1// RUN: mlir-opt %s \ 2// RUN: --sparsification --sparse-tensor-conversion \ 3// RUN: --convert-vector-to-scf --convert-scf-to-std \ 4// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ 5// RUN: --std-bufferize --finalizing-bufferize \ 6// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm --reconcile-unrealized-casts | \ 7// RUN: TENSOR0="%mlir_integration_test_dir/data/test.mtx" \ 8// RUN: mlir-cpu-runner \ 9// RUN: -e entry -entry-point-result=void \ 10// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ 11// RUN: FileCheck %s 12// 13// Do the same run, but now with SIMDization as well. This should not change the outcome. 14// 15// RUN: mlir-opt %s \ 16// RUN: --sparsification="vectorization-strategy=2 vl=4 enable-simd-index32" --sparse-tensor-conversion \ 17// RUN: --convert-vector-to-scf --convert-scf-to-std \ 18// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ 19// RUN: --std-bufferize --finalizing-bufferize --lower-affine \ 20// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm --reconcile-unrealized-casts | \ 21// RUN: TENSOR0="%mlir_integration_test_dir/data/test.mtx" \ 22// RUN: mlir-cpu-runner \ 23// RUN: -e entry -entry-point-result=void \ 24// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ 25// RUN: FileCheck %s 26// 27 28!Filename = type !llvm.ptr<i8> 29 30#SparseMatrix = #sparse_tensor.encoding<{ 31 dimLevelType = [ "compressed", "compressed" ], 32 pointerBitWidth = 32, 33 indexBitWidth = 32 34}> 35 36#trait_sampled_dense_dense = { 37 indexing_maps = [ 38 affine_map<(i,j,k) -> (i,j)>, // S 39 affine_map<(i,j,k) -> (i,k)>, // A 40 affine_map<(i,j,k) -> (k,j)>, // B 41 affine_map<(i,j,k) -> (i,j)> // X (out) 42 ], 43 iterator_types = ["parallel", "parallel", "reduction"], 44 doc = "X(i,j) += S(i,j) SUM_k A(i,k) B(k,j)" 45} 46 47// 48// Integration test that lowers a kernel annotated as sparse to 49// actual sparse code, initializes a matching sparse storage scheme 50// from file, and runs the resulting code with the JIT compiler. 51// 52module { 53 // 54 // A kernel that computes a sampled matrix matrix multiplication. 55 // 56 func @sampled_dense_dense(%args: tensor<?x?xf32, #SparseMatrix>, 57 %arga: tensor<?x?xf32>, 58 %argb: tensor<?x?xf32>, 59 %argx: tensor<?x?xf32> {linalg.inplaceable = true}) -> tensor<?x?xf32> { 60 %0 = linalg.generic #trait_sampled_dense_dense 61 ins(%args, %arga, %argb: tensor<?x?xf32, #SparseMatrix>, tensor<?x?xf32>, tensor<?x?xf32>) 62 outs(%argx: tensor<?x?xf32>) { 63 ^bb(%s: f32, %a: f32, %b: f32, %x: f32): 64 %0 = arith.mulf %a, %b : f32 65 %1 = arith.mulf %s, %0 : f32 66 %2 = arith.addf %x, %1 : f32 67 linalg.yield %2 : f32 68 } -> tensor<?x?xf32> 69 return %0 : tensor<?x?xf32> 70 } 71 72 func private @getTensorFilename(index) -> (!Filename) 73 74 // 75 // Main driver that reads matrix from file and calls the sparse kernel. 76 // 77 func @entry() { 78 %d0 = arith.constant 0.0 : f32 79 %c0 = arith.constant 0 : index 80 %c1 = arith.constant 1 : index 81 %c5 = arith.constant 5 : index 82 %c10 = arith.constant 10 : index 83 84 // Setup memory for the dense matrices and initialize. 85 %adata = memref.alloc(%c5, %c10) : memref<?x?xf32> 86 %bdata = memref.alloc(%c10, %c5) : memref<?x?xf32> 87 %xdata = memref.alloc(%c5, %c5) : memref<?x?xf32> 88 scf.for %i = %c0 to %c5 step %c1 { 89 scf.for %j = %c0 to %c5 step %c1 { 90 memref.store %d0, %xdata[%i, %j] : memref<?x?xf32> 91 } 92 %p = arith.addi %i, %c1 : index 93 %q = arith.index_cast %p : index to i32 94 %d = arith.sitofp %q : i32 to f32 95 scf.for %j = %c0 to %c10 step %c1 { 96 memref.store %d, %adata[%i, %j] : memref<?x?xf32> 97 memref.store %d, %bdata[%j, %i] : memref<?x?xf32> 98 } 99 } 100 %a = bufferization.to_tensor %adata : memref<?x?xf32> 101 %b = bufferization.to_tensor %bdata : memref<?x?xf32> 102 %x = bufferization.to_tensor %xdata : memref<?x?xf32> 103 104 // Read the sparse matrix from file, construct sparse storage. 105 %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) 106 %s = sparse_tensor.new %fileName : !Filename to tensor<?x?xf32, #SparseMatrix> 107 108 // Call the kernel. 109 %0 = call @sampled_dense_dense(%s, %a, %b, %x) 110 : (tensor<?x?xf32, #SparseMatrix>, 111 tensor<?x?xf32>, tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32> 112 113 // Print the result for verification. 114 // 115 // CHECK: ( 10, 0, 0, 56, 0 ) 116 // CHECK: ( 0, 80, 0, 0, 250 ) 117 // CHECK: ( 0, 0, 270, 0, 0 ) 118 // CHECK: ( 164, 0, 0, 640, 0 ) 119 // CHECK: ( 0, 520, 0, 0, 1250 ) 120 // 121 %r = bufferization.to_memref %0 : memref<?x?xf32> 122 scf.for %i = %c0 to %c5 step %c1 { 123 %v = vector.transfer_read %r[%i, %c0], %d0: memref<?x?xf32>, vector<5xf32> 124 vector.print %v : vector<5xf32> 125 } 126 127 // Release the resources. 128 memref.dealloc %adata : memref<?x?xf32> 129 memref.dealloc %bdata : memref<?x?xf32> 130 memref.dealloc %xdata : memref<?x?xf32> 131 sparse_tensor.release %s : tensor<?x?xf32, #SparseMatrix> 132 133 return 134 } 135} 136