1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "TestDialect.h" 10 #include "mlir/Dialect/StandardOps/IR/Ops.h" 11 #include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h" 12 #include "mlir/IR/Matchers.h" 13 #include "mlir/Pass/Pass.h" 14 #include "mlir/Transforms/DialectConversion.h" 15 #include "mlir/Transforms/FoldUtils.h" 16 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 17 18 using namespace mlir; 19 using namespace mlir::test; 20 21 // Native function for testing NativeCodeCall 22 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) { 23 return choice.getValue() ? input1 : input2; 24 } 25 26 static void createOpI(PatternRewriter &rewriter, Location loc, Value input) { 27 rewriter.create<OpI>(loc, input); 28 } 29 30 static void handleNoResultOp(PatternRewriter &rewriter, 31 OpSymbolBindingNoResult op) { 32 // Turn the no result op to a one-result op. 33 rewriter.create<OpSymbolBindingB>(op.getLoc(), op.operand().getType(), 34 op.operand()); 35 } 36 37 // Test that natives calls are only called once during rewrites. 38 // OpM_Test will return Pi, increased by 1 for each subsequent calls. 39 // This let us check the number of times OpM_Test was called by inspecting 40 // the returned value in the MLIR output. 41 static int64_t opMIncreasingValue = 314159265; 42 static Attribute OpMTest(PatternRewriter &rewriter, Value val) { 43 int64_t i = opMIncreasingValue++; 44 return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i); 45 } 46 47 namespace { 48 #include "TestPatterns.inc" 49 } // end anonymous namespace 50 51 //===----------------------------------------------------------------------===// 52 // Canonicalizer Driver. 53 //===----------------------------------------------------------------------===// 54 55 namespace { 56 struct FoldingPattern : public RewritePattern { 57 public: 58 FoldingPattern(MLIRContext *context) 59 : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(), 60 /*benefit=*/1, context) {} 61 62 LogicalResult matchAndRewrite(Operation *op, 63 PatternRewriter &rewriter) const override { 64 // Exercise OperationFolder API for a single-result operation that is folded 65 // upon construction. The operation being created through the folder has an 66 // in-place folder, and it should be still present in the output. 67 // Furthermore, the folder should not crash when attempting to recover the 68 // (unchanged) operation result. 69 OperationFolder folder(op->getContext()); 70 Value result = folder.create<TestOpInPlaceFold>( 71 rewriter, op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0), 72 rewriter.getI32IntegerAttr(0)); 73 assert(result); 74 rewriter.replaceOp(op, result); 75 return success(); 76 } 77 }; 78 79 struct TestPatternDriver : public PassWrapper<TestPatternDriver, FunctionPass> { 80 void runOnFunction() override { 81 mlir::OwningRewritePatternList patterns; 82 populateWithGenerated(&getContext(), patterns); 83 84 // Verify named pattern is generated with expected name. 85 patterns.insert<FoldingPattern, TestNamedPatternRule>(&getContext()); 86 87 applyPatternsAndFoldGreedily(getFunction(), std::move(patterns)); 88 } 89 }; 90 } // end anonymous namespace 91 92 //===----------------------------------------------------------------------===// 93 // ReturnType Driver. 94 //===----------------------------------------------------------------------===// 95 96 namespace { 97 // Generate ops for each instance where the type can be successfully inferred. 98 template <typename OpTy> 99 static void invokeCreateWithInferredReturnType(Operation *op) { 100 auto *context = op->getContext(); 101 auto fop = op->getParentOfType<FuncOp>(); 102 auto location = UnknownLoc::get(context); 103 OpBuilder b(op); 104 b.setInsertionPointAfter(op); 105 106 // Use permutations of 2 args as operands. 107 assert(fop.getNumArguments() >= 2); 108 for (int i = 0, e = fop.getNumArguments(); i < e; ++i) { 109 for (int j = 0; j < e; ++j) { 110 std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}}; 111 SmallVector<Type, 2> inferredReturnTypes; 112 if (succeeded(OpTy::inferReturnTypes( 113 context, llvm::None, values, op->getAttrDictionary(), 114 op->getRegions(), inferredReturnTypes))) { 115 OperationState state(location, OpTy::getOperationName()); 116 // TODO: Expand to regions. 117 OpTy::build(b, state, values, op->getAttrs()); 118 (void)b.createOperation(state); 119 } 120 } 121 } 122 } 123 124 static void reifyReturnShape(Operation *op) { 125 OpBuilder b(op); 126 127 // Use permutations of 2 args as operands. 128 auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op); 129 SmallVector<Value, 2> shapes; 130 if (failed(shapedOp.reifyReturnTypeShapes(b, shapes))) 131 return; 132 for (auto it : llvm::enumerate(shapes)) 133 op->emitRemark() << "value " << it.index() << ": " 134 << it.value().getDefiningOp(); 135 } 136 137 struct TestReturnTypeDriver 138 : public PassWrapper<TestReturnTypeDriver, FunctionPass> { 139 void runOnFunction() override { 140 if (getFunction().getName() == "testCreateFunctions") { 141 std::vector<Operation *> ops; 142 // Collect ops to avoid triggering on inserted ops. 143 for (auto &op : getFunction().getBody().front()) 144 ops.push_back(&op); 145 // Generate test patterns for each, but skip terminator. 146 for (auto *op : llvm::makeArrayRef(ops).drop_back()) { 147 // Test create method of each of the Op classes below. The resultant 148 // output would be in reverse order underneath `op` from which 149 // the attributes and regions are used. 150 invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op); 151 invokeCreateWithInferredReturnType< 152 OpWithShapedTypeInferTypeInterfaceOp>(op); 153 }; 154 return; 155 } 156 if (getFunction().getName() == "testReifyFunctions") { 157 std::vector<Operation *> ops; 158 // Collect ops to avoid triggering on inserted ops. 159 for (auto &op : getFunction().getBody().front()) 160 if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op)) 161 ops.push_back(&op); 162 // Generate test patterns for each, but skip terminator. 163 for (auto *op : ops) 164 reifyReturnShape(op); 165 } 166 } 167 }; 168 } // end anonymous namespace 169 170 namespace { 171 struct TestDerivedAttributeDriver 172 : public PassWrapper<TestDerivedAttributeDriver, FunctionPass> { 173 void runOnFunction() override; 174 }; 175 } // end anonymous namespace 176 177 void TestDerivedAttributeDriver::runOnFunction() { 178 getFunction().walk([](DerivedAttributeOpInterface dOp) { 179 auto dAttr = dOp.materializeDerivedAttributes(); 180 if (!dAttr) 181 return; 182 for (auto d : dAttr) 183 dOp.emitRemark() << d.first << " = " << d.second; 184 }); 185 } 186 187 //===----------------------------------------------------------------------===// 188 // Legalization Driver. 189 //===----------------------------------------------------------------------===// 190 191 namespace { 192 //===----------------------------------------------------------------------===// 193 // Region-Block Rewrite Testing 194 195 /// This pattern is a simple pattern that inlines the first region of a given 196 /// operation into the parent region. 197 struct TestRegionRewriteBlockMovement : public ConversionPattern { 198 TestRegionRewriteBlockMovement(MLIRContext *ctx) 199 : ConversionPattern("test.region", 1, ctx) {} 200 201 LogicalResult 202 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 203 ConversionPatternRewriter &rewriter) const final { 204 // Inline this region into the parent region. 205 auto &parentRegion = *op->getParentRegion(); 206 auto &opRegion = op->getRegion(0); 207 if (op->getAttr("legalizer.should_clone")) 208 rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end()); 209 else 210 rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end()); 211 212 if (op->getAttr("legalizer.erase_old_blocks")) { 213 while (!opRegion.empty()) 214 rewriter.eraseBlock(&opRegion.front()); 215 } 216 217 // Drop this operation. 218 rewriter.eraseOp(op); 219 return success(); 220 } 221 }; 222 /// This pattern is a simple pattern that generates a region containing an 223 /// illegal operation. 224 struct TestRegionRewriteUndo : public RewritePattern { 225 TestRegionRewriteUndo(MLIRContext *ctx) 226 : RewritePattern("test.region_builder", 1, ctx) {} 227 228 LogicalResult matchAndRewrite(Operation *op, 229 PatternRewriter &rewriter) const final { 230 // Create the region operation with an entry block containing arguments. 231 OperationState newRegion(op->getLoc(), "test.region"); 232 newRegion.addRegion(); 233 auto *regionOp = rewriter.createOperation(newRegion); 234 auto *entryBlock = rewriter.createBlock(®ionOp->getRegion(0)); 235 entryBlock->addArgument(rewriter.getIntegerType(64)); 236 237 // Add an explicitly illegal operation to ensure the conversion fails. 238 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32)); 239 rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>()); 240 241 // Drop this operation. 242 rewriter.eraseOp(op); 243 return success(); 244 } 245 }; 246 /// A simple pattern that creates a block at the end of the parent region of the 247 /// matched operation. 248 struct TestCreateBlock : public RewritePattern { 249 TestCreateBlock(MLIRContext *ctx) 250 : RewritePattern("test.create_block", /*benefit=*/1, ctx) {} 251 252 LogicalResult matchAndRewrite(Operation *op, 253 PatternRewriter &rewriter) const final { 254 Region ®ion = *op->getParentRegion(); 255 Type i32Type = rewriter.getIntegerType(32); 256 rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}); 257 rewriter.create<TerminatorOp>(op->getLoc()); 258 rewriter.replaceOp(op, {}); 259 return success(); 260 } 261 }; 262 263 /// A simple pattern that creates a block containing an invalid operation in 264 /// order to trigger the block creation undo mechanism. 265 struct TestCreateIllegalBlock : public RewritePattern { 266 TestCreateIllegalBlock(MLIRContext *ctx) 267 : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {} 268 269 LogicalResult matchAndRewrite(Operation *op, 270 PatternRewriter &rewriter) const final { 271 Region ®ion = *op->getParentRegion(); 272 Type i32Type = rewriter.getIntegerType(32); 273 rewriter.createBlock(®ion, region.end(), {i32Type, i32Type}); 274 // Create an illegal op to ensure the conversion fails. 275 rewriter.create<ILLegalOpF>(op->getLoc(), i32Type); 276 rewriter.create<TerminatorOp>(op->getLoc()); 277 rewriter.replaceOp(op, {}); 278 return success(); 279 } 280 }; 281 282 /// A simple pattern that tests the undo mechanism when replacing the uses of a 283 /// block argument. 284 struct TestUndoBlockArgReplace : public ConversionPattern { 285 TestUndoBlockArgReplace(MLIRContext *ctx) 286 : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {} 287 288 LogicalResult 289 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 290 ConversionPatternRewriter &rewriter) const final { 291 auto illegalOp = 292 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 293 rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0), 294 illegalOp); 295 rewriter.updateRootInPlace(op, [] {}); 296 return success(); 297 } 298 }; 299 300 /// A rewrite pattern that tests the undo mechanism when erasing a block. 301 struct TestUndoBlockErase : public ConversionPattern { 302 TestUndoBlockErase(MLIRContext *ctx) 303 : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {} 304 305 LogicalResult 306 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 307 ConversionPatternRewriter &rewriter) const final { 308 Block *secondBlock = &*std::next(op->getRegion(0).begin()); 309 rewriter.setInsertionPointToStart(secondBlock); 310 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 311 rewriter.eraseBlock(secondBlock); 312 rewriter.updateRootInPlace(op, [] {}); 313 return success(); 314 } 315 }; 316 317 //===----------------------------------------------------------------------===// 318 // Type-Conversion Rewrite Testing 319 320 /// This patterns erases a region operation that has had a type conversion. 321 struct TestDropOpSignatureConversion : public ConversionPattern { 322 TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter) 323 : ConversionPattern("test.drop_region_op", 1, converter, ctx) {} 324 LogicalResult 325 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 326 ConversionPatternRewriter &rewriter) const override { 327 Region ®ion = op->getRegion(0); 328 Block *entry = ®ion.front(); 329 330 // Convert the original entry arguments. 331 TypeConverter &converter = *getTypeConverter(); 332 TypeConverter::SignatureConversion result(entry->getNumArguments()); 333 if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(), 334 result)) || 335 failed(rewriter.convertRegionTypes(®ion, converter, &result))) 336 return failure(); 337 338 // Convert the region signature and just drop the operation. 339 rewriter.eraseOp(op); 340 return success(); 341 } 342 }; 343 /// This pattern simply updates the operands of the given operation. 344 struct TestPassthroughInvalidOp : public ConversionPattern { 345 TestPassthroughInvalidOp(MLIRContext *ctx) 346 : ConversionPattern("test.invalid", 1, ctx) {} 347 LogicalResult 348 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 349 ConversionPatternRewriter &rewriter) const final { 350 rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands, 351 llvm::None); 352 return success(); 353 } 354 }; 355 /// This pattern handles the case of a split return value. 356 struct TestSplitReturnType : public ConversionPattern { 357 TestSplitReturnType(MLIRContext *ctx) 358 : ConversionPattern("test.return", 1, ctx) {} 359 LogicalResult 360 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 361 ConversionPatternRewriter &rewriter) const final { 362 // Check for a return of F32. 363 if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32()) 364 return failure(); 365 366 // Check if the first operation is a cast operation, if it is we use the 367 // results directly. 368 auto *defOp = operands[0].getDefiningOp(); 369 if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) { 370 rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands()); 371 return success(); 372 } 373 374 // Otherwise, fail to match. 375 return failure(); 376 } 377 }; 378 379 //===----------------------------------------------------------------------===// 380 // Multi-Level Type-Conversion Rewrite Testing 381 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern { 382 TestChangeProducerTypeI32ToF32(MLIRContext *ctx) 383 : ConversionPattern("test.type_producer", 1, ctx) {} 384 LogicalResult 385 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 386 ConversionPatternRewriter &rewriter) const final { 387 // If the type is I32, change the type to F32. 388 if (!Type(*op->result_type_begin()).isSignlessInteger(32)) 389 return failure(); 390 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type()); 391 return success(); 392 } 393 }; 394 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern { 395 TestChangeProducerTypeF32ToF64(MLIRContext *ctx) 396 : ConversionPattern("test.type_producer", 1, ctx) {} 397 LogicalResult 398 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 399 ConversionPatternRewriter &rewriter) const final { 400 // If the type is F32, change the type to F64. 401 if (!Type(*op->result_type_begin()).isF32()) 402 return rewriter.notifyMatchFailure(op, "expected single f32 operand"); 403 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type()); 404 return success(); 405 } 406 }; 407 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern { 408 TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx) 409 : ConversionPattern("test.type_producer", 10, ctx) {} 410 LogicalResult 411 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 412 ConversionPatternRewriter &rewriter) const final { 413 // Always convert to B16, even though it is not a legal type. This tests 414 // that values are unmapped correctly. 415 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type()); 416 return success(); 417 } 418 }; 419 struct TestUpdateConsumerType : public ConversionPattern { 420 TestUpdateConsumerType(MLIRContext *ctx) 421 : ConversionPattern("test.type_consumer", 1, ctx) {} 422 LogicalResult 423 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 424 ConversionPatternRewriter &rewriter) const final { 425 // Verify that the incoming operand has been successfully remapped to F64. 426 if (!operands[0].getType().isF64()) 427 return failure(); 428 rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]); 429 return success(); 430 } 431 }; 432 433 //===----------------------------------------------------------------------===// 434 // Non-Root Replacement Rewrite Testing 435 /// This pattern generates an invalid operation, but replaces it before the 436 /// pattern is finished. This checks that we don't need to legalize the 437 /// temporary op. 438 struct TestNonRootReplacement : public RewritePattern { 439 TestNonRootReplacement(MLIRContext *ctx) 440 : RewritePattern("test.replace_non_root", 1, ctx) {} 441 442 LogicalResult matchAndRewrite(Operation *op, 443 PatternRewriter &rewriter) const final { 444 auto resultType = *op->result_type_begin(); 445 auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType); 446 auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType); 447 448 rewriter.replaceOp(illegalOp, {legalOp}); 449 rewriter.replaceOp(op, {illegalOp}); 450 return success(); 451 } 452 }; 453 454 //===----------------------------------------------------------------------===// 455 // Recursive Rewrite Testing 456 /// This pattern is applied to the same operation multiple times, but has a 457 /// bounded recursion. 458 struct TestBoundedRecursiveRewrite 459 : public OpRewritePattern<TestRecursiveRewriteOp> { 460 TestBoundedRecursiveRewrite(MLIRContext *ctx) 461 : OpRewritePattern<TestRecursiveRewriteOp>(ctx) { 462 // The conversion target handles bounding the recursion of this pattern. 463 setHasBoundedRewriteRecursion(); 464 } 465 466 LogicalResult matchAndRewrite(TestRecursiveRewriteOp op, 467 PatternRewriter &rewriter) const final { 468 // Decrement the depth of the op in-place. 469 rewriter.updateRootInPlace(op, [&] { 470 op->setAttr("depth", rewriter.getI64IntegerAttr(op.depth() - 1)); 471 }); 472 return success(); 473 } 474 }; 475 476 struct TestNestedOpCreationUndoRewrite 477 : public OpRewritePattern<IllegalOpWithRegionAnchor> { 478 using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern; 479 480 LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op, 481 PatternRewriter &rewriter) const final { 482 // rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op); 483 rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op); 484 return success(); 485 }; 486 }; 487 } // namespace 488 489 namespace { 490 struct TestTypeConverter : public TypeConverter { 491 using TypeConverter::TypeConverter; 492 TestTypeConverter() { 493 addConversion(convertType); 494 addArgumentMaterialization(materializeCast); 495 addArgumentMaterialization(materializeOneToOneCast); 496 addSourceMaterialization(materializeCast); 497 } 498 499 static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) { 500 // Drop I16 types. 501 if (t.isSignlessInteger(16)) 502 return success(); 503 504 // Convert I64 to F64. 505 if (t.isSignlessInteger(64)) { 506 results.push_back(FloatType::getF64(t.getContext())); 507 return success(); 508 } 509 510 // Convert I42 to I43. 511 if (t.isInteger(42)) { 512 results.push_back(IntegerType::get(t.getContext(), 43)); 513 return success(); 514 } 515 516 // Split F32 into F16,F16. 517 if (t.isF32()) { 518 results.assign(2, FloatType::getF16(t.getContext())); 519 return success(); 520 } 521 522 // Otherwise, convert the type directly. 523 results.push_back(t); 524 return success(); 525 } 526 527 /// Hook for materializing a conversion. This is necessary because we generate 528 /// 1->N type mappings. 529 static Optional<Value> materializeCast(OpBuilder &builder, Type resultType, 530 ValueRange inputs, Location loc) { 531 if (inputs.size() == 1) 532 return inputs[0]; 533 return builder.create<TestCastOp>(loc, resultType, inputs).getResult(); 534 } 535 536 /// Materialize the cast for one-to-one conversion from i64 to f64. 537 static Optional<Value> materializeOneToOneCast(OpBuilder &builder, 538 IntegerType resultType, 539 ValueRange inputs, 540 Location loc) { 541 if (resultType.getWidth() == 42 && inputs.size() == 1) 542 return builder.create<TestCastOp>(loc, resultType, inputs).getResult(); 543 return llvm::None; 544 } 545 }; 546 547 struct TestLegalizePatternDriver 548 : public PassWrapper<TestLegalizePatternDriver, OperationPass<ModuleOp>> { 549 /// The mode of conversion to use with the driver. 550 enum class ConversionMode { Analysis, Full, Partial }; 551 552 TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {} 553 554 void runOnOperation() override { 555 TestTypeConverter converter; 556 mlir::OwningRewritePatternList patterns; 557 populateWithGenerated(&getContext(), patterns); 558 patterns.insert< 559 TestRegionRewriteBlockMovement, TestRegionRewriteUndo, TestCreateBlock, 560 TestCreateIllegalBlock, TestUndoBlockArgReplace, TestUndoBlockErase, 561 TestPassthroughInvalidOp, TestSplitReturnType, 562 TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64, 563 TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType, 564 TestNonRootReplacement, TestBoundedRecursiveRewrite, 565 TestNestedOpCreationUndoRewrite>(&getContext()); 566 patterns.insert<TestDropOpSignatureConversion>(&getContext(), converter); 567 mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(), 568 converter); 569 mlir::populateCallOpTypeConversionPattern(patterns, &getContext(), 570 converter); 571 572 // Define the conversion target used for the test. 573 ConversionTarget target(getContext()); 574 target.addLegalOp<ModuleOp, ModuleTerminatorOp>(); 575 target.addLegalOp<LegalOpA, LegalOpB, TestCastOp, TestValidOp, 576 TerminatorOp>(); 577 target 578 .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>(); 579 target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) { 580 // Don't allow F32 operands. 581 return llvm::none_of(op.getOperandTypes(), 582 [](Type type) { return type.isF32(); }); 583 }); 584 target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) { 585 return converter.isSignatureLegal(op.getType()) && 586 converter.isLegal(&op.getBody()); 587 }); 588 589 // Expect the type_producer/type_consumer operations to only operate on f64. 590 target.addDynamicallyLegalOp<TestTypeProducerOp>( 591 [](TestTypeProducerOp op) { return op.getType().isF64(); }); 592 target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) { 593 return op.getOperand().getType().isF64(); 594 }); 595 596 // Check support for marking certain operations as recursively legal. 597 target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) { 598 return static_cast<bool>( 599 op->getAttrOfType<UnitAttr>("test.recursively_legal")); 600 }); 601 602 // Mark the bound recursion operation as dynamically legal. 603 target.addDynamicallyLegalOp<TestRecursiveRewriteOp>( 604 [](TestRecursiveRewriteOp op) { return op.depth() == 0; }); 605 606 // Handle a partial conversion. 607 if (mode == ConversionMode::Partial) { 608 DenseSet<Operation *> unlegalizedOps; 609 (void)applyPartialConversion(getOperation(), target, std::move(patterns), 610 &unlegalizedOps); 611 // Emit remarks for each legalizable operation. 612 for (auto *op : unlegalizedOps) 613 op->emitRemark() << "op '" << op->getName() << "' is not legalizable"; 614 return; 615 } 616 617 // Handle a full conversion. 618 if (mode == ConversionMode::Full) { 619 // Check support for marking unknown operations as dynamically legal. 620 target.markUnknownOpDynamicallyLegal([](Operation *op) { 621 return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal"); 622 }); 623 624 (void)applyFullConversion(getOperation(), target, std::move(patterns)); 625 return; 626 } 627 628 // Otherwise, handle an analysis conversion. 629 assert(mode == ConversionMode::Analysis); 630 631 // Analyze the convertible operations. 632 DenseSet<Operation *> legalizedOps; 633 if (failed(applyAnalysisConversion(getOperation(), target, 634 std::move(patterns), legalizedOps))) 635 return signalPassFailure(); 636 637 // Emit remarks for each legalizable operation. 638 for (auto *op : legalizedOps) 639 op->emitRemark() << "op '" << op->getName() << "' is legalizable"; 640 } 641 642 /// The mode of conversion to use. 643 ConversionMode mode; 644 }; 645 } // end anonymous namespace 646 647 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode> 648 legalizerConversionMode( 649 "test-legalize-mode", 650 llvm::cl::desc("The legalization mode to use with the test driver"), 651 llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial), 652 llvm::cl::values( 653 clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis, 654 "analysis", "Perform an analysis conversion"), 655 clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full", 656 "Perform a full conversion"), 657 clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial, 658 "partial", "Perform a partial conversion"))); 659 660 //===----------------------------------------------------------------------===// 661 // ConversionPatternRewriter::getRemappedValue testing. This method is used 662 // to get the remapped value of an original value that was replaced using 663 // ConversionPatternRewriter. 664 namespace { 665 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with 666 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original 667 /// operand twice. 668 /// 669 /// Example: 670 /// %1 = test.one_variadic_out_one_variadic_in1"(%0) 671 /// is replaced with: 672 /// %1 = test.one_variadic_out_one_variadic_in1"(%0, %0) 673 struct OneVResOneVOperandOp1Converter 674 : public OpConversionPattern<OneVResOneVOperandOp1> { 675 using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern; 676 677 LogicalResult 678 matchAndRewrite(OneVResOneVOperandOp1 op, ArrayRef<Value> operands, 679 ConversionPatternRewriter &rewriter) const override { 680 auto origOps = op.getOperands(); 681 assert(std::distance(origOps.begin(), origOps.end()) == 1 && 682 "One operand expected"); 683 Value origOp = *origOps.begin(); 684 SmallVector<Value, 2> remappedOperands; 685 // Replicate the remapped original operand twice. Note that we don't used 686 // the remapped 'operand' since the goal is testing 'getRemappedValue'. 687 remappedOperands.push_back(rewriter.getRemappedValue(origOp)); 688 remappedOperands.push_back(rewriter.getRemappedValue(origOp)); 689 690 rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(), 691 remappedOperands); 692 return success(); 693 } 694 }; 695 696 struct TestRemappedValue 697 : public mlir::PassWrapper<TestRemappedValue, FunctionPass> { 698 void runOnFunction() override { 699 mlir::OwningRewritePatternList patterns; 700 patterns.insert<OneVResOneVOperandOp1Converter>(&getContext()); 701 702 mlir::ConversionTarget target(getContext()); 703 target.addLegalOp<ModuleOp, ModuleTerminatorOp, FuncOp, TestReturnOp>(); 704 // We make OneVResOneVOperandOp1 legal only when it has more that one 705 // operand. This will trigger the conversion that will replace one-operand 706 // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1. 707 target.addDynamicallyLegalOp<OneVResOneVOperandOp1>( 708 [](Operation *op) -> bool { 709 return std::distance(op->operand_begin(), op->operand_end()) > 1; 710 }); 711 712 if (failed(mlir::applyFullConversion(getFunction(), target, 713 std::move(patterns)))) { 714 signalPassFailure(); 715 } 716 } 717 }; 718 } // end anonymous namespace 719 720 //===----------------------------------------------------------------------===// 721 // Test patterns without a specific root operation kind 722 //===----------------------------------------------------------------------===// 723 724 namespace { 725 /// This pattern matches and removes any operation in the test dialect. 726 struct RemoveTestDialectOps : public RewritePattern { 727 RemoveTestDialectOps() : RewritePattern(/*benefit=*/1, MatchAnyOpTypeTag()) {} 728 729 LogicalResult matchAndRewrite(Operation *op, 730 PatternRewriter &rewriter) const override { 731 if (!isa<TestDialect>(op->getDialect())) 732 return failure(); 733 rewriter.eraseOp(op); 734 return success(); 735 } 736 }; 737 738 struct TestUnknownRootOpDriver 739 : public mlir::PassWrapper<TestUnknownRootOpDriver, FunctionPass> { 740 void runOnFunction() override { 741 mlir::OwningRewritePatternList patterns; 742 patterns.insert<RemoveTestDialectOps>(); 743 744 mlir::ConversionTarget target(getContext()); 745 target.addIllegalDialect<TestDialect>(); 746 if (failed( 747 applyPartialConversion(getFunction(), target, std::move(patterns)))) 748 signalPassFailure(); 749 } 750 }; 751 } // end anonymous namespace 752 753 //===----------------------------------------------------------------------===// 754 // Test type conversions 755 //===----------------------------------------------------------------------===// 756 757 namespace { 758 struct TestTypeConversionProducer 759 : public OpConversionPattern<TestTypeProducerOp> { 760 using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern; 761 LogicalResult 762 matchAndRewrite(TestTypeProducerOp op, ArrayRef<Value> operands, 763 ConversionPatternRewriter &rewriter) const final { 764 Type resultType = op.getType(); 765 if (resultType.isa<FloatType>()) 766 resultType = rewriter.getF64Type(); 767 else if (resultType.isInteger(16)) 768 resultType = rewriter.getIntegerType(64); 769 else 770 return failure(); 771 772 rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType); 773 return success(); 774 } 775 }; 776 777 struct TestTypeConversionDriver 778 : public PassWrapper<TestTypeConversionDriver, OperationPass<ModuleOp>> { 779 void getDependentDialects(DialectRegistry ®istry) const override { 780 registry.insert<TestDialect>(); 781 } 782 783 void runOnOperation() override { 784 // Initialize the type converter. 785 TypeConverter converter; 786 787 /// Add the legal set of type conversions. 788 converter.addConversion([](Type type) -> Type { 789 // Treat F64 as legal. 790 if (type.isF64()) 791 return type; 792 // Allow converting BF16/F16/F32 to F64. 793 if (type.isBF16() || type.isF16() || type.isF32()) 794 return FloatType::getF64(type.getContext()); 795 // Otherwise, the type is illegal. 796 return nullptr; 797 }); 798 converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) { 799 // Drop all integer types. 800 return success(); 801 }); 802 803 /// Add the legal set of type materializations. 804 converter.addSourceMaterialization([](OpBuilder &builder, Type resultType, 805 ValueRange inputs, 806 Location loc) -> Value { 807 // Allow casting from F64 back to F32. 808 if (!resultType.isF16() && inputs.size() == 1 && 809 inputs[0].getType().isF64()) 810 return builder.create<TestCastOp>(loc, resultType, inputs).getResult(); 811 // Allow producing an i32 or i64 from nothing. 812 if ((resultType.isInteger(32) || resultType.isInteger(64)) && 813 inputs.empty()) 814 return builder.create<TestTypeProducerOp>(loc, resultType); 815 // Allow producing an i64 from an integer. 816 if (resultType.isa<IntegerType>() && inputs.size() == 1 && 817 inputs[0].getType().isa<IntegerType>()) 818 return builder.create<TestCastOp>(loc, resultType, inputs).getResult(); 819 // Otherwise, fail. 820 return nullptr; 821 }); 822 823 // Initialize the conversion target. 824 mlir::ConversionTarget target(getContext()); 825 target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) { 826 return op.getType().isF64() || op.getType().isInteger(64); 827 }); 828 target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) { 829 return converter.isSignatureLegal(op.getType()) && 830 converter.isLegal(&op.getBody()); 831 }); 832 target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) { 833 // Allow casts from F64 to F32. 834 return (*op.operand_type_begin()).isF64() && op.getType().isF32(); 835 }); 836 837 // Initialize the set of rewrite patterns. 838 OwningRewritePatternList patterns; 839 patterns.insert<TestTypeConversionProducer>(converter, &getContext()); 840 mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(), 841 converter); 842 843 if (failed(applyPartialConversion(getOperation(), target, 844 std::move(patterns)))) 845 signalPassFailure(); 846 } 847 }; 848 } // end anonymous namespace 849 850 //===----------------------------------------------------------------------===// 851 // Test Block Merging 852 //===----------------------------------------------------------------------===// 853 854 namespace { 855 /// A rewriter pattern that tests that blocks can be merged. 856 struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> { 857 using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern; 858 859 LogicalResult 860 matchAndRewrite(TestMergeBlocksOp op, ArrayRef<Value> operands, 861 ConversionPatternRewriter &rewriter) const final { 862 Block &firstBlock = op.body().front(); 863 Operation *branchOp = firstBlock.getTerminator(); 864 Block *secondBlock = &*(std::next(op.body().begin())); 865 auto succOperands = branchOp->getOperands(); 866 SmallVector<Value, 2> replacements(succOperands); 867 rewriter.eraseOp(branchOp); 868 rewriter.mergeBlocks(secondBlock, &firstBlock, replacements); 869 rewriter.updateRootInPlace(op, [] {}); 870 return success(); 871 } 872 }; 873 874 /// A rewrite pattern to tests the undo mechanism of blocks being merged. 875 struct TestUndoBlocksMerge : public ConversionPattern { 876 TestUndoBlocksMerge(MLIRContext *ctx) 877 : ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {} 878 LogicalResult 879 matchAndRewrite(Operation *op, ArrayRef<Value> operands, 880 ConversionPatternRewriter &rewriter) const final { 881 Block &firstBlock = op->getRegion(0).front(); 882 Operation *branchOp = firstBlock.getTerminator(); 883 Block *secondBlock = &*(std::next(op->getRegion(0).begin())); 884 rewriter.setInsertionPointToStart(secondBlock); 885 rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type()); 886 auto succOperands = branchOp->getOperands(); 887 SmallVector<Value, 2> replacements(succOperands); 888 rewriter.eraseOp(branchOp); 889 rewriter.mergeBlocks(secondBlock, &firstBlock, replacements); 890 rewriter.updateRootInPlace(op, [] {}); 891 return success(); 892 } 893 }; 894 895 /// A rewrite mechanism to inline the body of the op into its parent, when both 896 /// ops can have a single block. 897 struct TestMergeSingleBlockOps 898 : public OpConversionPattern<SingleBlockImplicitTerminatorOp> { 899 using OpConversionPattern< 900 SingleBlockImplicitTerminatorOp>::OpConversionPattern; 901 902 LogicalResult 903 matchAndRewrite(SingleBlockImplicitTerminatorOp op, ArrayRef<Value> operands, 904 ConversionPatternRewriter &rewriter) const final { 905 SingleBlockImplicitTerminatorOp parentOp = 906 op->getParentOfType<SingleBlockImplicitTerminatorOp>(); 907 if (!parentOp) 908 return failure(); 909 Block &innerBlock = op.region().front(); 910 TerminatorOp innerTerminator = 911 cast<TerminatorOp>(innerBlock.getTerminator()); 912 rewriter.mergeBlockBefore(&innerBlock, op); 913 rewriter.eraseOp(innerTerminator); 914 rewriter.eraseOp(op); 915 rewriter.updateRootInPlace(op, [] {}); 916 return success(); 917 } 918 }; 919 920 struct TestMergeBlocksPatternDriver 921 : public PassWrapper<TestMergeBlocksPatternDriver, 922 OperationPass<ModuleOp>> { 923 void runOnOperation() override { 924 mlir::OwningRewritePatternList patterns; 925 MLIRContext *context = &getContext(); 926 patterns 927 .insert<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>( 928 context); 929 ConversionTarget target(*context); 930 target.addLegalOp<FuncOp, ModuleOp, ModuleTerminatorOp, TerminatorOp, 931 TestBranchOp, TestTypeConsumerOp, TestTypeProducerOp, 932 TestReturnOp>(); 933 target.addIllegalOp<ILLegalOpF>(); 934 935 /// Expect the op to have a single block after legalization. 936 target.addDynamicallyLegalOp<TestMergeBlocksOp>( 937 [&](TestMergeBlocksOp op) -> bool { 938 return llvm::hasSingleElement(op.body()); 939 }); 940 941 /// Only allow `test.br` within test.merge_blocks op. 942 target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool { 943 return op->getParentOfType<TestMergeBlocksOp>(); 944 }); 945 946 /// Expect that all nested test.SingleBlockImplicitTerminator ops are 947 /// inlined. 948 target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>( 949 [&](SingleBlockImplicitTerminatorOp op) -> bool { 950 return !op->getParentOfType<SingleBlockImplicitTerminatorOp>(); 951 }); 952 953 DenseSet<Operation *> unlegalizedOps; 954 (void)applyPartialConversion(getOperation(), target, std::move(patterns), 955 &unlegalizedOps); 956 for (auto *op : unlegalizedOps) 957 op->emitRemark() << "op '" << op->getName() << "' is not legalizable"; 958 } 959 }; 960 } // namespace 961 962 //===----------------------------------------------------------------------===// 963 // Test Selective Replacement 964 //===----------------------------------------------------------------------===// 965 966 namespace { 967 /// A rewrite mechanism to inline the body of the op into its parent, when both 968 /// ops can have a single block. 969 struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> { 970 using OpRewritePattern<TestCastOp>::OpRewritePattern; 971 972 LogicalResult matchAndRewrite(TestCastOp op, 973 PatternRewriter &rewriter) const final { 974 if (op.getNumOperands() != 2) 975 return failure(); 976 OperandRange operands = op.getOperands(); 977 978 // Replace non-terminator uses with the first operand. 979 rewriter.replaceOpWithIf(op, operands[0], [](OpOperand &operand) { 980 return operand.getOwner()->isKnownTerminator(); 981 }); 982 // Replace everything else with the second operand if the operation isn't 983 // dead. 984 rewriter.replaceOp(op, op.getOperand(1)); 985 return success(); 986 } 987 }; 988 989 struct TestSelectiveReplacementPatternDriver 990 : public PassWrapper<TestSelectiveReplacementPatternDriver, 991 OperationPass<>> { 992 void runOnOperation() override { 993 mlir::OwningRewritePatternList patterns; 994 MLIRContext *context = &getContext(); 995 patterns.insert<TestSelectiveOpReplacementPattern>(context); 996 applyPatternsAndFoldGreedily(getOperation()->getRegions(), 997 std::move(patterns)); 998 } 999 }; 1000 } // namespace 1001 1002 //===----------------------------------------------------------------------===// 1003 // PassRegistration 1004 //===----------------------------------------------------------------------===// 1005 1006 namespace mlir { 1007 namespace test { 1008 void registerPatternsTestPass() { 1009 PassRegistration<TestReturnTypeDriver>("test-return-type", 1010 "Run return type functions"); 1011 1012 PassRegistration<TestDerivedAttributeDriver>("test-derived-attr", 1013 "Run test derived attributes"); 1014 1015 PassRegistration<TestPatternDriver>("test-patterns", 1016 "Run test dialect patterns"); 1017 1018 PassRegistration<TestLegalizePatternDriver>( 1019 "test-legalize-patterns", "Run test dialect legalization patterns", [] { 1020 return std::make_unique<TestLegalizePatternDriver>( 1021 legalizerConversionMode); 1022 }); 1023 1024 PassRegistration<TestRemappedValue>( 1025 "test-remapped-value", 1026 "Test public remapped value mechanism in ConversionPatternRewriter"); 1027 1028 PassRegistration<TestUnknownRootOpDriver>( 1029 "test-legalize-unknown-root-patterns", 1030 "Test public remapped value mechanism in ConversionPatternRewriter"); 1031 1032 PassRegistration<TestTypeConversionDriver>( 1033 "test-legalize-type-conversion", 1034 "Test various type conversion functionalities in DialectConversion"); 1035 1036 PassRegistration<TestMergeBlocksPatternDriver>{ 1037 "test-merge-blocks", 1038 "Test Merging operation in ConversionPatternRewriter"}; 1039 PassRegistration<TestSelectiveReplacementPatternDriver>{ 1040 "test-pattern-selective-replacement", 1041 "Test selective replacement in the PatternRewriter"}; 1042 } 1043 } // namespace test 1044 } // namespace mlir 1045