1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "TestDialect.h" 10 #include "mlir/Dialect/StandardOps/IR/Ops.h" 11 #include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h" 12 #include "mlir/IR/PatternMatch.h" 13 #include "mlir/Pass/Pass.h" 14 #include "mlir/Transforms/DialectConversion.h" 15 #include "mlir/Transforms/FoldUtils.h" 16 17 using namespace mlir; 18 19 // Native function for testing NativeCodeCall 20 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) { 21 return choice.getValue() ? input1 : input2; 22 } 23 24 static void createOpI(PatternRewriter &rewriter, Value input) { 25 rewriter.create<OpI>(rewriter.getUnknownLoc(), input); 26 } 27 28 static void handleNoResultOp(PatternRewriter &rewriter, 29 OpSymbolBindingNoResult op) { 30 // Turn the no result op to a one-result op. 31 rewriter.create<OpSymbolBindingB>(op.getLoc(), op.operand().getType(), 32 op.operand()); 33 } 34 35 namespace { 36 #include "TestPatterns.inc" 37 } // end anonymous namespace 38 39 //===----------------------------------------------------------------------===// 40 // Canonicalizer Driver. 41 //===----------------------------------------------------------------------===// 42 43 namespace { 44 struct FoldingPattern : public RewritePattern { 45 public: 46 FoldingPattern(MLIRContext *context) 47 : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(), 48 /*benefit=*/1, context) {} 49 50 LogicalResult matchAndRewrite(Operation *op, 51 PatternRewriter &rewriter) const override { 52 // Exercice OperationFolder API for a single-result operation that is folded 53 // upon construction. The operation being created through the folder has an 54 // in-place folder, and it should be still present in the output. 55 // Furthermore, the folder should not crash when attempting to recover the 56 // (unchanged) opeation result. 57 OperationFolder folder(op->getContext()); 58 Value result = folder.create<TestOpInPlaceFold>( 59 rewriter, op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0), 60 rewriter.getI32IntegerAttr(0)); 61 assert(result); 62 rewriter.replaceOp(op, result); 63 return success(); 64 } 65 }; 66 67 struct TestPatternDriver : public PassWrapper<TestPatternDriver, FunctionPass> { 68 void runOnFunction() override { 69 mlir::OwningRewritePatternList patterns; 70 populateWithGenerated(&getContext(), &patterns); 71 72 // Verify named pattern is generated with expected name. 73 patterns.insert<FoldingPattern, TestNamedPatternRule>(&getContext()); 74 75 applyPatternsAndFoldGreedily(getFunction(), patterns); 76 } 77 }; 78 } // end anonymous namespace 79 80 //===----------------------------------------------------------------------===// 81 // ReturnType Driver. 82 //===----------------------------------------------------------------------===// 83 84 namespace { 85 // Generate ops for each instance where the type can be successfully inferred. 86 template <typename OpTy> 87 static void invokeCreateWithInferredReturnType(Operation *op) { 88 auto *context = op->getContext(); 89 auto fop = op->getParentOfType<FuncOp>(); 90 auto location = UnknownLoc::get(context); 91 OpBuilder b(op); 92 b.setInsertionPointAfter(op); 93 94 // Use permutations of 2 args as operands. 95 assert(fop.getNumArguments() >= 2); 96 for (int i = 0, e = fop.getNumArguments(); i < e; ++i) { 97 for (int j = 0; j < e; ++j) { 98 std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}}; 99 SmallVector<Type, 2> inferredReturnTypes; 100 if (succeeded(OpTy::inferReturnTypes( 101 context, llvm::None, values, op->getAttrDictionary(), 102 op->getRegions(), inferredReturnTypes))) { 103 OperationState state(location, OpTy::getOperationName()); 104 // TODO(jpienaar): Expand to regions. 105 OpTy::build(b, state, values, op->getAttrs()); 106 (void)b.createOperation(state); 107 } 108 } 109 } 110 } 111 112 static void reifyReturnShape(Operation *op) { 113 OpBuilder b(op); 114 115 // Use permutations of 2 args as operands. 116 auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op); 117 SmallVector<Value, 2> shapes; 118 if (failed(shapedOp.reifyReturnTypeShapes(b, shapes))) 119 return; 120 for (auto it : llvm::enumerate(shapes)) 121 op->emitRemark() << "value " << it.index() << ": " 122 << it.value().getDefiningOp(); 123 } 124 125 struct TestReturnTypeDriver 126 : public PassWrapper<TestReturnTypeDriver, FunctionPass> { 127 void runOnFunction() override { 128 if (getFunction().getName() == "testCreateFunctions") { 129 std::vector<Operation *> ops; 130 // Collect ops to avoid triggering on inserted ops. 131 for (auto &op : getFunction().getBody().front()) 132 ops.push_back(&op); 133 // Generate test patterns for each, but skip terminator. 134 for (auto *op : llvm::makeArrayRef(ops).drop_back()) { 135 // Test create method of each of the Op classes below. The resultant 136 // output would be in reverse order underneath `op` from which 137 // the attributes and regions are used. 138 invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op); 139 invokeCreateWithInferredReturnType< 140 OpWithShapedTypeInferTypeInterfaceOp>(op); 141 }; 142 return; 143 } 144 if (getFunction().getName() == "testReifyFunctions") { 145 std::vector<Operation *> ops; 146 // Collect ops to avoid triggering on inserted ops. 147 for (auto &op : getFunction().getBody().front()) 148 if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op)) 149 ops.push_back(&op); 150 // Generate test patterns for each, but skip terminator. 151 for (auto *op : ops) 152 reifyReturnShape(op); 153 } 154 } 155 }; 156 } // end anonymous namespace 157 158 namespace { 159 struct TestDerivedAttributeDriver 160 : public PassWrapper<TestDerivedAttributeDriver, FunctionPass> { 161 void runOnFunction() override; 162 }; 163 } // end anonymous namespace 164 165 void TestDerivedAttributeDriver::runOnFunction() { 166 getFunction().walk([](DerivedAttributeOpInterface dOp) { 167 auto dAttr = dOp.materializeDerivedAttributes(); 168 if (!dAttr) 169 return; 170 for (auto d : dAttr) 171 dOp.emitRemark() << d.first << " = " << d.second; 172 }); 173 } 174 175 //===----------------------------------------------------------------------===// 176 // Legalization Driver. 177 //===----------------------------------------------------------------------===// 178 179 namespace { 180 //===----------------------------------------------------------------------===// 181 // Region-Block Rewrite Testing 182 183 /// This pattern is a simple pattern that inlines the first region of a given 184 /// operation into the parent region. 185 struct TestRegionRewriteBlockMovement : public ConversionPattern { 186 TestRegionRewriteBlockMovement(MLIRContext *ctx) 187 : ConversionPattern("test.region", 1, ctx) {} 188 189 LogicalResult 190 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 191 ConversionPatternRewriter &rewriter) const final { 192 // Inline this region into the parent region. 193 auto &parentRegion = *op->getParentRegion(); 194 if (op->getAttr("legalizer.should_clone")) 195 rewriter.cloneRegionBefore(op->getRegion(0), parentRegion, 196 parentRegion.end()); 197 else 198 rewriter.inlineRegionBefore(op->getRegion(0), parentRegion, 199 parentRegion.end()); 200 201 // Drop this operation. 202 rewriter.eraseOp(op); 203 return success(); 204 } 205 }; 206 /// This pattern is a simple pattern that generates a region containing an 207 /// illegal operation. 208 struct TestRegionRewriteUndo : public RewritePattern { 209 TestRegionRewriteUndo(MLIRContext *ctx) 210 : RewritePattern("test.region_builder", 1, ctx) {} 211 212 LogicalResult matchAndRewrite(Operation *op, 213 PatternRewriter &rewriter) const final { 214 // Create the region operation with an entry block containing arguments. 215 OperationState newRegion(op->getLoc(), "test.region"); 216 newRegion.addRegion(); 217 auto *regionOp = rewriter.createOperation(newRegion); 218 auto *entryBlock = rewriter.createBlock(®ionOp->getRegion(0)); 219 entryBlock->addArgument(rewriter.getIntegerType(64)); 220 221 // Add an explicitly illegal operation to ensure the conversion fails. 222 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32)); 223 rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>()); 224 225 // Drop this operation. 226 rewriter.eraseOp(op); 227 return success(); 228 } 229 }; 230 /// A simple pattern that creates a block at the end of the parent region of the 231 /// matched operation. 232 struct TestCreateBlock : public RewritePattern { 233 TestCreateBlock(MLIRContext *ctx) 234 : RewritePattern("test.create_block", /*benefit=*/1, ctx) {} 235 236 LogicalResult matchAndRewrite(Operation *op, 237 PatternRewriter &rewriter) const final { 238 Region ®ion = *op->getParentRegion(); 239 Type i32Type = rewriter.getIntegerType(32); 240 rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}); 241 rewriter.create<TerminatorOp>(op->getLoc()); 242 rewriter.replaceOp(op, {}); 243 return success(); 244 } 245 }; 246 247 /// A simple pattern that creates a block containing an invalid operaiton in 248 /// order to trigger the block creation undo mechanism. 249 struct TestCreateIllegalBlock : public RewritePattern { 250 TestCreateIllegalBlock(MLIRContext *ctx) 251 : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {} 252 253 LogicalResult matchAndRewrite(Operation *op, 254 PatternRewriter &rewriter) const final { 255 Region ®ion = *op->getParentRegion(); 256 Type i32Type = rewriter.getIntegerType(32); 257 rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}); 258 // Create an illegal op to ensure the conversion fails. 259 rewriter.create<ILLegalOpF>(op->getLoc(), i32Type); 260 rewriter.create<TerminatorOp>(op->getLoc()); 261 rewriter.replaceOp(op, {}); 262 return success(); 263 } 264 }; 265 266 /// A simple pattern that tests the undo mechanism when replacing the uses of a 267 /// block argument. 268 struct TestUndoBlockArgReplace : public ConversionPattern { 269 TestUndoBlockArgReplace(MLIRContext *ctx) 270 : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {} 271 272 LogicalResult 273 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 274 ConversionPatternRewriter &rewriter) const final { 275 auto illegalOp = 276 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 277 rewriter.replaceUsesOfBlockArgument(op->getRegion(0).front().getArgument(0), 278 illegalOp); 279 rewriter.updateRootInPlace(op, [] {}); 280 return success(); 281 } 282 }; 283 284 //===----------------------------------------------------------------------===// 285 // Type-Conversion Rewrite Testing 286 287 /// This patterns erases a region operation that has had a type conversion. 288 struct TestDropOpSignatureConversion : public ConversionPattern { 289 TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter) 290 : ConversionPattern("test.drop_region_op", 1, ctx), converter(converter) { 291 } 292 LogicalResult 293 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 294 ConversionPatternRewriter &rewriter) const override { 295 Region ®ion = op->getRegion(0); 296 Block *entry = ®ion.front(); 297 298 // Convert the original entry arguments. 299 TypeConverter::SignatureConversion result(entry->getNumArguments()); 300 for (unsigned i = 0, e = entry->getNumArguments(); i != e; ++i) 301 if (failed(converter.convertSignatureArg( 302 i, entry->getArgument(i).getType(), result))) 303 return failure(); 304 305 // Convert the region signature and just drop the operation. 306 rewriter.applySignatureConversion(®ion, result); 307 rewriter.eraseOp(op); 308 return success(); 309 } 310 311 /// The type converter to use when rewriting the signature. 312 TypeConverter &converter; 313 }; 314 /// This pattern simply updates the operands of the given operation. 315 struct TestPassthroughInvalidOp : public ConversionPattern { 316 TestPassthroughInvalidOp(MLIRContext *ctx) 317 : ConversionPattern("test.invalid", 1, ctx) {} 318 LogicalResult 319 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 320 ConversionPatternRewriter &rewriter) const final { 321 rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands, 322 llvm::None); 323 return success(); 324 } 325 }; 326 /// This pattern handles the case of a split return value. 327 struct TestSplitReturnType : public ConversionPattern { 328 TestSplitReturnType(MLIRContext *ctx) 329 : ConversionPattern("test.return", 1, ctx) {} 330 LogicalResult 331 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 332 ConversionPatternRewriter &rewriter) const final { 333 // Check for a return of F32. 334 if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32()) 335 return failure(); 336 337 // Check if the first operation is a cast operation, if it is we use the 338 // results directly. 339 auto *defOp = operands[0].getDefiningOp(); 340 if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) { 341 rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands()); 342 return success(); 343 } 344 345 // Otherwise, fail to match. 346 return failure(); 347 } 348 }; 349 350 //===----------------------------------------------------------------------===// 351 // Multi-Level Type-Conversion Rewrite Testing 352 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern { 353 TestChangeProducerTypeI32ToF32(MLIRContext *ctx) 354 : ConversionPattern("test.type_producer", 1, ctx) {} 355 LogicalResult 356 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 357 ConversionPatternRewriter &rewriter) const final { 358 // If the type is I32, change the type to F32. 359 if (!Type(*op->result_type_begin()).isSignlessInteger(32)) 360 return failure(); 361 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type()); 362 return success(); 363 } 364 }; 365 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern { 366 TestChangeProducerTypeF32ToF64(MLIRContext *ctx) 367 : ConversionPattern("test.type_producer", 1, ctx) {} 368 LogicalResult 369 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 370 ConversionPatternRewriter &rewriter) const final { 371 // If the type is F32, change the type to F64. 372 if (!Type(*op->result_type_begin()).isF32()) 373 return rewriter.notifyMatchFailure(op, "expected single f32 operand"); 374 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type()); 375 return success(); 376 } 377 }; 378 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern { 379 TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx) 380 : ConversionPattern("test.type_producer", 10, ctx) {} 381 LogicalResult 382 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 383 ConversionPatternRewriter &rewriter) const final { 384 // Always convert to B16, even though it is not a legal type. This tests 385 // that values are unmapped correctly. 386 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type()); 387 return success(); 388 } 389 }; 390 struct TestUpdateConsumerType : public ConversionPattern { 391 TestUpdateConsumerType(MLIRContext *ctx) 392 : ConversionPattern("test.type_consumer", 1, ctx) {} 393 LogicalResult 394 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 395 ConversionPatternRewriter &rewriter) const final { 396 // Verify that the incoming operand has been successfully remapped to F64. 397 if (!operands[0].getType().isF64()) 398 return failure(); 399 rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]); 400 return success(); 401 } 402 }; 403 404 //===----------------------------------------------------------------------===// 405 // Non-Root Replacement Rewrite Testing 406 /// This pattern generates an invalid operation, but replaces it before the 407 /// pattern is finished. This checks that we don't need to legalize the 408 /// temporary op. 409 struct TestNonRootReplacement : public RewritePattern { 410 TestNonRootReplacement(MLIRContext *ctx) 411 : RewritePattern("test.replace_non_root", 1, ctx) {} 412 413 LogicalResult matchAndRewrite(Operation *op, 414 PatternRewriter &rewriter) const final { 415 auto resultType = *op->result_type_begin(); 416 auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType); 417 auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType); 418 419 rewriter.replaceOp(illegalOp, {legalOp}); 420 rewriter.replaceOp(op, {illegalOp}); 421 return success(); 422 } 423 }; 424 425 //===----------------------------------------------------------------------===// 426 // Recursive Rewrite Testing 427 /// This pattern is applied to the same operation multiple times, but has a 428 /// bounded recursion. 429 struct TestBoundedRecursiveRewrite 430 : public OpRewritePattern<TestRecursiveRewriteOp> { 431 using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern; 432 433 LogicalResult matchAndRewrite(TestRecursiveRewriteOp op, 434 PatternRewriter &rewriter) const final { 435 // Decrement the depth of the op in-place. 436 rewriter.updateRootInPlace(op, [&] { 437 op.setAttr("depth", 438 rewriter.getI64IntegerAttr(op.depth().getSExtValue() - 1)); 439 }); 440 return success(); 441 } 442 443 /// The conversion target handles bounding the recursion of this pattern. 444 bool hasBoundedRewriteRecursion() const final { return true; } 445 }; 446 } // namespace 447 448 namespace { 449 struct TestTypeConverter : public TypeConverter { 450 using TypeConverter::TypeConverter; 451 TestTypeConverter() { addConversion(convertType); } 452 453 static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) { 454 // Drop I16 types. 455 if (t.isSignlessInteger(16)) 456 return success(); 457 458 // Convert I64 to F64. 459 if (t.isSignlessInteger(64)) { 460 results.push_back(FloatType::getF64(t.getContext())); 461 return success(); 462 } 463 464 // Split F32 into F16,F16. 465 if (t.isF32()) { 466 results.assign(2, FloatType::getF16(t.getContext())); 467 return success(); 468 } 469 470 // Otherwise, convert the type directly. 471 results.push_back(t); 472 return success(); 473 } 474 475 /// Override the hook to materialize a conversion. This is necessary because 476 /// we generate 1->N type mappings. 477 Operation *materializeConversion(PatternRewriter &rewriter, Type resultType, 478 ArrayRef<Value> inputs, 479 Location loc) override { 480 return rewriter.create<TestCastOp>(loc, resultType, inputs); 481 } 482 }; 483 484 struct TestLegalizePatternDriver 485 : public PassWrapper<TestLegalizePatternDriver, OperationPass<ModuleOp>> { 486 /// The mode of conversion to use with the driver. 487 enum class ConversionMode { Analysis, Full, Partial }; 488 489 TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {} 490 491 void runOnOperation() override { 492 TestTypeConverter converter; 493 mlir::OwningRewritePatternList patterns; 494 populateWithGenerated(&getContext(), &patterns); 495 patterns.insert<TestRegionRewriteBlockMovement, TestRegionRewriteUndo, 496 TestCreateBlock, TestCreateIllegalBlock, 497 TestUndoBlockArgReplace, TestPassthroughInvalidOp, 498 TestSplitReturnType, TestChangeProducerTypeI32ToF32, 499 TestChangeProducerTypeF32ToF64, 500 TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType, 501 TestNonRootReplacement, TestBoundedRecursiveRewrite>( 502 &getContext()); 503 patterns.insert<TestDropOpSignatureConversion>(&getContext(), converter); 504 mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(), 505 converter); 506 mlir::populateCallOpTypeConversionPattern(patterns, &getContext(), 507 converter); 508 509 // Define the conversion target used for the test. 510 ConversionTarget target(getContext()); 511 target.addLegalOp<ModuleOp, ModuleTerminatorOp>(); 512 target.addLegalOp<LegalOpA, LegalOpB, TestCastOp, TestValidOp, 513 TerminatorOp>(); 514 target 515 .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>(); 516 target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) { 517 // Don't allow F32 operands. 518 return llvm::none_of(op.getOperandTypes(), 519 [](Type type) { return type.isF32(); }); 520 }); 521 target.addDynamicallyLegalOp<FuncOp>( 522 [&](FuncOp op) { return converter.isSignatureLegal(op.getType()); }); 523 524 // Expect the type_producer/type_consumer operations to only operate on f64. 525 target.addDynamicallyLegalOp<TestTypeProducerOp>( 526 [](TestTypeProducerOp op) { return op.getType().isF64(); }); 527 target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) { 528 return op.getOperand().getType().isF64(); 529 }); 530 531 // Check support for marking certain operations as recursively legal. 532 target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) { 533 return static_cast<bool>( 534 op->getAttrOfType<UnitAttr>("test.recursively_legal")); 535 }); 536 537 // Mark the bound recursion operation as dynamically legal. 538 target.addDynamicallyLegalOp<TestRecursiveRewriteOp>( 539 [](TestRecursiveRewriteOp op) { return op.depth() == 0; }); 540 541 // Handle a partial conversion. 542 if (mode == ConversionMode::Partial) { 543 DenseSet<Operation *> unlegalizedOps; 544 (void)applyPartialConversion(getOperation(), target, patterns, &converter, 545 &unlegalizedOps); 546 // Emit remarks for each legalizable operation. 547 for (auto *op : unlegalizedOps) 548 op->emitRemark() << "op '" << op->getName() << "' is not legalizable"; 549 return; 550 } 551 552 // Handle a full conversion. 553 if (mode == ConversionMode::Full) { 554 // Check support for marking unknown operations as dynamically legal. 555 target.markUnknownOpDynamicallyLegal([](Operation *op) { 556 return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal"); 557 }); 558 559 (void)applyFullConversion(getOperation(), target, patterns, &converter); 560 return; 561 } 562 563 // Otherwise, handle an analysis conversion. 564 assert(mode == ConversionMode::Analysis); 565 566 // Analyze the convertible operations. 567 DenseSet<Operation *> legalizedOps; 568 if (failed(applyAnalysisConversion(getOperation(), target, patterns, 569 legalizedOps, &converter))) 570 return signalPassFailure(); 571 572 // Emit remarks for each legalizable operation. 573 for (auto *op : legalizedOps) 574 op->emitRemark() << "op '" << op->getName() << "' is legalizable"; 575 } 576 577 /// The mode of conversion to use. 578 ConversionMode mode; 579 }; 580 } // end anonymous namespace 581 582 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode> 583 legalizerConversionMode( 584 "test-legalize-mode", 585 llvm::cl::desc("The legalization mode to use with the test driver"), 586 llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial), 587 llvm::cl::values( 588 clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis, 589 "analysis", "Perform an analysis conversion"), 590 clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full", 591 "Perform a full conversion"), 592 clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial, 593 "partial", "Perform a partial conversion"))); 594 595 //===----------------------------------------------------------------------===// 596 // ConversionPatternRewriter::getRemappedValue testing. This method is used 597 // to get the remapped value of an original value that was replaced using 598 // ConversionPatternRewriter. 599 namespace { 600 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with 601 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original 602 /// operand twice. 603 /// 604 /// Example: 605 /// %1 = test.one_variadic_out_one_variadic_in1"(%0) 606 /// is replaced with: 607 /// %1 = test.one_variadic_out_one_variadic_in1"(%0, %0) 608 struct OneVResOneVOperandOp1Converter 609 : public OpConversionPattern<OneVResOneVOperandOp1> { 610 using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern; 611 612 LogicalResult 613 matchAndRewrite(OneVResOneVOperandOp1 op, ArrayRef<Value> operands, 614 ConversionPatternRewriter &rewriter) const override { 615 auto origOps = op.getOperands(); 616 assert(std::distance(origOps.begin(), origOps.end()) == 1 && 617 "One operand expected"); 618 Value origOp = *origOps.begin(); 619 SmallVector<Value, 2> remappedOperands; 620 // Replicate the remapped original operand twice. Note that we don't used 621 // the remapped 'operand' since the goal is testing 'getRemappedValue'. 622 remappedOperands.push_back(rewriter.getRemappedValue(origOp)); 623 remappedOperands.push_back(rewriter.getRemappedValue(origOp)); 624 625 rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(), 626 remappedOperands); 627 return success(); 628 } 629 }; 630 631 struct TestRemappedValue 632 : public mlir::PassWrapper<TestRemappedValue, FunctionPass> { 633 void runOnFunction() override { 634 mlir::OwningRewritePatternList patterns; 635 patterns.insert<OneVResOneVOperandOp1Converter>(&getContext()); 636 637 mlir::ConversionTarget target(getContext()); 638 target.addLegalOp<ModuleOp, ModuleTerminatorOp, FuncOp, TestReturnOp>(); 639 // We make OneVResOneVOperandOp1 legal only when it has more that one 640 // operand. This will trigger the conversion that will replace one-operand 641 // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1. 642 target.addDynamicallyLegalOp<OneVResOneVOperandOp1>( 643 [](Operation *op) -> bool { 644 return std::distance(op->operand_begin(), op->operand_end()) > 1; 645 }); 646 647 if (failed(mlir::applyFullConversion(getFunction(), target, patterns))) { 648 signalPassFailure(); 649 } 650 } 651 }; 652 } // end anonymous namespace 653 654 namespace mlir { 655 void registerPatternsTestPass() { 656 mlir::PassRegistration<TestReturnTypeDriver>("test-return-type", 657 "Run return type functions"); 658 659 mlir::PassRegistration<TestDerivedAttributeDriver>( 660 "test-derived-attr", "Run test derived attributes"); 661 662 mlir::PassRegistration<TestPatternDriver>("test-patterns", 663 "Run test dialect patterns"); 664 665 mlir::PassRegistration<TestLegalizePatternDriver>( 666 "test-legalize-patterns", "Run test dialect legalization patterns", [] { 667 return std::make_unique<TestLegalizePatternDriver>( 668 legalizerConversionMode); 669 }); 670 671 PassRegistration<TestRemappedValue>( 672 "test-remapped-value", 673 "Test public remapped value mechanism in ConversionPatternRewriter"); 674 } 675 } // namespace mlir 676