1 //===- TestDialect.cpp - MLIR Dialect for Testing -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "TestDialect.h"
10 #include "TestAttributes.h"
11 #include "TestInterfaces.h"
12 #include "TestTypes.h"
13 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
14 #include "mlir/Dialect/DLTI/DLTI.h"
15 #include "mlir/Dialect/Func/IR/FuncOps.h"
16 #include "mlir/Dialect/Tensor/IR/Tensor.h"
17 #include "mlir/IR/BuiltinOps.h"
18 #include "mlir/IR/DialectImplementation.h"
19 #include "mlir/IR/PatternMatch.h"
20 #include "mlir/IR/TypeUtilities.h"
21 #include "mlir/Reducer/ReductionPatternInterface.h"
22 #include "mlir/Transforms/FoldUtils.h"
23 #include "mlir/Transforms/InliningUtils.h"
24 #include "llvm/ADT/StringSwitch.h"
25 
26 // Include this before the using namespace lines below to
27 // test that we don't have namespace dependencies.
28 #include "TestOpsDialect.cpp.inc"
29 
30 using namespace mlir;
31 using namespace test;
32 
33 void test::registerTestDialect(DialectRegistry &registry) {
34   registry.insert<TestDialect>();
35 }
36 
37 //===----------------------------------------------------------------------===//
38 // TestDialect Interfaces
39 //===----------------------------------------------------------------------===//
40 
41 namespace {
42 
43 /// Testing the correctness of some traits.
44 static_assert(
45     llvm::is_detected<OpTrait::has_implicit_terminator_t,
46                       SingleBlockImplicitTerminatorOp>::value,
47     "has_implicit_terminator_t does not match SingleBlockImplicitTerminatorOp");
48 static_assert(OpTrait::hasSingleBlockImplicitTerminator<
49                   SingleBlockImplicitTerminatorOp>::value,
50               "hasSingleBlockImplicitTerminator does not match "
51               "SingleBlockImplicitTerminatorOp");
52 
53 // Test support for interacting with the AsmPrinter.
54 struct TestOpAsmInterface : public OpAsmDialectInterface {
55   using OpAsmDialectInterface::OpAsmDialectInterface;
56 
57   AliasResult getAlias(Attribute attr, raw_ostream &os) const final {
58     StringAttr strAttr = attr.dyn_cast<StringAttr>();
59     if (!strAttr)
60       return AliasResult::NoAlias;
61 
62     // Check the contents of the string attribute to see what the test alias
63     // should be named.
64     Optional<StringRef> aliasName =
65         StringSwitch<Optional<StringRef>>(strAttr.getValue())
66             .Case("alias_test:dot_in_name", StringRef("test.alias"))
67             .Case("alias_test:trailing_digit", StringRef("test_alias0"))
68             .Case("alias_test:prefixed_digit", StringRef("0_test_alias"))
69             .Case("alias_test:sanitize_conflict_a",
70                   StringRef("test_alias_conflict0"))
71             .Case("alias_test:sanitize_conflict_b",
72                   StringRef("test_alias_conflict0_"))
73             .Case("alias_test:tensor_encoding", StringRef("test_encoding"))
74             .Default(llvm::None);
75     if (!aliasName)
76       return AliasResult::NoAlias;
77 
78     os << *aliasName;
79     return AliasResult::FinalAlias;
80   }
81 
82   AliasResult getAlias(Type type, raw_ostream &os) const final {
83     if (auto tupleType = type.dyn_cast<TupleType>()) {
84       if (tupleType.size() > 0 &&
85           llvm::all_of(tupleType.getTypes(), [](Type elemType) {
86             return elemType.isa<SimpleAType>();
87           })) {
88         os << "test_tuple";
89         return AliasResult::FinalAlias;
90       }
91     }
92     if (auto intType = type.dyn_cast<TestIntegerType>()) {
93       if (intType.getSignedness() ==
94               TestIntegerType::SignednessSemantics::Unsigned &&
95           intType.getWidth() == 8) {
96         os << "test_ui8";
97         return AliasResult::FinalAlias;
98       }
99     }
100     return AliasResult::NoAlias;
101   }
102 };
103 
104 struct TestDialectFoldInterface : public DialectFoldInterface {
105   using DialectFoldInterface::DialectFoldInterface;
106 
107   /// Registered hook to check if the given region, which is attached to an
108   /// operation that is *not* isolated from above, should be used when
109   /// materializing constants.
110   bool shouldMaterializeInto(Region *region) const final {
111     // If this is a one region operation, then insert into it.
112     return isa<OneRegionOp>(region->getParentOp());
113   }
114 };
115 
116 /// This class defines the interface for handling inlining with standard
117 /// operations.
118 struct TestInlinerInterface : public DialectInlinerInterface {
119   using DialectInlinerInterface::DialectInlinerInterface;
120 
121   //===--------------------------------------------------------------------===//
122   // Analysis Hooks
123   //===--------------------------------------------------------------------===//
124 
125   bool isLegalToInline(Operation *call, Operation *callable,
126                        bool wouldBeCloned) const final {
127     // Don't allow inlining calls that are marked `noinline`.
128     return !call->hasAttr("noinline");
129   }
130   bool isLegalToInline(Region *, Region *, bool,
131                        BlockAndValueMapping &) const final {
132     // Inlining into test dialect regions is legal.
133     return true;
134   }
135   bool isLegalToInline(Operation *, Region *, bool,
136                        BlockAndValueMapping &) const final {
137     return true;
138   }
139 
140   bool shouldAnalyzeRecursively(Operation *op) const final {
141     // Analyze recursively if this is not a functional region operation, it
142     // froms a separate functional scope.
143     return !isa<FunctionalRegionOp>(op);
144   }
145 
146   //===--------------------------------------------------------------------===//
147   // Transformation Hooks
148   //===--------------------------------------------------------------------===//
149 
150   /// Handle the given inlined terminator by replacing it with a new operation
151   /// as necessary.
152   void handleTerminator(Operation *op,
153                         ArrayRef<Value> valuesToRepl) const final {
154     // Only handle "test.return" here.
155     auto returnOp = dyn_cast<TestReturnOp>(op);
156     if (!returnOp)
157       return;
158 
159     // Replace the values directly with the return operands.
160     assert(returnOp.getNumOperands() == valuesToRepl.size());
161     for (const auto &it : llvm::enumerate(returnOp.getOperands()))
162       valuesToRepl[it.index()].replaceAllUsesWith(it.value());
163   }
164 
165   /// Attempt to materialize a conversion for a type mismatch between a call
166   /// from this dialect, and a callable region. This method should generate an
167   /// operation that takes 'input' as the only operand, and produces a single
168   /// result of 'resultType'. If a conversion can not be generated, nullptr
169   /// should be returned.
170   Operation *materializeCallConversion(OpBuilder &builder, Value input,
171                                        Type resultType,
172                                        Location conversionLoc) const final {
173     // Only allow conversion for i16/i32 types.
174     if (!(resultType.isSignlessInteger(16) ||
175           resultType.isSignlessInteger(32)) ||
176         !(input.getType().isSignlessInteger(16) ||
177           input.getType().isSignlessInteger(32)))
178       return nullptr;
179     return builder.create<TestCastOp>(conversionLoc, resultType, input);
180   }
181 
182   void processInlinedCallBlocks(
183       Operation *call,
184       iterator_range<Region::iterator> inlinedBlocks) const final {
185     if (!isa<ConversionCallOp>(call))
186       return;
187 
188     // Set attributed on all ops in the inlined blocks.
189     for (Block &block : inlinedBlocks) {
190       block.walk([&](Operation *op) {
191         op->setAttr("inlined_conversion", UnitAttr::get(call->getContext()));
192       });
193     }
194   }
195 };
196 
197 struct TestReductionPatternInterface : public DialectReductionPatternInterface {
198 public:
199   TestReductionPatternInterface(Dialect *dialect)
200       : DialectReductionPatternInterface(dialect) {}
201 
202   void populateReductionPatterns(RewritePatternSet &patterns) const final {
203     populateTestReductionPatterns(patterns);
204   }
205 };
206 
207 } // namespace
208 
209 //===----------------------------------------------------------------------===//
210 // TestDialect
211 //===----------------------------------------------------------------------===//
212 
213 static void testSideEffectOpGetEffect(
214     Operation *op,
215     SmallVectorImpl<SideEffects::EffectInstance<TestEffects::Effect>> &effects);
216 
217 // This is the implementation of a dialect fallback for `TestEffectOpInterface`.
218 struct TestOpEffectInterfaceFallback
219     : public TestEffectOpInterface::FallbackModel<
220           TestOpEffectInterfaceFallback> {
221   static bool classof(Operation *op) {
222     bool isSupportedOp =
223         op->getName().getStringRef() == "test.unregistered_side_effect_op";
224     assert(isSupportedOp && "Unexpected dispatch");
225     return isSupportedOp;
226   }
227 
228   void
229   getEffects(Operation *op,
230              SmallVectorImpl<SideEffects::EffectInstance<TestEffects::Effect>>
231                  &effects) const {
232     testSideEffectOpGetEffect(op, effects);
233   }
234 };
235 
236 void TestDialect::initialize() {
237   registerAttributes();
238   registerTypes();
239   addOperations<
240 #define GET_OP_LIST
241 #include "TestOps.cpp.inc"
242       >();
243   addInterfaces<TestOpAsmInterface, TestDialectFoldInterface,
244                 TestInlinerInterface, TestReductionPatternInterface>();
245   allowUnknownOperations();
246 
247   // Instantiate our fallback op interface that we'll use on specific
248   // unregistered op.
249   fallbackEffectOpInterfaces = new TestOpEffectInterfaceFallback;
250 }
251 TestDialect::~TestDialect() {
252   delete static_cast<TestOpEffectInterfaceFallback *>(
253       fallbackEffectOpInterfaces);
254 }
255 
256 Operation *TestDialect::materializeConstant(OpBuilder &builder, Attribute value,
257                                             Type type, Location loc) {
258   return builder.create<TestOpConstant>(loc, type, value);
259 }
260 
261 ::mlir::LogicalResult FormatInferType2Op::inferReturnTypes(
262     ::mlir::MLIRContext *context, ::llvm::Optional<::mlir::Location> location,
263     ::mlir::ValueRange operands, ::mlir::DictionaryAttr attributes,
264     ::mlir::RegionRange regions,
265     ::llvm::SmallVectorImpl<::mlir::Type> &inferredReturnTypes) {
266   inferredReturnTypes.assign({::mlir::IntegerType::get(context, 16)});
267   return ::mlir::success();
268 }
269 
270 void *TestDialect::getRegisteredInterfaceForOp(TypeID typeID,
271                                                OperationName opName) {
272   if (opName.getIdentifier() == "test.unregistered_side_effect_op" &&
273       typeID == TypeID::get<TestEffectOpInterface>())
274     return fallbackEffectOpInterfaces;
275   return nullptr;
276 }
277 
278 LogicalResult TestDialect::verifyOperationAttribute(Operation *op,
279                                                     NamedAttribute namedAttr) {
280   if (namedAttr.getName() == "test.invalid_attr")
281     return op->emitError() << "invalid to use 'test.invalid_attr'";
282   return success();
283 }
284 
285 LogicalResult TestDialect::verifyRegionArgAttribute(Operation *op,
286                                                     unsigned regionIndex,
287                                                     unsigned argIndex,
288                                                     NamedAttribute namedAttr) {
289   if (namedAttr.getName() == "test.invalid_attr")
290     return op->emitError() << "invalid to use 'test.invalid_attr'";
291   return success();
292 }
293 
294 LogicalResult
295 TestDialect::verifyRegionResultAttribute(Operation *op, unsigned regionIndex,
296                                          unsigned resultIndex,
297                                          NamedAttribute namedAttr) {
298   if (namedAttr.getName() == "test.invalid_attr")
299     return op->emitError() << "invalid to use 'test.invalid_attr'";
300   return success();
301 }
302 
303 Optional<Dialect::ParseOpHook>
304 TestDialect::getParseOperationHook(StringRef opName) const {
305   if (opName == "test.dialect_custom_printer") {
306     return ParseOpHook{[](OpAsmParser &parser, OperationState &state) {
307       return parser.parseKeyword("custom_format");
308     }};
309   }
310   if (opName == "test.dialect_custom_format_fallback") {
311     return ParseOpHook{[](OpAsmParser &parser, OperationState &state) {
312       return parser.parseKeyword("custom_format_fallback");
313     }};
314   }
315   return None;
316 }
317 
318 llvm::unique_function<void(Operation *, OpAsmPrinter &)>
319 TestDialect::getOperationPrinter(Operation *op) const {
320   StringRef opName = op->getName().getStringRef();
321   if (opName == "test.dialect_custom_printer") {
322     return [](Operation *op, OpAsmPrinter &printer) {
323       printer.getStream() << " custom_format";
324     };
325   }
326   if (opName == "test.dialect_custom_format_fallback") {
327     return [](Operation *op, OpAsmPrinter &printer) {
328       printer.getStream() << " custom_format_fallback";
329     };
330   }
331   return {};
332 }
333 
334 //===----------------------------------------------------------------------===//
335 // TestBranchOp
336 //===----------------------------------------------------------------------===//
337 
338 Optional<MutableOperandRange>
339 TestBranchOp::getMutableSuccessorOperands(unsigned index) {
340   assert(index == 0 && "invalid successor index");
341   return getTargetOperandsMutable();
342 }
343 
344 //===----------------------------------------------------------------------===//
345 // TestDialectCanonicalizerOp
346 //===----------------------------------------------------------------------===//
347 
348 static LogicalResult
349 dialectCanonicalizationPattern(TestDialectCanonicalizerOp op,
350                                PatternRewriter &rewriter) {
351   rewriter.replaceOpWithNewOp<arith::ConstantOp>(
352       op, rewriter.getI32IntegerAttr(42));
353   return success();
354 }
355 
356 void TestDialect::getCanonicalizationPatterns(
357     RewritePatternSet &results) const {
358   results.add(&dialectCanonicalizationPattern);
359 }
360 
361 //===----------------------------------------------------------------------===//
362 // TestCallOp
363 //===----------------------------------------------------------------------===//
364 
365 LogicalResult TestCallOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
366   // Check that the callee attribute was specified.
367   auto fnAttr = (*this)->getAttrOfType<FlatSymbolRefAttr>("callee");
368   if (!fnAttr)
369     return emitOpError("requires a 'callee' symbol reference attribute");
370   if (!symbolTable.lookupNearestSymbolFrom<FunctionOpInterface>(*this, fnAttr))
371     return emitOpError() << "'" << fnAttr.getValue()
372                          << "' does not reference a valid function";
373   return success();
374 }
375 
376 //===----------------------------------------------------------------------===//
377 // TestFoldToCallOp
378 //===----------------------------------------------------------------------===//
379 
380 namespace {
381 struct FoldToCallOpPattern : public OpRewritePattern<FoldToCallOp> {
382   using OpRewritePattern<FoldToCallOp>::OpRewritePattern;
383 
384   LogicalResult matchAndRewrite(FoldToCallOp op,
385                                 PatternRewriter &rewriter) const override {
386     rewriter.replaceOpWithNewOp<func::CallOp>(op, TypeRange(),
387                                               op.getCalleeAttr(), ValueRange());
388     return success();
389   }
390 };
391 } // namespace
392 
393 void FoldToCallOp::getCanonicalizationPatterns(RewritePatternSet &results,
394                                                MLIRContext *context) {
395   results.add<FoldToCallOpPattern>(context);
396 }
397 
398 //===----------------------------------------------------------------------===//
399 // Test Format* operations
400 //===----------------------------------------------------------------------===//
401 
402 //===----------------------------------------------------------------------===//
403 // Parsing
404 
405 static ParseResult
406 parseCustomOptionalOperand(OpAsmParser &parser,
407                            Optional<OpAsmParser::OperandType> &optOperand) {
408   if (succeeded(parser.parseOptionalLParen())) {
409     optOperand.emplace();
410     if (parser.parseOperand(*optOperand) || parser.parseRParen())
411       return failure();
412   }
413   return success();
414 }
415 
416 static ParseResult parseCustomDirectiveOperands(
417     OpAsmParser &parser, OpAsmParser::OperandType &operand,
418     Optional<OpAsmParser::OperandType> &optOperand,
419     SmallVectorImpl<OpAsmParser::OperandType> &varOperands) {
420   if (parser.parseOperand(operand))
421     return failure();
422   if (succeeded(parser.parseOptionalComma())) {
423     optOperand.emplace();
424     if (parser.parseOperand(*optOperand))
425       return failure();
426   }
427   if (parser.parseArrow() || parser.parseLParen() ||
428       parser.parseOperandList(varOperands) || parser.parseRParen())
429     return failure();
430   return success();
431 }
432 static ParseResult
433 parseCustomDirectiveResults(OpAsmParser &parser, Type &operandType,
434                             Type &optOperandType,
435                             SmallVectorImpl<Type> &varOperandTypes) {
436   if (parser.parseColon())
437     return failure();
438 
439   if (parser.parseType(operandType))
440     return failure();
441   if (succeeded(parser.parseOptionalComma())) {
442     if (parser.parseType(optOperandType))
443       return failure();
444   }
445   if (parser.parseArrow() || parser.parseLParen() ||
446       parser.parseTypeList(varOperandTypes) || parser.parseRParen())
447     return failure();
448   return success();
449 }
450 static ParseResult
451 parseCustomDirectiveWithTypeRefs(OpAsmParser &parser, Type operandType,
452                                  Type optOperandType,
453                                  const SmallVectorImpl<Type> &varOperandTypes) {
454   if (parser.parseKeyword("type_refs_capture"))
455     return failure();
456 
457   Type operandType2, optOperandType2;
458   SmallVector<Type, 1> varOperandTypes2;
459   if (parseCustomDirectiveResults(parser, operandType2, optOperandType2,
460                                   varOperandTypes2))
461     return failure();
462 
463   if (operandType != operandType2 || optOperandType != optOperandType2 ||
464       varOperandTypes != varOperandTypes2)
465     return failure();
466 
467   return success();
468 }
469 static ParseResult parseCustomDirectiveOperandsAndTypes(
470     OpAsmParser &parser, OpAsmParser::OperandType &operand,
471     Optional<OpAsmParser::OperandType> &optOperand,
472     SmallVectorImpl<OpAsmParser::OperandType> &varOperands, Type &operandType,
473     Type &optOperandType, SmallVectorImpl<Type> &varOperandTypes) {
474   if (parseCustomDirectiveOperands(parser, operand, optOperand, varOperands) ||
475       parseCustomDirectiveResults(parser, operandType, optOperandType,
476                                   varOperandTypes))
477     return failure();
478   return success();
479 }
480 static ParseResult parseCustomDirectiveRegions(
481     OpAsmParser &parser, Region &region,
482     SmallVectorImpl<std::unique_ptr<Region>> &varRegions) {
483   if (parser.parseRegion(region))
484     return failure();
485   if (failed(parser.parseOptionalComma()))
486     return success();
487   std::unique_ptr<Region> varRegion = std::make_unique<Region>();
488   if (parser.parseRegion(*varRegion))
489     return failure();
490   varRegions.emplace_back(std::move(varRegion));
491   return success();
492 }
493 static ParseResult
494 parseCustomDirectiveSuccessors(OpAsmParser &parser, Block *&successor,
495                                SmallVectorImpl<Block *> &varSuccessors) {
496   if (parser.parseSuccessor(successor))
497     return failure();
498   if (failed(parser.parseOptionalComma()))
499     return success();
500   Block *varSuccessor;
501   if (parser.parseSuccessor(varSuccessor))
502     return failure();
503   varSuccessors.append(2, varSuccessor);
504   return success();
505 }
506 static ParseResult parseCustomDirectiveAttributes(OpAsmParser &parser,
507                                                   IntegerAttr &attr,
508                                                   IntegerAttr &optAttr) {
509   if (parser.parseAttribute(attr))
510     return failure();
511   if (succeeded(parser.parseOptionalComma())) {
512     if (parser.parseAttribute(optAttr))
513       return failure();
514   }
515   return success();
516 }
517 
518 static ParseResult parseCustomDirectiveAttrDict(OpAsmParser &parser,
519                                                 NamedAttrList &attrs) {
520   return parser.parseOptionalAttrDict(attrs);
521 }
522 static ParseResult parseCustomDirectiveOptionalOperandRef(
523     OpAsmParser &parser, Optional<OpAsmParser::OperandType> &optOperand) {
524   int64_t operandCount = 0;
525   if (parser.parseInteger(operandCount))
526     return failure();
527   bool expectedOptionalOperand = operandCount == 0;
528   return success(expectedOptionalOperand != optOperand.hasValue());
529 }
530 
531 //===----------------------------------------------------------------------===//
532 // Printing
533 
534 static void printCustomOptionalOperand(OpAsmPrinter &printer, Operation *,
535                                        Value optOperand) {
536   if (optOperand)
537     printer << "(" << optOperand << ") ";
538 }
539 
540 static void printCustomDirectiveOperands(OpAsmPrinter &printer, Operation *,
541                                          Value operand, Value optOperand,
542                                          OperandRange varOperands) {
543   printer << operand;
544   if (optOperand)
545     printer << ", " << optOperand;
546   printer << " -> (" << varOperands << ")";
547 }
548 static void printCustomDirectiveResults(OpAsmPrinter &printer, Operation *,
549                                         Type operandType, Type optOperandType,
550                                         TypeRange varOperandTypes) {
551   printer << " : " << operandType;
552   if (optOperandType)
553     printer << ", " << optOperandType;
554   printer << " -> (" << varOperandTypes << ")";
555 }
556 static void printCustomDirectiveWithTypeRefs(OpAsmPrinter &printer,
557                                              Operation *op, Type operandType,
558                                              Type optOperandType,
559                                              TypeRange varOperandTypes) {
560   printer << " type_refs_capture ";
561   printCustomDirectiveResults(printer, op, operandType, optOperandType,
562                               varOperandTypes);
563 }
564 static void printCustomDirectiveOperandsAndTypes(
565     OpAsmPrinter &printer, Operation *op, Value operand, Value optOperand,
566     OperandRange varOperands, Type operandType, Type optOperandType,
567     TypeRange varOperandTypes) {
568   printCustomDirectiveOperands(printer, op, operand, optOperand, varOperands);
569   printCustomDirectiveResults(printer, op, operandType, optOperandType,
570                               varOperandTypes);
571 }
572 static void printCustomDirectiveRegions(OpAsmPrinter &printer, Operation *,
573                                         Region &region,
574                                         MutableArrayRef<Region> varRegions) {
575   printer.printRegion(region);
576   if (!varRegions.empty()) {
577     printer << ", ";
578     for (Region &region : varRegions)
579       printer.printRegion(region);
580   }
581 }
582 static void printCustomDirectiveSuccessors(OpAsmPrinter &printer, Operation *,
583                                            Block *successor,
584                                            SuccessorRange varSuccessors) {
585   printer << successor;
586   if (!varSuccessors.empty())
587     printer << ", " << varSuccessors.front();
588 }
589 static void printCustomDirectiveAttributes(OpAsmPrinter &printer, Operation *,
590                                            Attribute attribute,
591                                            Attribute optAttribute) {
592   printer << attribute;
593   if (optAttribute)
594     printer << ", " << optAttribute;
595 }
596 
597 static void printCustomDirectiveAttrDict(OpAsmPrinter &printer, Operation *op,
598                                          DictionaryAttr attrs) {
599   printer.printOptionalAttrDict(attrs.getValue());
600 }
601 
602 static void printCustomDirectiveOptionalOperandRef(OpAsmPrinter &printer,
603                                                    Operation *op,
604                                                    Value optOperand) {
605   printer << (optOperand ? "1" : "0");
606 }
607 
608 //===----------------------------------------------------------------------===//
609 // Test IsolatedRegionOp - parse passthrough region arguments.
610 //===----------------------------------------------------------------------===//
611 
612 ParseResult IsolatedRegionOp::parse(OpAsmParser &parser,
613                                     OperationState &result) {
614   OpAsmParser::OperandType argInfo;
615   Type argType = parser.getBuilder().getIndexType();
616 
617   // Parse the input operand.
618   if (parser.parseOperand(argInfo) ||
619       parser.resolveOperand(argInfo, argType, result.operands))
620     return failure();
621 
622   // Parse the body region, and reuse the operand info as the argument info.
623   Region *body = result.addRegion();
624   return parser.parseRegion(*body, argInfo, argType, /*argLocations=*/{},
625                             /*enableNameShadowing=*/true);
626 }
627 
628 void IsolatedRegionOp::print(OpAsmPrinter &p) {
629   p << "test.isolated_region ";
630   p.printOperand(getOperand());
631   p.shadowRegionArgs(getRegion(), getOperand());
632   p << ' ';
633   p.printRegion(getRegion(), /*printEntryBlockArgs=*/false);
634 }
635 
636 //===----------------------------------------------------------------------===//
637 // Test SSACFGRegionOp
638 //===----------------------------------------------------------------------===//
639 
640 RegionKind SSACFGRegionOp::getRegionKind(unsigned index) {
641   return RegionKind::SSACFG;
642 }
643 
644 //===----------------------------------------------------------------------===//
645 // Test GraphRegionOp
646 //===----------------------------------------------------------------------===//
647 
648 ParseResult GraphRegionOp::parse(OpAsmParser &parser, OperationState &result) {
649   // Parse the body region, and reuse the operand info as the argument info.
650   Region *body = result.addRegion();
651   return parser.parseRegion(*body, /*arguments=*/{}, /*argTypes=*/{});
652 }
653 
654 void GraphRegionOp::print(OpAsmPrinter &p) {
655   p << "test.graph_region ";
656   p.printRegion(getRegion(), /*printEntryBlockArgs=*/false);
657 }
658 
659 RegionKind GraphRegionOp::getRegionKind(unsigned index) {
660   return RegionKind::Graph;
661 }
662 
663 //===----------------------------------------------------------------------===//
664 // Test AffineScopeOp
665 //===----------------------------------------------------------------------===//
666 
667 ParseResult AffineScopeOp::parse(OpAsmParser &parser, OperationState &result) {
668   // Parse the body region, and reuse the operand info as the argument info.
669   Region *body = result.addRegion();
670   return parser.parseRegion(*body, /*arguments=*/{}, /*argTypes=*/{});
671 }
672 
673 void AffineScopeOp::print(OpAsmPrinter &p) {
674   p << "test.affine_scope ";
675   p.printRegion(getRegion(), /*printEntryBlockArgs=*/false);
676 }
677 
678 //===----------------------------------------------------------------------===//
679 // Test parser.
680 //===----------------------------------------------------------------------===//
681 
682 ParseResult ParseIntegerLiteralOp::parse(OpAsmParser &parser,
683                                          OperationState &result) {
684   if (parser.parseOptionalColon())
685     return success();
686   uint64_t numResults;
687   if (parser.parseInteger(numResults))
688     return failure();
689 
690   IndexType type = parser.getBuilder().getIndexType();
691   for (unsigned i = 0; i < numResults; ++i)
692     result.addTypes(type);
693   return success();
694 }
695 
696 void ParseIntegerLiteralOp::print(OpAsmPrinter &p) {
697   if (unsigned numResults = getNumResults())
698     p << " : " << numResults;
699 }
700 
701 ParseResult ParseWrappedKeywordOp::parse(OpAsmParser &parser,
702                                          OperationState &result) {
703   StringRef keyword;
704   if (parser.parseKeyword(&keyword))
705     return failure();
706   result.addAttribute("keyword", parser.getBuilder().getStringAttr(keyword));
707   return success();
708 }
709 
710 void ParseWrappedKeywordOp::print(OpAsmPrinter &p) { p << " " << getKeyword(); }
711 
712 //===----------------------------------------------------------------------===//
713 // Test WrapRegionOp - wrapping op exercising `parseGenericOperation()`.
714 
715 ParseResult WrappingRegionOp::parse(OpAsmParser &parser,
716                                     OperationState &result) {
717   if (parser.parseKeyword("wraps"))
718     return failure();
719 
720   // Parse the wrapped op in a region
721   Region &body = *result.addRegion();
722   body.push_back(new Block);
723   Block &block = body.back();
724   Operation *wrappedOp = parser.parseGenericOperation(&block, block.begin());
725   if (!wrappedOp)
726     return failure();
727 
728   // Create a return terminator in the inner region, pass as operand to the
729   // terminator the returned values from the wrapped operation.
730   SmallVector<Value, 8> returnOperands(wrappedOp->getResults());
731   OpBuilder builder(parser.getContext());
732   builder.setInsertionPointToEnd(&block);
733   builder.create<TestReturnOp>(wrappedOp->getLoc(), returnOperands);
734 
735   // Get the results type for the wrapping op from the terminator operands.
736   Operation &returnOp = body.back().back();
737   result.types.append(returnOp.operand_type_begin(),
738                       returnOp.operand_type_end());
739 
740   // Use the location of the wrapped op for the "test.wrapping_region" op.
741   result.location = wrappedOp->getLoc();
742 
743   return success();
744 }
745 
746 void WrappingRegionOp::print(OpAsmPrinter &p) {
747   p << " wraps ";
748   p.printGenericOp(&getRegion().front().front());
749 }
750 
751 //===----------------------------------------------------------------------===//
752 // Test PrettyPrintedRegionOp -  exercising the following parser APIs
753 //   parseGenericOperationAfterOpName
754 //   parseCustomOperationName
755 //===----------------------------------------------------------------------===//
756 
757 ParseResult PrettyPrintedRegionOp::parse(OpAsmParser &parser,
758                                          OperationState &result) {
759 
760   SMLoc loc = parser.getCurrentLocation();
761   Location currLocation = parser.getEncodedSourceLoc(loc);
762 
763   // Parse the operands.
764   SmallVector<OpAsmParser::OperandType, 2> operands;
765   if (parser.parseOperandList(operands))
766     return failure();
767 
768   // Check if we are parsing the pretty-printed version
769   //  test.pretty_printed_region start <inner-op> end : <functional-type>
770   // Else fallback to parsing the "non pretty-printed" version.
771   if (!succeeded(parser.parseOptionalKeyword("start")))
772     return parser.parseGenericOperationAfterOpName(
773         result, llvm::makeArrayRef(operands));
774 
775   FailureOr<OperationName> parseOpNameInfo = parser.parseCustomOperationName();
776   if (failed(parseOpNameInfo))
777     return failure();
778 
779   StringRef innerOpName = parseOpNameInfo->getStringRef();
780 
781   FunctionType opFntype;
782   Optional<Location> explicitLoc;
783   if (parser.parseKeyword("end") || parser.parseColon() ||
784       parser.parseType(opFntype) ||
785       parser.parseOptionalLocationSpecifier(explicitLoc))
786     return failure();
787 
788   // If location of the op is explicitly provided, then use it; Else use
789   // the parser's current location.
790   Location opLoc = explicitLoc.getValueOr(currLocation);
791 
792   // Derive the SSA-values for op's operands.
793   if (parser.resolveOperands(operands, opFntype.getInputs(), loc,
794                              result.operands))
795     return failure();
796 
797   // Add a region for op.
798   Region &region = *result.addRegion();
799 
800   // Create a basic-block inside op's region.
801   Block &block = region.emplaceBlock();
802 
803   // Create and insert an "inner-op" operation in the block.
804   // Just for testing purposes, we can assume that inner op is a binary op with
805   // result and operand types all same as the test-op's first operand.
806   Type innerOpType = opFntype.getInput(0);
807   Value lhs = block.addArgument(innerOpType, opLoc);
808   Value rhs = block.addArgument(innerOpType, opLoc);
809 
810   OpBuilder builder(parser.getBuilder().getContext());
811   builder.setInsertionPointToStart(&block);
812 
813   OperationState innerOpState(opLoc, innerOpName);
814   innerOpState.operands.push_back(lhs);
815   innerOpState.operands.push_back(rhs);
816   innerOpState.addTypes(innerOpType);
817 
818   Operation *innerOp = builder.createOperation(innerOpState);
819 
820   // Insert a return statement in the block returning the inner-op's result.
821   builder.create<TestReturnOp>(innerOp->getLoc(), innerOp->getResults());
822 
823   // Populate the op operation-state with result-type and location.
824   result.addTypes(opFntype.getResults());
825   result.location = innerOp->getLoc();
826 
827   return success();
828 }
829 
830 void PrettyPrintedRegionOp::print(OpAsmPrinter &p) {
831   p << ' ';
832   p.printOperands(getOperands());
833 
834   Operation &innerOp = getRegion().front().front();
835   // Assuming that region has a single non-terminator inner-op, if the inner-op
836   // meets some criteria (which in this case is a simple one  based on the name
837   // of inner-op), then we can print the entire region in a succinct way.
838   // Here we assume that the prototype of "special.op" can be trivially derived
839   // while parsing it back.
840   if (innerOp.getName().getStringRef().equals("special.op")) {
841     p << " start special.op end";
842   } else {
843     p << " (";
844     p.printRegion(getRegion());
845     p << ")";
846   }
847 
848   p << " : ";
849   p.printFunctionalType(*this);
850 }
851 
852 //===----------------------------------------------------------------------===//
853 // Test PolyForOp - parse list of region arguments.
854 //===----------------------------------------------------------------------===//
855 
856 ParseResult PolyForOp::parse(OpAsmParser &parser, OperationState &result) {
857   SmallVector<OpAsmParser::OperandType, 4> ivsInfo;
858   // Parse list of region arguments without a delimiter.
859   if (parser.parseRegionArgumentList(ivsInfo))
860     return failure();
861 
862   // Parse the body region.
863   Region *body = result.addRegion();
864   auto &builder = parser.getBuilder();
865   SmallVector<Type, 4> argTypes(ivsInfo.size(), builder.getIndexType());
866   return parser.parseRegion(*body, ivsInfo, argTypes);
867 }
868 
869 void PolyForOp::print(OpAsmPrinter &p) { p.printGenericOp(*this); }
870 
871 void PolyForOp::getAsmBlockArgumentNames(Region &region,
872                                          OpAsmSetValueNameFn setNameFn) {
873   auto arrayAttr = getOperation()->getAttrOfType<ArrayAttr>("arg_names");
874   if (!arrayAttr)
875     return;
876   auto args = getRegion().front().getArguments();
877   auto e = std::min(arrayAttr.size(), args.size());
878   for (unsigned i = 0; i < e; ++i) {
879     if (auto strAttr = arrayAttr[i].dyn_cast<StringAttr>())
880       setNameFn(args[i], strAttr.getValue());
881   }
882 }
883 
884 //===----------------------------------------------------------------------===//
885 // Test removing op with inner ops.
886 //===----------------------------------------------------------------------===//
887 
888 namespace {
889 struct TestRemoveOpWithInnerOps
890     : public OpRewritePattern<TestOpWithRegionPattern> {
891   using OpRewritePattern<TestOpWithRegionPattern>::OpRewritePattern;
892 
893   void initialize() { setDebugName("TestRemoveOpWithInnerOps"); }
894 
895   LogicalResult matchAndRewrite(TestOpWithRegionPattern op,
896                                 PatternRewriter &rewriter) const override {
897     rewriter.eraseOp(op);
898     return success();
899   }
900 };
901 } // namespace
902 
903 void TestOpWithRegionPattern::getCanonicalizationPatterns(
904     RewritePatternSet &results, MLIRContext *context) {
905   results.add<TestRemoveOpWithInnerOps>(context);
906 }
907 
908 OpFoldResult TestOpWithRegionFold::fold(ArrayRef<Attribute> operands) {
909   return getOperand();
910 }
911 
912 OpFoldResult TestOpConstant::fold(ArrayRef<Attribute> operands) {
913   return getValue();
914 }
915 
916 LogicalResult TestOpWithVariadicResultsAndFolder::fold(
917     ArrayRef<Attribute> operands, SmallVectorImpl<OpFoldResult> &results) {
918   for (Value input : this->getOperands()) {
919     results.push_back(input);
920   }
921   return success();
922 }
923 
924 OpFoldResult TestOpInPlaceFold::fold(ArrayRef<Attribute> operands) {
925   assert(operands.size() == 1);
926   if (operands.front()) {
927     (*this)->setAttr("attr", operands.front());
928     return getResult();
929   }
930   return {};
931 }
932 
933 OpFoldResult TestPassthroughFold::fold(ArrayRef<Attribute> operands) {
934   return getOperand();
935 }
936 
937 LogicalResult OpWithInferTypeInterfaceOp::inferReturnTypes(
938     MLIRContext *, Optional<Location> location, ValueRange operands,
939     DictionaryAttr attributes, RegionRange regions,
940     SmallVectorImpl<Type> &inferredReturnTypes) {
941   if (operands[0].getType() != operands[1].getType()) {
942     return emitOptionalError(location, "operand type mismatch ",
943                              operands[0].getType(), " vs ",
944                              operands[1].getType());
945   }
946   inferredReturnTypes.assign({operands[0].getType()});
947   return success();
948 }
949 
950 LogicalResult OpWithShapedTypeInferTypeInterfaceOp::inferReturnTypeComponents(
951     MLIRContext *context, Optional<Location> location, ValueShapeRange operands,
952     DictionaryAttr attributes, RegionRange regions,
953     SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
954   // Create return type consisting of the last element of the first operand.
955   auto operandType = operands.front().getType();
956   auto sval = operandType.dyn_cast<ShapedType>();
957   if (!sval) {
958     return emitOptionalError(location, "only shaped type operands allowed");
959   }
960   int64_t dim =
961       sval.hasRank() ? sval.getShape().front() : ShapedType::kDynamicSize;
962   auto type = IntegerType::get(context, 17);
963   inferredReturnShapes.push_back(ShapedTypeComponents({dim}, type));
964   return success();
965 }
966 
967 LogicalResult OpWithShapedTypeInferTypeInterfaceOp::reifyReturnTypeShapes(
968     OpBuilder &builder, ValueRange operands,
969     llvm::SmallVectorImpl<Value> &shapes) {
970   shapes = SmallVector<Value, 1>{
971       builder.createOrFold<tensor::DimOp>(getLoc(), operands.front(), 0)};
972   return success();
973 }
974 
975 LogicalResult OpWithResultShapeInterfaceOp::reifyReturnTypeShapes(
976     OpBuilder &builder, ValueRange operands,
977     llvm::SmallVectorImpl<Value> &shapes) {
978   Location loc = getLoc();
979   shapes.reserve(operands.size());
980   for (Value operand : llvm::reverse(operands)) {
981     auto rank = operand.getType().cast<RankedTensorType>().getRank();
982     auto currShape = llvm::to_vector<4>(
983         llvm::map_range(llvm::seq<int64_t>(0, rank), [&](int64_t dim) -> Value {
984           return builder.createOrFold<tensor::DimOp>(loc, operand, dim);
985         }));
986     shapes.push_back(builder.create<tensor::FromElementsOp>(
987         getLoc(), RankedTensorType::get({rank}, builder.getIndexType()),
988         currShape));
989   }
990   return success();
991 }
992 
993 LogicalResult OpWithResultShapePerDimInterfaceOp::reifyResultShapes(
994     OpBuilder &builder, ReifiedRankedShapedTypeDims &shapes) {
995   Location loc = getLoc();
996   shapes.reserve(getNumOperands());
997   for (Value operand : llvm::reverse(getOperands())) {
998     auto currShape = llvm::to_vector<4>(llvm::map_range(
999         llvm::seq<int64_t>(
1000             0, operand.getType().cast<RankedTensorType>().getRank()),
1001         [&](int64_t dim) -> Value {
1002           return builder.createOrFold<tensor::DimOp>(loc, operand, dim);
1003         }));
1004     shapes.emplace_back(std::move(currShape));
1005   }
1006   return success();
1007 }
1008 
1009 //===----------------------------------------------------------------------===//
1010 // Test SideEffect interfaces
1011 //===----------------------------------------------------------------------===//
1012 
1013 namespace {
1014 /// A test resource for side effects.
1015 struct TestResource : public SideEffects::Resource::Base<TestResource> {
1016   StringRef getName() final { return "<Test>"; }
1017 };
1018 } // namespace
1019 
1020 static void testSideEffectOpGetEffect(
1021     Operation *op,
1022     SmallVectorImpl<SideEffects::EffectInstance<TestEffects::Effect>>
1023         &effects) {
1024   auto effectsAttr = op->getAttrOfType<AffineMapAttr>("effect_parameter");
1025   if (!effectsAttr)
1026     return;
1027 
1028   effects.emplace_back(TestEffects::Concrete::get(), effectsAttr);
1029 }
1030 
1031 void SideEffectOp::getEffects(
1032     SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
1033   // Check for an effects attribute on the op instance.
1034   ArrayAttr effectsAttr = (*this)->getAttrOfType<ArrayAttr>("effects");
1035   if (!effectsAttr)
1036     return;
1037 
1038   // If there is one, it is an array of dictionary attributes that hold
1039   // information on the effects of this operation.
1040   for (Attribute element : effectsAttr) {
1041     DictionaryAttr effectElement = element.cast<DictionaryAttr>();
1042 
1043     // Get the specific memory effect.
1044     MemoryEffects::Effect *effect =
1045         StringSwitch<MemoryEffects::Effect *>(
1046             effectElement.get("effect").cast<StringAttr>().getValue())
1047             .Case("allocate", MemoryEffects::Allocate::get())
1048             .Case("free", MemoryEffects::Free::get())
1049             .Case("read", MemoryEffects::Read::get())
1050             .Case("write", MemoryEffects::Write::get());
1051 
1052     // Check for a non-default resource to use.
1053     SideEffects::Resource *resource = SideEffects::DefaultResource::get();
1054     if (effectElement.get("test_resource"))
1055       resource = TestResource::get();
1056 
1057     // Check for a result to affect.
1058     if (effectElement.get("on_result"))
1059       effects.emplace_back(effect, getResult(), resource);
1060     else if (Attribute ref = effectElement.get("on_reference"))
1061       effects.emplace_back(effect, ref.cast<SymbolRefAttr>(), resource);
1062     else
1063       effects.emplace_back(effect, resource);
1064   }
1065 }
1066 
1067 void SideEffectOp::getEffects(
1068     SmallVectorImpl<TestEffects::EffectInstance> &effects) {
1069   testSideEffectOpGetEffect(getOperation(), effects);
1070 }
1071 
1072 //===----------------------------------------------------------------------===//
1073 // StringAttrPrettyNameOp
1074 //===----------------------------------------------------------------------===//
1075 
1076 // This op has fancy handling of its SSA result name.
1077 ParseResult StringAttrPrettyNameOp::parse(OpAsmParser &parser,
1078                                           OperationState &result) {
1079   // Add the result types.
1080   for (size_t i = 0, e = parser.getNumResults(); i != e; ++i)
1081     result.addTypes(parser.getBuilder().getIntegerType(32));
1082 
1083   if (parser.parseOptionalAttrDictWithKeyword(result.attributes))
1084     return failure();
1085 
1086   // If the attribute dictionary contains no 'names' attribute, infer it from
1087   // the SSA name (if specified).
1088   bool hadNames = llvm::any_of(result.attributes, [](NamedAttribute attr) {
1089     return attr.getName() == "names";
1090   });
1091 
1092   // If there was no name specified, check to see if there was a useful name
1093   // specified in the asm file.
1094   if (hadNames || parser.getNumResults() == 0)
1095     return success();
1096 
1097   SmallVector<StringRef, 4> names;
1098   auto *context = result.getContext();
1099 
1100   for (size_t i = 0, e = parser.getNumResults(); i != e; ++i) {
1101     auto resultName = parser.getResultName(i);
1102     StringRef nameStr;
1103     if (!resultName.first.empty() && !isdigit(resultName.first[0]))
1104       nameStr = resultName.first;
1105 
1106     names.push_back(nameStr);
1107   }
1108 
1109   auto namesAttr = parser.getBuilder().getStrArrayAttr(names);
1110   result.attributes.push_back({StringAttr::get(context, "names"), namesAttr});
1111   return success();
1112 }
1113 
1114 void StringAttrPrettyNameOp::print(OpAsmPrinter &p) {
1115   // Note that we only need to print the "name" attribute if the asmprinter
1116   // result name disagrees with it.  This can happen in strange cases, e.g.
1117   // when there are conflicts.
1118   bool namesDisagree = getNames().size() != getNumResults();
1119 
1120   SmallString<32> resultNameStr;
1121   for (size_t i = 0, e = getNumResults(); i != e && !namesDisagree; ++i) {
1122     resultNameStr.clear();
1123     llvm::raw_svector_ostream tmpStream(resultNameStr);
1124     p.printOperand(getResult(i), tmpStream);
1125 
1126     auto expectedName = getNames()[i].dyn_cast<StringAttr>();
1127     if (!expectedName ||
1128         tmpStream.str().drop_front() != expectedName.getValue()) {
1129       namesDisagree = true;
1130     }
1131   }
1132 
1133   if (namesDisagree)
1134     p.printOptionalAttrDictWithKeyword((*this)->getAttrs());
1135   else
1136     p.printOptionalAttrDictWithKeyword((*this)->getAttrs(), {"names"});
1137 }
1138 
1139 // We set the SSA name in the asm syntax to the contents of the name
1140 // attribute.
1141 void StringAttrPrettyNameOp::getAsmResultNames(
1142     function_ref<void(Value, StringRef)> setNameFn) {
1143 
1144   auto value = getNames();
1145   for (size_t i = 0, e = value.size(); i != e; ++i)
1146     if (auto str = value[i].dyn_cast<StringAttr>())
1147       if (!str.getValue().empty())
1148         setNameFn(getResult(i), str.getValue());
1149 }
1150 
1151 //===----------------------------------------------------------------------===//
1152 // ResultTypeWithTraitOp
1153 //===----------------------------------------------------------------------===//
1154 
1155 LogicalResult ResultTypeWithTraitOp::verify() {
1156   if ((*this)->getResultTypes()[0].hasTrait<TypeTrait::TestTypeTrait>())
1157     return success();
1158   return emitError("result type should have trait 'TestTypeTrait'");
1159 }
1160 
1161 //===----------------------------------------------------------------------===//
1162 // AttrWithTraitOp
1163 //===----------------------------------------------------------------------===//
1164 
1165 LogicalResult AttrWithTraitOp::verify() {
1166   if (getAttr().hasTrait<AttributeTrait::TestAttrTrait>())
1167     return success();
1168   return emitError("'attr' attribute should have trait 'TestAttrTrait'");
1169 }
1170 
1171 //===----------------------------------------------------------------------===//
1172 // RegionIfOp
1173 //===----------------------------------------------------------------------===//
1174 
1175 void RegionIfOp::print(OpAsmPrinter &p) {
1176   p << " ";
1177   p.printOperands(getOperands());
1178   p << ": " << getOperandTypes();
1179   p.printArrowTypeList(getResultTypes());
1180   p << " then ";
1181   p.printRegion(getThenRegion(),
1182                 /*printEntryBlockArgs=*/true,
1183                 /*printBlockTerminators=*/true);
1184   p << " else ";
1185   p.printRegion(getElseRegion(),
1186                 /*printEntryBlockArgs=*/true,
1187                 /*printBlockTerminators=*/true);
1188   p << " join ";
1189   p.printRegion(getJoinRegion(),
1190                 /*printEntryBlockArgs=*/true,
1191                 /*printBlockTerminators=*/true);
1192 }
1193 
1194 ParseResult RegionIfOp::parse(OpAsmParser &parser, OperationState &result) {
1195   SmallVector<OpAsmParser::OperandType, 2> operandInfos;
1196   SmallVector<Type, 2> operandTypes;
1197 
1198   result.regions.reserve(3);
1199   Region *thenRegion = result.addRegion();
1200   Region *elseRegion = result.addRegion();
1201   Region *joinRegion = result.addRegion();
1202 
1203   // Parse operand, type and arrow type lists.
1204   if (parser.parseOperandList(operandInfos) ||
1205       parser.parseColonTypeList(operandTypes) ||
1206       parser.parseArrowTypeList(result.types))
1207     return failure();
1208 
1209   // Parse all attached regions.
1210   if (parser.parseKeyword("then") || parser.parseRegion(*thenRegion, {}, {}) ||
1211       parser.parseKeyword("else") || parser.parseRegion(*elseRegion, {}, {}) ||
1212       parser.parseKeyword("join") || parser.parseRegion(*joinRegion, {}, {}))
1213     return failure();
1214 
1215   return parser.resolveOperands(operandInfos, operandTypes,
1216                                 parser.getCurrentLocation(), result.operands);
1217 }
1218 
1219 OperandRange RegionIfOp::getSuccessorEntryOperands(unsigned index) {
1220   assert(index < 2 && "invalid region index");
1221   return getOperands();
1222 }
1223 
1224 void RegionIfOp::getSuccessorRegions(
1225     Optional<unsigned> index, ArrayRef<Attribute> operands,
1226     SmallVectorImpl<RegionSuccessor> &regions) {
1227   // We always branch to the join region.
1228   if (index.hasValue()) {
1229     if (index.getValue() < 2)
1230       regions.push_back(RegionSuccessor(&getJoinRegion(), getJoinArgs()));
1231     else
1232       regions.push_back(RegionSuccessor(getResults()));
1233     return;
1234   }
1235 
1236   // The then and else regions are the entry regions of this op.
1237   regions.push_back(RegionSuccessor(&getThenRegion(), getThenArgs()));
1238   regions.push_back(RegionSuccessor(&getElseRegion(), getElseArgs()));
1239 }
1240 
1241 void RegionIfOp::getRegionInvocationBounds(
1242     ArrayRef<Attribute> operands,
1243     SmallVectorImpl<InvocationBounds> &invocationBounds) {
1244   // Each region is invoked at most once.
1245   invocationBounds.assign(/*NumElts=*/3, /*Elt=*/{0, 1});
1246 }
1247 
1248 //===----------------------------------------------------------------------===//
1249 // AnyCondOp
1250 //===----------------------------------------------------------------------===//
1251 
1252 void AnyCondOp::getSuccessorRegions(Optional<unsigned> index,
1253                                     ArrayRef<Attribute> operands,
1254                                     SmallVectorImpl<RegionSuccessor> &regions) {
1255   // The parent op branches into the only region, and the region branches back
1256   // to the parent op.
1257   if (index)
1258     regions.emplace_back(&getRegion());
1259   else
1260     regions.emplace_back(getResults());
1261 }
1262 
1263 void AnyCondOp::getRegionInvocationBounds(
1264     ArrayRef<Attribute> operands,
1265     SmallVectorImpl<InvocationBounds> &invocationBounds) {
1266   invocationBounds.emplace_back(1, 1);
1267 }
1268 
1269 //===----------------------------------------------------------------------===//
1270 // SingleNoTerminatorCustomAsmOp
1271 //===----------------------------------------------------------------------===//
1272 
1273 ParseResult SingleNoTerminatorCustomAsmOp::parse(OpAsmParser &parser,
1274                                                  OperationState &state) {
1275   Region *body = state.addRegion();
1276   if (parser.parseRegion(*body, /*arguments=*/{}, /*argTypes=*/{}))
1277     return failure();
1278   return success();
1279 }
1280 
1281 void SingleNoTerminatorCustomAsmOp::print(OpAsmPrinter &printer) {
1282   printer.printRegion(
1283       getRegion(), /*printEntryBlockArgs=*/false,
1284       // This op has a single block without terminators. But explicitly mark
1285       // as not printing block terminators for testing.
1286       /*printBlockTerminators=*/false);
1287 }
1288 
1289 #include "TestOpEnums.cpp.inc"
1290 #include "TestOpInterfaces.cpp.inc"
1291 #include "TestOpStructs.cpp.inc"
1292 #include "TestTypeInterfaces.cpp.inc"
1293 
1294 #define GET_OP_CLASSES
1295 #include "TestOps.cpp.inc"
1296