWithNewOp<LegalOpC>(op, val);
580     return success();
581   };
582 };
583 } // namespace
584 
585 namespace {
586 struct TestTypeConverter : public TypeConverter {
587   using TypeConverter::TypeConverter;
588   TestTypeConverter() {
589     addConversion(convertType);
590     addArgumentMaterialization(materializeCast);
591     addSourceMaterialization(materializeCast);
592   }
593 
594   static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
595     // Drop I16 types.
596     if (t.isSignlessInteger(16))
597       return success();
598 
599     // Convert I64 to F64.
600     if (t.isSignlessInteger(64)) {
601       results.push_back(FloatType::getF64(t.getContext()));
602       return success();
603     }
604 
605     // Convert I42 to I43.
606     if (t.isInteger(42)) {
607       results.push_back(IntegerType::get(t.getContext(), 43));
608       return success();
609     }
610 
611     // Split F32 into F16,F16.
612     if (t.isF32()) {
613       results.assign(2, FloatType::getF16(t.getContext()));
614       return success();
615     }
616 
617     // Otherwise, convert the type directly.
618     results.push_back(t);
619     return success();
620   }
621 
622   /// Hook for materializing a conversion. This is necessary because we generate
623   /// 1->N type mappings.
624   static Optional<Value> materializeCast(OpBuilder &builder, Type resultType,
625                                          ValueRange inputs, Location loc) {
626     return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
627   }
628 };
629 
630 struct TestLegalizePatternDriver
631     : public PassWrapper<TestLegalizePatternDriver, OperationPass<ModuleOp>> {
632   StringRef getArgument() const final { return "test-legalize-patterns"; }
633   StringRef getDescription() const final {
634     return "Run test dialect legalization patterns";
635   }
636   /// The mode of conversion to use with the driver.
637   enum class ConversionMode { Analysis, Full, Partial };
638 
639   TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
640 
641   void getDependentDialects(DialectRegistry &registry) const override {
642     registry.insert<StandardOpsDialect>();
643   }
644 
645   void runOnOperation() override {
646     TestTypeConverter converter;
647     mlir::RewritePatternSet patterns(&getContext());
648     populateWithGenerated(patterns);
649     patterns
650         .add<TestRegionRewriteBlockMovement, TestRegionRewriteUndo,
651              TestCreateBlock, TestCreateIllegalBlock, TestUndoBlockArgReplace,
652              TestUndoBlockErase, TestPassthroughInvalidOp, TestSplitReturnType,
653              TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
654              TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
655              TestNonRootReplacement, TestBoundedRecursiveRewrite,
656              TestNestedOpCreationUndoRewrite, TestReplaceEraseOp,
657              TestCreateUnregisteredOp>(&getContext());
658     patterns.add<TestDropOpSignatureConversion>(&getContext(), converter);
659     mlir::populateFunctionOpInterfaceTypeConversionPattern<FuncOp>(patterns,
660                                                                    converter);
661     mlir::populateCallOpTypeConversionPattern(patterns, converter);
662 
663     // Define the conversion target used for the test.
664     ConversionTarget target(getContext());
665     target.addLegalOp<ModuleOp>();
666     target.addLegalOp<LegalOpA, LegalOpB, LegalOpC, TestCastOp, TestValidOp,
667                       TerminatorOp>();
668     target
669         .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
670     target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
671       // Don't allow F32 operands.
672       return llvm::none_of(op.getOperandTypes(),
673                            [](Type type) { return type.isF32(); });
674     });
675     target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
676       return converter.isSignatureLegal(op.getType()) &&
677              converter.isLegal(&op.getBody());
678     });
679     target.addDynamicallyLegalOp<CallOp>(
680         [&](CallOp op) { return converter.isLegal(op); });
681 
682     // TestCreateUnregisteredOp creates `arith.constant` operation,
683     // which was not added to target intentionally to test
684     // correct error code from conversion driver.
685     target.addDynamicallyLegalOp<ILLegalOpG>([](ILLegalOpG) { return false; });
686 
687     // Expect the type_producer/type_consumer operations to only operate on f64.
688     target.addDynamicallyLegalOp<TestTypeProducerOp>(
689         [](TestTypeProducerOp op) { return op.getType().isF64(); });
690     target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
691       return op.getOperand().getType().isF64();
692     });
693 
694     // Check support for marking certain operations as recursively legal.
695     target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) {
696       return static_cast<bool>(
697           op->getAttrOfType<UnitAttr>("test.recursively_legal"));
698     });
699 
700     // Mark the bound recursion operation as dynamically legal.
701     target.addDynamicallyLegalOp<TestRecursiveRewriteOp>(
702         [](TestRecursiveRewriteOp op) { return op.getDepth() == 0; });
703 
704     // Handle a partial conversion.
705     if (mode == ConversionMode::Partial) {
706       DenseSet<Operation *> unlegalizedOps;
707       if (failed(applyPartialConversion(
708               getOperation(), target, std::move(patterns), &unlegalizedOps))) {
709         getOperation()->emitRemark() << "applyPartialConversion failed";
710       }
711       // Emit remarks for each legalizable operation.
712       for (auto *op : unlegalizedOps)
713         op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
714       return;
715     }
716 
717     // Handle a full conversion.
718     if (mode == ConversionMode::Full) {
719       // Check support for marking unknown operations as dynamically legal.
720       target.markUnknownOpDynamicallyLegal([](Operation *op) {
721         return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal");
722       });
723 
724       if (failed(applyFullConversion(getOperation(), target,
725                                      std::move(patterns)))) {
726         getOperation()->emitRemark() << "applyFullConversion failed";
727       }
728       return;
729     }
730 
731     // Otherwise, handle an analysis conversion.
732     assert(mode == ConversionMode::Analysis);
733 
734     // Analyze the convertible operations.
735     DenseSet<Operation *> legalizedOps;
736     if (failed(applyAnalysisConversion(getOperation(), target,
737                                        std::move(patterns), legalizedOps)))
738       return signalPassFailure();
739 
740     // Emit remarks for each legalizable operation.
741     for (auto *op : legalizedOps)
742       op->emitRemark() << "op '" << op->getName() << "' is legalizable";
743   }
744 
745   /// The mode of conversion to use.
746   ConversionMode mode;
747 };
748 } // namespace
749 
750 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
751     legalizerConversionMode(
752         "test-legalize-mode",
753         llvm::cl::desc("The legalization mode to use with the test driver"),
754         llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
755         llvm::cl::values(
756             clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
757                        "analysis", "Perform an analysis conversion"),
758             clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
759                        "Perform a full conversion"),
760             clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
761                        "partial", "Perform a partial conversion")));
762 
763 //===----------------------------------------------------------------------===//
764 // ConversionPatternRewriter::getRemappedValue testing. This method is used
765 // to get the remapped value of an original value that was replaced using
766 // ConversionPatternRewriter.
767 namespace {
768 struct TestRemapValueTypeConverter : public TypeConverter {
769   using TypeConverter::TypeConverter;
770 
771   TestRemapValueTypeConverter() {
772     addConversion(
773         [](Float32Type type) { return Float64Type::get(type.getContext()); });
774     addConversion([](Type type) { return type; });
775   }
776 };
777 
778 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
779 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
780 /// operand twice.
781 ///
782 /// Example:
783 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0)
784 /// is replaced with:
785 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
786 struct OneVResOneVOperandOp1Converter
787     : public OpConversionPattern<OneVResOneVOperandOp1> {
788   using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
789 
790   LogicalResult
791   matchAndRewrite(OneVResOneVOperandOp1 op, OpAdaptor adaptor,
792                   ConversionPatternRewriter &rewriter) const override {
793     auto origOps = op.getOperands();
794     assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
795            "One operand expected");
796     Value origOp = *origOps.begin();
797     SmallVector<Value, 2> remappedOperands;
798     // Replicate the remapped original operand twice. Note that we don't used
799     // the remapped 'operand' since the goal is testing 'getRemappedValue'.
800     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
801     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
802 
803     rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(),
804                                                        remappedOperands);
805     return success();
806   }
807 };
808 
809 /// A rewriter pattern that tests that blocks can be merged.
810 struct TestRemapValueInRegion
811     : public OpConversionPattern<TestRemappedValueRegionOp> {
812   using OpConversionPattern<TestRemappedValueRegionOp>::OpConversionPattern;
813 
814   LogicalResult
815   matchAndRewrite(TestRemappedValueRegionOp op, OpAdaptor adaptor,
816                   ConversionPatternRewriter &rewriter) const final {
817     Block &block = op.getBody().front();
818     Operation *terminator = block.getTerminator();
819 
820     // Merge the block into the parent region.
821     Block *parentBlock = op->getBlock();
822     Block *finalBlock = rewriter.splitBlock(parentBlock, op->getIterator());
823     rewriter.mergeBlocks(&block, parentBlock, ValueRange());
824     rewriter.mergeBlocks(finalBlock, parentBlock, ValueRange());
825 
826     // Replace the results of this operation with the remapped terminator
827     // values.
828     SmallVector<Value> terminatorOperands;
829     if (failed(rewriter.getRemappedValues(terminator->getOperands(),
830                                           terminatorOperands)))
831       return failure();
832 
833     rewriter.eraseOp(terminator);
834     rewriter.replaceOp(op, terminatorOperands);
835     return success();
836   }
837 };
838 
839 struct TestRemappedValue
840     : public mlir::PassWrapper<TestRemappedValue, OperationPass<FuncOp>> {
841   StringRef getArgument() const final { return "test-remapped-value"; }
842   StringRef getDescription() const final {
843     return "Test public remapped value mechanism in ConversionPatternRewriter";
844   }
845   void runOnOperation() override {
846     TestRemapValueTypeConverter typeConverter;
847 
848     mlir::RewritePatternSet patterns(&getContext());
849     patterns.add<OneVResOneVOperandOp1Converter>(&getContext());
850     patterns.add<TestChangeProducerTypeF32ToF64, TestUpdateConsumerType>(
851         &getContext());
852     patterns.add<TestRemapValueInRegion>(typeConverter, &getContext());
853 
854     mlir::ConversionTarget target(getContext());
855     target.addLegalOp<ModuleOp, FuncOp, TestReturnOp>();
856 
857     // Expect the type_producer/type_consumer operations to only operate on f64.
858     target.addDynamicallyLegalOp<TestTypeProducerOp>(
859         [](TestTypeProducerOp op) { return op.getType().isF64(); });
860     target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
861       return op.getOperand().getType().isF64();
862     });
863 
864     // We make OneVResOneVOperandOp1 legal only when it has more that one
865     // operand. This will trigger the conversion that will replace one-operand
866     // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
867     target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
868         [](Operation *op) { return op->getNumOperands() > 1; });
869 
870     if (failed(mlir::applyFullConversion(getOperation(), target,
871                                          std::move(patterns)))) {
872       signalPassFailure();
873     }
874   }
875 };
876 } // namespace
877 
878 //===----------------------------------------------------------------------===//
879 // Test patterns without a specific root operation kind
880 //===----------------------------------------------------------------------===//
881 
882 namespace {
883 /// This pattern matches and removes any operation in the test dialect.
884 struct RemoveTestDialectOps : public RewritePattern {
885   RemoveTestDialectOps(MLIRContext *context)
886       : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
887 
888   LogicalResult matchAndRewrite(Operation *op,
889                                 PatternRewriter &rewriter) const override {
890     if (!isa<TestDialect>(op->getDialect()))
891       return failure();
892     rewriter.eraseOp(op);
893     return success();
894   }
895 };
896 
897 struct TestUnknownRootOpDriver
898     : public mlir::PassWrapper<TestUnknownRootOpDriver, OperationPass<FuncOp>> {
899   StringRef getArgument() const final {
900     return "test-legalize-unknown-root-patterns";
901   }
902   StringRef getDescription() const final {
903     return "Test public remapped value mechanism in ConversionPatternRewriter";
904   }
905   void runOnOperation() override {
906     mlir::RewritePatternSet patterns(&getContext());
907     patterns.add<RemoveTestDialectOps>(&getContext());
908 
909     mlir::ConversionTarget target(getContext());
910     target.addIllegalDialect<TestDialect>();
911     if (failed(applyPartialConversion(getOperation(), target,
912                                       std::move(patterns))))
913       signalPassFailure();
914   }
915 };
916 } // namespace
917 
918 //===----------------------------------------------------------------------===//
919 // Test type conversions
920 //===----------------------------------------------------------------------===//
921 
922 namespace {
923 struct TestTypeConversionProducer
924     : public OpConversionPattern<TestTypeProducerOp> {
925   using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern;
926   LogicalResult
927   matchAndRewrite(TestTypeProducerOp op, OpAdaptor adaptor,
928                   ConversionPatternRewriter &rewriter) const final {
929     Type resultType = op.getType();
930     Type convertedType = getTypeConverter()
931                              ? getTypeConverter()->convertType(resultType)
932                              : resultType;
933     if (resultType.isa<FloatType>())
934       resultType = rewriter.getF64Type();
935     else if (resultType.isInteger(16))
936       resultType = rewriter.getIntegerType(64);
937     else if (resultType.isa<test::TestRecursiveType>() &&
938              convertedType != resultType)
939       resultType = convertedType;
940     else
941       return failure();
942 
943     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType);
944     return success();
945   }
946 };
947 
948 /// Call signature conversion and then fail the rewrite to trigger the undo
949 /// mechanism.
950 struct TestSignatureConversionUndo
951     : public OpConversionPattern<TestSignatureConversionUndoOp> {
952   using OpConversionPattern<TestSignatureConversionUndoOp>::OpConversionPattern;
953 
954   LogicalResult
955   matchAndRewrite(TestSignatureConversionUndoOp op, OpAdaptor adaptor,
956                   ConversionPatternRewriter &rewriter) const final {
957     (void)rewriter.convertRegionTypes(&op->getRegion(0), *getTypeConverter());
958     return failure();
959   }
960 };
961 
962 /// Call signature conversion without providing a type converter to handle
963 /// materializations.
964 struct TestTestSignatureConversionNoConverter
965     : public OpConversionPattern<TestSignatureConversionNoConverterOp> {
966   TestTestSignatureConversionNoConverter(TypeConverter &converter,
967                                          MLIRContext *context)
968       : OpConversionPattern<TestSignatureConversionNoConverterOp>(context),
969         converter(converter) {}
970 
971   LogicalResult
972   matchAndRewrite(TestSignatureConversionNoConverterOp op, OpAdaptor adaptor,
973                   ConversionPatternRewriter &rewriter) const final {
974     Region &region = op->getRegion(0);
975     Block *entry = &region.front();
976 
977     // Convert the original entry arguments.
978     TypeConverter::SignatureConversion result(entry->getNumArguments());
979     if (failed(
980             converter.convertSignatureArgs(entry->getArgumentTypes(), result)))
981       return failure();
982     rewriter.updateRootInPlace(
983         op, [&] { rewriter.applySignatureConversion(&region, result); });
984     return success();
985   }
986 
987   TypeConverter &converter;
988 };
989 
990 /// Just forward the operands to the root op. This is essentially a no-op
991 /// pattern that is used to trigger target materialization.
992 struct TestTypeConsumerForward
993     : public OpConversionPattern<TestTypeConsumerOp> {
994   using OpConversionPattern<TestTypeConsumerOp>::OpConversionPattern;
995 
996   LogicalResult
997   matchAndRewrite(TestTypeConsumerOp op, OpAdaptor adaptor,
998                   ConversionPatternRewriter &rewriter) const final {
999     rewriter.updateRootInPlace(op,
1000                                [&] { op->setOperands(adaptor.getOperands()); });
1001     return success();
1002   }
1003 };
1004 
1005 struct TestTypeConversionAnotherProducer
1006     : public OpRewritePattern<TestAnotherTypeProducerOp> {
1007   using OpRewritePattern<TestAnotherTypeProducerOp>::OpRewritePattern;
1008 
1009   LogicalResult matchAndRewrite(TestAnotherTypeProducerOp op,
1010                                 PatternRewriter &rewriter) const final {
1011     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, op.getType());
1012     return success();
1013   }
1014 };
1015 
1016 struct TestTypeConversionDriver
1017     : public PassWrapper<TestTypeConversionDriver, OperationPass<ModuleOp>> {
1018   void getDependentDialects(DialectRegistry &registry) const override {
1019     registry.insert<TestDialect>();
1020   }
1021   StringRef getArgument() const final {
1022     return "test-legalize-type-conversion";
1023   }
1024   StringRef getDescription() const final {
1025     return "Test various type conversion functionalities in DialectConversion";
1026   }
1027 
1028   void runOnOperation() override {
1029     // Initialize the type converter.
1030     TypeConverter converter;
1031 
1032     /// Add the legal set of type conversions.
1033     converter.addConversion([](Type type) -> Type {
1034       // Treat F64 as legal.
1035       if (type.isF64())
1036         return type;
1037       // Allow converting BF16/F16/F32 to F64.
1038       if (type.isBF16() || type.isF16() || type.isF32())
1039         return FloatType::getF64(type.getContext());
1040       // Otherwise, the type is illegal.
1041       return nullptr;
1042     });
1043     converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) {
1044       // Drop all integer types.
1045       return success();
1046     });
1047     converter.addConversion(
1048         // Convert a recursive self-referring type into a non-self-referring
1049         // type named "outer_converted_type" that contains a SimpleAType.
1050         [&](test::TestRecursiveType type, SmallVectorImpl<Type> &results,
1051             ArrayRef<Type> callStack) -> Optional<LogicalResult> {
1052           // If the type is already converted, return it to indicate that it is
1053           // legal.
1054           if (type.getName() == "outer_converted_type") {
1055             results.push_back(type);
1056             return success();
1057           }
1058 
1059           // If the type is on the call stack more than once (it is there at
1060           // least once because of the _current_ call, which is always the last
1061           // element on the stack), we've hit the recursive case. Just return
1062           // SimpleAType here to create a non-recursive type as a result.
1063           if (llvm::is_contained(callStack.drop_back(), type)) {
1064             results.push_back(test::SimpleAType::get(type.getContext()));
1065             return success();
1066           }
1067 
1068           // Convert the body recursively.
1069           auto result = test::TestRecursiveType::get(type.getContext(),
1070                                                      "outer_converted_type");
1071           if (failed(result.setBody(converter.convertType(type.getBody()))))
1072             return failure();
1073           results.push_back(result);
1074           return success();
1075         });
1076 
1077     /// Add the legal set of type materializations.
1078     converter.addSourceMaterialization([](OpBuilder &builder, Type resultType,
1079                                           ValueRange inputs,
1080                                           Location loc) -> Value {
1081       // Allow casting from F64 back to F32.
1082       if (!resultType.isF16() && inputs.size() == 1 &&
1083           inputs[0].getType().isF64())
1084         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
1085       // Allow producing an i32 or i64 from nothing.
1086       if ((resultType.isInteger(32) || resultType.isInteger(64)) &&
1087           inputs.empty())
1088         return builder.create<TestTypeProducerOp>(loc, resultType);
1089       // Allow producing an i64 from an integer.
1090       if (resultType.isa<IntegerType>() && inputs.size() == 1 &&
1091           inputs[0].getType().isa<IntegerType>())
1092         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
1093       // Otherwise, fail.
1094       return nullptr;
1095     });
1096 
1097     // Initialize the conversion target.
1098     mlir::ConversionTarget target(getContext());
1099     target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) {
1100       auto recursiveType = op.getType().dyn_cast<test::TestRecursiveType>();
1101       return op.getType().isF64() || op.getType().isInteger(64) ||
1102              (recursiveType &&
1103               recursiveType.getName() == "outer_converted_type");
1104     });
1105     target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
1106       return converter.isSignatureLegal(op.getType()) &&
1107              converter.isLegal(&op.getBody());
1108     });
1109     target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) {
1110       // Allow casts from F64 to F32.
1111       return (*op.operand_type_begin()).isF64() && op.getType().isF32();
1112     });
1113     target.addDynamicallyLegalOp<TestSignatureConversionNoConverterOp>(
1114         [&](TestSignatureConversionNoConverterOp op) {
1115           return converter.isLegal(op.getRegion().front().getArgumentTypes());
1116         });
1117 
1118     // Initialize the set of rewrite patterns.
1119     RewritePatternSet patterns(&getContext());
1120     patterns.add<TestTypeConsumerForward, TestTypeConversionProducer,
1121                  TestSignatureConversionUndo,
1122                  TestTestSignatureConversionNoConverter>(converter,
1123                                                          &getContext());
1124     patterns.add<TestTypeConversionAnotherProducer>(&getContext());
1125     mlir::populateFunctionOpInterfaceTypeConversionPattern<FuncOp>(patterns,
1126                                                                    converter);
1127 
1128     if (failed(applyPartialConversion(getOperation(), target,
1129                                       std::move(patterns))))
1130       signalPassFailure();
1131   }
1132 };
1133 } // namespace
1134 
1135 //===----------------------------------------------------------------------===//
1136 // Test Block Merging
1137 //===----------------------------------------------------------------------===//
1138 
1139 namespace {
1140 /// A rewriter pattern that tests that blocks can be merged.
1141 struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> {
1142   using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern;
1143 
1144   LogicalResult
1145   matchAndRewrite(TestMergeBlocksOp op, OpAdaptor adaptor,
1146                   ConversionPatternRewriter &rewriter) const final {
1147     Block &firstBlock = op.getBody().front();
1148     Operation *branchOp = firstBlock.getTerminator();
1149     Block *secondBlock = &*(std::next(op.getBody().begin()));
1150     auto succOperands = branchOp->getOperands();
1151     SmallVector<Value, 2> replacements(succOperands);
1152     rewriter.eraseOp(branchOp);
1153     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
1154     rewriter.updateRootInPlace(op, [] {});
1155     return success();
1156   }
1157 };
1158 
1159 /// A rewrite pattern to tests the undo mechanism of blocks being merged.
1160 struct TestUndoBlocksMerge : public ConversionPattern {
1161   TestUndoBlocksMerge(MLIRContext *ctx)
1162       : ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {}
1163   LogicalResult
1164   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
1165                   ConversionPatternRewriter &rewriter) const final {
1166     Block &firstBlock = op->getRegion(0).front();
1167     Operation *branchOp = firstBlock.getTerminator();
1168     Block *secondBlock = &*(std::next(op->getRegion(0).begin()));
1169     rewriter.setInsertionPointToStart(secondBlock);
1170     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
1171     auto succOperands = branchOp->getOperands();
1172     SmallVector<Value, 2> replacements(succOperands);
1173     rewriter.eraseOp(branchOp);
1174     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
1175     rewriter.updateRootInPlace(op, [] {});
1176     return success();
1177   }
1178 };
1179 
1180 /// A rewrite mechanism to inline the body of the op into its parent, when both
1181 /// ops can have a single block.
1182 struct TestMergeSingleBlockOps
1183     : public OpConversionPattern<SingleBlockImplicitTerminatorOp> {
1184   using OpConversionPattern<
1185       SingleBlockImplicitTerminatorOp>::OpConversionPattern;
1186 
1187   LogicalResult
1188   matchAndRewrite(SingleBlockImplicitTerminatorOp op, OpAdaptor adaptor,
1189                   ConversionPatternRewriter &rewriter) const final {
1190     SingleBlockImplicitTerminatorOp parentOp =
1191         op->getParentOfType<SingleBlockImplicitTerminatorOp>();
1192     if (!parentOp)
1193       return failure();
1194     Block &innerBlock = op.getRegion().front();
1195     TerminatorOp innerTerminator =
1196         cast<TerminatorOp>(innerBlock.getTerminator());
1197     rewriter.mergeBlockBefore(&innerBlock, op);
1198     rewriter.eraseOp(innerTerminator);
1199     rewriter.eraseOp(op);
1200     rewriter.updateRootInPlace(op, [] {});
1201     return success();
1202   }
1203 };
1204 
1205 struct TestMergeBlocksPatternDriver
1206     : public PassWrapper<TestMergeBlocksPatternDriver,
1207                          OperationPass<ModuleOp>> {
1208   StringRef getArgument() const final { return "test-merge-blocks"; }
1209   StringRef getDescription() const final {
1210     return "Test Merging operation in ConversionPatternRewriter";
1211   }
1212   void runOnOperation() override {
1213     MLIRContext *context = &getContext();
1214     mlir::RewritePatternSet patterns(context);
1215     patterns.add<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>(
1216         context);
1217     ConversionTarget target(*context);
1218     target.addLegalOp<FuncOp, ModuleOp, TerminatorOp, TestBranchOp,
1219                       TestTypeConsumerOp, TestTypeProducerOp, TestReturnOp>();
1220     target.addIllegalOp<ILLegalOpF>();
1221 
1222     /// Expect the op to have a single block after legalization.
1223     target.addDynamicallyLegalOp<TestMergeBlocksOp>(
1224         [&](TestMergeBlocksOp op) -> bool {
1225           return llvm::hasSingleElement(op.getBody());
1226         });
1227 
1228     /// Only allow `test.br` within test.merge_blocks op.
1229     target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool {
1230       return op->getParentOfType<TestMergeBlocksOp>();
1231     });
1232 
1233     /// Expect that all nested test.SingleBlockImplicitTerminator ops are
1234     /// inlined.
1235     target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>(
1236         [&](SingleBlockImplicitTerminatorOp op) -> bool {
1237           return !op->getParentOfType<SingleBlockImplicitTerminatorOp>();
1238         });
1239 
1240     DenseSet<Operation *> unlegalizedOps;
1241     (void)applyPartialConversion(getOperation(), target, std::move(patterns),
1242                                  &unlegalizedOps);
1243     for (auto *op : unlegalizedOps)
1244       op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
1245   }
1246 };
1247 } // namespace
1248 
1249 //===----------------------------------------------------------------------===//
1250 // Test Selective Replacement
1251 //===----------------------------------------------------------------------===//
1252 
1253 namespace {
1254 /// A rewrite mechanism to inline the body of the op into its parent, when both
1255 /// ops can have a single block.
1256 struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> {
1257   using OpRewritePattern<TestCastOp>::OpRewritePattern;
1258 
1259   LogicalResult matchAndRewrite(TestCastOp op,
1260                                 PatternRewriter &rewriter) const final {
1261     if (op.getNumOperands() != 2)
1262       return failure();
1263     OperandRange operands = op.getOperands();
1264 
1265     // Replace non-terminator uses with the first operand.
1266     rewriter.replaceOpWithIf(op, operands[0], [](OpOperand &operand) {
1267       return operand.getOwner()->hasTrait<OpTrait::IsTerminator>();
1268     });
1269     // Replace everything else with the second operand if the operation isn't
1270     // dead.
1271     rewriter.replaceOp(op, op.getOperand(1));
1272     return success();
1273   }
1274 };
1275 
1276 struct TestSelectiveReplacementPatternDriver
1277     : public PassWrapper<TestSelectiveReplacementPatternDriver,
1278                          OperationPass<>> {
1279   StringRef getArgument() const final {
1280     return "test-pattern-selective-replacement";
1281   }
1282   StringRef getDescription() const final {
1283     return "Test selective replacement in the PatternRewriter";
1284   }
1285   void runOnOperation() override {
1286     MLIRContext *context = &getContext();
1287     mlir::RewritePatternSet patterns(context);
1288     patterns.add<TestSelectiveOpReplacementPattern>(context);
1289     (void)applyPatternsAndFoldGreedily(getOperation()->getRegions(),
1290                                        std::move(patterns));
1291   }
1292 };
1293 } // namespace
1294 
1295 //===----------------------------------------------------------------------===//
1296 // PassRegistration
1297 //===----------------------------------------------------------------------===//
1298 
1299 namespace mlir {
1300 namespace test {
1301 void registerPatternsTestPass() {
1302   PassRegistration<TestReturnTypeDriver>();
1303 
1304   PassRegistration<TestDerivedAttributeDriver>();
1305 
1306   PassRegistration<TestPatternDriver>();
1307 
1308   PassRegistration<TestLegalizePatternDriver>([] {
1309     return std::make_unique<TestLegalizePatternDriver>(legalizerConversionMode);
1310   });
1311 
1312   PassRegistration<TestRemappedValue>();
1313 
1314   PassRegistration<TestUnknownRootOpDriver>();
1315 
1316   PassRegistration<TestTypeConversionDriver>();
1317 
1318   PassRegistration<TestMergeBlocksPatternDriver>();
1319   PassRegistration<TestSelectiveReplacementPatternDriver>();
1320 }
1321 } // namespace test
1322 } // namespace mlir
1323