1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation pass performs a sparse conditional constant propagation
10 // in MLIR. It identifies values known to be constant, propagates that
11 // information throughout the IR, and replaces them. This is done with an
12 // optimisitic dataflow analysis that assumes that all values are constant until
13 // proven otherwise.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "PassDetail.h"
18 #include "mlir/IR/Builders.h"
19 #include "mlir/IR/Dialect.h"
20 #include "mlir/Interfaces/ControlFlowInterfaces.h"
21 #include "mlir/Interfaces/SideEffectInterfaces.h"
22 #include "mlir/Pass/Pass.h"
23 #include "mlir/Transforms/FoldUtils.h"
24 #include "mlir/Transforms/Passes.h"
25 
26 using namespace mlir;
27 
28 namespace {
29 /// This class represents a single lattice value. A lattive value corresponds to
30 /// the various different states that a value in the SCCP dataflow anaylsis can
31 /// take. See 'Kind' below for more details on the different states a value can
32 /// take.
33 class LatticeValue {
34   enum Kind {
35     /// A value with a yet to be determined value. This state may be changed to
36     /// anything.
37     Unknown,
38 
39     /// A value that is known to be a constant. This state may be changed to
40     /// overdefined.
41     Constant,
42 
43     /// A value that cannot statically be determined to be a constant. This
44     /// state cannot be changed.
45     Overdefined
46   };
47 
48 public:
49   /// Initialize a lattice value with "Unknown".
50   LatticeValue()
51       : constantAndTag(nullptr, Kind::Unknown), constantDialect(nullptr) {}
52   /// Initialize a lattice value with a constant.
53   LatticeValue(Attribute attr, Dialect *dialect)
54       : constantAndTag(attr, Kind::Constant), constantDialect(dialect) {}
55 
56   /// Returns true if this lattice value is unknown.
57   bool isUnknown() const { return constantAndTag.getInt() == Kind::Unknown; }
58 
59   /// Mark the lattice value as overdefined.
60   void markOverdefined() {
61     constantAndTag.setPointerAndInt(nullptr, Kind::Overdefined);
62     constantDialect = nullptr;
63   }
64 
65   /// Returns true if the lattice is overdefined.
66   bool isOverdefined() const {
67     return constantAndTag.getInt() == Kind::Overdefined;
68   }
69 
70   /// Mark the lattice value as constant.
71   void markConstant(Attribute value, Dialect *dialect) {
72     constantAndTag.setPointerAndInt(value, Kind::Constant);
73     constantDialect = dialect;
74   }
75 
76   /// If this lattice is constant, return the constant. Returns nullptr
77   /// otherwise.
78   Attribute getConstant() const { return constantAndTag.getPointer(); }
79 
80   /// If this lattice is constant, return the dialect to use when materializing
81   /// the constant.
82   Dialect *getConstantDialect() const {
83     assert(getConstant() && "expected valid constant");
84     return constantDialect;
85   }
86 
87   /// Merge in the value of the 'rhs' lattice into this one. Returns true if the
88   /// lattice value changed.
89   bool meet(const LatticeValue &rhs) {
90     // If we are already overdefined, or rhs is unknown, there is nothing to do.
91     if (isOverdefined() || rhs.isUnknown())
92       return false;
93     // If we are unknown, just take the value of rhs.
94     if (isUnknown()) {
95       constantAndTag = rhs.constantAndTag;
96       constantDialect = rhs.constantDialect;
97       return true;
98     }
99 
100     // Otherwise, if this value doesn't match rhs go straight to overdefined.
101     if (constantAndTag != rhs.constantAndTag) {
102       markOverdefined();
103       return true;
104     }
105     return false;
106   }
107 
108 private:
109   /// The attribute value if this is a constant and the tag for the element
110   /// kind.
111   llvm::PointerIntPair<Attribute, 2, Kind> constantAndTag;
112 
113   /// The dialect the constant originated from. This is only valid if the
114   /// lattice is a constant. This is not used as part of the key, and is only
115   /// needed to materialize the held constant if necessary.
116   Dialect *constantDialect;
117 };
118 
119 /// This class contains various state used when computing the lattice of a
120 /// callable operation.
121 class CallableLatticeState {
122 public:
123   /// Build a lattice state with a given callable region, and a specified number
124   /// of results to be initialized to the default lattice value (Unknown).
125   CallableLatticeState(Region *callableRegion, unsigned numResults)
126       : callableArguments(callableRegion->getArguments()),
127         resultLatticeValues(numResults) {}
128 
129   /// Returns the arguments to the callable region.
130   Block::BlockArgListType getCallableArguments() const {
131     return callableArguments;
132   }
133 
134   /// Returns the lattice value for the results of the callable region.
135   MutableArrayRef<LatticeValue> getResultLatticeValues() {
136     return resultLatticeValues;
137   }
138 
139   /// Add a call to this callable. This is only used if the callable defines a
140   /// symbol.
141   void addSymbolCall(Operation *op) { symbolCalls.push_back(op); }
142 
143   /// Return the calls that reference this callable. This is only used
144   /// if the callable defines a symbol.
145   ArrayRef<Operation *> getSymbolCalls() const { return symbolCalls; }
146 
147 private:
148   /// The arguments of the callable region.
149   Block::BlockArgListType callableArguments;
150 
151   /// The lattice state for each of the results of this region. The return
152   /// values of the callable aren't SSA values, so we need to track them
153   /// separately.
154   SmallVector<LatticeValue, 4> resultLatticeValues;
155 
156   /// The calls referencing this callable if this callable defines a symbol.
157   /// This removes the need to recompute symbol references during propagation.
158   /// Value based references are trivial to resolve, so they can be done
159   /// in-place.
160   SmallVector<Operation *, 4> symbolCalls;
161 };
162 
163 /// This class represents the solver for the SCCP analysis. This class acts as
164 /// the propagation engine for computing which values form constants.
165 class SCCPSolver {
166 public:
167   /// Initialize the solver with the given top-level operation.
168   SCCPSolver(Operation *op);
169 
170   /// Run the solver until it converges.
171   void solve();
172 
173   /// Rewrite the given regions using the computing analysis. This replaces the
174   /// uses of all values that have been computed to be constant, and erases as
175   /// many newly dead operations.
176   void rewrite(MLIRContext *context, MutableArrayRef<Region> regions);
177 
178 private:
179   /// Initialize the set of symbol defining callables that can have their
180   /// arguments and results tracked. 'op' is the top-level operation that SCCP
181   /// is operating on.
182   void initializeSymbolCallables(Operation *op);
183 
184   /// Replace the given value with a constant if the corresponding lattice
185   /// represents a constant. Returns success if the value was replaced, failure
186   /// otherwise.
187   LogicalResult replaceWithConstant(OpBuilder &builder, OperationFolder &folder,
188                                     Value value);
189 
190   /// Visit the users of the given IR that reside within executable blocks.
191   template <typename T>
192   void visitUsers(T &value) {
193     for (Operation *user : value.getUsers())
194       if (isBlockExecutable(user->getBlock()))
195         visitOperation(user);
196   }
197 
198   /// Visit the given operation and compute any necessary lattice state.
199   void visitOperation(Operation *op);
200 
201   /// Visit the given call operation and compute any necessary lattice state.
202   void visitCallOperation(CallOpInterface op);
203 
204   /// Visit the given callable operation and compute any necessary lattice
205   /// state.
206   void visitCallableOperation(Operation *op);
207 
208   /// Visit the given operation, which defines regions, and compute any
209   /// necessary lattice state. This also resolves the lattice state of both the
210   /// operation results and any nested regions.
211   void visitRegionOperation(Operation *op,
212                             ArrayRef<Attribute> constantOperands);
213 
214   /// Visit the given set of region successors, computing any necessary lattice
215   /// state. The provided function returns the input operands to the region at
216   /// the given index. If the index is 'None', the input operands correspond to
217   /// the parent operation results.
218   void visitRegionSuccessors(
219       Operation *parentOp, ArrayRef<RegionSuccessor> regionSuccessors,
220       function_ref<OperandRange(Optional<unsigned>)> getInputsForRegion);
221 
222   /// Visit the given terminator operation and compute any necessary lattice
223   /// state.
224   void visitTerminatorOperation(Operation *op,
225                                 ArrayRef<Attribute> constantOperands);
226 
227   /// Visit the given terminator operation that exits a callable region. These
228   /// are terminators with no CFG successors.
229   void visitCallableTerminatorOperation(Operation *callable,
230                                         Operation *terminator);
231 
232   /// Visit the given block and compute any necessary lattice state.
233   void visitBlock(Block *block);
234 
235   /// Visit argument #'i' of the given block and compute any necessary lattice
236   /// state.
237   void visitBlockArgument(Block *block, int i);
238 
239   /// Mark the given block as executable. Returns false if the block was already
240   /// marked executable.
241   bool markBlockExecutable(Block *block);
242 
243   /// Returns true if the given block is executable.
244   bool isBlockExecutable(Block *block) const;
245 
246   /// Mark the edge between 'from' and 'to' as executable.
247   void markEdgeExecutable(Block *from, Block *to);
248 
249   /// Return true if the edge between 'from' and 'to' is executable.
250   bool isEdgeExecutable(Block *from, Block *to) const;
251 
252   /// Mark the given value as overdefined. This means that we cannot refine a
253   /// specific constant for this value.
254   void markOverdefined(Value value);
255 
256   /// Mark all of the given values as overdefined.
257   template <typename ValuesT>
258   void markAllOverdefined(ValuesT values) {
259     for (auto value : values)
260       markOverdefined(value);
261   }
262   template <typename ValuesT>
263   void markAllOverdefined(Operation *op, ValuesT values) {
264     markAllOverdefined(values);
265     opWorklist.push_back(op);
266   }
267   template <typename ValuesT>
268   void markAllOverdefinedAndVisitUsers(ValuesT values) {
269     for (auto value : values) {
270       auto &lattice = latticeValues[value];
271       if (!lattice.isOverdefined()) {
272         lattice.markOverdefined();
273         visitUsers(value);
274       }
275     }
276   }
277 
278   /// Returns true if the given value was marked as overdefined.
279   bool isOverdefined(Value value) const;
280 
281   /// Merge in the given lattice 'from' into the lattice 'to'. 'owner'
282   /// corresponds to the parent operation of 'to'.
283   void meet(Operation *owner, LatticeValue &to, const LatticeValue &from);
284 
285   /// The lattice for each SSA value.
286   DenseMap<Value, LatticeValue> latticeValues;
287 
288   /// The set of blocks that are known to execute, or are intrinsically live.
289   SmallPtrSet<Block *, 16> executableBlocks;
290 
291   /// The set of control flow edges that are known to execute.
292   DenseSet<std::pair<Block *, Block *>> executableEdges;
293 
294   /// A worklist containing blocks that need to be processed.
295   SmallVector<Block *, 64> blockWorklist;
296 
297   /// A worklist of operations that need to be processed.
298   SmallVector<Operation *, 64> opWorklist;
299 
300   /// The callable operations that have their argument/result state tracked.
301   DenseMap<Operation *, CallableLatticeState> callableLatticeState;
302 
303   /// A map between a call operation and the resolved symbol callable. This
304   /// avoids re-resolving symbol references during propagation. Value based
305   /// callables are trivial to resolve, so they can be done in-place.
306   DenseMap<Operation *, Operation *> callToSymbolCallable;
307 };
308 } // end anonymous namespace
309 
310 SCCPSolver::SCCPSolver(Operation *op) {
311   /// Initialize the solver with the regions within this operation.
312   for (Region &region : op->getRegions()) {
313     if (region.empty())
314       continue;
315     Block *entryBlock = &region.front();
316 
317     // Mark the entry block as executable.
318     markBlockExecutable(entryBlock);
319 
320     // The values passed to these regions are invisible, so mark any arguments
321     // as overdefined.
322     markAllOverdefined(entryBlock->getArguments());
323   }
324   initializeSymbolCallables(op);
325 }
326 
327 void SCCPSolver::solve() {
328   while (!blockWorklist.empty() || !opWorklist.empty()) {
329     // Process any operations in the op worklist.
330     while (!opWorklist.empty())
331       visitUsers(*opWorklist.pop_back_val());
332 
333     // Process any blocks in the block worklist.
334     while (!blockWorklist.empty())
335       visitBlock(blockWorklist.pop_back_val());
336   }
337 }
338 
339 void SCCPSolver::rewrite(MLIRContext *context,
340                          MutableArrayRef<Region> initialRegions) {
341   SmallVector<Block *, 8> worklist;
342   auto addToWorklist = [&](MutableArrayRef<Region> regions) {
343     for (Region &region : regions)
344       for (Block &block : region)
345         if (isBlockExecutable(&block))
346           worklist.push_back(&block);
347   };
348 
349   // An operation folder used to create and unique constants.
350   OperationFolder folder(context);
351   OpBuilder builder(context);
352 
353   addToWorklist(initialRegions);
354   while (!worklist.empty()) {
355     Block *block = worklist.pop_back_val();
356 
357     // Replace any block arguments with constants.
358     builder.setInsertionPointToStart(block);
359     for (BlockArgument arg : block->getArguments())
360       replaceWithConstant(builder, folder, arg);
361 
362     for (Operation &op : llvm::make_early_inc_range(*block)) {
363       builder.setInsertionPoint(&op);
364 
365       // Replace any result with constants.
366       bool replacedAll = op.getNumResults() != 0;
367       for (Value res : op.getResults())
368         replacedAll &= succeeded(replaceWithConstant(builder, folder, res));
369 
370       // If all of the results of the operation were replaced, try to erase
371       // the operation completely.
372       if (replacedAll && wouldOpBeTriviallyDead(&op)) {
373         assert(op.use_empty() && "expected all uses to be replaced");
374         op.erase();
375         continue;
376       }
377 
378       // Add any the regions of this operation to the worklist.
379       addToWorklist(op.getRegions());
380     }
381   }
382 }
383 
384 void SCCPSolver::initializeSymbolCallables(Operation *op) {
385   // Initialize the set of symbol callables that can have their state tracked.
386   // This tracks which symbol callable operations we can propagate within and
387   // out of.
388   auto walkFn = [&](Operation *symTable, bool allUsesVisible) {
389     Region &symbolTableRegion = symTable->getRegion(0);
390     Block *symbolTableBlock = &symbolTableRegion.front();
391     for (auto callable : symbolTableBlock->getOps<CallableOpInterface>()) {
392       // We won't be able to track external callables.
393       Region *callableRegion = callable.getCallableRegion();
394       if (!callableRegion)
395         continue;
396       // We only care about symbol defining callables here.
397       auto symbol = dyn_cast<SymbolOpInterface>(callable.getOperation());
398       if (!symbol)
399         continue;
400       callableLatticeState.try_emplace(callable, callableRegion,
401                                        callable.getCallableResults().size());
402 
403       // If not all of the uses of this symbol are visible, we can't track the
404       // state of the arguments.
405       if (symbol.isPublic() || (!allUsesVisible && symbol.isNested()))
406         markAllOverdefined(callableRegion->getArguments());
407     }
408     if (callableLatticeState.empty())
409       return;
410 
411     // After computing the valid callables, walk any symbol uses to check
412     // for non-call references. We won't be able to track the lattice state
413     // for arguments to these callables, as we can't guarantee that we can see
414     // all of its calls.
415     Optional<SymbolTable::UseRange> uses =
416         SymbolTable::getSymbolUses(&symbolTableRegion);
417     if (!uses) {
418       // If we couldn't gather the symbol uses, conservatively assume that
419       // we can't track information for any nested symbols.
420       op->walk([&](CallableOpInterface op) { callableLatticeState.erase(op); });
421       return;
422     }
423 
424     for (const SymbolTable::SymbolUse &use : *uses) {
425       // If the use is a call, track it to avoid the need to recompute the
426       // reference later.
427       if (auto callOp = dyn_cast<CallOpInterface>(use.getUser())) {
428         Operation *symCallable = callOp.resolveCallable();
429         auto callableLatticeIt = callableLatticeState.find(symCallable);
430         if (callableLatticeIt != callableLatticeState.end()) {
431           callToSymbolCallable.try_emplace(callOp, symCallable);
432 
433           // We only need to record the call in the lattice if it produces any
434           // values.
435           if (callOp.getOperation()->getNumResults())
436             callableLatticeIt->second.addSymbolCall(callOp);
437         }
438         continue;
439       }
440       // This use isn't a call, so don't we know all of the callers.
441       auto *symbol = SymbolTable::lookupSymbolIn(op, use.getSymbolRef());
442       auto it = callableLatticeState.find(symbol);
443       if (it != callableLatticeState.end())
444         markAllOverdefined(it->second.getCallableArguments());
445     }
446   };
447   SymbolTable::walkSymbolTables(op, /*allSymUsesVisible=*/!op->getBlock(),
448                                 walkFn);
449 }
450 
451 LogicalResult SCCPSolver::replaceWithConstant(OpBuilder &builder,
452                                               OperationFolder &folder,
453                                               Value value) {
454   auto it = latticeValues.find(value);
455   auto attr = it == latticeValues.end() ? nullptr : it->second.getConstant();
456   if (!attr)
457     return failure();
458 
459   // Attempt to materialize a constant for the given value.
460   Dialect *dialect = it->second.getConstantDialect();
461   Value constant = folder.getOrCreateConstant(builder, dialect, attr,
462                                               value.getType(), value.getLoc());
463   if (!constant)
464     return failure();
465 
466   value.replaceAllUsesWith(constant);
467   latticeValues.erase(it);
468   return success();
469 }
470 
471 void SCCPSolver::visitOperation(Operation *op) {
472   // Collect all of the constant operands feeding into this operation. If any
473   // are not ready to be resolved, bail out and wait for them to resolve.
474   SmallVector<Attribute, 8> operandConstants;
475   operandConstants.reserve(op->getNumOperands());
476   for (Value operand : op->getOperands()) {
477     // Make sure all of the operands are resolved first.
478     auto &operandLattice = latticeValues[operand];
479     if (operandLattice.isUnknown())
480       return;
481     operandConstants.push_back(operandLattice.getConstant());
482   }
483 
484   // If this is a terminator operation, process any control flow lattice state.
485   if (op->isKnownTerminator())
486     visitTerminatorOperation(op, operandConstants);
487 
488   // Process call operations. The call visitor processes result values, so we
489   // can exit afterwards.
490   if (CallOpInterface call = dyn_cast<CallOpInterface>(op))
491     return visitCallOperation(call);
492 
493   // Process callable operations. These are specially handled region operations
494   // that track dataflow via calls.
495   if (isa<CallableOpInterface>(op))
496     return visitCallableOperation(op);
497 
498   // Process region holding operations. The region visitor processes result
499   // values, so we can exit afterwards.
500   if (op->getNumRegions())
501     return visitRegionOperation(op, operandConstants);
502 
503   // If this op produces no results, it can't produce any constants.
504   if (op->getNumResults() == 0)
505     return;
506 
507   // If all of the results of this operation are already overdefined, bail out
508   // early.
509   auto isOverdefinedFn = [&](Value value) { return isOverdefined(value); };
510   if (llvm::all_of(op->getResults(), isOverdefinedFn))
511     return;
512 
513   // Save the original operands and attributes just in case the operation folds
514   // in-place. The constant passed in may not correspond to the real runtime
515   // value, so in-place updates are not allowed.
516   SmallVector<Value, 8> originalOperands(op->getOperands());
517   MutableDictionaryAttr originalAttrs = op->getMutableAttrDict();
518 
519   // Simulate the result of folding this operation to a constant. If folding
520   // fails or was an in-place fold, mark the results as overdefined.
521   SmallVector<OpFoldResult, 8> foldResults;
522   foldResults.reserve(op->getNumResults());
523   if (failed(op->fold(operandConstants, foldResults)))
524     return markAllOverdefined(op, op->getResults());
525 
526   // If the folding was in-place, mark the results as overdefined and reset the
527   // operation. We don't allow in-place folds as the desire here is for
528   // simulated execution, and not general folding.
529   if (foldResults.empty()) {
530     op->setOperands(originalOperands);
531     op->setAttrs(originalAttrs);
532     return markAllOverdefined(op, op->getResults());
533   }
534 
535   // Merge the fold results into the lattice for this operation.
536   assert(foldResults.size() == op->getNumResults() && "invalid result size");
537   Dialect *opDialect = op->getDialect();
538   for (unsigned i = 0, e = foldResults.size(); i != e; ++i) {
539     LatticeValue &resultLattice = latticeValues[op->getResult(i)];
540 
541     // Merge in the result of the fold, either a constant or a value.
542     OpFoldResult foldResult = foldResults[i];
543     if (Attribute foldAttr = foldResult.dyn_cast<Attribute>())
544       meet(op, resultLattice, LatticeValue(foldAttr, opDialect));
545     else
546       meet(op, resultLattice, latticeValues[foldResult.get<Value>()]);
547   }
548 }
549 
550 void SCCPSolver::visitCallableOperation(Operation *op) {
551   // Mark the regions as executable.
552   bool isTrackingLatticeState = callableLatticeState.count(op);
553   for (Region &region : op->getRegions()) {
554     if (region.empty())
555       continue;
556     Block *entryBlock = &region.front();
557     markBlockExecutable(entryBlock);
558 
559     // If we aren't tracking lattice state for this callable, mark all of the
560     // region arguments as overdefined.
561     if (!isTrackingLatticeState)
562       markAllOverdefined(entryBlock->getArguments());
563   }
564 
565   // TODO: Add support for non-symbol callables when necessary. If the callable
566   // has non-call uses we would mark overdefined, otherwise allow for
567   // propagating the return values out.
568   markAllOverdefined(op, op->getResults());
569 }
570 
571 void SCCPSolver::visitCallOperation(CallOpInterface op) {
572   ResultRange callResults = op.getOperation()->getResults();
573 
574   // Resolve the callable operation for this call.
575   Operation *callableOp = nullptr;
576   if (Value callableValue = op.getCallableForCallee().dyn_cast<Value>())
577     callableOp = callableValue.getDefiningOp();
578   else
579     callableOp = callToSymbolCallable.lookup(op);
580 
581   // The callable of this call can't be resolved, mark any results overdefined.
582   if (!callableOp)
583     return markAllOverdefined(op, callResults);
584 
585   // If this callable is tracking state, merge the argument operands with the
586   // arguments of the callable.
587   auto callableLatticeIt = callableLatticeState.find(callableOp);
588   if (callableLatticeIt == callableLatticeState.end())
589     return markAllOverdefined(op, callResults);
590 
591   OperandRange callOperands = op.getArgOperands();
592   auto callableArgs = callableLatticeIt->second.getCallableArguments();
593   for (auto it : llvm::zip(callOperands, callableArgs)) {
594     BlockArgument callableArg = std::get<1>(it);
595     if (latticeValues[callableArg].meet(latticeValues[std::get<0>(it)]))
596       visitUsers(callableArg);
597   }
598 
599   // Merge in the lattice state for the callable results as well.
600   auto callableResults = callableLatticeIt->second.getResultLatticeValues();
601   for (auto it : llvm::zip(callResults, callableResults))
602     meet(/*owner=*/op, /*to=*/latticeValues[std::get<0>(it)],
603          /*from=*/std::get<1>(it));
604 }
605 
606 void SCCPSolver::visitRegionOperation(Operation *op,
607                                       ArrayRef<Attribute> constantOperands) {
608   // Check to see if we can reason about the internal control flow of this
609   // region operation.
610   auto regionInterface = dyn_cast<RegionBranchOpInterface>(op);
611   if (!regionInterface) {
612     // If we can't, conservatively mark all regions as executable.
613     for (Region &region : op->getRegions()) {
614       if (region.empty())
615         continue;
616       Block *entryBlock = &region.front();
617       markBlockExecutable(entryBlock);
618       markAllOverdefined(entryBlock->getArguments());
619     }
620 
621     // Don't try to simulate the results of a region operation as we can't
622     // guarantee that folding will be out-of-place. We don't allow in-place
623     // folds as the desire here is for simulated execution, and not general
624     // folding.
625     return markAllOverdefined(op, op->getResults());
626   }
627 
628   // Check to see which regions are executable.
629   SmallVector<RegionSuccessor, 1> successors;
630   regionInterface.getSuccessorRegions(/*index=*/llvm::None, constantOperands,
631                                       successors);
632 
633   // If the interface identified that no region will be executed. Mark
634   // any results of this operation as overdefined, as we can't reason about
635   // them.
636   // TODO: If we had an interface to detect pass through operands, we could
637   // resolve some results based on the lattice state of the operands. We could
638   // also allow for the parent operation to have itself as a region successor.
639   if (successors.empty())
640     return markAllOverdefined(op, op->getResults());
641   return visitRegionSuccessors(op, successors, [&](Optional<unsigned> index) {
642     assert(index && "expected valid region index");
643     return regionInterface.getSuccessorEntryOperands(*index);
644   });
645 }
646 
647 void SCCPSolver::visitRegionSuccessors(
648     Operation *parentOp, ArrayRef<RegionSuccessor> regionSuccessors,
649     function_ref<OperandRange(Optional<unsigned>)> getInputsForRegion) {
650   for (const RegionSuccessor &it : regionSuccessors) {
651     Region *region = it.getSuccessor();
652     ValueRange succArgs = it.getSuccessorInputs();
653 
654     // Check to see if this is the parent operation.
655     if (!region) {
656       ResultRange results = parentOp->getResults();
657       if (llvm::all_of(results, [&](Value res) { return isOverdefined(res); }))
658         continue;
659 
660       // Mark the results outside of the input range as overdefined.
661       if (succArgs.size() != results.size()) {
662         opWorklist.push_back(parentOp);
663         if (succArgs.empty())
664           return markAllOverdefined(results);
665 
666         unsigned firstResIdx = succArgs[0].cast<OpResult>().getResultNumber();
667         markAllOverdefined(results.take_front(firstResIdx));
668         markAllOverdefined(results.drop_front(firstResIdx + succArgs.size()));
669       }
670 
671       // Update the lattice for any operation results.
672       OperandRange operands = getInputsForRegion(/*index=*/llvm::None);
673       for (auto it : llvm::zip(succArgs, operands))
674         meet(parentOp, latticeValues[std::get<0>(it)],
675              latticeValues[std::get<1>(it)]);
676       return;
677     }
678     assert(!region->empty() && "expected region to be non-empty");
679     Block *entryBlock = &region->front();
680     markBlockExecutable(entryBlock);
681 
682     // If all of the arguments are already overdefined, the arguments have
683     // already been fully resolved.
684     auto arguments = entryBlock->getArguments();
685     if (llvm::all_of(arguments, [&](Value arg) { return isOverdefined(arg); }))
686       continue;
687 
688     // Mark any arguments that do not receive inputs as overdefined, we won't be
689     // able to discern if they are constant.
690     if (succArgs.size() != arguments.size()) {
691       if (succArgs.empty()) {
692         markAllOverdefined(arguments);
693         continue;
694       }
695 
696       unsigned firstArgIdx = succArgs[0].cast<BlockArgument>().getArgNumber();
697       markAllOverdefinedAndVisitUsers(arguments.take_front(firstArgIdx));
698       markAllOverdefinedAndVisitUsers(
699           arguments.drop_front(firstArgIdx + succArgs.size()));
700     }
701 
702     // Update the lattice for arguments that have inputs from the predecessor.
703     OperandRange succOperands = getInputsForRegion(region->getRegionNumber());
704     for (auto it : llvm::zip(succArgs, succOperands)) {
705       LatticeValue &argLattice = latticeValues[std::get<0>(it)];
706       if (argLattice.meet(latticeValues[std::get<1>(it)]))
707         visitUsers(std::get<0>(it));
708     }
709   }
710 }
711 
712 void SCCPSolver::visitTerminatorOperation(
713     Operation *op, ArrayRef<Attribute> constantOperands) {
714   // If this operation has no successors, we treat it as an exiting terminator.
715   if (op->getNumSuccessors() == 0) {
716     Region *parentRegion = op->getParentRegion();
717     Operation *parentOp = parentRegion->getParentOp();
718 
719     // Check to see if this is a terminator for a callable region.
720     if (isa<CallableOpInterface>(parentOp))
721       return visitCallableTerminatorOperation(parentOp, op);
722 
723     // Otherwise, check to see if the parent tracks region control flow.
724     auto regionInterface = dyn_cast<RegionBranchOpInterface>(parentOp);
725     if (!regionInterface || !isBlockExecutable(parentOp->getBlock()))
726       return;
727 
728     // Query the set of successors from the current region.
729     SmallVector<RegionSuccessor, 1> regionSuccessors;
730     regionInterface.getSuccessorRegions(parentRegion->getRegionNumber(),
731                                         constantOperands, regionSuccessors);
732     if (regionSuccessors.empty())
733       return;
734 
735     // If this terminator is not "region-like", conservatively mark all of the
736     // successor values as overdefined.
737     if (!op->hasTrait<OpTrait::ReturnLike>()) {
738       for (auto &it : regionSuccessors)
739         markAllOverdefinedAndVisitUsers(it.getSuccessorInputs());
740       return;
741     }
742 
743     // Otherwise, propagate the operand lattice states to each of the
744     // successors.
745     OperandRange operands = op->getOperands();
746     return visitRegionSuccessors(parentOp, regionSuccessors,
747                                  [&](Optional<unsigned>) { return operands; });
748   }
749 
750   // Try to resolve to a specific successor with the constant operands.
751   if (auto branch = dyn_cast<BranchOpInterface>(op)) {
752     if (Block *singleSucc = branch.getSuccessorForOperands(constantOperands)) {
753       markEdgeExecutable(op->getBlock(), singleSucc);
754       return;
755     }
756   }
757 
758   // Otherwise, conservatively treat all edges as executable.
759   Block *block = op->getBlock();
760   for (Block *succ : op->getSuccessors())
761     markEdgeExecutable(block, succ);
762 }
763 
764 void SCCPSolver::visitCallableTerminatorOperation(Operation *callable,
765                                                   Operation *terminator) {
766   // If there are no exiting values, we have nothing to track.
767   if (terminator->getNumOperands() == 0)
768     return;
769 
770   // If this callable isn't tracking any lattice state there is nothing to do.
771   auto latticeIt = callableLatticeState.find(callable);
772   if (latticeIt == callableLatticeState.end())
773     return;
774   assert(callable->getNumResults() == 0 && "expected symbol callable");
775 
776   // If this terminator is not "return-like", conservatively mark all of the
777   // call-site results as overdefined.
778   auto callableResultLattices = latticeIt->second.getResultLatticeValues();
779   if (!terminator->hasTrait<OpTrait::ReturnLike>()) {
780     for (auto &it : callableResultLattices)
781       it.markOverdefined();
782     for (Operation *call : latticeIt->second.getSymbolCalls())
783       markAllOverdefined(call, call->getResults());
784     return;
785   }
786 
787   // Merge the terminator operands into the results.
788   bool anyChanged = false;
789   for (auto it : llvm::zip(terminator->getOperands(), callableResultLattices))
790     anyChanged |= std::get<1>(it).meet(latticeValues[std::get<0>(it)]);
791   if (!anyChanged)
792     return;
793 
794   // If any of the result lattices changed, update the callers.
795   for (Operation *call : latticeIt->second.getSymbolCalls())
796     for (auto it : llvm::zip(call->getResults(), callableResultLattices))
797       meet(call, latticeValues[std::get<0>(it)], std::get<1>(it));
798 }
799 
800 void SCCPSolver::visitBlock(Block *block) {
801   // If the block is not the entry block we need to compute the lattice state
802   // for the block arguments. Entry block argument lattices are computed
803   // elsewhere, such as when visiting the parent operation.
804   if (!block->isEntryBlock()) {
805     for (int i : llvm::seq<int>(0, block->getNumArguments()))
806       visitBlockArgument(block, i);
807   }
808 
809   // Visit all of the operations within the block.
810   for (Operation &op : *block)
811     visitOperation(&op);
812 }
813 
814 void SCCPSolver::visitBlockArgument(Block *block, int i) {
815   BlockArgument arg = block->getArgument(i);
816   LatticeValue &argLattice = latticeValues[arg];
817   if (argLattice.isOverdefined())
818     return;
819 
820   bool updatedLattice = false;
821   for (auto it = block->pred_begin(), e = block->pred_end(); it != e; ++it) {
822     Block *pred = *it;
823 
824     // We only care about this predecessor if it is going to execute.
825     if (!isEdgeExecutable(pred, block))
826       continue;
827 
828     // Try to get the operand forwarded by the predecessor. If we can't reason
829     // about the terminator of the predecessor, mark overdefined.
830     Optional<OperandRange> branchOperands;
831     if (auto branch = dyn_cast<BranchOpInterface>(pred->getTerminator()))
832       branchOperands = branch.getSuccessorOperands(it.getSuccessorIndex());
833     if (!branchOperands) {
834       updatedLattice = true;
835       argLattice.markOverdefined();
836       break;
837     }
838 
839     // If the operand hasn't been resolved, it is unknown which can merge with
840     // anything.
841     auto operandLattice = latticeValues.find((*branchOperands)[i]);
842     if (operandLattice == latticeValues.end())
843       continue;
844 
845     // Otherwise, meet the two lattice values.
846     updatedLattice |= argLattice.meet(operandLattice->second);
847     if (argLattice.isOverdefined())
848       break;
849   }
850 
851   // If the lattice was updated, visit any executable users of the argument.
852   if (updatedLattice)
853     visitUsers(arg);
854 }
855 
856 bool SCCPSolver::markBlockExecutable(Block *block) {
857   bool marked = executableBlocks.insert(block).second;
858   if (marked)
859     blockWorklist.push_back(block);
860   return marked;
861 }
862 
863 bool SCCPSolver::isBlockExecutable(Block *block) const {
864   return executableBlocks.count(block);
865 }
866 
867 void SCCPSolver::markEdgeExecutable(Block *from, Block *to) {
868   if (!executableEdges.insert(std::make_pair(from, to)).second)
869     return;
870   // Mark the destination as executable, and reprocess its arguments if it was
871   // already executable.
872   if (!markBlockExecutable(to)) {
873     for (int i : llvm::seq<int>(0, to->getNumArguments()))
874       visitBlockArgument(to, i);
875   }
876 }
877 
878 bool SCCPSolver::isEdgeExecutable(Block *from, Block *to) const {
879   return executableEdges.count(std::make_pair(from, to));
880 }
881 
882 void SCCPSolver::markOverdefined(Value value) {
883   latticeValues[value].markOverdefined();
884 }
885 
886 bool SCCPSolver::isOverdefined(Value value) const {
887   auto it = latticeValues.find(value);
888   return it != latticeValues.end() && it->second.isOverdefined();
889 }
890 
891 void SCCPSolver::meet(Operation *owner, LatticeValue &to,
892                       const LatticeValue &from) {
893   if (to.meet(from))
894     opWorklist.push_back(owner);
895 }
896 
897 //===----------------------------------------------------------------------===//
898 // SCCP Pass
899 //===----------------------------------------------------------------------===//
900 
901 namespace {
902 struct SCCP : public SCCPBase<SCCP> {
903   void runOnOperation() override;
904 };
905 } // end anonymous namespace
906 
907 void SCCP::runOnOperation() {
908   Operation *op = getOperation();
909 
910   // Solve for SCCP constraints within nested regions.
911   SCCPSolver solver(op);
912   solver.solve();
913 
914   // Cleanup any operations using the solver analysis.
915   solver.rewrite(&getContext(), op->getRegions());
916 }
917 
918 std::unique_ptr<Pass> mlir::createSCCPPass() {
919   return std::make_unique<SCCP>();
920 }
921