1 //===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "TestDialect.h"
10 #include "mlir/Dialect/MemRef/IR/MemRef.h"
11 #include "mlir/Dialect/StandardOps/IR/Ops.h"
12 #include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
13 #include "mlir/IR/Matchers.h"
14 #include "mlir/Pass/Pass.h"
15 #include "mlir/Transforms/DialectConversion.h"
16 #include "mlir/Transforms/FoldUtils.h"
17 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
18 
19 using namespace mlir;
20 using namespace mlir::test;
21 
22 // Native function for testing NativeCodeCall
23 static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
24   return choice.getValue() ? input1 : input2;
25 }
26 
27 static void createOpI(PatternRewriter &rewriter, Location loc, Value input) {
28   rewriter.create<OpI>(loc, input);
29 }
30 
31 static void handleNoResultOp(PatternRewriter &rewriter,
32                              OpSymbolBindingNoResult op) {
33   // Turn the no result op to a one-result op.
34   rewriter.create<OpSymbolBindingB>(op.getLoc(), op.operand().getType(),
35                                     op.operand());
36 }
37 
38 static bool getFirstI32Result(Operation *op, Value &value) {
39   if (!Type(op->getResult(0).getType()).isSignlessInteger(32))
40     return false;
41   value = op->getResult(0);
42   return true;
43 }
44 
45 static Value bindNativeCodeCallResult(Value value) { return value; }
46 
47 // Test that natives calls are only called once during rewrites.
48 // OpM_Test will return Pi, increased by 1 for each subsequent calls.
49 // This let us check the number of times OpM_Test was called by inspecting
50 // the returned value in the MLIR output.
51 static int64_t opMIncreasingValue = 314159265;
52 static Attribute OpMTest(PatternRewriter &rewriter, Value val) {
53   int64_t i = opMIncreasingValue++;
54   return rewriter.getIntegerAttr(rewriter.getIntegerType(32), i);
55 }
56 
57 namespace {
58 #include "TestPatterns.inc"
59 } // end anonymous namespace
60 
61 //===----------------------------------------------------------------------===//
62 // Canonicalizer Driver.
63 //===----------------------------------------------------------------------===//
64 
65 namespace {
66 struct FoldingPattern : public RewritePattern {
67 public:
68   FoldingPattern(MLIRContext *context)
69       : RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(),
70                        /*benefit=*/1, context) {}
71 
72   LogicalResult matchAndRewrite(Operation *op,
73                                 PatternRewriter &rewriter) const override {
74     // Exercise OperationFolder API for a single-result operation that is folded
75     // upon construction. The operation being created through the folder has an
76     // in-place folder, and it should be still present in the output.
77     // Furthermore, the folder should not crash when attempting to recover the
78     // (unchanged) operation result.
79     OperationFolder folder(op->getContext());
80     Value result = folder.create<TestOpInPlaceFold>(
81         rewriter, op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0),
82         rewriter.getI32IntegerAttr(0));
83     assert(result);
84     rewriter.replaceOp(op, result);
85     return success();
86   }
87 };
88 
89 struct TestPatternDriver : public PassWrapper<TestPatternDriver, FunctionPass> {
90   void runOnFunction() override {
91     mlir::RewritePatternSet patterns(&getContext());
92     populateWithGenerated(patterns);
93 
94     // Verify named pattern is generated with expected name.
95     patterns.add<FoldingPattern, TestNamedPatternRule>(&getContext());
96 
97     (void)applyPatternsAndFoldGreedily(getFunction(), std::move(patterns));
98   }
99 };
100 } // end anonymous namespace
101 
102 //===----------------------------------------------------------------------===//
103 // ReturnType Driver.
104 //===----------------------------------------------------------------------===//
105 
106 namespace {
107 // Generate ops for each instance where the type can be successfully inferred.
108 template <typename OpTy>
109 static void invokeCreateWithInferredReturnType(Operation *op) {
110   auto *context = op->getContext();
111   auto fop = op->getParentOfType<FuncOp>();
112   auto location = UnknownLoc::get(context);
113   OpBuilder b(op);
114   b.setInsertionPointAfter(op);
115 
116   // Use permutations of 2 args as operands.
117   assert(fop.getNumArguments() >= 2);
118   for (int i = 0, e = fop.getNumArguments(); i < e; ++i) {
119     for (int j = 0; j < e; ++j) {
120       std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}};
121       SmallVector<Type, 2> inferredReturnTypes;
122       if (succeeded(OpTy::inferReturnTypes(
123               context, llvm::None, values, op->getAttrDictionary(),
124               op->getRegions(), inferredReturnTypes))) {
125         OperationState state(location, OpTy::getOperationName());
126         // TODO: Expand to regions.
127         OpTy::build(b, state, values, op->getAttrs());
128         (void)b.createOperation(state);
129       }
130     }
131   }
132 }
133 
134 static void reifyReturnShape(Operation *op) {
135   OpBuilder b(op);
136 
137   // Use permutations of 2 args as operands.
138   auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op);
139   SmallVector<Value, 2> shapes;
140   if (failed(shapedOp.reifyReturnTypeShapes(b, shapes)) ||
141       !llvm::hasSingleElement(shapes))
142     return;
143   for (auto it : llvm::enumerate(shapes)) {
144     op->emitRemark() << "value " << it.index() << ": "
145                      << it.value().getDefiningOp();
146   }
147 }
148 
149 struct TestReturnTypeDriver
150     : public PassWrapper<TestReturnTypeDriver, FunctionPass> {
151   void getDependentDialects(DialectRegistry &registry) const override {
152     registry.insert<memref::MemRefDialect>();
153   }
154 
155   void runOnFunction() override {
156     if (getFunction().getName() == "testCreateFunctions") {
157       std::vector<Operation *> ops;
158       // Collect ops to avoid triggering on inserted ops.
159       for (auto &op : getFunction().getBody().front())
160         ops.push_back(&op);
161       // Generate test patterns for each, but skip terminator.
162       for (auto *op : llvm::makeArrayRef(ops).drop_back()) {
163         // Test create method of each of the Op classes below. The resultant
164         // output would be in reverse order underneath `op` from which
165         // the attributes and regions are used.
166         invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op);
167         invokeCreateWithInferredReturnType<
168             OpWithShapedTypeInferTypeInterfaceOp>(op);
169       };
170       return;
171     }
172     if (getFunction().getName() == "testReifyFunctions") {
173       std::vector<Operation *> ops;
174       // Collect ops to avoid triggering on inserted ops.
175       for (auto &op : getFunction().getBody().front())
176         if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op))
177           ops.push_back(&op);
178       // Generate test patterns for each, but skip terminator.
179       for (auto *op : ops)
180         reifyReturnShape(op);
181     }
182   }
183 };
184 } // end anonymous namespace
185 
186 namespace {
187 struct TestDerivedAttributeDriver
188     : public PassWrapper<TestDerivedAttributeDriver, FunctionPass> {
189   void runOnFunction() override;
190 };
191 } // end anonymous namespace
192 
193 void TestDerivedAttributeDriver::runOnFunction() {
194   getFunction().walk([](DerivedAttributeOpInterface dOp) {
195     auto dAttr = dOp.materializeDerivedAttributes();
196     if (!dAttr)
197       return;
198     for (auto d : dAttr)
199       dOp.emitRemark() << d.first << " = " << d.second;
200   });
201 }
202 
203 //===----------------------------------------------------------------------===//
204 // Legalization Driver.
205 //===----------------------------------------------------------------------===//
206 
207 namespace {
208 //===----------------------------------------------------------------------===//
209 // Region-Block Rewrite Testing
210 
211 /// This pattern is a simple pattern that inlines the first region of a given
212 /// operation into the parent region.
213 struct TestRegionRewriteBlockMovement : public ConversionPattern {
214   TestRegionRewriteBlockMovement(MLIRContext *ctx)
215       : ConversionPattern("test.region", 1, ctx) {}
216 
217   LogicalResult
218   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
219                   ConversionPatternRewriter &rewriter) const final {
220     // Inline this region into the parent region.
221     auto &parentRegion = *op->getParentRegion();
222     auto &opRegion = op->getRegion(0);
223     if (op->getAttr("legalizer.should_clone"))
224       rewriter.cloneRegionBefore(opRegion, parentRegion, parentRegion.end());
225     else
226       rewriter.inlineRegionBefore(opRegion, parentRegion, parentRegion.end());
227 
228     if (op->getAttr("legalizer.erase_old_blocks")) {
229       while (!opRegion.empty())
230         rewriter.eraseBlock(&opRegion.front());
231     }
232 
233     // Drop this operation.
234     rewriter.eraseOp(op);
235     return success();
236   }
237 };
238 /// This pattern is a simple pattern that generates a region containing an
239 /// illegal operation.
240 struct TestRegionRewriteUndo : public RewritePattern {
241   TestRegionRewriteUndo(MLIRContext *ctx)
242       : RewritePattern("test.region_builder", 1, ctx) {}
243 
244   LogicalResult matchAndRewrite(Operation *op,
245                                 PatternRewriter &rewriter) const final {
246     // Create the region operation with an entry block containing arguments.
247     OperationState newRegion(op->getLoc(), "test.region");
248     newRegion.addRegion();
249     auto *regionOp = rewriter.createOperation(newRegion);
250     auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
251     entryBlock->addArgument(rewriter.getIntegerType(64));
252 
253     // Add an explicitly illegal operation to ensure the conversion fails.
254     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
255     rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());
256 
257     // Drop this operation.
258     rewriter.eraseOp(op);
259     return success();
260   }
261 };
262 /// A simple pattern that creates a block at the end of the parent region of the
263 /// matched operation.
264 struct TestCreateBlock : public RewritePattern {
265   TestCreateBlock(MLIRContext *ctx)
266       : RewritePattern("test.create_block", /*benefit=*/1, ctx) {}
267 
268   LogicalResult matchAndRewrite(Operation *op,
269                                 PatternRewriter &rewriter) const final {
270     Region &region = *op->getParentRegion();
271     Type i32Type = rewriter.getIntegerType(32);
272     rewriter.createBlock(&region, region.end(), {i32Type, i32Type});
273     rewriter.create<TerminatorOp>(op->getLoc());
274     rewriter.replaceOp(op, {});
275     return success();
276   }
277 };
278 
279 /// A simple pattern that creates a block containing an invalid operation in
280 /// order to trigger the block creation undo mechanism.
281 struct TestCreateIllegalBlock : public RewritePattern {
282   TestCreateIllegalBlock(MLIRContext *ctx)
283       : RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {}
284 
285   LogicalResult matchAndRewrite(Operation *op,
286                                 PatternRewriter &rewriter) const final {
287     Region &region = *op->getParentRegion();
288     Type i32Type = rewriter.getIntegerType(32);
289     rewriter.createBlock(&region, region.end(), {i32Type, i32Type});
290     // Create an illegal op to ensure the conversion fails.
291     rewriter.create<ILLegalOpF>(op->getLoc(), i32Type);
292     rewriter.create<TerminatorOp>(op->getLoc());
293     rewriter.replaceOp(op, {});
294     return success();
295   }
296 };
297 
298 /// A simple pattern that tests the undo mechanism when replacing the uses of a
299 /// block argument.
300 struct TestUndoBlockArgReplace : public ConversionPattern {
301   TestUndoBlockArgReplace(MLIRContext *ctx)
302       : ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {}
303 
304   LogicalResult
305   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
306                   ConversionPatternRewriter &rewriter) const final {
307     auto illegalOp =
308         rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
309     rewriter.replaceUsesOfBlockArgument(op->getRegion(0).getArgument(0),
310                                         illegalOp);
311     rewriter.updateRootInPlace(op, [] {});
312     return success();
313   }
314 };
315 
316 /// A rewrite pattern that tests the undo mechanism when erasing a block.
317 struct TestUndoBlockErase : public ConversionPattern {
318   TestUndoBlockErase(MLIRContext *ctx)
319       : ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {}
320 
321   LogicalResult
322   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
323                   ConversionPatternRewriter &rewriter) const final {
324     Block *secondBlock = &*std::next(op->getRegion(0).begin());
325     rewriter.setInsertionPointToStart(secondBlock);
326     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
327     rewriter.eraseBlock(secondBlock);
328     rewriter.updateRootInPlace(op, [] {});
329     return success();
330   }
331 };
332 
333 //===----------------------------------------------------------------------===//
334 // Type-Conversion Rewrite Testing
335 
336 /// This patterns erases a region operation that has had a type conversion.
337 struct TestDropOpSignatureConversion : public ConversionPattern {
338   TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
339       : ConversionPattern(converter, "test.drop_region_op", 1, ctx) {}
340   LogicalResult
341   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
342                   ConversionPatternRewriter &rewriter) const override {
343     Region &region = op->getRegion(0);
344     Block *entry = &region.front();
345 
346     // Convert the original entry arguments.
347     TypeConverter &converter = *getTypeConverter();
348     TypeConverter::SignatureConversion result(entry->getNumArguments());
349     if (failed(converter.convertSignatureArgs(entry->getArgumentTypes(),
350                                               result)) ||
351         failed(rewriter.convertRegionTypes(&region, converter, &result)))
352       return failure();
353 
354     // Convert the region signature and just drop the operation.
355     rewriter.eraseOp(op);
356     return success();
357   }
358 };
359 /// This pattern simply updates the operands of the given operation.
360 struct TestPassthroughInvalidOp : public ConversionPattern {
361   TestPassthroughInvalidOp(MLIRContext *ctx)
362       : ConversionPattern("test.invalid", 1, ctx) {}
363   LogicalResult
364   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
365                   ConversionPatternRewriter &rewriter) const final {
366     rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands,
367                                              llvm::None);
368     return success();
369   }
370 };
371 /// This pattern handles the case of a split return value.
372 struct TestSplitReturnType : public ConversionPattern {
373   TestSplitReturnType(MLIRContext *ctx)
374       : ConversionPattern("test.return", 1, ctx) {}
375   LogicalResult
376   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
377                   ConversionPatternRewriter &rewriter) const final {
378     // Check for a return of F32.
379     if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
380       return failure();
381 
382     // Check if the first operation is a cast operation, if it is we use the
383     // results directly.
384     auto *defOp = operands[0].getDefiningOp();
385     if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) {
386       rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
387       return success();
388     }
389 
390     // Otherwise, fail to match.
391     return failure();
392   }
393 };
394 
395 //===----------------------------------------------------------------------===//
396 // Multi-Level Type-Conversion Rewrite Testing
397 struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
398   TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
399       : ConversionPattern("test.type_producer", 1, ctx) {}
400   LogicalResult
401   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
402                   ConversionPatternRewriter &rewriter) const final {
403     // If the type is I32, change the type to F32.
404     if (!Type(*op->result_type_begin()).isSignlessInteger(32))
405       return failure();
406     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
407     return success();
408   }
409 };
410 struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
411   TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
412       : ConversionPattern("test.type_producer", 1, ctx) {}
413   LogicalResult
414   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
415                   ConversionPatternRewriter &rewriter) const final {
416     // If the type is F32, change the type to F64.
417     if (!Type(*op->result_type_begin()).isF32())
418       return rewriter.notifyMatchFailure(op, "expected single f32 operand");
419     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
420     return success();
421   }
422 };
423 struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
424   TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
425       : ConversionPattern("test.type_producer", 10, ctx) {}
426   LogicalResult
427   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
428                   ConversionPatternRewriter &rewriter) const final {
429     // Always convert to B16, even though it is not a legal type. This tests
430     // that values are unmapped correctly.
431     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
432     return success();
433   }
434 };
435 struct TestUpdateConsumerType : public ConversionPattern {
436   TestUpdateConsumerType(MLIRContext *ctx)
437       : ConversionPattern("test.type_consumer", 1, ctx) {}
438   LogicalResult
439   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
440                   ConversionPatternRewriter &rewriter) const final {
441     // Verify that the incoming operand has been successfully remapped to F64.
442     if (!operands[0].getType().isF64())
443       return failure();
444     rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
445     return success();
446   }
447 };
448 
449 //===----------------------------------------------------------------------===//
450 // Non-Root Replacement Rewrite Testing
451 /// This pattern generates an invalid operation, but replaces it before the
452 /// pattern is finished. This checks that we don't need to legalize the
453 /// temporary op.
454 struct TestNonRootReplacement : public RewritePattern {
455   TestNonRootReplacement(MLIRContext *ctx)
456       : RewritePattern("test.replace_non_root", 1, ctx) {}
457 
458   LogicalResult matchAndRewrite(Operation *op,
459                                 PatternRewriter &rewriter) const final {
460     auto resultType = *op->result_type_begin();
461     auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
462     auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
463 
464     rewriter.replaceOp(illegalOp, {legalOp});
465     rewriter.replaceOp(op, {illegalOp});
466     return success();
467   }
468 };
469 
470 //===----------------------------------------------------------------------===//
471 // Recursive Rewrite Testing
472 /// This pattern is applied to the same operation multiple times, but has a
473 /// bounded recursion.
474 struct TestBoundedRecursiveRewrite
475     : public OpRewritePattern<TestRecursiveRewriteOp> {
476   TestBoundedRecursiveRewrite(MLIRContext *ctx)
477       : OpRewritePattern<TestRecursiveRewriteOp>(ctx) {
478     // The conversion target handles bounding the recursion of this pattern.
479     setHasBoundedRewriteRecursion();
480   }
481 
482   LogicalResult matchAndRewrite(TestRecursiveRewriteOp op,
483                                 PatternRewriter &rewriter) const final {
484     // Decrement the depth of the op in-place.
485     rewriter.updateRootInPlace(op, [&] {
486       op->setAttr("depth", rewriter.getI64IntegerAttr(op.depth() - 1));
487     });
488     return success();
489   }
490 };
491 
492 struct TestNestedOpCreationUndoRewrite
493     : public OpRewritePattern<IllegalOpWithRegionAnchor> {
494   using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern;
495 
496   LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op,
497                                 PatternRewriter &rewriter) const final {
498     // rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
499     rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
500     return success();
501   };
502 };
503 
504 // This pattern matches `test.blackhole` and delete this op and its producer.
505 struct TestReplaceEraseOp : public OpRewritePattern<BlackHoleOp> {
506   using OpRewritePattern<BlackHoleOp>::OpRewritePattern;
507 
508   LogicalResult matchAndRewrite(BlackHoleOp op,
509                                 PatternRewriter &rewriter) const final {
510     Operation *producer = op.getOperand().getDefiningOp();
511     // Always erase the user before the producer, the framework should handle
512     // this correctly.
513     rewriter.eraseOp(op);
514     rewriter.eraseOp(producer);
515     return success();
516   };
517 };
518 } // namespace
519 
520 namespace {
521 struct TestTypeConverter : public TypeConverter {
522   using TypeConverter::TypeConverter;
523   TestTypeConverter() {
524     addConversion(convertType);
525     addArgumentMaterialization(materializeCast);
526     addSourceMaterialization(materializeCast);
527 
528     /// Materialize the cast for one-to-one conversion from i64 to f64.
529     const auto materializeOneToOneCast =
530         [](OpBuilder &builder, IntegerType resultType, ValueRange inputs,
531            Location loc) -> Optional<Value> {
532       if (resultType.getWidth() == 42 && inputs.size() == 1)
533         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
534       return llvm::None;
535     };
536     addArgumentMaterialization(materializeOneToOneCast);
537   }
538 
539   static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
540     // Drop I16 types.
541     if (t.isSignlessInteger(16))
542       return success();
543 
544     // Convert I64 to F64.
545     if (t.isSignlessInteger(64)) {
546       results.push_back(FloatType::getF64(t.getContext()));
547       return success();
548     }
549 
550     // Convert I42 to I43.
551     if (t.isInteger(42)) {
552       results.push_back(IntegerType::get(t.getContext(), 43));
553       return success();
554     }
555 
556     // Split F32 into F16,F16.
557     if (t.isF32()) {
558       results.assign(2, FloatType::getF16(t.getContext()));
559       return success();
560     }
561 
562     // Otherwise, convert the type directly.
563     results.push_back(t);
564     return success();
565   }
566 
567   /// Hook for materializing a conversion. This is necessary because we generate
568   /// 1->N type mappings.
569   static Optional<Value> materializeCast(OpBuilder &builder, Type resultType,
570                                          ValueRange inputs, Location loc) {
571     if (inputs.size() == 1)
572       return inputs[0];
573     return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
574   }
575 };
576 
577 struct TestLegalizePatternDriver
578     : public PassWrapper<TestLegalizePatternDriver, OperationPass<ModuleOp>> {
579   /// The mode of conversion to use with the driver.
580   enum class ConversionMode { Analysis, Full, Partial };
581 
582   TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
583 
584   void runOnOperation() override {
585     TestTypeConverter converter;
586     mlir::RewritePatternSet patterns(&getContext());
587     populateWithGenerated(patterns);
588     patterns
589         .add<TestRegionRewriteBlockMovement, TestRegionRewriteUndo,
590              TestCreateBlock, TestCreateIllegalBlock, TestUndoBlockArgReplace,
591              TestUndoBlockErase, TestPassthroughInvalidOp, TestSplitReturnType,
592              TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
593              TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
594              TestNonRootReplacement, TestBoundedRecursiveRewrite,
595              TestNestedOpCreationUndoRewrite, TestReplaceEraseOp>(
596             &getContext());
597     patterns.add<TestDropOpSignatureConversion>(&getContext(), converter);
598     mlir::populateFuncOpTypeConversionPattern(patterns, converter);
599     mlir::populateCallOpTypeConversionPattern(patterns, converter);
600 
601     // Define the conversion target used for the test.
602     ConversionTarget target(getContext());
603     target.addLegalOp<ModuleOp>();
604     target.addLegalOp<LegalOpA, LegalOpB, TestCastOp, TestValidOp,
605                       TerminatorOp>();
606     target
607         .addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
608     target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
609       // Don't allow F32 operands.
610       return llvm::none_of(op.getOperandTypes(),
611                            [](Type type) { return type.isF32(); });
612     });
613     target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
614       return converter.isSignatureLegal(op.getType()) &&
615              converter.isLegal(&op.getBody());
616     });
617 
618     // Expect the type_producer/type_consumer operations to only operate on f64.
619     target.addDynamicallyLegalOp<TestTypeProducerOp>(
620         [](TestTypeProducerOp op) { return op.getType().isF64(); });
621     target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
622       return op.getOperand().getType().isF64();
623     });
624 
625     // Check support for marking certain operations as recursively legal.
626     target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) {
627       return static_cast<bool>(
628           op->getAttrOfType<UnitAttr>("test.recursively_legal"));
629     });
630 
631     // Mark the bound recursion operation as dynamically legal.
632     target.addDynamicallyLegalOp<TestRecursiveRewriteOp>(
633         [](TestRecursiveRewriteOp op) { return op.depth() == 0; });
634 
635     // Handle a partial conversion.
636     if (mode == ConversionMode::Partial) {
637       DenseSet<Operation *> unlegalizedOps;
638       (void)applyPartialConversion(getOperation(), target, std::move(patterns),
639                                    &unlegalizedOps);
640       // Emit remarks for each legalizable operation.
641       for (auto *op : unlegalizedOps)
642         op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
643       return;
644     }
645 
646     // Handle a full conversion.
647     if (mode == ConversionMode::Full) {
648       // Check support for marking unknown operations as dynamically legal.
649       target.markUnknownOpDynamicallyLegal([](Operation *op) {
650         return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal");
651       });
652 
653       (void)applyFullConversion(getOperation(), target, std::move(patterns));
654       return;
655     }
656 
657     // Otherwise, handle an analysis conversion.
658     assert(mode == ConversionMode::Analysis);
659 
660     // Analyze the convertible operations.
661     DenseSet<Operation *> legalizedOps;
662     if (failed(applyAnalysisConversion(getOperation(), target,
663                                        std::move(patterns), legalizedOps)))
664       return signalPassFailure();
665 
666     // Emit remarks for each legalizable operation.
667     for (auto *op : legalizedOps)
668       op->emitRemark() << "op '" << op->getName() << "' is legalizable";
669   }
670 
671   /// The mode of conversion to use.
672   ConversionMode mode;
673 };
674 } // end anonymous namespace
675 
676 static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
677     legalizerConversionMode(
678         "test-legalize-mode",
679         llvm::cl::desc("The legalization mode to use with the test driver"),
680         llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
681         llvm::cl::values(
682             clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
683                        "analysis", "Perform an analysis conversion"),
684             clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
685                        "Perform a full conversion"),
686             clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
687                        "partial", "Perform a partial conversion")));
688 
689 //===----------------------------------------------------------------------===//
690 // ConversionPatternRewriter::getRemappedValue testing. This method is used
691 // to get the remapped value of an original value that was replaced using
692 // ConversionPatternRewriter.
693 namespace {
694 /// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
695 /// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
696 /// operand twice.
697 ///
698 /// Example:
699 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0)
700 /// is replaced with:
701 ///   %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
702 struct OneVResOneVOperandOp1Converter
703     : public OpConversionPattern<OneVResOneVOperandOp1> {
704   using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
705 
706   LogicalResult
707   matchAndRewrite(OneVResOneVOperandOp1 op, ArrayRef<Value> operands,
708                   ConversionPatternRewriter &rewriter) const override {
709     auto origOps = op.getOperands();
710     assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
711            "One operand expected");
712     Value origOp = *origOps.begin();
713     SmallVector<Value, 2> remappedOperands;
714     // Replicate the remapped original operand twice. Note that we don't used
715     // the remapped 'operand' since the goal is testing 'getRemappedValue'.
716     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
717     remappedOperands.push_back(rewriter.getRemappedValue(origOp));
718 
719     rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(),
720                                                        remappedOperands);
721     return success();
722   }
723 };
724 
725 struct TestRemappedValue
726     : public mlir::PassWrapper<TestRemappedValue, FunctionPass> {
727   void runOnFunction() override {
728     mlir::RewritePatternSet patterns(&getContext());
729     patterns.add<OneVResOneVOperandOp1Converter>(&getContext());
730 
731     mlir::ConversionTarget target(getContext());
732     target.addLegalOp<ModuleOp, FuncOp, TestReturnOp>();
733     // We make OneVResOneVOperandOp1 legal only when it has more that one
734     // operand. This will trigger the conversion that will replace one-operand
735     // OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
736     target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
737         [](Operation *op) -> bool {
738           return std::distance(op->operand_begin(), op->operand_end()) > 1;
739         });
740 
741     if (failed(mlir::applyFullConversion(getFunction(), target,
742                                          std::move(patterns)))) {
743       signalPassFailure();
744     }
745   }
746 };
747 } // end anonymous namespace
748 
749 //===----------------------------------------------------------------------===//
750 // Test patterns without a specific root operation kind
751 //===----------------------------------------------------------------------===//
752 
753 namespace {
754 /// This pattern matches and removes any operation in the test dialect.
755 struct RemoveTestDialectOps : public RewritePattern {
756   RemoveTestDialectOps(MLIRContext *context)
757       : RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
758 
759   LogicalResult matchAndRewrite(Operation *op,
760                                 PatternRewriter &rewriter) const override {
761     if (!isa<TestDialect>(op->getDialect()))
762       return failure();
763     rewriter.eraseOp(op);
764     return success();
765   }
766 };
767 
768 struct TestUnknownRootOpDriver
769     : public mlir::PassWrapper<TestUnknownRootOpDriver, FunctionPass> {
770   void runOnFunction() override {
771     mlir::RewritePatternSet patterns(&getContext());
772     patterns.add<RemoveTestDialectOps>(&getContext());
773 
774     mlir::ConversionTarget target(getContext());
775     target.addIllegalDialect<TestDialect>();
776     if (failed(
777             applyPartialConversion(getFunction(), target, std::move(patterns))))
778       signalPassFailure();
779   }
780 };
781 } // end anonymous namespace
782 
783 //===----------------------------------------------------------------------===//
784 // Test type conversions
785 //===----------------------------------------------------------------------===//
786 
787 namespace {
788 struct TestTypeConversionProducer
789     : public OpConversionPattern<TestTypeProducerOp> {
790   using OpConversionPattern<TestTypeProducerOp>::OpConversionPattern;
791   LogicalResult
792   matchAndRewrite(TestTypeProducerOp op, ArrayRef<Value> operands,
793                   ConversionPatternRewriter &rewriter) const final {
794     Type resultType = op.getType();
795     if (resultType.isa<FloatType>())
796       resultType = rewriter.getF64Type();
797     else if (resultType.isInteger(16))
798       resultType = rewriter.getIntegerType(64);
799     else
800       return failure();
801 
802     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, resultType);
803     return success();
804   }
805 };
806 
807 /// Call signature conversion and then fail the rewrite to trigger the undo
808 /// mechanism.
809 struct TestSignatureConversionUndo
810     : public OpConversionPattern<TestSignatureConversionUndoOp> {
811   using OpConversionPattern<TestSignatureConversionUndoOp>::OpConversionPattern;
812 
813   LogicalResult
814   matchAndRewrite(TestSignatureConversionUndoOp op, ArrayRef<Value> operands,
815                   ConversionPatternRewriter &rewriter) const final {
816     (void)rewriter.convertRegionTypes(&op->getRegion(0), *getTypeConverter());
817     return failure();
818   }
819 };
820 
821 /// Just forward the operands to the root op. This is essentially a no-op
822 /// pattern that is used to trigger target materialization.
823 struct TestTypeConsumerForward
824     : public OpConversionPattern<TestTypeConsumerOp> {
825   using OpConversionPattern<TestTypeConsumerOp>::OpConversionPattern;
826 
827   LogicalResult
828   matchAndRewrite(TestTypeConsumerOp op, ArrayRef<Value> operands,
829                   ConversionPatternRewriter &rewriter) const final {
830     rewriter.updateRootInPlace(op, [&] { op->setOperands(operands); });
831     return success();
832   }
833 };
834 
835 struct TestTypeConversionAnotherProducer
836     : public OpRewritePattern<TestAnotherTypeProducerOp> {
837   using OpRewritePattern<TestAnotherTypeProducerOp>::OpRewritePattern;
838 
839   LogicalResult matchAndRewrite(TestAnotherTypeProducerOp op,
840                                 PatternRewriter &rewriter) const final {
841     rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, op.getType());
842     return success();
843   }
844 };
845 
846 struct TestTypeConversionDriver
847     : public PassWrapper<TestTypeConversionDriver, OperationPass<ModuleOp>> {
848   void getDependentDialects(DialectRegistry &registry) const override {
849     registry.insert<TestDialect>();
850   }
851 
852   void runOnOperation() override {
853     // Initialize the type converter.
854     TypeConverter converter;
855 
856     /// Add the legal set of type conversions.
857     converter.addConversion([](Type type) -> Type {
858       // Treat F64 as legal.
859       if (type.isF64())
860         return type;
861       // Allow converting BF16/F16/F32 to F64.
862       if (type.isBF16() || type.isF16() || type.isF32())
863         return FloatType::getF64(type.getContext());
864       // Otherwise, the type is illegal.
865       return nullptr;
866     });
867     converter.addConversion([](IntegerType type, SmallVectorImpl<Type> &) {
868       // Drop all integer types.
869       return success();
870     });
871 
872     /// Add the legal set of type materializations.
873     converter.addSourceMaterialization([](OpBuilder &builder, Type resultType,
874                                           ValueRange inputs,
875                                           Location loc) -> Value {
876       // Allow casting from F64 back to F32.
877       if (!resultType.isF16() && inputs.size() == 1 &&
878           inputs[0].getType().isF64())
879         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
880       // Allow producing an i32 or i64 from nothing.
881       if ((resultType.isInteger(32) || resultType.isInteger(64)) &&
882           inputs.empty())
883         return builder.create<TestTypeProducerOp>(loc, resultType);
884       // Allow producing an i64 from an integer.
885       if (resultType.isa<IntegerType>() && inputs.size() == 1 &&
886           inputs[0].getType().isa<IntegerType>())
887         return builder.create<TestCastOp>(loc, resultType, inputs).getResult();
888       // Otherwise, fail.
889       return nullptr;
890     });
891 
892     // Initialize the conversion target.
893     mlir::ConversionTarget target(getContext());
894     target.addDynamicallyLegalOp<TestTypeProducerOp>([](TestTypeProducerOp op) {
895       return op.getType().isF64() || op.getType().isInteger(64);
896     });
897     target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
898       return converter.isSignatureLegal(op.getType()) &&
899              converter.isLegal(&op.getBody());
900     });
901     target.addDynamicallyLegalOp<TestCastOp>([&](TestCastOp op) {
902       // Allow casts from F64 to F32.
903       return (*op.operand_type_begin()).isF64() && op.getType().isF32();
904     });
905 
906     // Initialize the set of rewrite patterns.
907     RewritePatternSet patterns(&getContext());
908     patterns.add<TestTypeConsumerForward, TestTypeConversionProducer,
909                  TestSignatureConversionUndo>(converter, &getContext());
910     patterns.add<TestTypeConversionAnotherProducer>(&getContext());
911     mlir::populateFuncOpTypeConversionPattern(patterns, converter);
912 
913     if (failed(applyPartialConversion(getOperation(), target,
914                                       std::move(patterns))))
915       signalPassFailure();
916   }
917 };
918 } // end anonymous namespace
919 
920 //===----------------------------------------------------------------------===//
921 // Test Block Merging
922 //===----------------------------------------------------------------------===//
923 
924 namespace {
925 /// A rewriter pattern that tests that blocks can be merged.
926 struct TestMergeBlock : public OpConversionPattern<TestMergeBlocksOp> {
927   using OpConversionPattern<TestMergeBlocksOp>::OpConversionPattern;
928 
929   LogicalResult
930   matchAndRewrite(TestMergeBlocksOp op, ArrayRef<Value> operands,
931                   ConversionPatternRewriter &rewriter) const final {
932     Block &firstBlock = op.body().front();
933     Operation *branchOp = firstBlock.getTerminator();
934     Block *secondBlock = &*(std::next(op.body().begin()));
935     auto succOperands = branchOp->getOperands();
936     SmallVector<Value, 2> replacements(succOperands);
937     rewriter.eraseOp(branchOp);
938     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
939     rewriter.updateRootInPlace(op, [] {});
940     return success();
941   }
942 };
943 
944 /// A rewrite pattern to tests the undo mechanism of blocks being merged.
945 struct TestUndoBlocksMerge : public ConversionPattern {
946   TestUndoBlocksMerge(MLIRContext *ctx)
947       : ConversionPattern("test.undo_blocks_merge", /*benefit=*/1, ctx) {}
948   LogicalResult
949   matchAndRewrite(Operation *op, ArrayRef<Value> operands,
950                   ConversionPatternRewriter &rewriter) const final {
951     Block &firstBlock = op->getRegion(0).front();
952     Operation *branchOp = firstBlock.getTerminator();
953     Block *secondBlock = &*(std::next(op->getRegion(0).begin()));
954     rewriter.setInsertionPointToStart(secondBlock);
955     rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
956     auto succOperands = branchOp->getOperands();
957     SmallVector<Value, 2> replacements(succOperands);
958     rewriter.eraseOp(branchOp);
959     rewriter.mergeBlocks(secondBlock, &firstBlock, replacements);
960     rewriter.updateRootInPlace(op, [] {});
961     return success();
962   }
963 };
964 
965 /// A rewrite mechanism to inline the body of the op into its parent, when both
966 /// ops can have a single block.
967 struct TestMergeSingleBlockOps
968     : public OpConversionPattern<SingleBlockImplicitTerminatorOp> {
969   using OpConversionPattern<
970       SingleBlockImplicitTerminatorOp>::OpConversionPattern;
971 
972   LogicalResult
973   matchAndRewrite(SingleBlockImplicitTerminatorOp op, ArrayRef<Value> operands,
974                   ConversionPatternRewriter &rewriter) const final {
975     SingleBlockImplicitTerminatorOp parentOp =
976         op->getParentOfType<SingleBlockImplicitTerminatorOp>();
977     if (!parentOp)
978       return failure();
979     Block &innerBlock = op.region().front();
980     TerminatorOp innerTerminator =
981         cast<TerminatorOp>(innerBlock.getTerminator());
982     rewriter.mergeBlockBefore(&innerBlock, op);
983     rewriter.eraseOp(innerTerminator);
984     rewriter.eraseOp(op);
985     rewriter.updateRootInPlace(op, [] {});
986     return success();
987   }
988 };
989 
990 struct TestMergeBlocksPatternDriver
991     : public PassWrapper<TestMergeBlocksPatternDriver,
992                          OperationPass<ModuleOp>> {
993   void runOnOperation() override {
994     MLIRContext *context = &getContext();
995     mlir::RewritePatternSet patterns(context);
996     patterns.add<TestMergeBlock, TestUndoBlocksMerge, TestMergeSingleBlockOps>(
997         context);
998     ConversionTarget target(*context);
999     target.addLegalOp<FuncOp, ModuleOp, TerminatorOp, TestBranchOp,
1000                       TestTypeConsumerOp, TestTypeProducerOp, TestReturnOp>();
1001     target.addIllegalOp<ILLegalOpF>();
1002 
1003     /// Expect the op to have a single block after legalization.
1004     target.addDynamicallyLegalOp<TestMergeBlocksOp>(
1005         [&](TestMergeBlocksOp op) -> bool {
1006           return llvm::hasSingleElement(op.body());
1007         });
1008 
1009     /// Only allow `test.br` within test.merge_blocks op.
1010     target.addDynamicallyLegalOp<TestBranchOp>([&](TestBranchOp op) -> bool {
1011       return op->getParentOfType<TestMergeBlocksOp>();
1012     });
1013 
1014     /// Expect that all nested test.SingleBlockImplicitTerminator ops are
1015     /// inlined.
1016     target.addDynamicallyLegalOp<SingleBlockImplicitTerminatorOp>(
1017         [&](SingleBlockImplicitTerminatorOp op) -> bool {
1018           return !op->getParentOfType<SingleBlockImplicitTerminatorOp>();
1019         });
1020 
1021     DenseSet<Operation *> unlegalizedOps;
1022     (void)applyPartialConversion(getOperation(), target, std::move(patterns),
1023                                  &unlegalizedOps);
1024     for (auto *op : unlegalizedOps)
1025       op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
1026   }
1027 };
1028 } // namespace
1029 
1030 //===----------------------------------------------------------------------===//
1031 // Test Selective Replacement
1032 //===----------------------------------------------------------------------===//
1033 
1034 namespace {
1035 /// A rewrite mechanism to inline the body of the op into its parent, when both
1036 /// ops can have a single block.
1037 struct TestSelectiveOpReplacementPattern : public OpRewritePattern<TestCastOp> {
1038   using OpRewritePattern<TestCastOp>::OpRewritePattern;
1039 
1040   LogicalResult matchAndRewrite(TestCastOp op,
1041                                 PatternRewriter &rewriter) const final {
1042     if (op.getNumOperands() != 2)
1043       return failure();
1044     OperandRange operands = op.getOperands();
1045 
1046     // Replace non-terminator uses with the first operand.
1047     rewriter.replaceOpWithIf(op, operands[0], [](OpOperand &operand) {
1048       return operand.getOwner()->hasTrait<OpTrait::IsTerminator>();
1049     });
1050     // Replace everything else with the second operand if the operation isn't
1051     // dead.
1052     rewriter.replaceOp(op, op.getOperand(1));
1053     return success();
1054   }
1055 };
1056 
1057 struct TestSelectiveReplacementPatternDriver
1058     : public PassWrapper<TestSelectiveReplacementPatternDriver,
1059                          OperationPass<>> {
1060   void runOnOperation() override {
1061     MLIRContext *context = &getContext();
1062     mlir::RewritePatternSet patterns(context);
1063     patterns.add<TestSelectiveOpReplacementPattern>(context);
1064     (void)applyPatternsAndFoldGreedily(getOperation()->getRegions(),
1065                                        std::move(patterns));
1066   }
1067 };
1068 } // namespace
1069 
1070 //===----------------------------------------------------------------------===//
1071 // PassRegistration
1072 //===----------------------------------------------------------------------===//
1073 
1074 namespace mlir {
1075 namespace test {
1076 void registerPatternsTestPass() {
1077   PassRegistration<TestReturnTypeDriver>("test-return-type",
1078                                          "Run return type functions");
1079 
1080   PassRegistration<TestDerivedAttributeDriver>("test-derived-attr",
1081                                                "Run test derived attributes");
1082 
1083   PassRegistration<TestPatternDriver>("test-patterns",
1084                                       "Run test dialect patterns");
1085 
1086   PassRegistration<TestLegalizePatternDriver>(
1087       "test-legalize-patterns", "Run test dialect legalization patterns", [] {
1088         return std::make_unique<TestLegalizePatternDriver>(
1089             legalizerConversionMode);
1090       });
1091 
1092   PassRegistration<TestRemappedValue>(
1093       "test-remapped-value",
1094       "Test public remapped value mechanism in ConversionPatternRewriter");
1095 
1096   PassRegistration<TestUnknownRootOpDriver>(
1097       "test-legalize-unknown-root-patterns",
1098       "Test public remapped value mechanism in ConversionPatternRewriter");
1099 
1100   PassRegistration<TestTypeConversionDriver>(
1101       "test-legalize-type-conversion",
1102       "Test various type conversion functionalities in DialectConversion");
1103 
1104   PassRegistration<TestMergeBlocksPatternDriver>{
1105       "test-merge-blocks",
1106       "Test Merging operation in ConversionPatternRewriter"};
1107   PassRegistration<TestSelectiveReplacementPatternDriver>{
1108       "test-pattern-selective-replacement",
1109       "Test selective replacement in the PatternRewriter"};
1110 }
1111 } // namespace test
1112 } // namespace mlir
1113