1# RUN: SUPPORT_LIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext \ 2# RUN: %PYTHON %s | FileCheck %s 3 4import ctypes 5import numpy as np 6import os 7 8import mlir.all_passes_registration 9 10from mlir import ir 11from mlir import runtime as rt 12from mlir import execution_engine 13from mlir import passmanager 14 15from mlir.dialects import sparse_tensor as st 16from mlir.dialects import builtin 17from mlir.dialects.linalg.opdsl import lang as dsl 18 19 20@dsl.linalg_structured_op 21def matmul_dsl( 22 A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K), 23 B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N), 24 C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True)): 25 C[dsl.D.m, dsl.D.n] += A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n] 26 27 28def build_SpMM(attr: st.EncodingAttr): 29 """Build SpMM kernel. 30 31 This method generates a linalg op with for matrix multiplication using 32 just the Python API. Effectively, a generic linalg op is constructed 33 that computes C(i,j) += A(i,k) * B(k,j) for annotated matrix A. 34 """ 35 module = ir.Module.create() 36 f64 = ir.F64Type.get() 37 a = ir.RankedTensorType.get([3, 4], f64, attr) 38 b = ir.RankedTensorType.get([4, 2], f64) 39 c = ir.RankedTensorType.get([3, 2], f64) 40 arguments = [a, b, c] 41 with ir.InsertionPoint(module.body): 42 43 @builtin.FuncOp.from_py_func(*arguments) 44 def spMxM(*args): 45 return matmul_dsl(args[0], args[1], outs=[args[2]]) 46 47 return module 48 49 50def boilerplate(attr: st.EncodingAttr): 51 """Returns boilerplate main method. 52 53 This method sets up a boilerplate main method that takes three tensors 54 (a, b, c), converts the first tensor a into s sparse tensor, and then 55 calls the sparse kernel for matrix multiplication. For convenience, 56 this part is purely done as string input. 57 """ 58 return f""" 59func @main(%ad: tensor<3x4xf64>, %b: tensor<4x2xf64>, %c: tensor<3x2xf64>) -> tensor<3x2xf64> 60 attributes {{ llvm.emit_c_interface }} {{ 61 %a = sparse_tensor.convert %ad : tensor<3x4xf64> to tensor<3x4xf64, {attr}> 62 %0 = call @spMxM(%a, %b, %c) : (tensor<3x4xf64, {attr}>, 63 tensor<4x2xf64>, 64 tensor<3x2xf64>) -> tensor<3x2xf64> 65 return %0 : tensor<3x2xf64> 66}} 67""" 68 69 70def build_compile_and_run_SpMM(attr: st.EncodingAttr, support_lib: str, 71 compiler): 72 # Build. 73 module = build_SpMM(attr) 74 func = str(module.operation.regions[0].blocks[0].operations[0].operation) 75 module = ir.Module.parse(func + boilerplate(attr)) 76 77 # Compile. 78 compiler(module) 79 engine = execution_engine.ExecutionEngine( 80 module, opt_level=0, shared_libs=[support_lib]) 81 82 # Set up numpy input and buffer for output. 83 a = np.array( 84 [[1.1, 0.0, 0.0, 1.4], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 3.3, 0.0]], 85 np.float64) 86 b = np.array([[1.0, 2.0], [4.0, 3.0], [5.0, 6.0], [8.0, 7.0]], np.float64) 87 c = np.zeros((3, 2), np.float64) 88 out = np.zeros((3, 2), np.float64) 89 90 mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a))) 91 mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b))) 92 mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c))) 93 mem_out = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(out))) 94 95 # Invoke the kernel and get numpy output. 96 # Built-in bufferization uses in-out buffers. 97 # TODO: replace with inplace comprehensive bufferization. 98 engine.invoke('main', mem_out, mem_a, mem_b, mem_c) 99 100 # Sanity check on computed result. 101 expected = np.matmul(a, b); 102 c = rt.ranked_memref_to_numpy(mem_out[0]) 103 if np.allclose(c, expected): 104 pass 105 else: 106 quit(f'FAILURE') 107 108 109class SparseCompiler: 110 """Sparse compiler passes.""" 111 112 def __init__(self, options: str): 113 pipeline = ( 114 f'builtin.func(linalg-generalize-named-ops,linalg-fuse-elementwise-ops),' 115 f'sparsification{{{options}}},' 116 f'sparse-tensor-conversion,' 117 f'builtin.func(linalg-bufferize,convert-linalg-to-loops,convert-vector-to-scf),' 118 f'convert-scf-to-std,' 119 f'func-bufferize,' 120 f'tensor-constant-bufferize,' 121 f'builtin.func(tensor-bufferize,std-bufferize,finalizing-bufferize),' 122 f'convert-vector-to-llvm{{reassociate-fp-reductions=1 enable-index-optimizations=1}},' 123 f'lower-affine,' 124 f'convert-memref-to-llvm,' 125 f'convert-std-to-llvm,' 126 f'reconcile-unrealized-casts') 127 self.pipeline = pipeline 128 129 def __call__(self, module: ir.Module): 130 passmanager.PassManager.parse(self.pipeline).run(module) 131 132 133def main(): 134 support_lib = os.getenv('SUPPORT_LIB') 135 assert support_lib is not None, 'SUPPORT_LIB is undefined' 136 if not os.path.exists(support_lib): 137 raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), support_lib) 138 139 # CHECK-LABEL: TEST: testSpMM 140 print('\nTEST: testSpMM') 141 with ir.Context() as ctx, ir.Location.unknown(): 142 count = 0 143 # Loop over various ways to compile and annotate the SpMM kernel with 144 # a *single* sparse tensor. Note that we deliberate do not exhaustively 145 # search the full state space to reduce runtime of the test. It is 146 # straightforward to adapt the code below to explore more combinations. 147 par = 0 148 vec = 0 149 vl = 1 150 e = False 151 opt = (f'parallelization-strategy={par} ' 152 f'vectorization-strategy={vec} ' 153 f'vl={vl} enable-simd-index32={e}') 154 levels = [[st.DimLevelType.dense, st.DimLevelType.dense], 155 [st.DimLevelType.dense, st.DimLevelType.compressed], 156 [st.DimLevelType.compressed, st.DimLevelType.dense], 157 [st.DimLevelType.compressed, st.DimLevelType.compressed]] 158 orderings = [ 159 ir.AffineMap.get_permutation([0, 1]), 160 ir.AffineMap.get_permutation([1, 0]) 161 ] 162 bitwidths = [0] 163 for level in levels: 164 for ordering in orderings: 165 for pwidth in bitwidths: 166 for iwidth in bitwidths: 167 attr = st.EncodingAttr.get(level, ordering, pwidth, iwidth) 168 compiler = SparseCompiler(options=opt) 169 build_compile_and_run_SpMM(attr, support_lib, compiler) 170 count = count + 1 171 # CHECK: Passed 8 tests 172 print('Passed ', count, 'tests') 173 174if __name__ == '__main__': 175 main() 176