1 //===- TestLinalgTransforms.cpp - Test Linalg transformation patterns -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements logic for testing Linalg transformations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Dialect/Affine/IR/AffineOps.h" 14 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 15 #include "mlir/Dialect/GPU/GPUDialect.h" 16 #include "mlir/Dialect/Linalg/IR/Linalg.h" 17 #include "mlir/Dialect/Linalg/Passes.h" 18 #include "mlir/Dialect/Linalg/Transforms/HoistPadding.h" 19 #include "mlir/Dialect/Linalg/Transforms/Hoisting.h" 20 #include "mlir/Dialect/Linalg/Transforms/Transforms.h" 21 #include "mlir/Dialect/Linalg/Utils/Utils.h" 22 #include "mlir/Dialect/StandardOps/IR/Ops.h" 23 #include "mlir/Dialect/Vector/VectorOps.h" 24 #include "mlir/Pass/PassManager.h" 25 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 26 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallVector.h" 29 30 using namespace mlir; 31 using namespace mlir::linalg; 32 33 namespace { 34 struct TestLinalgTransforms 35 : public PassWrapper<TestLinalgTransforms, OperationPass<FuncOp>> { 36 TestLinalgTransforms() = default; 37 TestLinalgTransforms(const TestLinalgTransforms &pass) : PassWrapper(pass) {} 38 39 void getDependentDialects(DialectRegistry ®istry) const override { 40 // clang-format off 41 registry.insert<AffineDialect, 42 memref::MemRefDialect, 43 scf::SCFDialect, 44 StandardOpsDialect, 45 vector::VectorDialect, 46 gpu::GPUDialect>(); 47 // clang-format on 48 } 49 StringRef getArgument() const final { 50 return "test-linalg-transform-patterns"; 51 } 52 StringRef getDescription() const final { 53 return "Test Linalg transformation patterns by applying them greedily."; 54 } 55 56 void runOnOperation() override; 57 58 Option<bool> testPatterns{*this, "test-patterns", 59 llvm::cl::desc("Test a mixed set of patterns"), 60 llvm::cl::init(false)}; 61 Option<bool> testMatmulToVectorPatterns1dTiling{ 62 *this, "test-matmul-to-vector-patterns-tile-1d", 63 llvm::cl::desc( 64 "Test a fused pass that applies patterns from matmul to vectors via " 65 "1-d tiling"), 66 llvm::cl::init(false)}; 67 Option<bool> testMatmulToVectorPatterns2dTiling{ 68 *this, "test-matmul-to-vector-patterns-tile-2d", 69 llvm::cl::desc( 70 "Test a fused pass that applies patterns from matmul to vectors via " 71 "2-d tiling"), 72 llvm::cl::init(false)}; 73 Option<bool> testPromotionOptions{*this, "test-linalg-promotion-options", 74 llvm::cl::desc("Test promotion options"), 75 llvm::cl::init(false)}; 76 Option<bool> testTileAndDistributionOptions{ 77 *this, "test-tile-and-distribute-options", 78 llvm::cl::desc("Test tile and distribute options"), 79 llvm::cl::init(false)}; 80 Option<bool> testVectorTransferForwardingPatterns{ 81 *this, "test-vector-transfer-forwarding-patterns", 82 llvm::cl::desc( 83 "Test a fused pass that forwards linalg.copy to vector.transfer"), 84 llvm::cl::init(false)}; 85 Option<bool> testGenericToVectorPattern{ 86 *this, "test-linalg-to-vector-patterns", 87 llvm::cl::desc("Test a set of patterns that rewrite a linalg contraction " 88 "in vector.contract form"), 89 llvm::cl::init(false)}; 90 Option<bool> testTilePattern{*this, "test-tile-pattern", 91 llvm::cl::desc("Test tile pattern"), 92 llvm::cl::init(false)}; 93 Option<bool> testTileScalarizeDynamicDims{ 94 *this, "test-tile-scalarize-dynamic-dims", 95 llvm::cl::desc("Test tiling of dynamic dims by 1"), 96 llvm::cl::init(false)}; 97 Option<bool> testTransformPadTensor{ 98 *this, "test-transform-pad-tensor", 99 llvm::cl::desc("Test transform pad tensor by copying with generic ops"), 100 llvm::cl::init(false)}; 101 Option<bool> testGeneralizePadTensor{ 102 *this, "test-generalize-pad-tensor", 103 llvm::cl::desc("Test transform pad tensor by copying with generic ops"), 104 llvm::cl::init(false)}; 105 Option<bool> testSwapSubTensorPadTensor{ 106 *this, "test-swap-subtensor-padtensor", 107 llvm::cl::desc("Test rewrite of subtensor(pad_tensor) into " 108 "pad_tensor(subtensor)"), 109 llvm::cl::init(false)}; 110 ListOption<int64_t> peeledLoops{ 111 *this, "peeled-loops", 112 llvm::cl::desc("Loops to be peeled when test-tile-pattern"), 113 llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated}; 114 ListOption<int64_t> tileSizes{ 115 *this, "tile-sizes", 116 llvm::cl::desc("Linalg tile sizes for test-tile-pattern"), 117 llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated}; 118 ListOption<unsigned> testTiledLoopPeeling{ 119 *this, "test-tiled-loop-peeling", 120 llvm::cl::desc("Test peeling of linalg.tiled_loop ops"), 121 llvm::cl::OneOrMore, llvm::cl::MiscFlags::CommaSeparated}; 122 Option<bool> skipPartial{ 123 *this, "skip-partial", 124 llvm::cl::desc("Skip loops inside partial iterations during peeling"), 125 llvm::cl::init(false)}; 126 Option<std::string> loopType{ 127 *this, "loop-type", 128 llvm::cl::desc("Specify the type of loops to generate: for, parallel or " 129 "tiled_loop"), 130 llvm::cl::init("for")}; 131 }; 132 } // namespace 133 134 static void applyPatterns(FuncOp funcOp) { 135 MLIRContext *ctx = funcOp.getContext(); 136 RewritePatternSet patterns(ctx); 137 138 //===--------------------------------------------------------------------===// 139 // Linalg tiling patterns. 140 //===--------------------------------------------------------------------===// 141 patterns.add<LinalgTilingPattern>( 142 MatmulOp::getOperationName(), ctx, 143 LinalgTilingOptions().setTileSizes({2000, 3000, 4000}), 144 LinalgTransformationFilter(StringAttr::get(ctx, "MEM"), 145 StringAttr::get(ctx, "L3"))); 146 patterns.add<LinalgTilingPattern>( 147 MatmulOp::getOperationName(), ctx, 148 LinalgTilingOptions().setTileSizes({200, 300, 400}), 149 LinalgTransformationFilter(StringAttr::get(ctx, "L3"), 150 StringAttr::get(ctx, "L2"))); 151 patterns.add<LinalgTilingPattern>( 152 MatmulOp::getOperationName(), ctx, 153 LinalgTilingOptions().setTileSizes({20, 30, 40}), 154 LinalgTransformationFilter(StringAttr::get(ctx, "L2"), 155 StringAttr::get(ctx, "L1"))); 156 patterns.add<LinalgTilingPattern>( 157 MatmulOp::getOperationName(), ctx, 158 LinalgTilingOptions().setTileSizes({2, 3, 4}), 159 LinalgTransformationFilter(StringAttr::get(ctx, "L1"), 160 StringAttr::get(ctx, "REG"))); 161 162 patterns.add<LinalgTilingPattern>( 163 MatvecOp::getOperationName(), ctx, 164 LinalgTilingOptions().setTileSizes({5, 6}).setLoopType( 165 LinalgTilingLoopType::ParallelLoops), 166 LinalgTransformationFilter(ArrayRef<StringAttr>{}, 167 StringAttr::get(ctx, "L1"))); 168 169 patterns.add<LinalgTilingPattern>( 170 DotOp::getOperationName(), ctx, LinalgTilingOptions().setTileSizes(8000), 171 LinalgTransformationFilter( 172 ArrayRef<StringAttr>{StringAttr::get(ctx, "MEM"), 173 StringAttr::get(ctx, "L3"), 174 StringAttr::get(ctx, "L2")}, 175 StringAttr::get(ctx, "REG"))); 176 177 //===--------------------------------------------------------------------===// 178 // Linalg tiling and permutation patterns. 179 //===--------------------------------------------------------------------===// 180 patterns.add<LinalgTilingPattern>( 181 MatmulOp::getOperationName(), ctx, 182 LinalgTilingOptions() 183 .setTileSizes({2000, 3000, 4000}) 184 .setInterchange({1, 2, 0}), 185 LinalgTransformationFilter(StringAttr::get(ctx, "__with_perm__"), 186 StringAttr::get(ctx, "L2__with_perm__"))); 187 patterns.add<LinalgTilingPattern>( 188 MatmulOp::getOperationName(), ctx, 189 LinalgTilingOptions() 190 .setTileSizes({200, 300, 400}) 191 .setInterchange({1, 0, 2}), 192 LinalgTransformationFilter(StringAttr::get(ctx, "L2__with_perm__"), 193 StringAttr::get(ctx, "L1__with_perm__"))); 194 patterns.add<LinalgTilingPattern>( 195 MatmulOp::getOperationName(), ctx, 196 LinalgTilingOptions().setTileSizes({20, 30, 40}), 197 LinalgTransformationFilter(StringAttr::get(ctx, "L1__with_perm__"), 198 StringAttr::get(ctx, "REG__with_perm__"))); 199 200 patterns.add<LinalgTilingPattern>( 201 MatvecOp::getOperationName(), ctx, 202 LinalgTilingOptions().setTileSizes({5, 6}).setInterchange({1, 0}), 203 LinalgTransformationFilter(StringAttr::get(ctx, "__with_perm__"), 204 StringAttr::get(ctx, "L1__with_perm__"))); 205 206 patterns.add<LinalgTilingPattern>( 207 MatmulOp::getOperationName(), ctx, 208 LinalgTilingOptions() 209 .setTileSizes({16, 8, 4}) 210 .setInterchange({1, 2, 0}) 211 .setLoopType(LinalgTilingLoopType::ParallelLoops), 212 LinalgTransformationFilter( 213 StringAttr::get(ctx, "par__with_perm__"), 214 StringAttr::get(ctx, "after_par__with_perm__"))); 215 216 //===--------------------------------------------------------------------===// 217 // Linalg to loops patterns. 218 //===--------------------------------------------------------------------===// 219 patterns.add<LinalgLoweringPattern<DotOp>>( 220 ctx, 221 /*loweringType=*/LinalgLoweringType::Loops, 222 LinalgTransformationFilter(StringAttr::get(ctx, "REG"))); 223 224 //===--------------------------------------------------------------------===// 225 // Linalg distribution patterns. 226 //===--------------------------------------------------------------------===// 227 LinalgLoopDistributionOptions distributionOptions; 228 229 //===--------------------------------------------------------------------===// 230 // Linalg to vector contraction patterns. 231 //===--------------------------------------------------------------------===// 232 patterns.add<LinalgVectorizationPattern>( 233 ctx, LinalgTransformationFilter(StringAttr::get(ctx, "VECTORIZE")) 234 .addOpFilter<MatmulOp, FillOp, CopyOp, GenericOp>()); 235 236 //===--------------------------------------------------------------------===// 237 // Linalg generic interchange pattern. 238 //===--------------------------------------------------------------------===// 239 patterns.add<GenericOpInterchangePattern>( 240 ctx, 241 /*interchangeVector=*/ArrayRef<unsigned>{1, 2, 0}, 242 LinalgTransformationFilter(ArrayRef<StringAttr>{}, 243 StringAttr::get(ctx, "PERMUTED"))); 244 245 //===--------------------------------------------------------------------===// 246 // Linalg subview operands promotion. 247 //===--------------------------------------------------------------------===// 248 patterns.add<LinalgPromotionPattern<MatmulOp>>( 249 ctx, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), 250 LinalgTransformationFilter(StringAttr::get(ctx, "_promote_views_"), 251 StringAttr::get(ctx, "_views_promoted_"))); 252 patterns.add<LinalgPromotionPattern<MatmulOp>>( 253 ctx, 254 LinalgPromotionOptions() 255 .setOperandsToPromote({0}) 256 .setUseFullTileBuffersByDefault(true), 257 LinalgTransformationFilter( 258 StringAttr::get(ctx, "_promote_first_view_"), 259 StringAttr::get(ctx, "_first_view_promoted_"))); 260 patterns.add<LinalgPromotionPattern<FillOp>>( 261 ctx, 262 LinalgPromotionOptions() 263 .setOperandsToPromote({1}) 264 .setUseFullTileBuffers({false, true}) 265 .setAlignment(32), 266 LinalgTransformationFilter( 267 StringAttr::get(ctx, "_promote_views_aligned_"), 268 StringAttr::get(ctx, "_views_aligned_promoted_"))); 269 270 (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 271 272 // Drop the marker. 273 funcOp.walk([](LinalgOp op) { 274 op->removeAttr(LinalgTransforms::kLinalgTransformMarker); 275 }); 276 } 277 278 static void fillL1TilingAndMatmulToVectorPatterns( 279 FuncOp funcOp, StringRef startMarker, 280 SmallVectorImpl<RewritePatternSet> &patternsVector) { 281 MLIRContext *ctx = funcOp.getContext(); 282 patternsVector.emplace_back( 283 ctx, std::make_unique<LinalgTilingPattern>( 284 MatmulOp::getOperationName(), ctx, 285 LinalgTilingOptions() 286 .setTileSizes({8, 12, 16}) 287 .setInterchange({1, 0, 2}), 288 LinalgTransformationFilter(StringAttr::get(ctx, startMarker), 289 StringAttr::get(ctx, "L1")))); 290 291 patternsVector.emplace_back( 292 ctx, 293 std::make_unique<LinalgPromotionPattern<MatmulOp>>( 294 ctx, LinalgPromotionOptions().setUseFullTileBuffersByDefault(true), 295 LinalgTransformationFilter(StringAttr::get(ctx, "L1"), 296 StringAttr::get(ctx, "VEC")))); 297 298 patternsVector.emplace_back( 299 ctx, std::make_unique<LinalgVectorizationPattern>( 300 MatmulOp::getOperationName(), ctx, LinalgVectorizationOptions(), 301 LinalgTransformationFilter(StringAttr::get(ctx, "VEC")))); 302 patternsVector.back().add<LinalgVectorizationPattern>( 303 ctx, LinalgTransformationFilter().addOpFilter<FillOp, CopyOp>()); 304 } 305 306 //===----------------------------------------------------------------------===// 307 // Test promotion callbacks 308 //===----------------------------------------------------------------------===// 309 310 // Allocation call back 311 static Optional<Value> allocCallBackFn(OpBuilder &b, memref::SubViewOp subView, 312 ArrayRef<Value> boundingSubViewSize, 313 DataLayout &layout) { 314 SmallVector<int64_t, 4> shape(boundingSubViewSize.size(), -1); 315 return b 316 .create<memref::AllocOp>( 317 subView.getLoc(), 318 MemRefType::get(shape, subView.getType().getElementType(), 319 /*affineMapComposition =*/{}, 3), 320 boundingSubViewSize) 321 .getResult(); 322 } 323 324 // Deallocation callback 325 static LogicalResult deallocCallBackFn(OpBuilder &b, Value buffer) { 326 b.create<memref::DeallocOp>(buffer.getLoc(), buffer); 327 return success(); 328 } 329 330 // Copy in call back 331 static LogicalResult copyCallBackFn(OpBuilder &b, Value src, Value dst, 332 bool isOutput) { 333 auto floatType = src.getType().cast<MemRefType>().getElementType(); 334 if (!floatType.isa<FloatType>()) 335 return failure(); 336 if (!isOutput) { 337 Value cst = b.create<arith::ConstantOp>(src.getLoc(), 338 FloatAttr::get(floatType, 42.0)); 339 b.create<FillOp>(src.getLoc(), cst, dst); 340 } 341 b.create<CopyOp>(src.getLoc(), src, dst); 342 return success(); 343 } 344 345 static void fillPromotionCallBackPatterns(MLIRContext *ctx, 346 RewritePatternSet &patterns) { 347 patterns.add<LinalgTilingPattern>( 348 MatmulOp::getOperationName(), ctx, 349 LinalgTilingOptions().setTileSizes({16, 16, 16}), 350 LinalgTransformationFilter(StringAttr::get(ctx, "START"), 351 StringAttr::get(ctx, "PROMOTE"))); 352 patterns.add<LinalgPromotionPattern<MatmulOp>>( 353 ctx, 354 LinalgPromotionOptions() 355 .setOperandsToPromote({0, 2}) 356 .setUseFullTileBuffers({false, false}) 357 .setAllocationDeallocationFns(allocCallBackFn, deallocCallBackFn) 358 .setCopyInOutFns( 359 [](OpBuilder &b, Value src, Value dst) -> LogicalResult { 360 return copyCallBackFn(b, src, dst, false); 361 }, 362 [](OpBuilder &b, Value src, Value dst) -> LogicalResult { 363 return copyCallBackFn(b, src, dst, true); 364 }), 365 LinalgTransformationFilter(StringAttr::get(ctx, "PROMOTE"))); 366 } 367 368 template <typename IdOp, typename NProcsOp> 369 static SmallVector<ProcInfo, 2> 370 getGpuProcIds(OpBuilder &b, Location loc, ArrayRef<Range> parallelLoopRanges) { 371 size_t count = std::min<size_t>(3, parallelLoopRanges.size()); 372 SmallVector<ProcInfo, 2> procInfo(count); 373 Type indexType = b.getIndexType(); 374 for (unsigned i = 0; i < count; ++i) { 375 gpu::Dimension dim = *gpu::symbolizeDimension(i); 376 procInfo[count - 1 - i] = {b.create<IdOp>(loc, indexType, dim), 377 b.create<NProcsOp>(loc, indexType, dim)}; 378 } 379 return procInfo; 380 } 381 382 static void fillTileAndDistributePatterns(MLIRContext *context, 383 RewritePatternSet &patterns) { 384 { 385 LinalgLoopDistributionOptions cyclicNprocsEqNiters; 386 cyclicNprocsEqNiters.distributionMethod.resize( 387 2, DistributionMethod::CyclicNumProcsEqNumIters); 388 cyclicNprocsEqNiters.procInfo = 389 getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>; 390 patterns.add<LinalgTilingPattern>( 391 MatmulOp::getOperationName(), context, 392 LinalgTilingOptions() 393 .setTileSizes({8, 8, 4}) 394 .setLoopType(LinalgTilingLoopType::ParallelLoops) 395 .setDistributionOptions(cyclicNprocsEqNiters), 396 LinalgTransformationFilter( 397 StringAttr::get(context, "distribute1"), 398 StringAttr::get(context, "after_distribute1"))); 399 } 400 401 { 402 LinalgLoopDistributionOptions cyclicNprocsGeNiters; 403 cyclicNprocsGeNiters.distributionMethod.resize( 404 2, DistributionMethod::CyclicNumProcsGeNumIters); 405 cyclicNprocsGeNiters.procInfo = 406 getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>; 407 patterns.add<LinalgTilingPattern>( 408 MatmulOp::getOperationName(), context, 409 LinalgTilingOptions() 410 .setTileSizes({8, 8, 4}) 411 .setLoopType(LinalgTilingLoopType::ParallelLoops) 412 .setDistributionOptions(cyclicNprocsGeNiters), 413 LinalgTransformationFilter( 414 StringAttr::get(context, "distribute2"), 415 StringAttr::get(context, "after_distribute2"))); 416 } 417 418 { 419 LinalgLoopDistributionOptions cyclicNprocsDefault; 420 cyclicNprocsDefault.distributionMethod.resize(2, 421 DistributionMethod::Cyclic); 422 cyclicNprocsDefault.procInfo = 423 getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>; 424 patterns.add<LinalgTilingPattern>( 425 MatmulOp::getOperationName(), context, 426 LinalgTilingOptions() 427 .setTileSizes({8, 8, 4}) 428 .setLoopType(LinalgTilingLoopType::ParallelLoops) 429 .setDistributionOptions(cyclicNprocsDefault), 430 LinalgTransformationFilter( 431 StringAttr::get(context, "distribute3"), 432 StringAttr::get(context, "after_distribute3"))); 433 } 434 435 { 436 LinalgLoopDistributionOptions cyclicNprocsMixed1; 437 cyclicNprocsMixed1.distributionMethod = { 438 DistributionMethod::CyclicNumProcsEqNumIters, 439 DistributionMethod::CyclicNumProcsGeNumIters}; 440 cyclicNprocsMixed1.procInfo = getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>; 441 patterns.add<LinalgTilingPattern>( 442 MatmulOp::getOperationName(), context, 443 LinalgTilingOptions() 444 .setTileSizes({8, 8, 4}) 445 .setLoopType(LinalgTilingLoopType::ParallelLoops) 446 .setDistributionOptions(cyclicNprocsMixed1), 447 LinalgTransformationFilter( 448 StringAttr::get(context, "distribute4"), 449 StringAttr::get(context, "after_distribute4"))); 450 } 451 452 { 453 LinalgLoopDistributionOptions cyclicNprocsMixed2; 454 cyclicNprocsMixed2.distributionMethod = { 455 DistributionMethod::CyclicNumProcsGeNumIters, 456 DistributionMethod::Cyclic}; 457 cyclicNprocsMixed2.procInfo = getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>; 458 patterns.add<LinalgTilingPattern>( 459 MatmulOp::getOperationName(), context, 460 LinalgTilingOptions() 461 .setTileSizes({8, 8, 4}) 462 .setLoopType(LinalgTilingLoopType::ParallelLoops) 463 .setDistributionOptions(cyclicNprocsMixed2), 464 LinalgTransformationFilter( 465 StringAttr::get(context, "distribute5"), 466 StringAttr::get(context, "after_distribute5"))); 467 } 468 469 { 470 LinalgLoopDistributionOptions cyclicNprocsMixed3; 471 cyclicNprocsMixed3.distributionMethod = { 472 DistributionMethod::Cyclic, 473 DistributionMethod::CyclicNumProcsEqNumIters}; 474 cyclicNprocsMixed3.procInfo = getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>; 475 476 patterns.add<LinalgTilingPattern>( 477 MatmulOp::getOperationName(), context, 478 LinalgTilingOptions() 479 .setTileSizes({8, 8, 4}) 480 .setLoopType(LinalgTilingLoopType::ParallelLoops) 481 .setDistributionOptions(cyclicNprocsMixed3), 482 LinalgTransformationFilter( 483 StringAttr::get(context, "distribute6"), 484 StringAttr::get(context, "after_distribute6"))); 485 } 486 487 { 488 LinalgLoopDistributionOptions cyclicNprocsEqNiters; 489 cyclicNprocsEqNiters.distributionMethod.resize(2, 490 DistributionMethod::Cyclic); 491 cyclicNprocsEqNiters.procInfo = 492 getGpuProcIds<gpu::BlockIdOp, gpu::GridDimOp>; 493 patterns.add<LinalgTilingPattern>( 494 MatmulOp::getOperationName(), context, 495 LinalgTilingOptions() 496 .setTileSizes({8, 8, 4}) 497 .setLoopType(LinalgTilingLoopType::Loops) 498 .setDistributionOptions(cyclicNprocsEqNiters), 499 LinalgTransformationFilter( 500 StringAttr::get(context, "tensors_distribute1"), 501 StringAttr::get(context, "tensors_after_distribute1"))); 502 } 503 } 504 505 static void 506 applyMatmulToVectorPatterns(FuncOp funcOp, 507 bool testMatmulToVectorPatterns1dTiling, 508 bool testMatmulToVectorPatterns2dTiling) { 509 MLIRContext *ctx = funcOp.getContext(); 510 SmallVector<RewritePatternSet, 4> stage1Patterns; 511 if (testMatmulToVectorPatterns1dTiling) { 512 fillL1TilingAndMatmulToVectorPatterns(funcOp, "START", stage1Patterns); 513 } else if (testMatmulToVectorPatterns2dTiling) { 514 stage1Patterns.emplace_back( 515 ctx, std::make_unique<LinalgTilingPattern>( 516 MatmulOp::getOperationName(), ctx, 517 LinalgTilingOptions() 518 .setTileSizes({768, 264, 768}) 519 .setInterchange({1, 2, 0}), 520 LinalgTransformationFilter(StringAttr::get(ctx, "START"), 521 StringAttr::get(ctx, "L2")))); 522 fillL1TilingAndMatmulToVectorPatterns(funcOp, "L2", stage1Patterns); 523 } 524 { 525 // Canonicalization patterns 526 RewritePatternSet canonicalizationPatterns(funcOp.getContext()); 527 vector::populateVectorTransferPermutationMapLoweringPatterns( 528 canonicalizationPatterns); 529 vector::populateVectorReductionToContractPatterns(canonicalizationPatterns); 530 stage1Patterns.push_back(std::move(canonicalizationPatterns)); 531 } 532 SmallVector<FrozenRewritePatternSet, 4> frozenStage1Patterns; 533 llvm::move(stage1Patterns, std::back_inserter(frozenStage1Patterns)); 534 FrozenRewritePatternSet stage2Patterns = 535 getLinalgTilingCanonicalizationPatterns(ctx); 536 (void)applyStagedPatterns(funcOp, frozenStage1Patterns, stage2Patterns); 537 } 538 539 static void applyVectorTransferForwardingPatterns(FuncOp funcOp) { 540 RewritePatternSet forwardPattern(funcOp.getContext()); 541 forwardPattern.add<LinalgCopyVTRForwardingPattern>(funcOp.getContext()); 542 forwardPattern.add<LinalgCopyVTWForwardingPattern>(funcOp.getContext()); 543 (void)applyPatternsAndFoldGreedily(funcOp, std::move(forwardPattern)); 544 } 545 546 static void applyLinalgToVectorPatterns(FuncOp funcOp) { 547 RewritePatternSet patterns(funcOp.getContext()); 548 patterns.add<LinalgVectorizationPattern>( 549 funcOp.getContext(), 550 LinalgTransformationFilter() 551 .addOpFilter<ContractionOpInterface, FillOp, CopyOp, GenericOp>()); 552 populatePadTensorOpVectorizationPatterns(patterns); 553 populateConvolutionVectorizationPatterns(patterns); 554 (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 555 } 556 557 static void applyPadTensorToGenericPatterns(FuncOp funcOp) { 558 RewritePatternSet patterns(funcOp.getContext()); 559 patterns.add<PadTensorOpTransformationPattern>(funcOp.getContext()); 560 (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 561 } 562 563 static void applyGeneralizePadTensorPatterns(FuncOp funcOp) { 564 RewritePatternSet patterns(funcOp.getContext()); 565 patterns.add<GeneralizePadTensorOpPattern>(funcOp.getContext()); 566 (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 567 } 568 569 static void applyExtractSliceOfPadTensorSwapPattern(FuncOp funcOp) { 570 RewritePatternSet patterns(funcOp.getContext()); 571 patterns.add<ExtractSliceOfPadTensorSwapPattern>(funcOp.getContext()); 572 (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 573 } 574 575 static void applyTilePattern(FuncOp funcOp, const std::string &loopType, 576 ArrayRef<int64_t> tileSizes, 577 ArrayRef<int64_t> peeledLoops, 578 bool scalarizeDynamicDims) { 579 MLIRContext *context = funcOp.getContext(); 580 RewritePatternSet tilingPattern(context); 581 LinalgTilingLoopType type = 582 llvm::StringSwitch<LinalgTilingLoopType>(loopType) 583 .Case("for", LinalgTilingLoopType::Loops) 584 .Case("affine", LinalgTilingLoopType::AffineLoops) 585 .Case("parallel", LinalgTilingLoopType::ParallelLoops) 586 .Case("tiled_loop", LinalgTilingLoopType::TiledLoops); 587 auto linalgTilingOptions = linalg::LinalgTilingOptions() 588 .setPeeledLoops(peeledLoops) 589 .setLoopType(type); 590 if (scalarizeDynamicDims) { 591 linalgTilingOptions.scalarizeDynamicDims(); 592 assert(tileSizes.empty() && 593 "tileSizes and scalarizeDynamicDims is mutually exclusive"); 594 } else { 595 linalgTilingOptions.setTileSizes(tileSizes); 596 } 597 linalg::LinalgTransformationFilter f(StringAttr::get(context, "tile")); 598 TilingPatterns<linalg::MatmulOp, linalg::GenericOp>::insert( 599 tilingPattern, linalgTilingOptions, f); 600 (void)applyPatternsAndFoldGreedily(funcOp, std::move(tilingPattern)); 601 } 602 603 static constexpr char kPeeledLoopsLabel[] = "__peeled_loops__"; 604 static constexpr char kPartialIterationLabel[] = "__partial_iteration__"; 605 606 namespace { 607 /// Peel TiledLoopOps, i.e., split them into two loops: One loop where the 608 /// `idx`-th loop contains only "full" iterations and a second loop for the 609 /// remaining partial iteration (if any). 610 struct TiledLoopPeelingPattern : public OpRewritePattern<TiledLoopOp> { 611 TiledLoopPeelingPattern(MLIRContext *ctx, int64_t idx, bool skipPartial) 612 : OpRewritePattern<TiledLoopOp>(ctx), idx(idx), skipPartial(skipPartial) { 613 } 614 615 LogicalResult matchAndRewrite(TiledLoopOp loopOp, 616 PatternRewriter &rewriter) const override { 617 SmallVector<int64_t> peeledLoops; 618 if (loopOp->hasAttr(kPeeledLoopsLabel)) { 619 auto attr = loopOp->getAttr(kPeeledLoopsLabel).cast<ArrayAttr>(); 620 peeledLoops = 621 llvm::to_vector<4>(llvm::map_range(attr, [](Attribute attr) { 622 return attr.cast<IntegerAttr>().getInt(); 623 })); 624 // Check if the loop was already peeled. 625 if (llvm::find(peeledLoops, idx) != peeledLoops.end()) 626 return failure(); 627 } 628 if (skipPartial && loopOp->hasAttr(kPartialIterationLabel)) 629 // No peeling of loop nests with a partial iteration. 630 return failure(); 631 632 if (static_cast<int64_t>(loopOp.iterator_types().size()) <= idx) 633 return failure(); 634 635 // Peel loop and canonicalize. 636 TiledLoopOp result; 637 if (failed(linalg::peelAndCanonicalizeTiledLoop(rewriter, loopOp, idx, 638 result))) 639 return failure(); 640 641 // Apply label, so that the same loop is not rewritten a second time. 642 peeledLoops.push_back(idx); 643 rewriter.updateRootInPlace(loopOp, [&]() { 644 loopOp->setAttr(kPeeledLoopsLabel, rewriter.getI64ArrayAttr(peeledLoops)); 645 }); 646 result->setAttr(kPeeledLoopsLabel, rewriter.getI64ArrayAttr(peeledLoops)); 647 result->setAttr(kPartialIterationLabel, rewriter.getUnitAttr()); 648 649 return success(); 650 } 651 652 /// Index of loop to peel. 653 int64_t idx; 654 655 /// If set to true, do not peel TiledLoopOps with a partial iteration. 656 bool skipPartial; 657 }; 658 } // namespace 659 660 static void applyTiledLoopPeelingPattern(FuncOp funcOp, 661 ArrayRef<unsigned> loops, 662 bool skipPartial) { 663 MLIRContext *ctx = funcOp.getContext(); 664 RewritePatternSet patterns(ctx); 665 for (unsigned idx : loops) 666 patterns.add<TiledLoopPeelingPattern>(ctx, idx, skipPartial); 667 (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); 668 669 // Drop the markers. 670 funcOp.walk([](TiledLoopOp op) { 671 op->removeAttr(kPeeledLoopsLabel); 672 op->removeAttr(kPartialIterationLabel); 673 }); 674 } 675 676 /// Apply transformations specified as patterns. 677 void TestLinalgTransforms::runOnOperation() { 678 auto lambda = [&](void *) { 679 getOperation().walk([](LinalgOp op) { 680 op->removeAttr(LinalgTransforms::kLinalgTransformMarker); 681 }); 682 }; 683 std::unique_ptr<void, decltype(lambda)> cleanupGuard{(void *)1, lambda}; 684 685 if (testPromotionOptions) { 686 RewritePatternSet patterns(&getContext()); 687 fillPromotionCallBackPatterns(&getContext(), patterns); 688 (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)); 689 return; 690 } 691 if (testTileAndDistributionOptions) { 692 RewritePatternSet patterns(&getContext()); 693 fillTileAndDistributePatterns(&getContext(), patterns); 694 (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)); 695 return; 696 } 697 if (testPatterns) 698 return applyPatterns(getOperation()); 699 if (testMatmulToVectorPatterns1dTiling || testMatmulToVectorPatterns2dTiling) 700 return applyMatmulToVectorPatterns(getOperation(), 701 testMatmulToVectorPatterns1dTiling, 702 testMatmulToVectorPatterns2dTiling); 703 if (testVectorTransferForwardingPatterns) 704 return applyVectorTransferForwardingPatterns(getOperation()); 705 if (testGenericToVectorPattern) 706 return applyLinalgToVectorPatterns(getOperation()); 707 if (testTransformPadTensor) 708 return applyPadTensorToGenericPatterns(getOperation()); 709 if (testGeneralizePadTensor) 710 return applyGeneralizePadTensorPatterns(getOperation()); 711 if (testSwapSubTensorPadTensor) 712 return applyExtractSliceOfPadTensorSwapPattern(getOperation()); 713 if (testTiledLoopPeeling.hasValue()) 714 return applyTiledLoopPeelingPattern(getOperation(), testTiledLoopPeeling, 715 skipPartial); 716 if (testTilePattern) 717 return applyTilePattern(getOperation(), loopType, tileSizes, peeledLoops, 718 /*scalarizeDynamicDims=*/false); 719 if (testTileScalarizeDynamicDims) 720 return applyTilePattern(getOperation(), loopType, tileSizes, 721 /*peeledLoops=*/{}, /*scalarizeDynamicDims=*/true); 722 } 723 724 namespace mlir { 725 namespace test { 726 void registerTestLinalgTransforms() { 727 PassRegistration<TestLinalgTransforms>(); 728 } 729 } // namespace test 730 } // namespace mlir 731