1// RUN: mlir-opt %s \ 2// RUN: --sparsification --sparse-tensor-conversion \ 3// RUN: --convert-vector-to-scf --convert-scf-to-std \ 4// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ 5// RUN: --std-bufferize --finalizing-bufferize \ 6// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm --reconcile-unrealized-casts | \ 7// RUN: TENSOR0="%mlir_integration_test_dir/data/wide.mtx" \ 8// RUN: mlir-cpu-runner \ 9// RUN: -e entry -entry-point-result=void \ 10// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ 11// RUN: FileCheck %s 12// 13// Do the same run, but now with SIMDization as well. This should not change the outcome. 14// 15// RUN: mlir-opt %s \ 16// RUN: --sparsification="vectorization-strategy=2 vl=16 enable-simd-index32" --sparse-tensor-conversion \ 17// RUN: --convert-vector-to-scf --convert-scf-to-std \ 18// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ 19// RUN: --std-bufferize --finalizing-bufferize --lower-affine \ 20// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm --reconcile-unrealized-casts | \ 21// RUN: TENSOR0="%mlir_integration_test_dir/data/wide.mtx" \ 22// RUN: mlir-cpu-runner \ 23// RUN: -e entry -entry-point-result=void \ 24// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ 25// RUN: FileCheck %s 26 27!Filename = type !llvm.ptr<i8> 28 29#SparseMatrix = #sparse_tensor.encoding<{ 30 dimLevelType = [ "dense", "compressed" ], 31 pointerBitWidth = 8, 32 indexBitWidth = 8 33}> 34 35#matvec = { 36 indexing_maps = [ 37 affine_map<(i,j) -> (i,j)>, // A 38 affine_map<(i,j) -> (j)>, // b 39 affine_map<(i,j) -> (i)> // x (out) 40 ], 41 iterator_types = ["parallel", "reduction"], 42 doc = "X(i) += A(i,j) * B(j)" 43} 44 45// 46// Integration test that lowers a kernel annotated as sparse to 47// actual sparse code, initializes a matching sparse storage scheme 48// from file, and runs the resulting code with the JIT compiler. 49// 50module { 51 // 52 // A kernel that multiplies a sparse matrix A with a dense vector b 53 // into a dense vector x. 54 // 55 func @kernel_matvec(%arga: tensor<?x?xi32, #SparseMatrix>, 56 %argb: tensor<?xi32>, 57 %argx: tensor<?xi32> {linalg.inplaceable = true}) 58 -> tensor<?xi32> { 59 %0 = linalg.generic #matvec 60 ins(%arga, %argb: tensor<?x?xi32, #SparseMatrix>, tensor<?xi32>) 61 outs(%argx: tensor<?xi32>) { 62 ^bb(%a: i32, %b: i32, %x: i32): 63 %0 = arith.muli %a, %b : i32 64 %1 = arith.addi %x, %0 : i32 65 linalg.yield %1 : i32 66 } -> tensor<?xi32> 67 return %0 : tensor<?xi32> 68 } 69 70 func private @getTensorFilename(index) -> (!Filename) 71 72 // 73 // Main driver that reads matrix from file and calls the sparse kernel. 74 // 75 func @entry() { 76 %i0 = arith.constant 0 : i32 77 %c0 = arith.constant 0 : index 78 %c1 = arith.constant 1 : index 79 %c4 = arith.constant 4 : index 80 %c256 = arith.constant 256 : index 81 82 // Read the sparse matrix from file, construct sparse storage. 83 %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) 84 %a = sparse_tensor.new %fileName : !Filename to tensor<?x?xi32, #SparseMatrix> 85 86 // Initialize dense vectors. 87 %bdata = memref.alloc(%c256) : memref<?xi32> 88 %xdata = memref.alloc(%c4) : memref<?xi32> 89 scf.for %i = %c0 to %c256 step %c1 { 90 %k = arith.addi %i, %c1 : index 91 %j = arith.index_cast %k : index to i32 92 memref.store %j, %bdata[%i] : memref<?xi32> 93 } 94 scf.for %i = %c0 to %c4 step %c1 { 95 memref.store %i0, %xdata[%i] : memref<?xi32> 96 } 97 %b = bufferization.to_tensor %bdata : memref<?xi32> 98 %x = bufferization.to_tensor %xdata : memref<?xi32> 99 100 // Call kernel. 101 %0 = call @kernel_matvec(%a, %b, %x) 102 : (tensor<?x?xi32, #SparseMatrix>, tensor<?xi32>, tensor<?xi32>) -> tensor<?xi32> 103 104 // Print the result for verification. 105 // 106 // CHECK: ( 889, 1514, -21, -3431 ) 107 // 108 %m = bufferization.to_memref %0 : memref<?xi32> 109 %v = vector.transfer_read %m[%c0], %i0: memref<?xi32>, vector<4xi32> 110 vector.print %v : vector<4xi32> 111 112 // Release the resources. 113 memref.dealloc %bdata : memref<?xi32> 114 memref.dealloc %xdata : memref<?xi32> 115 sparse_tensor.release %a : tensor<?x?xi32, #SparseMatrix> 116 117 return 118 } 119} 120