1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "TestDialect.h"
10 #include "mlir/Dialect/StandardOps/IR/Ops.h"
11 #include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
12 #include "mlir/IR/Matchers.h"
13 #include "mlir/Pass/Pass.h"
14 #include "mlir/Transforms/DialectConversion.h"
15 #include "mlir/Transforms/FoldUtils.h"
16 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
17 
18 using namespace mlir;
19 using namespace mlir::test;
20 
21 // Native function for testing NativeCodeCall
22 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
23   return choice.getValue() ? input1 : input2;
24 }
25 
26 static void createOpI(PatternRewriter &rewriter, Location loc, Value input) {
27   rewriter.create<OpI>(loc, input);
28 }
29 
30 static void handleNoResultOp(PatternRewriter &rewriter,
31                              OpSymbolBindingNoResult op) {
32   // Turn the no result op to a one-result op.
33   rewriter.create<OpSymbolBindingB>(op.getLoc(), op.operand().getType(),
34                                     op.operand());
35 }
36 
37 // Test that natives calls are only called once during rewrites.
38 // OpM_Test will return Pi, increased by 1 for each subsequent calls.
39 // This let us check the number of times OpM_Test was called by inspecting
40 // the returned value in the MLIR output.
41 static int64_t opMIncreasingValue = 314159265;
42 static Attribute OpMTest(PatternRewriter &rewriter, Value val) {
43   int64_t i = opMIncreasingValue++;
44   return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i);
45 }
46 
47 namespace {
48 #include "TestPatterns.inc"
49 } // end anonymous namespace
50 
51 //===----------------------------------------------------------------------===//
52 // Canonicalizer Driver.
53 //===----------------------------------------------------------------------===//
54 
55 namespace {
56 struct FoldingPattern : public RewritePattern {
57 public:
58   FoldingPattern(MLIRContext *context)
59       : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(),
60                        /*benefit=*/1, context) {}
61 
62   LogicalResult matchAndRewrite(Operation *op,
63                                 PatternRewriter &rewriter) const override {
64     // Exercise OperationFolder API for a single-result operation that is folded
65     // upon construction. The operation being created through the folder has an
66     // in-place folder, and it should be still present in the output.
67     // Furthermore, the folder should not crash when attempting to recover the
68     // (unchanged) operation result.
69     OperationFolder folder(op->getContext());
70     Value result = folder.create<TestOpInPlaceFold>(
71         rewriter, op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0),
72         rewriter.getI32IntegerAttr(0));
73     assert(result);
74     rewriter.replaceOp(op, result);
75     return success();
76   }
77 };
78 
79 struct TestPatternDriver : public PassWrapper<TestPatternDriver, FunctionPass> {
80   void runOnFunction() override {
81     mlir::OwningRewritePatternList patterns;
82     populateWithGenerated(&getContext(), patterns);
83 
84     // Verify named pattern is generated with expected name.
85     patterns.insert<FoldingPattern, TestNamedPatternRule>(&getContext());
86 
87     applyPatternsAndFoldGreedily(getFunction(), std::move(patterns));
88   }
89 };
90 } // end anonymous namespace
91 
92 //===----------------------------------------------------------------------===//
93 // ReturnType Driver.
94 //===----------------------------------------------------------------------===//
95 
96 namespace {
97 // Generate ops for each instance where the type can be successfully inferred.
98 template <typename OpTy>
99 static void invokeCreateWithInferredReturnType(Operation *op) {
100   auto *context = op->getContext();
101   auto fop = op->getParentOfType<FuncOp>();
102   auto location = UnknownLoc::get(context);
103   OpBuilder b(op);
104   b.setInsertionPointAfter(op);
105 
106   // Use permutations of 2 args as operands.
107   assert(fop.getNumArguments() >= 2);
108   for (int i = 0, e = fop.getNumArguments(); i < e; ++i) {
109     for (int j = 0; j < e; ++j) {
110       std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}};
111       SmallVector<Type, 2> inferredReturnTypes;
112       if (succeeded(OpTy::inferReturnTypes(
113               context, llvm::None, values, op->getAttrDictionary(),
114               op->getRegions(), inferredReturnTypes))) {
115         OperationState state(location, OpTy::getOperationName());
116         // TODO: Expand to regions.
117         OpTy::build(b, state, values, op->getAttrs());
118         (void)b.createOperation(state);
119       }
120     }
121   }
122 }
123 
124 static void reifyReturnShape(Operation *op) {
125   OpBuilder b(op);
126 
127   // Use permutations of 2 args as operands.
128   auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op);
129   SmallVector<Value, 2> shapes;
130   if (failed(shapedOp.reifyReturnTypeShapes(b, shapes)))
131     return;
132   for (auto it : llvm::enumerate(shapes))
133     op->emitRemark() << "value " << it.index() << ": "
134                      << it.value().getDefiningOp();
135 }
136 
137 struct TestReturnTypeDriver
138     : public PassWrapper<TestReturnTypeDriver, FunctionPass> {
139   void runOnFunction() override {
140     if (getFunction().getName() == "testCreateFunctions") {
141       std::vector<Operation *> ops;
142       // Collect ops to avoid triggering on inserted ops.
143       for (auto &op : getFunction().getBody().front())
144         ops.push_back(&op);
145       // Generate test patterns for each, but skip terminator.
146       for (auto *op : llvm::makeArrayRef(ops).drop_back()) {
147         // Test create method of each of the Op classes below. The resultant
148         // output would be in reverse order underneath `op` from which
149         // the attributes and regions are used.
150         invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op);
151         invokeCreateWithInferredReturnType<
152             OpWithShapedTypeInferTypeInterfaceOp>(op);
153       };
154       return;
155     }
156     if (getFunction().getName() == "testReifyFunctions") {
157       std::vector<Operation *> ops;
158       // Collect ops to avoid triggering on inserted ops.
159       for (auto &op : getFunction().getBody().front())
160         if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op))
161           ops.push_back(&op);
162       // Generate test patterns for each, but skip terminator.
163       for (auto *op : ops)
164         reifyReturnShape(op);
165     }
166   }
167 };
168 } // end anonymous namespace
169 
170 namespace {
171 struct TestDerivedAttributeDriver
172     : public PassWrapper<TestDerivedAttributeDriver, FunctionPass> {
173   void runOnFunction() override;
174 };
175 } // end anonymous namespace
176 
177 void TestDerivedAttributeDriver::runOnFunction() {
178   getFunction().walk([](DerivedAttributeOpInterface dOp) {
179     auto dAttr = dOp.materializeDerivedAttributes();
180     if (!dAttr)
181       return;
182     for (auto d : dAttr)
183       dOp.emitRemark() << d.first << " = " << d.second;
184   });
185 }
186 
187 //===----------------------------------------------------------------------===//
188 // Legalization Driver.
189 //===----------------------------------------------------------------------===//
190 
191 namespace {
192 //===----------------------------------------------------------------------===//
193 // Region-Block Rewrite Testing
194 
195 /// This pattern is a simple pattern that inlines the first region of a given
196 /// operation into the parent region.
197 struct TestRegionRewriteBlockMovement : public ConversionPattern {
198   TestRegionRewriteBlockMovement(MLIRContext *ctx)
199       : ConversionPattern("test.region", 1, ctx) {}
200 
201   LogicalResult
202   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
203                   ConversionPatternRewriter &rewriter) const final {
204     // Inline this region into the parent region.
205     auto &parentRegion = *op->getParentRegion();
206     auto &opRegion = op->getRegion(0);
207     if (op->getAttr("legalizer.should_clone"))
208       rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end());
209     else
210       rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end());
211 
212     if (op->getAttr("legalizer.erase_old_blocks")) {
213       while (!opRegion.empty())
214         rewriter.eraseBlock(&opRegion.front());
215     }
216 
217     // Drop this operation.
218     rewriter.eraseOp(op);
219     return success();
220   }
221 };
222 /// This pattern is a simple pattern that generates a region containing an
223 /// illegal operation.
224 struct TestRegionRewriteUndo : public RewritePattern {
225   TestRegionRewriteUndo(MLIRContext *ctx)
226       : RewritePattern("test.region_builder", 1, ctx) {}
227 
228   LogicalResult matchAndRewrite(Operation *op,
229                                 PatternRewriter &rewriter) const final {
230     // Create the region operation with an entry block containing arguments.
231     OperationState newRegion(op->getLoc(), "test.region");
232     newRegion.addRegion();
233     auto *regionOp = rewriter.createOperation(newRegion);
234     auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
235     entryBlock->addArgument(rewriter.getIntegerType(64));
236 
237     // Add an explicitly illegal operation to ensure the conversion fails.
238     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
239     rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());
240 
241     // Drop this operation.
242     rewriter.eraseOp(op);
243     return success();
244   }
245 };
246 /// A simple pattern that creates a block at the end of the parent region of the
247 /// matched operation.
248 struct TestCreateBlock : public RewritePattern {
249   TestCreateBlock(MLIRContext *ctx)
250       : RewritePattern("test.create_block", /*benefit=*/1, ctx) {}
251 
252   LogicalResult matchAndRewrite(Operation *op,
253                                 PatternRewriter &rewriter) const final {
254     Region &region = *op->getParentRegion();
255     Type i32Type = rewriter.getIntegerType(32);
256     rewriter.createBlock(&region, region.end(), {i32Type, i32Type});
257     rewriter.create<TerminatorOp>(op->getLoc());
258     rewriter.replaceOp(op, {});
259     return success();
260   }
261 };
262 
263 /// A simple pattern that creates a block containing an invalid operation in
264 /// order to trigger the block creation undo mechanism.
265 struct TestCreateIllegalBlock : public RewritePattern {
266   TestCreateIllegalBlock(MLIRContext *ctx)
267       : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {}
268 
269   LogicalResult matchAndRewrite(Operation *op,
270                                 PatternRewriter &rewriter) const final {
271     Region &region = *op->getParentRegion();
272     Type i32Type = rewriter.getIntegerType(32);
273     rewriter.createBlock(&region, region.end(), {i32Type, i32Type});
274     // Create an illegal op to ensure the conversion fails.
275     rewriter.create<ILLegalOpF>(op->getLoc(), i32Type);
276     rewriter.create<TerminatorOp>(op->getLoc());
277     rewriter.replaceOp(op, {});
278     return success();
279   }
280 };
281 
282 /// A simple pattern that tests the undo mechanism when replacing the uses of a
283 /// block argument.
284 struct TestUndoBlockArgReplace : public ConversionPattern {
285   TestUndoBlockArgReplace(MLIRContext *ctx)
286       : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {}
287 
288   LogicalResult
289   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
290                   ConversionPatternRewriter &rewriter) const final {
291     auto illegalOp =
292         rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
293     rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0),
294                                         illegalOp);
295     rewriter.updateRootInPlace(op, [] {});
296     return success();
297   }
298 };
299 
300 /// A rewrite pattern that tests the undo mechanism when erasing a block.
301 struct TestUndoBlockErase : public ConversionPattern {
302   TestUndoBlockErase(MLIRContext *ctx)
303       : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {}
304 
305   LogicalResult
306   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
307                   ConversionPatternRewriter &rewriter) const final {
308     Block *secondBlock = &*std::next(op->getRegion(0).begin());
309     rewriter.setInsertionPointToStart(secondBlock);
310     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
311     rewriter.eraseBlock(secondBlock);
312     rewriter.updateRootInPlace(op, [] {});
313     return success();
314   }
315 };
316 
317 //===----------------------------------------------------------------------===//
318 // Type-Conversion Rewrite Testing
319 
320 /// This patterns erases a region operation that has had a type conversion.
321 struct TestDropOpSignatureConversion : public ConversionPattern {
322   TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
323       : ConversionPattern("test.drop_region_op", 1, converter, ctx) {}
324   LogicalResult
325   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
326                   ConversionPatternRewriter &rewriter) const override {
327     Region &region = op->getRegion(0);
328     Block *entry = &region.front();
329 
330     // Convert the original entry arguments.
331     TypeConverter &converter = *getTypeConverter();
332     TypeConverter::SignatureConversion result(entry->getNumArguments());
333     if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(),
334                                               result)) ||
335         failed(rewriter.convertRegionTypes(&region, converter, &result)))
336       return failure();
337 
338     // Convert the region signature and just drop the operation.
339     rewriter.eraseOp(op);
340     return success();
341   }
342 };
343 /// This pattern simply updates the operands of the given operation.
344 struct TestPassthroughInvalidOp : public ConversionPattern {
345   TestPassthroughInvalidOp(MLIRContext *ctx)
346       : ConversionPattern("test.invalid", 1, ctx) {}
347   LogicalResult
348   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
349                   ConversionPatternRewriter &rewriter) const final {
350     rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands,
351                                              llvm::None);
352     return success();
353   }
354 };
355 /// This pattern handles the case of a split return value.
356 struct TestSplitReturnType : public ConversionPattern {
357   TestSplitReturnType(MLIRContext *ctx)
358       : ConversionPattern("test.return", 1, ctx) {}
359   LogicalResult
360   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
361                   ConversionPatternRewriter &rewriter) const final {
362     // Check for a return of F32.
363     if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
364       return failure();
365 
366     // Check if the first operation is a cast operation, if it is we use the
367     // results directly.
368     auto *defOp = operands[0].getDefiningOp();
369     if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) {
370       rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
371       return success();
372     }
373 
374     // Otherwise, fail to match.
375     return failure();
376   }
377 };
378 
379 //===----------------------------------------------------------------------===//
380 // Multi-Level Type-Conversion Rewrite Testing
381 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
382   TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
383       : ConversionPattern("test.type_producer", 1, ctx) {}
384   LogicalResult
385   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
386                   ConversionPatternRewriter &rewriter) const final {
387     // If the type is I32, change the type to F32.
388     if (!Type(*op->result_type_begin()).isSignlessInteger(32))
389       return failure();
390     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
391     return success();
392   }
393 };
394 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
395   TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
396       : ConversionPattern("test.type_producer", 1, ctx) {}
397   LogicalResult
398   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
399                   ConversionPatternRewriter &rewriter) const final {
400     // If the type is F32, change the type to F64.
401     if (!Type(*op->result_type_begin()).isF32())
402       return rewriter.notifyMatchFailure(op, "expected single f32 operand");
403     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
404     return success();
405   }
406 };
407 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
408   TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
409       : ConversionPattern("test.type_producer", 10, ctx) {}
410   LogicalResult
411   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
412                   ConversionPatternRewriter &rewriter) const final {
413     // Always convert to B16, even though it is not a legal type. This tests
414     // that values are unmapped correctly.
415     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
416     return success();
417   }
418 };
419 struct TestUpdateConsumerType : public ConversionPattern {
420   TestUpdateConsumerType(MLIRContext *ctx)
421       : ConversionPattern("test.type_consumer", 1, ctx) {}
422   LogicalResult
423   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
424                   ConversionPatternRewriter &rewriter) const final {
425     // Verify that the incoming operand has been successfully remapped to F64.
426     if (!operands[0].getType().isF64())
427       return failure();
428     rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
429     return success();
430   }
431 };
432 
433 //===----------------------------------------------------------------------===//
434 // Non-Root Replacement Rewrite Testing
435 /// This pattern generates an invalid operation, but replaces it before the
436 /// pattern is finished. This checks that we don't need to legalize the
437 /// temporary op.
438 struct TestNonRootReplacement : public RewritePattern {
439   TestNonRootReplacement(MLIRContext *ctx)
440       : RewritePattern("test.replace_non_root", 1, ctx) {}
441 
442   LogicalResult matchAndRewrite(Operation *op,
443                                 PatternRewriter &rewriter) const final {
444     auto resultType = *op->result_type_begin();
445     auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
446     auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
447 
448     rewriter.replaceOp(illegalOp, {legalOp});
449     rewriter.replaceOp(op, {illegalOp});
450     return success();
451   }
452 };
453 
454 //===----------------------------------------------------------------------===//
455 // Recursive Rewrite Testing
456 /// This pattern is applied to the same operation multiple times, but has a
457 /// bounded recursion.
458 struct TestBoundedRecursiveRewrite
459     : public OpRewritePattern<TestRecursiveRewriteOp> {
460   TestBoundedRecursiveRewrite(MLIRContext *ctx)
461       : OpRewritePattern<TestRecursiveRewriteOp>(ctx) {
462     // The conversion target handles bounding the recursion of this pattern.
463     setHasBoundedRewriteRecursion();
464   }
465 
466   LogicalResult matchAndRewrite(TestRecursiveRewriteOp op,
467                                 PatternRewriter &rewriter) const final {
468     // Decrement the depth of the op in-place.
469     rewriter.updateRootInPlace(op, [&] {
470       op->setAttr("depth", rewriter.getI64IntegerAttr(op.depth() - 1));
471     });
472     return success();
473   }
474 };
475 
476 struct TestNestedOpCreationUndoRewrite
477     : public OpRewritePattern<IllegalOpWithRegionAnchor> {
478   using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern;
479 
480   LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op,
481                                 PatternRewriter &rewriter) const final {
482     // rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
483     rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
484     return success();
485   };
486 };
487 } // namespace
488 
489 namespace {
490 struct TestTypeConverter : public TypeConverter {
491   using TypeConverter::TypeConverter;
492   TestTypeConverter() {
493     addConversion(convertType);
494     addArgumentMaterialization(materializeCast);
495     addSourceMaterialization(materializeCast);
496 
497     /// Materialize the cast for one-to-one conversion from i64 to f64.
498     const auto materializeOneToOneCast =
499         [](OpBuilder &builder, IntegerType resultType, ValueRange inputs,
500            Location loc) -> Optional<Value> {
501       if (resultType.getWidth() == 42 && inputs.size() == 1)
502         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
503       return llvm::None;
504     };
505     addArgumentMaterialization(materializeOneToOneCast);
506   }
507 
508   static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
509     // Drop I16 types.
510     if (t.isSignlessInteger(16))
511       return success();
512 
513     // Convert I64 to F64.
514     if (t.isSignlessInteger(64)) {
515       results.push_back(FloatType::getF64(t.getContext()));
516       return success();
517     }
518 
519     // Convert I42 to I43.
520     if (t.isInteger(42)) {
521       results.push_back(IntegerType::get(t.getContext(), 43));
522       return success();
523     }
524 
525     // Split F32 into F16,F16.
526     if (t.isF32()) {
527       results.assign(2, FloatType::getF16(t.getContext()));
528       return success();
529     }
530 
531     // Otherwise, convert the type directly.
532     results.push_back(t);
533     return success();
534   }
535 
536   /// Hook for materializing a conversion. This is necessary because we generate
537   /// 1->N type mappings.
538   static Optional<Value> materializeCast(OpBuilder &builder, Type resultType,
539                                          ValueRange inputs, Location loc) {
540     if (inputs.size() == 1)
541       return inputs[0];
542     return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
543   }
544 };
545 
546 struct TestLegalizePatternDriver
547     : public PassWrapper<TestLegalizePatternDriver, OperationPass<ModuleOp>> {
548   /// The mode of conversion to use with the driver.
549   enum class ConversionMode { Analysis, Full, Partial };
550 
551   TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
552 
553   void runOnOperation() override {
554     TestTypeConverter converter;
555     mlir::OwningRewritePatternList patterns;
556     populateWithGenerated(&getContext(), patterns);
557     patterns.insert<
558         TestRegionRewriteBlockMovement, TestRegionRewriteUndo, TestCreateBlock,
559         TestCreateIllegalBlock, TestUndoBlockArgReplace, TestUndoBlockErase,
560         TestPassthroughInvalidOp, TestSplitReturnType,
561         TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
562         TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
563         TestNonRootReplacement, TestBoundedRecursiveRewrite,
564         TestNestedOpCreationUndoRewrite>(&getContext());
565     patterns.insert<TestDropOpSignatureConversion>(&getContext(), converter);
566     mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(),
567                                               converter);
568     mlir::populateCallOpTypeConversionPattern(patterns, &getContext(),
569                                               converter);
570 
571     // Define the conversion target used for the test.
572     ConversionTarget target(getContext());
573     target.addLegalOp<ModuleOp, ModuleTerminatorOp>();
574     target.addLegalOp<LegalOpA, LegalOpB, TestCastOp, TestValidOp,
575                       TerminatorOp>();
576     target
577         .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
578     target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
579       // Don't allow F32 operands.
580       return llvm::none_of(op.getOperandTypes(),
581                            [](Type type) { return type.isF32(); });
582     });
583     target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
584       return converter.isSignatureLegal(op.getType()) &&
585              converter.isLegal(&op.getBody());
586     });
587 
588     // Expect the type_producer/type_consumer operations to only operate on f64.
589     target.addDynamicallyLegalOp<TestTypeProducerOp>(
590         [](TestTypeProducerOp op) { return op.getType().isF64(); });
591     target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
592       return op.getOperand().getType().isF64();
593     });
594 
595     // Check support for marking certain operations as recursively legal.
596     target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) {
597       return static_cast<bool>(
598           op->getAttrOfType<UnitAttr>("test.recursively_legal"));
599     });
600 
601     // Mark the bound recursion operation as dynamically legal.
602     target.addDynamicallyLegalOp<TestRecursiveRewriteOp>(
603         [](TestRecursiveRewriteOp op) { return op.depth() == 0; });
604 
605     // Handle a partial conversion.
606     if (mode == ConversionMode::Partial) {
607       DenseSet<Operation *> unlegalizedOps;
608       (void)applyPartialConversion(getOperation(), target, std::move(patterns),
609                                    &unlegalizedOps);
610       // Emit remarks for each legalizable operation.
611       for (auto *op : unlegalizedOps)
612         op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
613       return;
614     }
615 
616     // Handle a full conversion.
617     if (mode == ConversionMode::Full) {
618       // Check support for marking unknown operations as dynamically legal.
619       target.markUnknownOpDynamicallyLegal([](Operation *op) {
620         return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal");
621       });
622 
623       (void)applyFullConversion(getOperation(), target, std::move(patterns));
624       return;
625     }
626 
627     // Otherwise, handle an analysis conversion.
628     assert(mode == ConversionMode::Analysis);
629 
630     // Analyze the convertible operations.
631     DenseSet<Operation *> legalizedOps;
632     if (failed(applyAnalysisConversion(getOperation(), target,
633                                        std::move(patterns), legalizedOps)))
634       return signalPassFailure();
635 
636     // Emit remarks for each legalizable operation.
637     for (auto *op : legalizedOps)
638       op->emitRemark() << "op '" << op->getName() << "' is legalizable";
639   }
640 
641   /// The mode of conversion to use.
642   ConversionMode mode;
643 };
644 } // end anonymous namespace
645 
646 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
647     legalizerConversionMode(
648         "test-legalize-mode",
649         llvm::cl::desc("The legalization mode to use with the test driver"),
650         llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
651         llvm::cl::values(
652             clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
653                        "analysis", "Perform an analysis conversion"),
654             clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
655                        "Perform a full conversion"),
656             clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
657                        "partial", "Perform a partial conversion")));
658 
659 //===----------------------------------------------------------------------===//
660 // ConversionPatternRewriter::getRemappedValue testing. This method is used
661 // to get the remapped value of an original value that was replaced using
662 // ConversionPatternRewriter.
663 namespace {
664 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
665 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
666 /// operand twice.
667 ///
668 /// Example:
669 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0)
670 /// is replaced with:
671 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
672 struct OneVResOneVOperandOp1Converter
673     : public OpConversionPattern<OneVResOneVOperandOp1> {
674   using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
675 
676   LogicalResult
677   matchAndRewrite(OneVResOneVOperandOp1 op, ArrayRef<Value> operands,
678                   ConversionPatternRewriter &rewriter) const override {
679     auto origOps = op.getOperands();
680     assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
681            "One operand expected");
682     Value origOp = *origOps.begin();
683     SmallVector<Value, 2> remappedOperands;
684     // Replicate the remapped original operand twice. Note that we don't used
685     // the remapped 'operand' since the goal is testing 'getRemappedValue'.
686     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
687     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
688 
689     rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(),
690                                                        remappedOperands);
691     return success();
692   }
693 };
694 
695 struct TestRemappedValue
696     : public mlir::PassWrapper<TestRemappedValue, FunctionPass> {
697   void runOnFunction() override {
698     mlir::OwningRewritePatternList patterns;
699     patterns.insert<OneVResOneVOperandOp1Converter>(&getContext());
700 
701     mlir::ConversionTarget target(getContext());
702     target.addLegalOp<ModuleOp, ModuleTerminatorOp, FuncOp, TestReturnOp>();
703     // We make OneVResOneVOperandOp1 legal only when it has more that one
704     // operand. This will trigger the conversion that will replace one-operand
705     // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
706     target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
707         [](Operation *op) -> bool {
708           return std::distance(op->operand_begin(), op->operand_end()) > 1;
709         });
710 
711     if (failed(mlir::applyFullConversion(getFunction(), target,
712                                          std::move(patterns)))) {
713       signalPassFailure();
714     }
715   }
716 };
717 } // end anonymous namespace
718 
719 //===----------------------------------------------------------------------===//
720 // Test patterns without a specific root operation kind
721 //===----------------------------------------------------------------------===//
722 
723 namespace {
724 /// This pattern matches and removes any operation in the test dialect.
725 struct RemoveTestDialectOps : public RewritePattern {
726   RemoveTestDialectOps() : RewritePattern(/*benefit=*/1, MatchAnyOpTypeTag()) {}
727 
728   LogicalResult matchAndRewrite(Operation *op,
729                                 PatternRewriter &rewriter) const override {
730     if (!isa<TestDialect>(op->getDialect()))
731       return failure();
732     rewriter.eraseOp(op);
733     return success();
734   }
735 };
736 
737 struct TestUnknownRootOpDriver
738     : public mlir::PassWrapper<TestUnknownRootOpDriver, FunctionPass> {
739   void runOnFunction() override {
740     mlir::OwningRewritePatternList patterns;
741     patterns.insert<RemoveTestDialectOps>();
742 
743     mlir::ConversionTarget target(getContext());
744     target.addIllegalDialect<TestDialect>();
745     if (failed(
746             applyPartialConversion(getFunction(), target, std::move(patterns))))
747       signalPassFailure();
748   }
749 };
750 } // end anonymous namespace
751 
752 //===----------------------------------------------------------------------===//
753 // Test type conversions
754 //===----------------------------------------------------------------------===//
755 
756 namespace {
757 struct TestTypeConversionProducer
758     : public OpConversionPattern<TestTypeProducerOp> {
759   using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern;
760   LogicalResult
761   matchAndRewrite(TestTypeProducerOp op, ArrayRef<Value> operands,
762                   ConversionPatternRewriter &rewriter) const final {
763     Type resultType = op.getType();
764     if (resultType.isa<FloatType>())
765       resultType = rewriter.getF64Type();
766     else if (resultType.isInteger(16))
767       resultType = rewriter.getIntegerType(64);
768     else
769       return failure();
770 
771     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType);
772     return success();
773   }
774 };
775 
776 /// Call signature conversion and then fail the rewrite to trigger the undo
777 /// mechanism.
778 struct TestSignatureConversionUndo
779     : public OpConversionPattern<TestSignatureConversionUndoOp> {
780   using OpConversionPattern<TestSignatureConversionUndoOp>::OpConversionPattern;
781 
782   LogicalResult
783   matchAndRewrite(TestSignatureConversionUndoOp op, ArrayRef<Value> operands,
784                   ConversionPatternRewriter &rewriter) const final {
785     (void)rewriter.convertRegionTypes(&op->getRegion(0), *getTypeConverter());
786     return failure();
787   }
788 };
789 
790 /// Just forward the operands to the root op. This is essentially a no-op
791 /// pattern that is used to trigger target materialization.
792 struct TestTypeConsumerForward
793     : public OpConversionPattern<TestTypeConsumerOp> {
794   using OpConversionPattern<TestTypeConsumerOp>::OpConversionPattern;
795 
796   LogicalResult
797   matchAndRewrite(TestTypeConsumerOp op, ArrayRef<Value> operands,
798                   ConversionPatternRewriter &rewriter) const final {
799     rewriter.updateRootInPlace(op, [&] { op->setOperands(operands); });
800     return success();
801   }
802 };
803 
804 struct TestTypeConversionDriver
805     : public PassWrapper<TestTypeConversionDriver, OperationPass<ModuleOp>> {
806   void getDependentDialects(DialectRegistry &registry) const override {
807     registry.insert<TestDialect>();
808   }
809 
810   void runOnOperation() override {
811     // Initialize the type converter.
812     TypeConverter converter;
813 
814     /// Add the legal set of type conversions.
815     converter.addConversion([](Type type) -> Type {
816       // Treat F64 as legal.
817       if (type.isF64())
818         return type;
819       // Allow converting BF16/F16/F32 to F64.
820       if (type.isBF16() || type.isF16() || type.isF32())
821         return FloatType::getF64(type.getContext());
822       // Otherwise, the type is illegal.
823       return nullptr;
824     });
825     converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) {
826       // Drop all integer types.
827       return success();
828     });
829 
830     /// Add the legal set of type materializations.
831     converter.addSourceMaterialization([](OpBuilder &builder, Type resultType,
832                                           ValueRange inputs,
833                                           Location loc) -> Value {
834       // Allow casting from F64 back to F32.
835       if (!resultType.isF16() && inputs.size() == 1 &&
836           inputs[0].getType().isF64())
837         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
838       // Allow producing an i32 or i64 from nothing.
839       if ((resultType.isInteger(32) || resultType.isInteger(64)) &&
840           inputs.empty())
841         return builder.create<TestTypeProducerOp>(loc, resultType);
842       // Allow producing an i64 from an integer.
843       if (resultType.isa<IntegerType>() && inputs.size() == 1 &&
844           inputs[0].getType().isa<IntegerType>())
845         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
846       // Otherwise, fail.
847       return nullptr;
848     });
849 
850     // Initialize the conversion target.
851     mlir::ConversionTarget target(getContext());
852     target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) {
853       return op.getType().isF64() || op.getType().isInteger(64);
854     });
855     target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
856       return converter.isSignatureLegal(op.getType()) &&
857              converter.isLegal(&op.getBody());
858     });
859     target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) {
860       // Allow casts from F64 to F32.
861       return (*op.operand_type_begin()).isF64() && op.getType().isF32();
862     });
863 
864     // Initialize the set of rewrite patterns.
865     OwningRewritePatternList patterns;
866     patterns.insert<TestTypeConsumerForward, TestTypeConversionProducer,
867                     TestSignatureConversionUndo>(converter, &getContext());
868     mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(),
869                                               converter);
870 
871     if (failed(applyPartialConversion(getOperation(), target,
872                                       std::move(patterns))))
873       signalPassFailure();
874   }
875 };
876 } // end anonymous namespace
877 
878 //===----------------------------------------------------------------------===//
879 // Test Block Merging
880 //===----------------------------------------------------------------------===//
881 
882 namespace {
883 /// A rewriter pattern that tests that blocks can be merged.
884 struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> {
885   using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern;
886 
887   LogicalResult
888   matchAndRewrite(TestMergeBlocksOp op, ArrayRef<Value> operands,
889                   ConversionPatternRewriter &rewriter) const final {
890     Block &firstBlock = op.body().front();
891     Operation *branchOp = firstBlock.getTerminator();
892     Block *secondBlock = &*(std::next(op.body().begin()));
893     auto succOperands = branchOp->getOperands();
894     SmallVector<Value, 2> replacements(succOperands);
895     rewriter.eraseOp(branchOp);
896     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
897     rewriter.updateRootInPlace(op, [] {});
898     return success();
899   }
900 };
901 
902 /// A rewrite pattern to tests the undo mechanism of blocks being merged.
903 struct TestUndoBlocksMerge : public ConversionPattern {
904   TestUndoBlocksMerge(MLIRContext *ctx)
905       : ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {}
906   LogicalResult
907   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
908                   ConversionPatternRewriter &rewriter) const final {
909     Block &firstBlock = op->getRegion(0).front();
910     Operation *branchOp = firstBlock.getTerminator();
911     Block *secondBlock = &*(std::next(op->getRegion(0).begin()));
912     rewriter.setInsertionPointToStart(secondBlock);
913     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
914     auto succOperands = branchOp->getOperands();
915     SmallVector<Value, 2> replacements(succOperands);
916     rewriter.eraseOp(branchOp);
917     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
918     rewriter.updateRootInPlace(op, [] {});
919     return success();
920   }
921 };
922 
923 /// A rewrite mechanism to inline the body of the op into its parent, when both
924 /// ops can have a single block.
925 struct TestMergeSingleBlockOps
926     : public OpConversionPattern<SingleBlockImplicitTerminatorOp> {
927   using OpConversionPattern<
928       SingleBlockImplicitTerminatorOp>::OpConversionPattern;
929 
930   LogicalResult
931   matchAndRewrite(SingleBlockImplicitTerminatorOp op, ArrayRef<Value> operands,
932                   ConversionPatternRewriter &rewriter) const final {
933     SingleBlockImplicitTerminatorOp parentOp =
934         op->getParentOfType<SingleBlockImplicitTerminatorOp>();
935     if (!parentOp)
936       return failure();
937     Block &innerBlock = op.region().front();
938     TerminatorOp innerTerminator =
939         cast<TerminatorOp>(innerBlock.getTerminator());
940     rewriter.mergeBlockBefore(&innerBlock, op);
941     rewriter.eraseOp(innerTerminator);
942     rewriter.eraseOp(op);
943     rewriter.updateRootInPlace(op, [] {});
944     return success();
945   }
946 };
947 
948 struct TestMergeBlocksPatternDriver
949     : public PassWrapper<TestMergeBlocksPatternDriver,
950                          OperationPass<ModuleOp>> {
951   void runOnOperation() override {
952     mlir::OwningRewritePatternList patterns;
953     MLIRContext *context = &getContext();
954     patterns
955         .insert<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>(
956             context);
957     ConversionTarget target(*context);
958     target.addLegalOp<FuncOp, ModuleOp, ModuleTerminatorOp, TerminatorOp,
959                       TestBranchOp, TestTypeConsumerOp, TestTypeProducerOp,
960                       TestReturnOp>();
961     target.addIllegalOp<ILLegalOpF>();
962 
963     /// Expect the op to have a single block after legalization.
964     target.addDynamicallyLegalOp<TestMergeBlocksOp>(
965         [&](TestMergeBlocksOp op) -> bool {
966           return llvm::hasSingleElement(op.body());
967         });
968 
969     /// Only allow `test.br` within test.merge_blocks op.
970     target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool {
971       return op->getParentOfType<TestMergeBlocksOp>();
972     });
973 
974     /// Expect that all nested test.SingleBlockImplicitTerminator ops are
975     /// inlined.
976     target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>(
977         [&](SingleBlockImplicitTerminatorOp op) -> bool {
978           return !op->getParentOfType<SingleBlockImplicitTerminatorOp>();
979         });
980 
981     DenseSet<Operation *> unlegalizedOps;
982     (void)applyPartialConversion(getOperation(), target, std::move(patterns),
983                                  &unlegalizedOps);
984     for (auto *op : unlegalizedOps)
985       op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
986   }
987 };
988 } // namespace
989 
990 //===----------------------------------------------------------------------===//
991 // Test Selective Replacement
992 //===----------------------------------------------------------------------===//
993 
994 namespace {
995 /// A rewrite mechanism to inline the body of the op into its parent, when both
996 /// ops can have a single block.
997 struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> {
998   using OpRewritePattern<TestCastOp>::OpRewritePattern;
999 
1000   LogicalResult matchAndRewrite(TestCastOp op,
1001                                 PatternRewriter &rewriter) const final {
1002     if (op.getNumOperands() != 2)
1003       return failure();
1004     OperandRange operands = op.getOperands();
1005 
1006     // Replace non-terminator uses with the first operand.
1007     rewriter.replaceOpWithIf(op, operands[0], [](OpOperand &operand) {
1008       return operand.getOwner()->isKnownTerminator();
1009     });
1010     // Replace everything else with the second operand if the operation isn't
1011     // dead.
1012     rewriter.replaceOp(op, op.getOperand(1));
1013     return success();
1014   }
1015 };
1016 
1017 struct TestSelectiveReplacementPatternDriver
1018     : public PassWrapper<TestSelectiveReplacementPatternDriver,
1019                          OperationPass<>> {
1020   void runOnOperation() override {
1021     mlir::OwningRewritePatternList patterns;
1022     MLIRContext *context = &getContext();
1023     patterns.insert<TestSelectiveOpReplacementPattern>(context);
1024     applyPatternsAndFoldGreedily(getOperation()->getRegions(),
1025                                  std::move(patterns));
1026   }
1027 };
1028 } // namespace
1029 
1030 //===----------------------------------------------------------------------===//
1031 // PassRegistration
1032 //===----------------------------------------------------------------------===//
1033 
1034 namespace mlir {
1035 namespace test {
1036 void registerPatternsTestPass() {
1037   PassRegistration<TestReturnTypeDriver>("test-return-type",
1038                                          "Run return type functions");
1039 
1040   PassRegistration<TestDerivedAttributeDriver>("test-derived-attr",
1041                                                "Run test derived attributes");
1042 
1043   PassRegistration<TestPatternDriver>("test-patterns",
1044                                       "Run test dialect patterns");
1045 
1046   PassRegistration<TestLegalizePatternDriver>(
1047       "test-legalize-patterns", "Run test dialect legalization patterns", [] {
1048         return std::make_unique<TestLegalizePatternDriver>(
1049             legalizerConversionMode);
1050       });
1051 
1052   PassRegistration<TestRemappedValue>(
1053       "test-remapped-value",
1054       "Test public remapped value mechanism in ConversionPatternRewriter");
1055 
1056   PassRegistration<TestUnknownRootOpDriver>(
1057       "test-legalize-unknown-root-patterns",
1058       "Test public remapped value mechanism in ConversionPatternRewriter");
1059 
1060   PassRegistration<TestTypeConversionDriver>(
1061       "test-legalize-type-conversion",
1062       "Test various type conversion functionalities in DialectConversion");
1063 
1064   PassRegistration<TestMergeBlocksPatternDriver>{
1065       "test-merge-blocks",
1066       "Test Merging operation in ConversionPatternRewriter"};
1067   PassRegistration<TestSelectiveReplacementPatternDriver>{
1068       "test-pattern-selective-replacement",
1069       "Test selective replacement in the PatternRewriter"};
1070 }
1071 } // namespace test
1072 } // namespace mlir
1073