1# RUN: SUPPORT_LIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext \ 2# RUN: %PYTHON %s | FileCheck %s 3 4import ctypes 5import numpy as np 6import os 7import sys 8 9from mlir import ir 10from mlir import runtime as rt 11from mlir import execution_engine 12 13from mlir.dialects import sparse_tensor as st 14from mlir.dialects import builtin 15from mlir.dialects import func 16from mlir.dialects.linalg.opdsl import lang as dsl 17 18_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__)) 19sys.path.append(_SCRIPT_PATH) 20from tools import sparse_compiler 21 22@dsl.linalg_structured_op 23def matmul_dsl( 24 A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K), 25 B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N), 26 C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True)): 27 C[dsl.D.m, dsl.D.n] += A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n] 28 29 30def build_SpMM(attr: st.EncodingAttr): 31 """Build SpMM kernel. 32 33 This method generates a linalg op with for matrix multiplication using 34 just the Python API. Effectively, a generic linalg op is constructed 35 that computes C(i,j) += A(i,k) * B(k,j) for annotated matrix A. 36 """ 37 module = ir.Module.create() 38 f64 = ir.F64Type.get() 39 a = ir.RankedTensorType.get([3, 4], f64, attr) 40 b = ir.RankedTensorType.get([4, 2], f64) 41 c = ir.RankedTensorType.get([3, 2], f64) 42 arguments = [a, b, c] 43 with ir.InsertionPoint(module.body): 44 45 @func.FuncOp.from_py_func(*arguments) 46 def spMxM(*args): 47 return matmul_dsl(args[0], args[1], outs=[args[2]]) 48 49 return module 50 51 52def boilerplate(attr: st.EncodingAttr): 53 """Returns boilerplate main method. 54 55 This method sets up a boilerplate main method that takes three tensors 56 (a, b, c), converts the first tensor a into s sparse tensor, and then 57 calls the sparse kernel for matrix multiplication. For convenience, 58 this part is purely done as string input. 59 """ 60 return f""" 61func @main(%ad: tensor<3x4xf64>, %b: tensor<4x2xf64>, %c: tensor<3x2xf64>) -> tensor<3x2xf64> 62 attributes {{ llvm.emit_c_interface }} {{ 63 %a = sparse_tensor.convert %ad : tensor<3x4xf64> to tensor<3x4xf64, {attr}> 64 %0 = call @spMxM(%a, %b, %c) : (tensor<3x4xf64, {attr}>, 65 tensor<4x2xf64>, 66 tensor<3x2xf64>) -> tensor<3x2xf64> 67 return %0 : tensor<3x2xf64> 68}} 69""" 70 71 72def build_compile_and_run_SpMM(attr: st.EncodingAttr, support_lib: str, 73 compiler): 74 # Build. 75 module = build_SpMM(attr) 76 func = str(module.operation.regions[0].blocks[0].operations[0].operation) 77 module = ir.Module.parse(func + boilerplate(attr)) 78 79 # Compile. 80 compiler(module) 81 engine = execution_engine.ExecutionEngine( 82 module, opt_level=0, shared_libs=[support_lib]) 83 84 # Set up numpy input and buffer for output. 85 a = np.array( 86 [[1.1, 0.0, 0.0, 1.4], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 3.3, 0.0]], 87 np.float64) 88 b = np.array([[1.0, 2.0], [4.0, 3.0], [5.0, 6.0], [8.0, 7.0]], np.float64) 89 c = np.zeros((3, 2), np.float64) 90 91 mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a))) 92 mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b))) 93 mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c))) 94 # Allocate a MemRefDescriptor to receive the output tensor. 95 # The buffer itself is allocated inside the MLIR code generation. 96 ref_out = rt.make_nd_memref_descriptor(2, ctypes.c_double)() 97 mem_out = ctypes.pointer(ctypes.pointer(ref_out)) 98 99 # Invoke the kernel and get numpy output. 100 # Built-in bufferization uses in-out buffers. 101 # TODO: replace with inplace comprehensive bufferization. 102 engine.invoke('main', mem_out, mem_a, mem_b, mem_c) 103 104 # Sanity check on computed result. 105 expected = np.matmul(a, b); 106 c = rt.ranked_memref_to_numpy(mem_out[0]) 107 if np.allclose(c, expected): 108 pass 109 else: 110 quit(f'FAILURE') 111 112 113def main(): 114 support_lib = os.getenv('SUPPORT_LIB') 115 assert support_lib is not None, 'SUPPORT_LIB is undefined' 116 if not os.path.exists(support_lib): 117 raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), support_lib) 118 119 # CHECK-LABEL: TEST: testSpMM 120 print('\nTEST: testSpMM') 121 with ir.Context() as ctx, ir.Location.unknown(): 122 count = 0 123 # Loop over various ways to compile and annotate the SpMM kernel with 124 # a *single* sparse tensor. Note that we deliberate do not exhaustively 125 # search the full state space to reduce runtime of the test. It is 126 # straightforward to adapt the code below to explore more combinations. 127 par = 0 128 vec = 0 129 vl = 1 130 e = False 131 opt = (f'parallelization-strategy={par} ' 132 f'vectorization-strategy={vec} ' 133 f'vl={vl} enable-simd-index32={e}') 134 levels = [[st.DimLevelType.dense, st.DimLevelType.dense], 135 [st.DimLevelType.dense, st.DimLevelType.compressed], 136 [st.DimLevelType.compressed, st.DimLevelType.dense], 137 [st.DimLevelType.compressed, st.DimLevelType.compressed]] 138 orderings = [ 139 ir.AffineMap.get_permutation([0, 1]), 140 ir.AffineMap.get_permutation([1, 0]) 141 ] 142 bitwidths = [0] 143 for level in levels: 144 for ordering in orderings: 145 for pwidth in bitwidths: 146 for iwidth in bitwidths: 147 attr = st.EncodingAttr.get(level, ordering, pwidth, iwidth) 148 compiler = sparse_compiler.SparseCompiler(options=opt) 149 build_compile_and_run_SpMM(attr, support_lib, compiler) 150 count = count + 1 151 # CHECK: Passed 8 tests 152 print('Passed ', count, 'tests') 153 154 155if __name__ == '__main__': 156 main() 157