1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation pass performs a sparse conditional constant propagation 10 // in MLIR. It identifies values known to be constant, propagates that 11 // information throughout the IR, and replaces them. This is done with an 12 // optimistic dataflow analysis that assumes that all values are constant until 13 // proven otherwise. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "PassDetail.h" 18 #include "mlir/IR/Builders.h" 19 #include "mlir/IR/Dialect.h" 20 #include "mlir/Interfaces/ControlFlowInterfaces.h" 21 #include "mlir/Interfaces/SideEffectInterfaces.h" 22 #include "mlir/Pass/Pass.h" 23 #include "mlir/Transforms/FoldUtils.h" 24 #include "mlir/Transforms/Passes.h" 25 26 using namespace mlir; 27 28 namespace { 29 /// This class represents a single lattice value. A lattive value corresponds to 30 /// the various different states that a value in the SCCP dataflow analysis can 31 /// take. See 'Kind' below for more details on the different states a value can 32 /// take. 33 class LatticeValue { 34 enum Kind { 35 /// A value with a yet to be determined value. This state may be changed to 36 /// anything. 37 Unknown, 38 39 /// A value that is known to be a constant. This state may be changed to 40 /// overdefined. 41 Constant, 42 43 /// A value that cannot statically be determined to be a constant. This 44 /// state cannot be changed. 45 Overdefined 46 }; 47 48 public: 49 /// Initialize a lattice value with "Unknown". 50 LatticeValue() 51 : constantAndTag(nullptr, Kind::Unknown), constantDialect(nullptr) {} 52 /// Initialize a lattice value with a constant. 53 LatticeValue(Attribute attr, Dialect *dialect) 54 : constantAndTag(attr, Kind::Constant), constantDialect(dialect) {} 55 56 /// Returns true if this lattice value is unknown. 57 bool isUnknown() const { return constantAndTag.getInt() == Kind::Unknown; } 58 59 /// Mark the lattice value as overdefined. 60 void markOverdefined() { 61 constantAndTag.setPointerAndInt(nullptr, Kind::Overdefined); 62 constantDialect = nullptr; 63 } 64 65 /// Returns true if the lattice is overdefined. 66 bool isOverdefined() const { 67 return constantAndTag.getInt() == Kind::Overdefined; 68 } 69 70 /// Mark the lattice value as constant. 71 void markConstant(Attribute value, Dialect *dialect) { 72 constantAndTag.setPointerAndInt(value, Kind::Constant); 73 constantDialect = dialect; 74 } 75 76 /// If this lattice is constant, return the constant. Returns nullptr 77 /// otherwise. 78 Attribute getConstant() const { return constantAndTag.getPointer(); } 79 80 /// If this lattice is constant, return the dialect to use when materializing 81 /// the constant. 82 Dialect *getConstantDialect() const { 83 assert(getConstant() && "expected valid constant"); 84 return constantDialect; 85 } 86 87 /// Merge in the value of the 'rhs' lattice into this one. Returns true if the 88 /// lattice value changed. 89 bool meet(const LatticeValue &rhs) { 90 // If we are already overdefined, or rhs is unknown, there is nothing to do. 91 if (isOverdefined() || rhs.isUnknown()) 92 return false; 93 // If we are unknown, just take the value of rhs. 94 if (isUnknown()) { 95 constantAndTag = rhs.constantAndTag; 96 constantDialect = rhs.constantDialect; 97 return true; 98 } 99 100 // Otherwise, if this value doesn't match rhs go straight to overdefined. 101 if (constantAndTag != rhs.constantAndTag) { 102 markOverdefined(); 103 return true; 104 } 105 return false; 106 } 107 108 private: 109 /// The attribute value if this is a constant and the tag for the element 110 /// kind. 111 llvm::PointerIntPair<Attribute, 2, Kind> constantAndTag; 112 113 /// The dialect the constant originated from. This is only valid if the 114 /// lattice is a constant. This is not used as part of the key, and is only 115 /// needed to materialize the held constant if necessary. 116 Dialect *constantDialect; 117 }; 118 119 /// This class contains various state used when computing the lattice of a 120 /// callable operation. 121 class CallableLatticeState { 122 public: 123 /// Build a lattice state with a given callable region, and a specified number 124 /// of results to be initialized to the default lattice value (Unknown). 125 CallableLatticeState(Region *callableRegion, unsigned numResults) 126 : callableArguments(callableRegion->getArguments()), 127 resultLatticeValues(numResults) {} 128 129 /// Returns the arguments to the callable region. 130 Block::BlockArgListType getCallableArguments() const { 131 return callableArguments; 132 } 133 134 /// Returns the lattice value for the results of the callable region. 135 MutableArrayRef<LatticeValue> getResultLatticeValues() { 136 return resultLatticeValues; 137 } 138 139 /// Add a call to this callable. This is only used if the callable defines a 140 /// symbol. 141 void addSymbolCall(Operation *op) { symbolCalls.push_back(op); } 142 143 /// Return the calls that reference this callable. This is only used 144 /// if the callable defines a symbol. 145 ArrayRef<Operation *> getSymbolCalls() const { return symbolCalls; } 146 147 private: 148 /// The arguments of the callable region. 149 Block::BlockArgListType callableArguments; 150 151 /// The lattice state for each of the results of this region. The return 152 /// values of the callable aren't SSA values, so we need to track them 153 /// separately. 154 SmallVector<LatticeValue, 4> resultLatticeValues; 155 156 /// The calls referencing this callable if this callable defines a symbol. 157 /// This removes the need to recompute symbol references during propagation. 158 /// Value based references are trivial to resolve, so they can be done 159 /// in-place. 160 SmallVector<Operation *, 4> symbolCalls; 161 }; 162 163 /// This class represents the solver for the SCCP analysis. This class acts as 164 /// the propagation engine for computing which values form constants. 165 class SCCPSolver { 166 public: 167 /// Initialize the solver with the given top-level operation. 168 SCCPSolver(Operation *op); 169 170 /// Run the solver until it converges. 171 void solve(); 172 173 /// Rewrite the given regions using the computing analysis. This replaces the 174 /// uses of all values that have been computed to be constant, and erases as 175 /// many newly dead operations. 176 void rewrite(MLIRContext *context, MutableArrayRef<Region> regions); 177 178 private: 179 /// Initialize the set of symbol defining callables that can have their 180 /// arguments and results tracked. 'op' is the top-level operation that SCCP 181 /// is operating on. 182 void initializeSymbolCallables(Operation *op); 183 184 /// Replace the given value with a constant if the corresponding lattice 185 /// represents a constant. Returns success if the value was replaced, failure 186 /// otherwise. 187 LogicalResult replaceWithConstant(OpBuilder &builder, OperationFolder &folder, 188 Value value); 189 190 /// Visit the users of the given IR that reside within executable blocks. 191 template <typename T> 192 void visitUsers(T &value) { 193 for (Operation *user : value.getUsers()) 194 if (isBlockExecutable(user->getBlock())) 195 visitOperation(user); 196 } 197 198 /// Visit the given operation and compute any necessary lattice state. 199 void visitOperation(Operation *op); 200 201 /// Visit the given call operation and compute any necessary lattice state. 202 void visitCallOperation(CallOpInterface op); 203 204 /// Visit the given callable operation and compute any necessary lattice 205 /// state. 206 void visitCallableOperation(Operation *op); 207 208 /// Visit the given operation, which defines regions, and compute any 209 /// necessary lattice state. This also resolves the lattice state of both the 210 /// operation results and any nested regions. 211 void visitRegionOperation(Operation *op, 212 ArrayRef<Attribute> constantOperands); 213 214 /// Visit the given set of region successors, computing any necessary lattice 215 /// state. The provided function returns the input operands to the region at 216 /// the given index. If the index is 'None', the input operands correspond to 217 /// the parent operation results. 218 void visitRegionSuccessors( 219 Operation *parentOp, ArrayRef<RegionSuccessor> regionSuccessors, 220 function_ref<OperandRange(Optional<unsigned>)> getInputsForRegion); 221 222 /// Visit the given terminator operation and compute any necessary lattice 223 /// state. 224 void visitTerminatorOperation(Operation *op, 225 ArrayRef<Attribute> constantOperands); 226 227 /// Visit the given terminator operation that exits a callable region. These 228 /// are terminators with no CFG successors. 229 void visitCallableTerminatorOperation(Operation *callable, 230 Operation *terminator); 231 232 /// Visit the given block and compute any necessary lattice state. 233 void visitBlock(Block *block); 234 235 /// Visit argument #'i' of the given block and compute any necessary lattice 236 /// state. 237 void visitBlockArgument(Block *block, int i); 238 239 /// Mark the given block as executable. Returns false if the block was already 240 /// marked executable. 241 bool markBlockExecutable(Block *block); 242 243 /// Returns true if the given block is executable. 244 bool isBlockExecutable(Block *block) const; 245 246 /// Mark the edge between 'from' and 'to' as executable. 247 void markEdgeExecutable(Block *from, Block *to); 248 249 /// Return true if the edge between 'from' and 'to' is executable. 250 bool isEdgeExecutable(Block *from, Block *to) const; 251 252 /// Mark the given value as overdefined. This means that we cannot refine a 253 /// specific constant for this value. 254 void markOverdefined(Value value); 255 256 /// Mark all of the given values as overdefined. 257 template <typename ValuesT> 258 void markAllOverdefined(ValuesT values) { 259 for (auto value : values) 260 markOverdefined(value); 261 } 262 template <typename ValuesT> 263 void markAllOverdefined(Operation *op, ValuesT values) { 264 markAllOverdefined(values); 265 opWorklist.push_back(op); 266 } 267 template <typename ValuesT> 268 void markAllOverdefinedAndVisitUsers(ValuesT values) { 269 for (auto value : values) { 270 auto &lattice = latticeValues[value]; 271 if (!lattice.isOverdefined()) { 272 lattice.markOverdefined(); 273 visitUsers(value); 274 } 275 } 276 } 277 278 /// Returns true if the given value was marked as overdefined. 279 bool isOverdefined(Value value) const; 280 281 /// Merge in the given lattice 'from' into the lattice 'to'. 'owner' 282 /// corresponds to the parent operation of 'to'. 283 void meet(Operation *owner, LatticeValue &to, const LatticeValue &from); 284 285 /// The lattice for each SSA value. 286 DenseMap<Value, LatticeValue> latticeValues; 287 288 /// The set of blocks that are known to execute, or are intrinsically live. 289 SmallPtrSet<Block *, 16> executableBlocks; 290 291 /// The set of control flow edges that are known to execute. 292 DenseSet<std::pair<Block *, Block *>> executableEdges; 293 294 /// A worklist containing blocks that need to be processed. 295 SmallVector<Block *, 64> blockWorklist; 296 297 /// A worklist of operations that need to be processed. 298 SmallVector<Operation *, 64> opWorklist; 299 300 /// The callable operations that have their argument/result state tracked. 301 DenseMap<Operation *, CallableLatticeState> callableLatticeState; 302 303 /// A map between a call operation and the resolved symbol callable. This 304 /// avoids re-resolving symbol references during propagation. Value based 305 /// callables are trivial to resolve, so they can be done in-place. 306 DenseMap<Operation *, Operation *> callToSymbolCallable; 307 308 /// A symbol table used for O(1) symbol lookups during simplification. 309 SymbolTableCollection symbolTable; 310 }; 311 } // end anonymous namespace 312 313 SCCPSolver::SCCPSolver(Operation *op) { 314 /// Initialize the solver with the regions within this operation. 315 for (Region ®ion : op->getRegions()) { 316 if (region.empty()) 317 continue; 318 Block *entryBlock = ®ion.front(); 319 320 // Mark the entry block as executable. 321 markBlockExecutable(entryBlock); 322 323 // The values passed to these regions are invisible, so mark any arguments 324 // as overdefined. 325 markAllOverdefined(entryBlock->getArguments()); 326 } 327 initializeSymbolCallables(op); 328 } 329 330 void SCCPSolver::solve() { 331 while (!blockWorklist.empty() || !opWorklist.empty()) { 332 // Process any operations in the op worklist. 333 while (!opWorklist.empty()) 334 visitUsers(*opWorklist.pop_back_val()); 335 336 // Process any blocks in the block worklist. 337 while (!blockWorklist.empty()) 338 visitBlock(blockWorklist.pop_back_val()); 339 } 340 } 341 342 void SCCPSolver::rewrite(MLIRContext *context, 343 MutableArrayRef<Region> initialRegions) { 344 SmallVector<Block *, 8> worklist; 345 auto addToWorklist = [&](MutableArrayRef<Region> regions) { 346 for (Region ®ion : regions) 347 for (Block &block : region) 348 if (isBlockExecutable(&block)) 349 worklist.push_back(&block); 350 }; 351 352 // An operation folder used to create and unique constants. 353 OperationFolder folder(context); 354 OpBuilder builder(context); 355 356 addToWorklist(initialRegions); 357 while (!worklist.empty()) { 358 Block *block = worklist.pop_back_val(); 359 360 // Replace any block arguments with constants. 361 builder.setInsertionPointToStart(block); 362 for (BlockArgument arg : block->getArguments()) 363 replaceWithConstant(builder, folder, arg); 364 365 for (Operation &op : llvm::make_early_inc_range(*block)) { 366 builder.setInsertionPoint(&op); 367 368 // Replace any result with constants. 369 bool replacedAll = op.getNumResults() != 0; 370 for (Value res : op.getResults()) 371 replacedAll &= succeeded(replaceWithConstant(builder, folder, res)); 372 373 // If all of the results of the operation were replaced, try to erase 374 // the operation completely. 375 if (replacedAll && wouldOpBeTriviallyDead(&op)) { 376 assert(op.use_empty() && "expected all uses to be replaced"); 377 op.erase(); 378 continue; 379 } 380 381 // Add any the regions of this operation to the worklist. 382 addToWorklist(op.getRegions()); 383 } 384 } 385 } 386 387 void SCCPSolver::initializeSymbolCallables(Operation *op) { 388 // Initialize the set of symbol callables that can have their state tracked. 389 // This tracks which symbol callable operations we can propagate within and 390 // out of. 391 auto walkFn = [&](Operation *symTable, bool allUsesVisible) { 392 Region &symbolTableRegion = symTable->getRegion(0); 393 Block *symbolTableBlock = &symbolTableRegion.front(); 394 for (auto callable : symbolTableBlock->getOps<CallableOpInterface>()) { 395 // We won't be able to track external callables. 396 Region *callableRegion = callable.getCallableRegion(); 397 if (!callableRegion) 398 continue; 399 // We only care about symbol defining callables here. 400 auto symbol = dyn_cast<SymbolOpInterface>(callable.getOperation()); 401 if (!symbol) 402 continue; 403 callableLatticeState.try_emplace(callable, callableRegion, 404 callable.getCallableResults().size()); 405 406 // If not all of the uses of this symbol are visible, we can't track the 407 // state of the arguments. 408 if (symbol.isPublic() || (!allUsesVisible && symbol.isNested())) 409 markAllOverdefined(callableRegion->getArguments()); 410 } 411 if (callableLatticeState.empty()) 412 return; 413 414 // After computing the valid callables, walk any symbol uses to check 415 // for non-call references. We won't be able to track the lattice state 416 // for arguments to these callables, as we can't guarantee that we can see 417 // all of its calls. 418 Optional<SymbolTable::UseRange> uses = 419 SymbolTable::getSymbolUses(&symbolTableRegion); 420 if (!uses) { 421 // If we couldn't gather the symbol uses, conservatively assume that 422 // we can't track information for any nested symbols. 423 op->walk([&](CallableOpInterface op) { callableLatticeState.erase(op); }); 424 return; 425 } 426 427 for (const SymbolTable::SymbolUse &use : *uses) { 428 // If the use is a call, track it to avoid the need to recompute the 429 // reference later. 430 if (auto callOp = dyn_cast<CallOpInterface>(use.getUser())) { 431 Operation *symCallable = callOp.resolveCallable(&symbolTable); 432 auto callableLatticeIt = callableLatticeState.find(symCallable); 433 if (callableLatticeIt != callableLatticeState.end()) { 434 callToSymbolCallable.try_emplace(callOp, symCallable); 435 436 // We only need to record the call in the lattice if it produces any 437 // values. 438 if (callOp.getOperation()->getNumResults()) 439 callableLatticeIt->second.addSymbolCall(callOp); 440 } 441 continue; 442 } 443 // This use isn't a call, so don't we know all of the callers. 444 auto *symbol = symbolTable.lookupSymbolIn(op, use.getSymbolRef()); 445 auto it = callableLatticeState.find(symbol); 446 if (it != callableLatticeState.end()) 447 markAllOverdefined(it->second.getCallableArguments()); 448 } 449 }; 450 SymbolTable::walkSymbolTables(op, /*allSymUsesVisible=*/!op->getBlock(), 451 walkFn); 452 } 453 454 LogicalResult SCCPSolver::replaceWithConstant(OpBuilder &builder, 455 OperationFolder &folder, 456 Value value) { 457 auto it = latticeValues.find(value); 458 auto attr = it == latticeValues.end() ? nullptr : it->second.getConstant(); 459 if (!attr) 460 return failure(); 461 462 // Attempt to materialize a constant for the given value. 463 Dialect *dialect = it->second.getConstantDialect(); 464 Value constant = folder.getOrCreateConstant(builder, dialect, attr, 465 value.getType(), value.getLoc()); 466 if (!constant) 467 return failure(); 468 469 value.replaceAllUsesWith(constant); 470 latticeValues.erase(it); 471 return success(); 472 } 473 474 void SCCPSolver::visitOperation(Operation *op) { 475 // Collect all of the constant operands feeding into this operation. If any 476 // are not ready to be resolved, bail out and wait for them to resolve. 477 SmallVector<Attribute, 8> operandConstants; 478 operandConstants.reserve(op->getNumOperands()); 479 for (Value operand : op->getOperands()) { 480 // Make sure all of the operands are resolved first. 481 auto &operandLattice = latticeValues[operand]; 482 if (operandLattice.isUnknown()) 483 return; 484 operandConstants.push_back(operandLattice.getConstant()); 485 } 486 487 // If this is a terminator operation, process any control flow lattice state. 488 if (op->isKnownTerminator()) 489 visitTerminatorOperation(op, operandConstants); 490 491 // Process call operations. The call visitor processes result values, so we 492 // can exit afterwards. 493 if (CallOpInterface call = dyn_cast<CallOpInterface>(op)) 494 return visitCallOperation(call); 495 496 // Process callable operations. These are specially handled region operations 497 // that track dataflow via calls. 498 if (isa<CallableOpInterface>(op)) 499 return visitCallableOperation(op); 500 501 // Process region holding operations. The region visitor processes result 502 // values, so we can exit afterwards. 503 if (op->getNumRegions()) 504 return visitRegionOperation(op, operandConstants); 505 506 // If this op produces no results, it can't produce any constants. 507 if (op->getNumResults() == 0) 508 return; 509 510 // If all of the results of this operation are already overdefined, bail out 511 // early. 512 auto isOverdefinedFn = [&](Value value) { return isOverdefined(value); }; 513 if (llvm::all_of(op->getResults(), isOverdefinedFn)) 514 return; 515 516 // Save the original operands and attributes just in case the operation folds 517 // in-place. The constant passed in may not correspond to the real runtime 518 // value, so in-place updates are not allowed. 519 SmallVector<Value, 8> originalOperands(op->getOperands()); 520 MutableDictionaryAttr originalAttrs = op->getMutableAttrDict(); 521 522 // Simulate the result of folding this operation to a constant. If folding 523 // fails or was an in-place fold, mark the results as overdefined. 524 SmallVector<OpFoldResult, 8> foldResults; 525 foldResults.reserve(op->getNumResults()); 526 if (failed(op->fold(operandConstants, foldResults))) 527 return markAllOverdefined(op, op->getResults()); 528 529 // If the folding was in-place, mark the results as overdefined and reset the 530 // operation. We don't allow in-place folds as the desire here is for 531 // simulated execution, and not general folding. 532 if (foldResults.empty()) { 533 op->setOperands(originalOperands); 534 op->setAttrs(originalAttrs); 535 return markAllOverdefined(op, op->getResults()); 536 } 537 538 // Merge the fold results into the lattice for this operation. 539 assert(foldResults.size() == op->getNumResults() && "invalid result size"); 540 Dialect *opDialect = op->getDialect(); 541 for (unsigned i = 0, e = foldResults.size(); i != e; ++i) { 542 LatticeValue &resultLattice = latticeValues[op->getResult(i)]; 543 544 // Merge in the result of the fold, either a constant or a value. 545 OpFoldResult foldResult = foldResults[i]; 546 if (Attribute foldAttr = foldResult.dyn_cast<Attribute>()) 547 meet(op, resultLattice, LatticeValue(foldAttr, opDialect)); 548 else 549 meet(op, resultLattice, latticeValues[foldResult.get<Value>()]); 550 } 551 } 552 553 void SCCPSolver::visitCallableOperation(Operation *op) { 554 // Mark the regions as executable. 555 bool isTrackingLatticeState = callableLatticeState.count(op); 556 for (Region ®ion : op->getRegions()) { 557 if (region.empty()) 558 continue; 559 Block *entryBlock = ®ion.front(); 560 markBlockExecutable(entryBlock); 561 562 // If we aren't tracking lattice state for this callable, mark all of the 563 // region arguments as overdefined. 564 if (!isTrackingLatticeState) 565 markAllOverdefined(entryBlock->getArguments()); 566 } 567 568 // TODO: Add support for non-symbol callables when necessary. If the callable 569 // has non-call uses we would mark overdefined, otherwise allow for 570 // propagating the return values out. 571 markAllOverdefined(op, op->getResults()); 572 } 573 574 void SCCPSolver::visitCallOperation(CallOpInterface op) { 575 ResultRange callResults = op.getOperation()->getResults(); 576 577 // Resolve the callable operation for this call. 578 Operation *callableOp = nullptr; 579 if (Value callableValue = op.getCallableForCallee().dyn_cast<Value>()) 580 callableOp = callableValue.getDefiningOp(); 581 else 582 callableOp = callToSymbolCallable.lookup(op); 583 584 // The callable of this call can't be resolved, mark any results overdefined. 585 if (!callableOp) 586 return markAllOverdefined(op, callResults); 587 588 // If this callable is tracking state, merge the argument operands with the 589 // arguments of the callable. 590 auto callableLatticeIt = callableLatticeState.find(callableOp); 591 if (callableLatticeIt == callableLatticeState.end()) 592 return markAllOverdefined(op, callResults); 593 594 OperandRange callOperands = op.getArgOperands(); 595 auto callableArgs = callableLatticeIt->second.getCallableArguments(); 596 for (auto it : llvm::zip(callOperands, callableArgs)) { 597 BlockArgument callableArg = std::get<1>(it); 598 if (latticeValues[callableArg].meet(latticeValues[std::get<0>(it)])) 599 visitUsers(callableArg); 600 } 601 602 // Merge in the lattice state for the callable results as well. 603 auto callableResults = callableLatticeIt->second.getResultLatticeValues(); 604 for (auto it : llvm::zip(callResults, callableResults)) 605 meet(/*owner=*/op, /*to=*/latticeValues[std::get<0>(it)], 606 /*from=*/std::get<1>(it)); 607 } 608 609 void SCCPSolver::visitRegionOperation(Operation *op, 610 ArrayRef<Attribute> constantOperands) { 611 // Check to see if we can reason about the internal control flow of this 612 // region operation. 613 auto regionInterface = dyn_cast<RegionBranchOpInterface>(op); 614 if (!regionInterface) { 615 // If we can't, conservatively mark all regions as executable. 616 for (Region ®ion : op->getRegions()) { 617 if (region.empty()) 618 continue; 619 Block *entryBlock = ®ion.front(); 620 markBlockExecutable(entryBlock); 621 markAllOverdefined(entryBlock->getArguments()); 622 } 623 624 // Don't try to simulate the results of a region operation as we can't 625 // guarantee that folding will be out-of-place. We don't allow in-place 626 // folds as the desire here is for simulated execution, and not general 627 // folding. 628 return markAllOverdefined(op, op->getResults()); 629 } 630 631 // Check to see which regions are executable. 632 SmallVector<RegionSuccessor, 1> successors; 633 regionInterface.getSuccessorRegions(/*index=*/llvm::None, constantOperands, 634 successors); 635 636 // If the interface identified that no region will be executed. Mark 637 // any results of this operation as overdefined, as we can't reason about 638 // them. 639 // TODO: If we had an interface to detect pass through operands, we could 640 // resolve some results based on the lattice state of the operands. We could 641 // also allow for the parent operation to have itself as a region successor. 642 if (successors.empty()) 643 return markAllOverdefined(op, op->getResults()); 644 return visitRegionSuccessors(op, successors, [&](Optional<unsigned> index) { 645 assert(index && "expected valid region index"); 646 return regionInterface.getSuccessorEntryOperands(*index); 647 }); 648 } 649 650 void SCCPSolver::visitRegionSuccessors( 651 Operation *parentOp, ArrayRef<RegionSuccessor> regionSuccessors, 652 function_ref<OperandRange(Optional<unsigned>)> getInputsForRegion) { 653 for (const RegionSuccessor &it : regionSuccessors) { 654 Region *region = it.getSuccessor(); 655 ValueRange succArgs = it.getSuccessorInputs(); 656 657 // Check to see if this is the parent operation. 658 if (!region) { 659 ResultRange results = parentOp->getResults(); 660 if (llvm::all_of(results, [&](Value res) { return isOverdefined(res); })) 661 continue; 662 663 // Mark the results outside of the input range as overdefined. 664 if (succArgs.size() != results.size()) { 665 opWorklist.push_back(parentOp); 666 if (succArgs.empty()) 667 return markAllOverdefined(results); 668 669 unsigned firstResIdx = succArgs[0].cast<OpResult>().getResultNumber(); 670 markAllOverdefined(results.take_front(firstResIdx)); 671 markAllOverdefined(results.drop_front(firstResIdx + succArgs.size())); 672 } 673 674 // Update the lattice for any operation results. 675 OperandRange operands = getInputsForRegion(/*index=*/llvm::None); 676 for (auto it : llvm::zip(succArgs, operands)) 677 meet(parentOp, latticeValues[std::get<0>(it)], 678 latticeValues[std::get<1>(it)]); 679 return; 680 } 681 assert(!region->empty() && "expected region to be non-empty"); 682 Block *entryBlock = ®ion->front(); 683 markBlockExecutable(entryBlock); 684 685 // If all of the arguments are already overdefined, the arguments have 686 // already been fully resolved. 687 auto arguments = entryBlock->getArguments(); 688 if (llvm::all_of(arguments, [&](Value arg) { return isOverdefined(arg); })) 689 continue; 690 691 // Mark any arguments that do not receive inputs as overdefined, we won't be 692 // able to discern if they are constant. 693 if (succArgs.size() != arguments.size()) { 694 if (succArgs.empty()) { 695 markAllOverdefined(arguments); 696 continue; 697 } 698 699 unsigned firstArgIdx = succArgs[0].cast<BlockArgument>().getArgNumber(); 700 markAllOverdefinedAndVisitUsers(arguments.take_front(firstArgIdx)); 701 markAllOverdefinedAndVisitUsers( 702 arguments.drop_front(firstArgIdx + succArgs.size())); 703 } 704 705 // Update the lattice for arguments that have inputs from the predecessor. 706 OperandRange succOperands = getInputsForRegion(region->getRegionNumber()); 707 for (auto it : llvm::zip(succArgs, succOperands)) { 708 LatticeValue &argLattice = latticeValues[std::get<0>(it)]; 709 if (argLattice.meet(latticeValues[std::get<1>(it)])) 710 visitUsers(std::get<0>(it)); 711 } 712 } 713 } 714 715 void SCCPSolver::visitTerminatorOperation( 716 Operation *op, ArrayRef<Attribute> constantOperands) { 717 // If this operation has no successors, we treat it as an exiting terminator. 718 if (op->getNumSuccessors() == 0) { 719 Region *parentRegion = op->getParentRegion(); 720 Operation *parentOp = parentRegion->getParentOp(); 721 722 // Check to see if this is a terminator for a callable region. 723 if (isa<CallableOpInterface>(parentOp)) 724 return visitCallableTerminatorOperation(parentOp, op); 725 726 // Otherwise, check to see if the parent tracks region control flow. 727 auto regionInterface = dyn_cast<RegionBranchOpInterface>(parentOp); 728 if (!regionInterface || !isBlockExecutable(parentOp->getBlock())) 729 return; 730 731 // Query the set of successors from the current region. 732 SmallVector<RegionSuccessor, 1> regionSuccessors; 733 regionInterface.getSuccessorRegions(parentRegion->getRegionNumber(), 734 constantOperands, regionSuccessors); 735 if (regionSuccessors.empty()) 736 return; 737 738 // If this terminator is not "region-like", conservatively mark all of the 739 // successor values as overdefined. 740 if (!op->hasTrait<OpTrait::ReturnLike>()) { 741 for (auto &it : regionSuccessors) 742 markAllOverdefinedAndVisitUsers(it.getSuccessorInputs()); 743 return; 744 } 745 746 // Otherwise, propagate the operand lattice states to each of the 747 // successors. 748 OperandRange operands = op->getOperands(); 749 return visitRegionSuccessors(parentOp, regionSuccessors, 750 [&](Optional<unsigned>) { return operands; }); 751 } 752 753 // Try to resolve to a specific successor with the constant operands. 754 if (auto branch = dyn_cast<BranchOpInterface>(op)) { 755 if (Block *singleSucc = branch.getSuccessorForOperands(constantOperands)) { 756 markEdgeExecutable(op->getBlock(), singleSucc); 757 return; 758 } 759 } 760 761 // Otherwise, conservatively treat all edges as executable. 762 Block *block = op->getBlock(); 763 for (Block *succ : op->getSuccessors()) 764 markEdgeExecutable(block, succ); 765 } 766 767 void SCCPSolver::visitCallableTerminatorOperation(Operation *callable, 768 Operation *terminator) { 769 // If there are no exiting values, we have nothing to track. 770 if (terminator->getNumOperands() == 0) 771 return; 772 773 // If this callable isn't tracking any lattice state there is nothing to do. 774 auto latticeIt = callableLatticeState.find(callable); 775 if (latticeIt == callableLatticeState.end()) 776 return; 777 assert(callable->getNumResults() == 0 && "expected symbol callable"); 778 779 // If this terminator is not "return-like", conservatively mark all of the 780 // call-site results as overdefined. 781 auto callableResultLattices = latticeIt->second.getResultLatticeValues(); 782 if (!terminator->hasTrait<OpTrait::ReturnLike>()) { 783 for (auto &it : callableResultLattices) 784 it.markOverdefined(); 785 for (Operation *call : latticeIt->second.getSymbolCalls()) 786 markAllOverdefined(call, call->getResults()); 787 return; 788 } 789 790 // Merge the terminator operands into the results. 791 bool anyChanged = false; 792 for (auto it : llvm::zip(terminator->getOperands(), callableResultLattices)) 793 anyChanged |= std::get<1>(it).meet(latticeValues[std::get<0>(it)]); 794 if (!anyChanged) 795 return; 796 797 // If any of the result lattices changed, update the callers. 798 for (Operation *call : latticeIt->second.getSymbolCalls()) 799 for (auto it : llvm::zip(call->getResults(), callableResultLattices)) 800 meet(call, latticeValues[std::get<0>(it)], std::get<1>(it)); 801 } 802 803 void SCCPSolver::visitBlock(Block *block) { 804 // If the block is not the entry block we need to compute the lattice state 805 // for the block arguments. Entry block argument lattices are computed 806 // elsewhere, such as when visiting the parent operation. 807 if (!block->isEntryBlock()) { 808 for (int i : llvm::seq<int>(0, block->getNumArguments())) 809 visitBlockArgument(block, i); 810 } 811 812 // Visit all of the operations within the block. 813 for (Operation &op : *block) 814 visitOperation(&op); 815 } 816 817 void SCCPSolver::visitBlockArgument(Block *block, int i) { 818 BlockArgument arg = block->getArgument(i); 819 LatticeValue &argLattice = latticeValues[arg]; 820 if (argLattice.isOverdefined()) 821 return; 822 823 bool updatedLattice = false; 824 for (auto it = block->pred_begin(), e = block->pred_end(); it != e; ++it) { 825 Block *pred = *it; 826 827 // We only care about this predecessor if it is going to execute. 828 if (!isEdgeExecutable(pred, block)) 829 continue; 830 831 // Try to get the operand forwarded by the predecessor. If we can't reason 832 // about the terminator of the predecessor, mark overdefined. 833 Optional<OperandRange> branchOperands; 834 if (auto branch = dyn_cast<BranchOpInterface>(pred->getTerminator())) 835 branchOperands = branch.getSuccessorOperands(it.getSuccessorIndex()); 836 if (!branchOperands) { 837 updatedLattice = true; 838 argLattice.markOverdefined(); 839 break; 840 } 841 842 // If the operand hasn't been resolved, it is unknown which can merge with 843 // anything. 844 auto operandLattice = latticeValues.find((*branchOperands)[i]); 845 if (operandLattice == latticeValues.end()) 846 continue; 847 848 // Otherwise, meet the two lattice values. 849 updatedLattice |= argLattice.meet(operandLattice->second); 850 if (argLattice.isOverdefined()) 851 break; 852 } 853 854 // If the lattice was updated, visit any executable users of the argument. 855 if (updatedLattice) 856 visitUsers(arg); 857 } 858 859 bool SCCPSolver::markBlockExecutable(Block *block) { 860 bool marked = executableBlocks.insert(block).second; 861 if (marked) 862 blockWorklist.push_back(block); 863 return marked; 864 } 865 866 bool SCCPSolver::isBlockExecutable(Block *block) const { 867 return executableBlocks.count(block); 868 } 869 870 void SCCPSolver::markEdgeExecutable(Block *from, Block *to) { 871 if (!executableEdges.insert(std::make_pair(from, to)).second) 872 return; 873 // Mark the destination as executable, and reprocess its arguments if it was 874 // already executable. 875 if (!markBlockExecutable(to)) { 876 for (int i : llvm::seq<int>(0, to->getNumArguments())) 877 visitBlockArgument(to, i); 878 } 879 } 880 881 bool SCCPSolver::isEdgeExecutable(Block *from, Block *to) const { 882 return executableEdges.count(std::make_pair(from, to)); 883 } 884 885 void SCCPSolver::markOverdefined(Value value) { 886 latticeValues[value].markOverdefined(); 887 } 888 889 bool SCCPSolver::isOverdefined(Value value) const { 890 auto it = latticeValues.find(value); 891 return it != latticeValues.end() && it->second.isOverdefined(); 892 } 893 894 void SCCPSolver::meet(Operation *owner, LatticeValue &to, 895 const LatticeValue &from) { 896 if (to.meet(from)) 897 opWorklist.push_back(owner); 898 } 899 900 //===----------------------------------------------------------------------===// 901 // SCCP Pass 902 //===----------------------------------------------------------------------===// 903 904 namespace { 905 struct SCCP : public SCCPBase<SCCP> { 906 void runOnOperation() override; 907 }; 908 } // end anonymous namespace 909 910 void SCCP::runOnOperation() { 911 Operation *op = getOperation(); 912 913 // Solve for SCCP constraints within nested regions. 914 SCCPSolver solver(op); 915 solver.solve(); 916 917 // Cleanup any operations using the solver analysis. 918 solver.rewrite(&getContext(), op->getRegions()); 919 } 920 921 std::unique_ptr<Pass> mlir::createSCCPPass() { 922 return std::make_unique<SCCP>(); 923 } 924