1# RUN: SUPPORT_LIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext \ 2# RUN: %PYTHON %s | FileCheck %s 3 4import ctypes 5import numpy as np 6import os 7 8import mlir.all_passes_registration 9 10from mlir import ir 11from mlir import runtime as rt 12from mlir import execution_engine 13from mlir import passmanager 14 15from mlir.dialects import sparse_tensor as st 16from mlir.dialects import builtin 17from mlir.dialects.linalg.opdsl import lang as dsl 18 19 20@dsl.linalg_structured_op 21def sddmm_dsl( 22 A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K), 23 B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N), 24 S=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N), 25 C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True)): 26 C[dsl.D.m, 27 dsl.D.n] += S[dsl.D.m, dsl.D.n] * A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n] 28 29 30def build_SDDMM(attr: st.EncodingAttr): 31 """Build SDDMM kernel. 32 33 This method generates a linalg op with for matrix multiplication using 34 just the Python API. Effectively, a generic linalg op is constructed 35 that computes C(i,j) += S(i,j) SUM_k A(i,k) B(k,j) for sparse S. 36 """ 37 module = ir.Module.create() 38 f64 = ir.F64Type.get() 39 a = ir.RankedTensorType.get([8, 8], f64) 40 b = ir.RankedTensorType.get([8, 8], f64) 41 c = ir.RankedTensorType.get([8, 8], f64) 42 s = ir.RankedTensorType.get([8, 8], f64, attr) 43 arguments = [a, b, s, c] 44 with ir.InsertionPoint(module.body): 45 46 @builtin.FuncOp.from_py_func(*arguments) 47 def sddmm(*args): 48 return sddmm_dsl(args[0], args[1], args[2], outs=[args[3]]) 49 50 return module 51 52 53def boilerplate(attr: st.EncodingAttr): 54 """Returns boilerplate code for main driver.""" 55 return f""" 56func @main(%a: tensor<8x8xf64>, 57 %b: tensor<8x8xf64>, 58 %c: tensor<8x8xf64>) -> tensor<8x8xf64> attributes {{ llvm.emit_c_interface }} {{ 59 %t = arith.constant sparse<[[0,0], [0,2], [4,1]], [1.0, 2.0, 3.0]> : tensor<8x8xf64> 60 %s = sparse_tensor.convert %t : tensor<8x8xf64> to tensor<8x8xf64, {attr}> 61 %0 = call @sddmm(%a, %b, %s, %c) : (tensor<8x8xf64>, 62 tensor<8x8xf64>, 63 tensor<8x8xf64, {attr}>, 64 tensor<8x8xf64>) -> tensor<8x8xf64> 65 return %0 : tensor<8x8xf64> 66}} 67""" 68 69 70def build_compile_and_run_SDDMMM(attr: st.EncodingAttr, opt: str, 71 support_lib: str, compiler): 72 # Build. 73 module = build_SDDMM(attr) 74 func = str(module.operation.regions[0].blocks[0].operations[0].operation) 75 module = ir.Module.parse(func + boilerplate(attr)) 76 77 # Compile. 78 compiler(module) 79 engine = execution_engine.ExecutionEngine( 80 module, opt_level=0, shared_libs=[support_lib]) 81 82 # Set up numpy input and buffer for output. 83 a = np.array([[1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1], 84 [1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2], 85 [1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3, 8.3], 86 [1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4], 87 [1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5], 88 [1.6, 2.6, 3.6, 4.6, 5.6, 6.6, 7.6, 8.6], 89 [1.7, 2.7, 3.7, 4.7, 5.7, 6.7, 7.7, 8.7], 90 [1.8, 2.8, 3.8, 4.8, 5.8, 6.8, 7.8, 8.8]], np.float64) 91 b = np.ones((8, 8), np.float64) 92 c = np.zeros((8, 8), np.float64) 93 94 mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a))) 95 mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b))) 96 mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c))) 97 98 # Allocate a MemRefDescriptor to receive the output tensor. 99 # The buffer itself is allocated inside the MLIR code generation. 100 ref_out = rt.make_nd_memref_descriptor(2, ctypes.c_double)() 101 mem_out = ctypes.pointer(ctypes.pointer(ref_out)) 102 103 # Invoke the kernel and get numpy output. 104 # Built-in bufferization uses in-out buffers. 105 # TODO: replace with inplace comprehensive bufferization. 106 engine.invoke('main', mem_out, mem_a, mem_b, mem_c) 107 108 # Sanity check on computed result. Only a few elements 109 # are sampled from the full dense matrix multiplication. 110 full_matmul = np.matmul(a, b) 111 expected = np.zeros((8, 8), np.float64) 112 expected[0, 0] = 1.0 * full_matmul[0, 0] 113 expected[0, 2] = 2.0 * full_matmul[0, 2] 114 expected[4, 1] = 3.0 * full_matmul[4, 1] 115 c = rt.ranked_memref_to_numpy(mem_out[0]) 116 if np.allclose(c, expected): 117 pass 118 else: 119 quit(f'FAILURE') 120 121 122class SparseCompiler: 123 """Sparse compiler passes.""" 124 125 def __init__(self, options: str): 126 pipeline = ( 127 f'sparse-compiler{{{options} reassociate-fp-reductions=1 enable-index-optimizations=1}}') 128 self.pipeline = pipeline 129 130 def __call__(self, module: ir.Module): 131 passmanager.PassManager.parse(self.pipeline).run(module) 132 133 134def main(): 135 support_lib = os.getenv('SUPPORT_LIB') 136 assert support_lib is not None, 'SUPPORT_LIB is undefined' 137 if not os.path.exists(support_lib): 138 raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), 139 support_lib) 140 141 # CHECK-LABEL: TEST: testSDDMMM 142 print('\nTEST: testSDDMMM') 143 with ir.Context() as ctx, ir.Location.unknown(): 144 count = 0 145 # Loop over various ways to compile and annotate the SDDMM kernel with 146 # a *single* sparse tensor. Note that we deliberate do not exhaustively 147 # search the full state space to reduce runtime of the test. It is 148 # straightforward to adapt the code below to explore more combinations. 149 levels = [[st.DimLevelType.dense, st.DimLevelType.dense], 150 [st.DimLevelType.dense, st.DimLevelType.compressed], 151 [st.DimLevelType.compressed, st.DimLevelType.dense], 152 [st.DimLevelType.compressed, st.DimLevelType.compressed]] 153 orderings = [ 154 ir.AffineMap.get_permutation([0, 1]), 155 ir.AffineMap.get_permutation([1, 0]) 156 ] 157 for level in levels: 158 for ordering in orderings: 159 for pwidth in [32]: 160 for iwidth in [32]: 161 for par in [0]: 162 for vec in [0, 1]: 163 for e in [True]: 164 vl = 1 if vec == 0 else 16 165 attr = st.EncodingAttr.get(level, ordering, pwidth, iwidth) 166 opt = (f'parallelization-strategy={par} ' 167 f'vectorization-strategy={vec} ' 168 f'vl={vl} enable-simd-index32={e}') 169 compiler = SparseCompiler(options=opt) 170 build_compile_and_run_SDDMMM(attr, opt, support_lib, compiler) 171 count = count + 1 172 # CHECK: Passed 16 tests 173 print('Passed ', count, 'tests') 174 175 176if __name__ == '__main__': 177 main() 178