1 //===- Parser.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Tools/PDLL/Parser/Parser.h"
10 #include "Lexer.h"
11 #include "mlir/Support/LogicalResult.h"
12 #include "mlir/TableGen/Argument.h"
13 #include "mlir/TableGen/Attribute.h"
14 #include "mlir/TableGen/Constraint.h"
15 #include "mlir/TableGen/Format.h"
16 #include "mlir/TableGen/Operator.h"
17 #include "mlir/Tools/PDLL/AST/Context.h"
18 #include "mlir/Tools/PDLL/AST/Diagnostic.h"
19 #include "mlir/Tools/PDLL/AST/Nodes.h"
20 #include "mlir/Tools/PDLL/AST/Types.h"
21 #include "mlir/Tools/PDLL/ODS/Constraint.h"
22 #include "mlir/Tools/PDLL/ODS/Context.h"
23 #include "mlir/Tools/PDLL/ODS/Operation.h"
24 #include "mlir/Tools/PDLL/Parser/CodeComplete.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/TypeSwitch.h"
27 #include "llvm/Support/FormatVariadic.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/SaveAndRestore.h"
30 #include "llvm/Support/ScopedPrinter.h"
31 #include "llvm/TableGen/Error.h"
32 #include "llvm/TableGen/Parser.h"
33 #include <string>
34 
35 using namespace mlir;
36 using namespace mlir::pdll;
37 
38 //===----------------------------------------------------------------------===//
39 // Parser
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 class Parser {
44 public:
45   Parser(ast::Context &ctx, llvm::SourceMgr &sourceMgr,
46          CodeCompleteContext *codeCompleteContext)
47       : ctx(ctx), lexer(sourceMgr, ctx.getDiagEngine(), codeCompleteContext),
48         curToken(lexer.lexToken()), valueTy(ast::ValueType::get(ctx)),
49         valueRangeTy(ast::ValueRangeType::get(ctx)),
50         typeTy(ast::TypeType::get(ctx)),
51         typeRangeTy(ast::TypeRangeType::get(ctx)),
52         attrTy(ast::AttributeType::get(ctx)),
53         codeCompleteContext(codeCompleteContext) {}
54 
55   /// Try to parse a new module. Returns nullptr in the case of failure.
56   FailureOr<ast::Module *> parseModule();
57 
58 private:
59   /// The current context of the parser. It allows for the parser to know a bit
60   /// about the construct it is nested within during parsing. This is used
61   /// specifically to provide additional verification during parsing, e.g. to
62   /// prevent using rewrites within a match context, matcher constraints within
63   /// a rewrite section, etc.
64   enum class ParserContext {
65     /// The parser is in the global context.
66     Global,
67     /// The parser is currently within a Constraint, which disallows all types
68     /// of rewrites (e.g. `erase`, `replace`, calls to Rewrites, etc.).
69     Constraint,
70     /// The parser is currently within the matcher portion of a Pattern, which
71     /// is allows a terminal operation rewrite statement but no other rewrite
72     /// transformations.
73     PatternMatch,
74     /// The parser is currently within a Rewrite, which disallows calls to
75     /// constraints, requires operation expressions to have names, etc.
76     Rewrite,
77   };
78 
79   //===--------------------------------------------------------------------===//
80   // Parsing
81   //===--------------------------------------------------------------------===//
82 
83   /// Push a new decl scope onto the lexer.
84   ast::DeclScope *pushDeclScope() {
85     ast::DeclScope *newScope =
86         new (scopeAllocator.Allocate()) ast::DeclScope(curDeclScope);
87     return (curDeclScope = newScope);
88   }
89   void pushDeclScope(ast::DeclScope *scope) { curDeclScope = scope; }
90 
91   /// Pop the last decl scope from the lexer.
92   void popDeclScope() { curDeclScope = curDeclScope->getParentScope(); }
93 
94   /// Parse the body of an AST module.
95   LogicalResult parseModuleBody(SmallVectorImpl<ast::Decl *> &decls);
96 
97   /// Try to convert the given expression to `type`. Returns failure and emits
98   /// an error if a conversion is not viable. On failure, `noteAttachFn` is
99   /// invoked to attach notes to the emitted error diagnostic. On success,
100   /// `expr` is updated to the expression used to convert to `type`.
101   LogicalResult convertExpressionTo(
102       ast::Expr *&expr, ast::Type type,
103       function_ref<void(ast::Diagnostic &diag)> noteAttachFn = {});
104 
105   /// Given an operation expression, convert it to a Value or ValueRange
106   /// typed expression.
107   ast::Expr *convertOpToValue(const ast::Expr *opExpr);
108 
109   /// Lookup ODS information for the given operation, returns nullptr if no
110   /// information is found.
111   const ods::Operation *lookupODSOperation(Optional<StringRef> opName) {
112     return opName ? ctx.getODSContext().lookupOperation(*opName) : nullptr;
113   }
114 
115   //===--------------------------------------------------------------------===//
116   // Directives
117 
118   LogicalResult parseDirective(SmallVectorImpl<ast::Decl *> &decls);
119   LogicalResult parseInclude(SmallVectorImpl<ast::Decl *> &decls);
120   LogicalResult parseTdInclude(StringRef filename, SMRange fileLoc,
121                                SmallVectorImpl<ast::Decl *> &decls);
122 
123   /// Process the records of a parsed tablegen include file.
124   void processTdIncludeRecords(llvm::RecordKeeper &tdRecords,
125                                SmallVectorImpl<ast::Decl *> &decls);
126 
127   /// Create a user defined native constraint for a constraint imported from
128   /// ODS.
129   template <typename ConstraintT>
130   ast::Decl *createODSNativePDLLConstraintDecl(StringRef name,
131                                                StringRef codeBlock, SMRange loc,
132                                                ast::Type type);
133   template <typename ConstraintT>
134   ast::Decl *
135   createODSNativePDLLConstraintDecl(const tblgen::Constraint &constraint,
136                                     SMRange loc, ast::Type type);
137 
138   //===--------------------------------------------------------------------===//
139   // Decls
140 
141   /// This structure contains the set of pattern metadata that may be parsed.
142   struct ParsedPatternMetadata {
143     Optional<uint16_t> benefit;
144     bool hasBoundedRecursion = false;
145   };
146 
147   FailureOr<ast::Decl *> parseTopLevelDecl();
148   FailureOr<ast::NamedAttributeDecl *>
149   parseNamedAttributeDecl(Optional<StringRef> parentOpName);
150 
151   /// Parse an argument variable as part of the signature of a
152   /// UserConstraintDecl or UserRewriteDecl.
153   FailureOr<ast::VariableDecl *> parseArgumentDecl();
154 
155   /// Parse a result variable as part of the signature of a UserConstraintDecl
156   /// or UserRewriteDecl.
157   FailureOr<ast::VariableDecl *> parseResultDecl(unsigned resultNum);
158 
159   /// Parse a UserConstraintDecl. `isInline` signals if the constraint is being
160   /// defined in a non-global context.
161   FailureOr<ast::UserConstraintDecl *>
162   parseUserConstraintDecl(bool isInline = false);
163 
164   /// Parse an inline UserConstraintDecl. An inline decl is one defined in a
165   /// non-global context, such as within a Pattern/Constraint/etc.
166   FailureOr<ast::UserConstraintDecl *> parseInlineUserConstraintDecl();
167 
168   /// Parse a PDLL (i.e. non-native) UserRewriteDecl whose body is defined using
169   /// PDLL constructs.
170   FailureOr<ast::UserConstraintDecl *> parseUserPDLLConstraintDecl(
171       const ast::Name &name, bool isInline,
172       ArrayRef<ast::VariableDecl *> arguments, ast::DeclScope *argumentScope,
173       ArrayRef<ast::VariableDecl *> results, ast::Type resultType);
174 
175   /// Parse a parseUserRewriteDecl. `isInline` signals if the rewrite is being
176   /// defined in a non-global context.
177   FailureOr<ast::UserRewriteDecl *> parseUserRewriteDecl(bool isInline = false);
178 
179   /// Parse an inline UserRewriteDecl. An inline decl is one defined in a
180   /// non-global context, such as within a Pattern/Rewrite/etc.
181   FailureOr<ast::UserRewriteDecl *> parseInlineUserRewriteDecl();
182 
183   /// Parse a PDLL (i.e. non-native) UserRewriteDecl whose body is defined using
184   /// PDLL constructs.
185   FailureOr<ast::UserRewriteDecl *> parseUserPDLLRewriteDecl(
186       const ast::Name &name, bool isInline,
187       ArrayRef<ast::VariableDecl *> arguments, ast::DeclScope *argumentScope,
188       ArrayRef<ast::VariableDecl *> results, ast::Type resultType);
189 
190   /// Parse either a UserConstraintDecl or UserRewriteDecl. These decls have
191   /// effectively the same syntax, and only differ on slight semantics (given
192   /// the different parsing contexts).
193   template <typename T, typename ParseUserPDLLDeclFnT>
194   FailureOr<T *> parseUserConstraintOrRewriteDecl(
195       ParseUserPDLLDeclFnT &&parseUserPDLLFn, ParserContext declContext,
196       StringRef anonymousNamePrefix, bool isInline);
197 
198   /// Parse a native (i.e. non-PDLL) UserConstraintDecl or UserRewriteDecl.
199   /// These decls have effectively the same syntax.
200   template <typename T>
201   FailureOr<T *> parseUserNativeConstraintOrRewriteDecl(
202       const ast::Name &name, bool isInline,
203       ArrayRef<ast::VariableDecl *> arguments,
204       ArrayRef<ast::VariableDecl *> results, ast::Type resultType);
205 
206   /// Parse the functional signature (i.e. the arguments and results) of a
207   /// UserConstraintDecl or UserRewriteDecl.
208   LogicalResult parseUserConstraintOrRewriteSignature(
209       SmallVectorImpl<ast::VariableDecl *> &arguments,
210       SmallVectorImpl<ast::VariableDecl *> &results,
211       ast::DeclScope *&argumentScope, ast::Type &resultType);
212 
213   /// Validate the return (which if present is specified by bodyIt) of a
214   /// UserConstraintDecl or UserRewriteDecl.
215   LogicalResult validateUserConstraintOrRewriteReturn(
216       StringRef declType, ast::CompoundStmt *body,
217       ArrayRef<ast::Stmt *>::iterator bodyIt,
218       ArrayRef<ast::Stmt *>::iterator bodyE,
219       ArrayRef<ast::VariableDecl *> results, ast::Type &resultType);
220 
221   FailureOr<ast::CompoundStmt *>
222   parseLambdaBody(function_ref<LogicalResult(ast::Stmt *&)> processStatementFn,
223                   bool expectTerminalSemicolon = true);
224   FailureOr<ast::CompoundStmt *> parsePatternLambdaBody();
225   FailureOr<ast::Decl *> parsePatternDecl();
226   LogicalResult parsePatternDeclMetadata(ParsedPatternMetadata &metadata);
227 
228   /// Check to see if a decl has already been defined with the given name, if
229   /// one has emit and error and return failure. Returns success otherwise.
230   LogicalResult checkDefineNamedDecl(const ast::Name &name);
231 
232   /// Try to define a variable decl with the given components, returns the
233   /// variable on success.
234   FailureOr<ast::VariableDecl *>
235   defineVariableDecl(StringRef name, SMRange nameLoc, ast::Type type,
236                      ast::Expr *initExpr,
237                      ArrayRef<ast::ConstraintRef> constraints);
238   FailureOr<ast::VariableDecl *>
239   defineVariableDecl(StringRef name, SMRange nameLoc, ast::Type type,
240                      ArrayRef<ast::ConstraintRef> constraints);
241 
242   /// Parse the constraint reference list for a variable decl.
243   LogicalResult parseVariableDeclConstraintList(
244       SmallVectorImpl<ast::ConstraintRef> &constraints);
245 
246   /// Parse the expression used within a type constraint, e.g. Attr<type-expr>.
247   FailureOr<ast::Expr *> parseTypeConstraintExpr();
248 
249   /// Try to parse a single reference to a constraint. `typeConstraint` is the
250   /// location of a previously parsed type constraint for the entity that will
251   /// be constrained by the parsed constraint. `existingConstraints` are any
252   /// existing constraints that have already been parsed for the same entity
253   /// that will be constrained by this constraint. `allowInlineTypeConstraints`
254   /// allows the use of inline Type constraints, e.g. `Value<valueType: Type>`.
255   /// If `allowNonCoreConstraints` is true, then complex (e.g. user defined
256   /// constraints) may be used with the variable.
257   FailureOr<ast::ConstraintRef>
258   parseConstraint(Optional<SMRange> &typeConstraint,
259                   ArrayRef<ast::ConstraintRef> existingConstraints,
260                   bool allowInlineTypeConstraints,
261                   bool allowNonCoreConstraints);
262 
263   /// Try to parse the constraint for a UserConstraintDecl/UserRewriteDecl
264   /// argument or result variable. The constraints for these variables do not
265   /// allow inline type constraints, and only permit a single constraint.
266   FailureOr<ast::ConstraintRef> parseArgOrResultConstraint();
267 
268   //===--------------------------------------------------------------------===//
269   // Exprs
270 
271   FailureOr<ast::Expr *> parseExpr();
272 
273   /// Identifier expressions.
274   FailureOr<ast::Expr *> parseAttributeExpr();
275   FailureOr<ast::Expr *> parseCallExpr(ast::Expr *parentExpr);
276   FailureOr<ast::Expr *> parseDeclRefExpr(StringRef name, SMRange loc);
277   FailureOr<ast::Expr *> parseIdentifierExpr();
278   FailureOr<ast::Expr *> parseInlineConstraintLambdaExpr();
279   FailureOr<ast::Expr *> parseInlineRewriteLambdaExpr();
280   FailureOr<ast::Expr *> parseMemberAccessExpr(ast::Expr *parentExpr);
281   FailureOr<ast::OpNameDecl *> parseOperationName(bool allowEmptyName = false);
282   FailureOr<ast::OpNameDecl *> parseWrappedOperationName(bool allowEmptyName);
283   FailureOr<ast::Expr *> parseOperationExpr();
284   FailureOr<ast::Expr *> parseTupleExpr();
285   FailureOr<ast::Expr *> parseTypeExpr();
286   FailureOr<ast::Expr *> parseUnderscoreExpr();
287 
288   //===--------------------------------------------------------------------===//
289   // Stmts
290 
291   FailureOr<ast::Stmt *> parseStmt(bool expectTerminalSemicolon = true);
292   FailureOr<ast::CompoundStmt *> parseCompoundStmt();
293   FailureOr<ast::EraseStmt *> parseEraseStmt();
294   FailureOr<ast::LetStmt *> parseLetStmt();
295   FailureOr<ast::ReplaceStmt *> parseReplaceStmt();
296   FailureOr<ast::ReturnStmt *> parseReturnStmt();
297   FailureOr<ast::RewriteStmt *> parseRewriteStmt();
298 
299   //===--------------------------------------------------------------------===//
300   // Creation+Analysis
301   //===--------------------------------------------------------------------===//
302 
303   //===--------------------------------------------------------------------===//
304   // Decls
305 
306   /// Try to extract a callable from the given AST node. Returns nullptr on
307   /// failure.
308   ast::CallableDecl *tryExtractCallableDecl(ast::Node *node);
309 
310   /// Try to create a pattern decl with the given components, returning the
311   /// Pattern on success.
312   FailureOr<ast::PatternDecl *>
313   createPatternDecl(SMRange loc, const ast::Name *name,
314                     const ParsedPatternMetadata &metadata,
315                     ast::CompoundStmt *body);
316 
317   /// Build the result type for a UserConstraintDecl/UserRewriteDecl given a set
318   /// of results, defined as part of the signature.
319   ast::Type
320   createUserConstraintRewriteResultType(ArrayRef<ast::VariableDecl *> results);
321 
322   /// Create a PDLL (i.e. non-native) UserConstraintDecl or UserRewriteDecl.
323   template <typename T>
324   FailureOr<T *> createUserPDLLConstraintOrRewriteDecl(
325       const ast::Name &name, ArrayRef<ast::VariableDecl *> arguments,
326       ArrayRef<ast::VariableDecl *> results, ast::Type resultType,
327       ast::CompoundStmt *body);
328 
329   /// Try to create a variable decl with the given components, returning the
330   /// Variable on success.
331   FailureOr<ast::VariableDecl *>
332   createVariableDecl(StringRef name, SMRange loc, ast::Expr *initializer,
333                      ArrayRef<ast::ConstraintRef> constraints);
334 
335   /// Create a variable for an argument or result defined as part of the
336   /// signature of a UserConstraintDecl/UserRewriteDecl.
337   FailureOr<ast::VariableDecl *>
338   createArgOrResultVariableDecl(StringRef name, SMRange loc,
339                                 const ast::ConstraintRef &constraint);
340 
341   /// Validate the constraints used to constraint a variable decl.
342   /// `inferredType` is the type of the variable inferred by the constraints
343   /// within the list, and is updated to the most refined type as determined by
344   /// the constraints. Returns success if the constraint list is valid, failure
345   /// otherwise. If `allowNonCoreConstraints` is true, then complex (e.g. user
346   /// defined constraints) may be used with the variable.
347   LogicalResult
348   validateVariableConstraints(ArrayRef<ast::ConstraintRef> constraints,
349                               ast::Type &inferredType,
350                               bool allowNonCoreConstraints = true);
351   /// Validate a single reference to a constraint. `inferredType` contains the
352   /// currently inferred variabled type and is refined within the type defined
353   /// by the constraint. Returns success if the constraint is valid, failure
354   /// otherwise. If `allowNonCoreConstraints` is true, then complex (e.g. user
355   /// defined constraints) may be used with the variable.
356   LogicalResult validateVariableConstraint(const ast::ConstraintRef &ref,
357                                            ast::Type &inferredType,
358                                            bool allowNonCoreConstraints = true);
359   LogicalResult validateTypeConstraintExpr(const ast::Expr *typeExpr);
360   LogicalResult validateTypeRangeConstraintExpr(const ast::Expr *typeExpr);
361 
362   //===--------------------------------------------------------------------===//
363   // Exprs
364 
365   FailureOr<ast::CallExpr *>
366   createCallExpr(SMRange loc, ast::Expr *parentExpr,
367                  MutableArrayRef<ast::Expr *> arguments);
368   FailureOr<ast::DeclRefExpr *> createDeclRefExpr(SMRange loc, ast::Decl *decl);
369   FailureOr<ast::DeclRefExpr *>
370   createInlineVariableExpr(ast::Type type, StringRef name, SMRange loc,
371                            ArrayRef<ast::ConstraintRef> constraints);
372   FailureOr<ast::MemberAccessExpr *>
373   createMemberAccessExpr(ast::Expr *parentExpr, StringRef name, SMRange loc);
374 
375   /// Validate the member access `name` into the given parent expression. On
376   /// success, this also returns the type of the member accessed.
377   FailureOr<ast::Type> validateMemberAccess(ast::Expr *parentExpr,
378                                             StringRef name, SMRange loc);
379   FailureOr<ast::OperationExpr *>
380   createOperationExpr(SMRange loc, const ast::OpNameDecl *name,
381                       MutableArrayRef<ast::Expr *> operands,
382                       MutableArrayRef<ast::NamedAttributeDecl *> attributes,
383                       MutableArrayRef<ast::Expr *> results);
384   LogicalResult
385   validateOperationOperands(SMRange loc, Optional<StringRef> name,
386                             const ods::Operation *odsOp,
387                             MutableArrayRef<ast::Expr *> operands);
388   LogicalResult validateOperationResults(SMRange loc, Optional<StringRef> name,
389                                          const ods::Operation *odsOp,
390                                          MutableArrayRef<ast::Expr *> results);
391   LogicalResult validateOperationOperandsOrResults(
392       StringRef groupName, SMRange loc, Optional<SMRange> odsOpLoc,
393       Optional<StringRef> name, MutableArrayRef<ast::Expr *> values,
394       ArrayRef<ods::OperandOrResult> odsValues, ast::Type singleTy,
395       ast::Type rangeTy);
396   FailureOr<ast::TupleExpr *> createTupleExpr(SMRange loc,
397                                               ArrayRef<ast::Expr *> elements,
398                                               ArrayRef<StringRef> elementNames);
399 
400   //===--------------------------------------------------------------------===//
401   // Stmts
402 
403   FailureOr<ast::EraseStmt *> createEraseStmt(SMRange loc, ast::Expr *rootOp);
404   FailureOr<ast::ReplaceStmt *>
405   createReplaceStmt(SMRange loc, ast::Expr *rootOp,
406                     MutableArrayRef<ast::Expr *> replValues);
407   FailureOr<ast::RewriteStmt *>
408   createRewriteStmt(SMRange loc, ast::Expr *rootOp,
409                     ast::CompoundStmt *rewriteBody);
410 
411   //===--------------------------------------------------------------------===//
412   // Code Completion
413   //===--------------------------------------------------------------------===//
414 
415   /// The set of various code completion methods. Every completion method
416   /// returns `failure` to stop the parsing process after providing completion
417   /// results.
418 
419   LogicalResult codeCompleteMemberAccess(ast::Expr *parentExpr);
420   LogicalResult codeCompleteAttributeName(Optional<StringRef> opName);
421   LogicalResult codeCompleteConstraintName(ast::Type inferredType,
422                                            bool allowNonCoreConstraints,
423                                            bool allowInlineTypeConstraints);
424   LogicalResult codeCompleteDialectName();
425   LogicalResult codeCompleteOperationName(StringRef dialectName);
426   LogicalResult codeCompletePatternMetadata();
427   LogicalResult codeCompleteIncludeFilename(StringRef curPath);
428 
429   void codeCompleteCallSignature(ast::Node *parent, unsigned currentNumArgs);
430   void codeCompleteOperationOperandsSignature(Optional<StringRef> opName,
431                                               unsigned currentNumOperands);
432   void codeCompleteOperationResultsSignature(Optional<StringRef> opName,
433                                              unsigned currentNumResults);
434 
435   //===--------------------------------------------------------------------===//
436   // Lexer Utilities
437   //===--------------------------------------------------------------------===//
438 
439   /// If the current token has the specified kind, consume it and return true.
440   /// If not, return false.
441   bool consumeIf(Token::Kind kind) {
442     if (curToken.isNot(kind))
443       return false;
444     consumeToken(kind);
445     return true;
446   }
447 
448   /// Advance the current lexer onto the next token.
449   void consumeToken() {
450     assert(curToken.isNot(Token::eof, Token::error) &&
451            "shouldn't advance past EOF or errors");
452     curToken = lexer.lexToken();
453   }
454 
455   /// Advance the current lexer onto the next token, asserting what the expected
456   /// current token is. This is preferred to the above method because it leads
457   /// to more self-documenting code with better checking.
458   void consumeToken(Token::Kind kind) {
459     assert(curToken.is(kind) && "consumed an unexpected token");
460     consumeToken();
461   }
462 
463   /// Reset the lexer to the location at the given position.
464   void resetToken(SMRange tokLoc) {
465     lexer.resetPointer(tokLoc.Start.getPointer());
466     curToken = lexer.lexToken();
467   }
468 
469   /// Consume the specified token if present and return success. On failure,
470   /// output a diagnostic and return failure.
471   LogicalResult parseToken(Token::Kind kind, const Twine &msg) {
472     if (curToken.getKind() != kind)
473       return emitError(curToken.getLoc(), msg);
474     consumeToken();
475     return success();
476   }
477   LogicalResult emitError(SMRange loc, const Twine &msg) {
478     lexer.emitError(loc, msg);
479     return failure();
480   }
481   LogicalResult emitError(const Twine &msg) {
482     return emitError(curToken.getLoc(), msg);
483   }
484   LogicalResult emitErrorAndNote(SMRange loc, const Twine &msg, SMRange noteLoc,
485                                  const Twine &note) {
486     lexer.emitErrorAndNote(loc, msg, noteLoc, note);
487     return failure();
488   }
489 
490   //===--------------------------------------------------------------------===//
491   // Fields
492   //===--------------------------------------------------------------------===//
493 
494   /// The owning AST context.
495   ast::Context &ctx;
496 
497   /// The lexer of this parser.
498   Lexer lexer;
499 
500   /// The current token within the lexer.
501   Token curToken;
502 
503   /// The most recently defined decl scope.
504   ast::DeclScope *curDeclScope = nullptr;
505   llvm::SpecificBumpPtrAllocator<ast::DeclScope> scopeAllocator;
506 
507   /// The current context of the parser.
508   ParserContext parserContext = ParserContext::Global;
509 
510   /// Cached types to simplify verification and expression creation.
511   ast::Type valueTy, valueRangeTy;
512   ast::Type typeTy, typeRangeTy;
513   ast::Type attrTy;
514 
515   /// A counter used when naming anonymous constraints and rewrites.
516   unsigned anonymousDeclNameCounter = 0;
517 
518   /// The optional code completion context.
519   CodeCompleteContext *codeCompleteContext;
520 };
521 } // namespace
522 
523 FailureOr<ast::Module *> Parser::parseModule() {
524   SMLoc moduleLoc = curToken.getStartLoc();
525   pushDeclScope();
526 
527   // Parse the top-level decls of the module.
528   SmallVector<ast::Decl *> decls;
529   if (failed(parseModuleBody(decls)))
530     return popDeclScope(), failure();
531 
532   popDeclScope();
533   return ast::Module::create(ctx, moduleLoc, decls);
534 }
535 
536 LogicalResult Parser::parseModuleBody(SmallVectorImpl<ast::Decl *> &decls) {
537   while (curToken.isNot(Token::eof)) {
538     if (curToken.is(Token::directive)) {
539       if (failed(parseDirective(decls)))
540         return failure();
541       continue;
542     }
543 
544     FailureOr<ast::Decl *> decl = parseTopLevelDecl();
545     if (failed(decl))
546       return failure();
547     decls.push_back(*decl);
548   }
549   return success();
550 }
551 
552 ast::Expr *Parser::convertOpToValue(const ast::Expr *opExpr) {
553   return ast::AllResultsMemberAccessExpr::create(ctx, opExpr->getLoc(), opExpr,
554                                                  valueRangeTy);
555 }
556 
557 LogicalResult Parser::convertExpressionTo(
558     ast::Expr *&expr, ast::Type type,
559     function_ref<void(ast::Diagnostic &diag)> noteAttachFn) {
560   ast::Type exprType = expr->getType();
561   if (exprType == type)
562     return success();
563 
564   auto emitConvertError = [&]() -> ast::InFlightDiagnostic {
565     ast::InFlightDiagnostic diag = ctx.getDiagEngine().emitError(
566         expr->getLoc(), llvm::formatv("unable to convert expression of type "
567                                       "`{0}` to the expected type of "
568                                       "`{1}`",
569                                       exprType, type));
570     if (noteAttachFn)
571       noteAttachFn(*diag);
572     return diag;
573   };
574 
575   if (auto exprOpType = exprType.dyn_cast<ast::OperationType>()) {
576     // Two operation types are compatible if they have the same name, or if the
577     // expected type is more general.
578     if (auto opType = type.dyn_cast<ast::OperationType>()) {
579       if (opType.getName())
580         return emitConvertError();
581       return success();
582     }
583 
584     // An operation can always convert to a ValueRange.
585     if (type == valueRangeTy) {
586       expr = ast::AllResultsMemberAccessExpr::create(ctx, expr->getLoc(), expr,
587                                                      valueRangeTy);
588       return success();
589     }
590 
591     // Allow conversion to a single value by constraining the result range.
592     if (type == valueTy) {
593       // If the operation is registered, we can verify if it can ever have a
594       // single result.
595       Optional<StringRef> opName = exprOpType.getName();
596       if (const ods::Operation *odsOp = lookupODSOperation(opName)) {
597         if (odsOp->getResults().empty()) {
598           return emitConvertError()->attachNote(
599               llvm::formatv("see the definition of `{0}`, which was defined "
600                             "with zero results",
601                             odsOp->getName()),
602               odsOp->getLoc());
603         }
604 
605         unsigned numSingleResults = llvm::count_if(
606             odsOp->getResults(), [](const ods::OperandOrResult &result) {
607               return result.getVariableLengthKind() ==
608                      ods::VariableLengthKind::Single;
609             });
610         if (numSingleResults > 1) {
611           return emitConvertError()->attachNote(
612               llvm::formatv("see the definition of `{0}`, which was defined "
613                             "with at least {1} results",
614                             odsOp->getName(), numSingleResults),
615               odsOp->getLoc());
616         }
617       }
618 
619       expr = ast::AllResultsMemberAccessExpr::create(ctx, expr->getLoc(), expr,
620                                                      valueTy);
621       return success();
622     }
623     return emitConvertError();
624   }
625 
626   // FIXME: Decide how to allow/support converting a single result to multiple,
627   // and multiple to a single result. For now, we just allow Single->Range,
628   // but this isn't something really supported in the PDL dialect. We should
629   // figure out some way to support both.
630   if ((exprType == valueTy || exprType == valueRangeTy) &&
631       (type == valueTy || type == valueRangeTy))
632     return success();
633   if ((exprType == typeTy || exprType == typeRangeTy) &&
634       (type == typeTy || type == typeRangeTy))
635     return success();
636 
637   // Handle tuple types.
638   if (auto exprTupleType = exprType.dyn_cast<ast::TupleType>()) {
639     auto tupleType = type.dyn_cast<ast::TupleType>();
640     if (!tupleType || tupleType.size() != exprTupleType.size())
641       return emitConvertError();
642 
643     // Build a new tuple expression using each of the elements of the current
644     // tuple.
645     SmallVector<ast::Expr *> newExprs;
646     for (unsigned i = 0, e = exprTupleType.size(); i < e; ++i) {
647       newExprs.push_back(ast::MemberAccessExpr::create(
648           ctx, expr->getLoc(), expr, llvm::to_string(i),
649           exprTupleType.getElementTypes()[i]));
650 
651       auto diagFn = [&](ast::Diagnostic &diag) {
652         diag.attachNote(llvm::formatv("when converting element #{0} of `{1}`",
653                                       i, exprTupleType));
654         if (noteAttachFn)
655           noteAttachFn(diag);
656       };
657       if (failed(convertExpressionTo(newExprs.back(),
658                                      tupleType.getElementTypes()[i], diagFn)))
659         return failure();
660     }
661     expr = ast::TupleExpr::create(ctx, expr->getLoc(), newExprs,
662                                   tupleType.getElementNames());
663     return success();
664   }
665 
666   return emitConvertError();
667 }
668 
669 //===----------------------------------------------------------------------===//
670 // Directives
671 
672 LogicalResult Parser::parseDirective(SmallVectorImpl<ast::Decl *> &decls) {
673   StringRef directive = curToken.getSpelling();
674   if (directive == "#include")
675     return parseInclude(decls);
676 
677   return emitError("unknown directive `" + directive + "`");
678 }
679 
680 LogicalResult Parser::parseInclude(SmallVectorImpl<ast::Decl *> &decls) {
681   SMRange loc = curToken.getLoc();
682   consumeToken(Token::directive);
683 
684   // Handle code completion of the include file path.
685   if (curToken.is(Token::code_complete_string))
686     return codeCompleteIncludeFilename(curToken.getStringValue());
687 
688   // Parse the file being included.
689   if (!curToken.isString())
690     return emitError(loc,
691                      "expected string file name after `include` directive");
692   SMRange fileLoc = curToken.getLoc();
693   std::string filenameStr = curToken.getStringValue();
694   StringRef filename = filenameStr;
695   consumeToken();
696 
697   // Check the type of include. If ending with `.pdll`, this is another pdl file
698   // to be parsed along with the current module.
699   if (filename.endswith(".pdll")) {
700     if (failed(lexer.pushInclude(filename, fileLoc)))
701       return emitError(fileLoc,
702                        "unable to open include file `" + filename + "`");
703 
704     // If we added the include successfully, parse it into the current module.
705     // Make sure to update to the next token after we finish parsing the nested
706     // file.
707     curToken = lexer.lexToken();
708     LogicalResult result = parseModuleBody(decls);
709     curToken = lexer.lexToken();
710     return result;
711   }
712 
713   // Otherwise, this must be a `.td` include.
714   if (filename.endswith(".td"))
715     return parseTdInclude(filename, fileLoc, decls);
716 
717   return emitError(fileLoc,
718                    "expected include filename to end with `.pdll` or `.td`");
719 }
720 
721 LogicalResult Parser::parseTdInclude(StringRef filename, llvm::SMRange fileLoc,
722                                      SmallVectorImpl<ast::Decl *> &decls) {
723   llvm::SourceMgr &parserSrcMgr = lexer.getSourceMgr();
724 
725   // This class provides a context argument for the llvm::SourceMgr diagnostic
726   // handler.
727   struct DiagHandlerContext {
728     Parser &parser;
729     StringRef filename;
730     llvm::SMRange loc;
731   } handlerContext{*this, filename, fileLoc};
732 
733   // Set the diagnostic handler for the tablegen source manager.
734   llvm::SrcMgr.setDiagHandler(
735       [](const llvm::SMDiagnostic &diag, void *rawHandlerContext) {
736         auto *ctx = reinterpret_cast<DiagHandlerContext *>(rawHandlerContext);
737         (void)ctx->parser.emitError(
738             ctx->loc,
739             llvm::formatv("error while processing include file `{0}`: {1}",
740                           ctx->filename, diag.getMessage()));
741       },
742       &handlerContext);
743 
744   // Use the source manager to open the file, but don't yet add it.
745   std::string includedFile;
746   llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> includeBuffer =
747       parserSrcMgr.OpenIncludeFile(filename.str(), includedFile);
748   if (!includeBuffer)
749     return emitError(fileLoc, "unable to open include file `" + filename + "`");
750 
751   auto processFn = [&](llvm::RecordKeeper &records) {
752     processTdIncludeRecords(records, decls);
753 
754     // After we are done processing, move all of the tablegen source buffers to
755     // the main parser source mgr. This allows for directly using source
756     // locations from the .td files without needing to remap them.
757     parserSrcMgr.takeSourceBuffersFrom(llvm::SrcMgr, fileLoc.End);
758     return false;
759   };
760   if (llvm::TableGenParseFile(std::move(*includeBuffer),
761                               parserSrcMgr.getIncludeDirs(), processFn))
762     return failure();
763 
764   return success();
765 }
766 
767 void Parser::processTdIncludeRecords(llvm::RecordKeeper &tdRecords,
768                                      SmallVectorImpl<ast::Decl *> &decls) {
769   // Return the length kind of the given value.
770   auto getLengthKind = [](const auto &value) {
771     if (value.isOptional())
772       return ods::VariableLengthKind::Optional;
773     return value.isVariadic() ? ods::VariableLengthKind::Variadic
774                               : ods::VariableLengthKind::Single;
775   };
776 
777   // Insert a type constraint into the ODS context.
778   ods::Context &odsContext = ctx.getODSContext();
779   auto addTypeConstraint = [&](const tblgen::NamedTypeConstraint &cst)
780       -> const ods::TypeConstraint & {
781     return odsContext.insertTypeConstraint(cst.constraint.getUniqueDefName(),
782                                            cst.constraint.getSummary(),
783                                            cst.constraint.getCPPClassName());
784   };
785   auto convertLocToRange = [&](llvm::SMLoc loc) -> llvm::SMRange {
786     return {loc, llvm::SMLoc::getFromPointer(loc.getPointer() + 1)};
787   };
788 
789   // Process the parsed tablegen records to build ODS information.
790   /// Operations.
791   for (llvm::Record *def : tdRecords.getAllDerivedDefinitions("Op")) {
792     tblgen::Operator op(def);
793 
794     bool inserted = false;
795     ods::Operation *odsOp = nullptr;
796     std::tie(odsOp, inserted) =
797         odsContext.insertOperation(op.getOperationName(), op.getSummary(),
798                                    op.getDescription(), op.getLoc().front());
799 
800     // Ignore operations that have already been added.
801     if (!inserted)
802       continue;
803 
804     for (const tblgen::NamedAttribute &attr : op.getAttributes()) {
805       odsOp->appendAttribute(
806           attr.name, attr.attr.isOptional(),
807           odsContext.insertAttributeConstraint(attr.attr.getUniqueDefName(),
808                                                attr.attr.getSummary(),
809                                                attr.attr.getStorageType()));
810     }
811     for (const tblgen::NamedTypeConstraint &operand : op.getOperands()) {
812       odsOp->appendOperand(operand.name, getLengthKind(operand),
813                            addTypeConstraint(operand));
814     }
815     for (const tblgen::NamedTypeConstraint &result : op.getResults()) {
816       odsOp->appendResult(result.name, getLengthKind(result),
817                           addTypeConstraint(result));
818     }
819   }
820   /// Attr constraints.
821   for (llvm::Record *def : tdRecords.getAllDerivedDefinitions("Attr")) {
822     if (!def->isAnonymous() && !curDeclScope->lookup(def->getName())) {
823       decls.push_back(
824           createODSNativePDLLConstraintDecl<ast::AttrConstraintDecl>(
825               tblgen::AttrConstraint(def),
826               convertLocToRange(def->getLoc().front()), attrTy));
827     }
828   }
829   /// Type constraints.
830   for (llvm::Record *def : tdRecords.getAllDerivedDefinitions("Type")) {
831     if (!def->isAnonymous() && !curDeclScope->lookup(def->getName())) {
832       decls.push_back(
833           createODSNativePDLLConstraintDecl<ast::TypeConstraintDecl>(
834               tblgen::TypeConstraint(def),
835               convertLocToRange(def->getLoc().front()), typeTy));
836     }
837   }
838   /// Interfaces.
839   ast::Type opTy = ast::OperationType::get(ctx);
840   for (llvm::Record *def : tdRecords.getAllDerivedDefinitions("Interface")) {
841     StringRef name = def->getName();
842     if (def->isAnonymous() || curDeclScope->lookup(name) ||
843         def->isSubClassOf("DeclareInterfaceMethods"))
844       continue;
845     SMRange loc = convertLocToRange(def->getLoc().front());
846 
847     StringRef className = def->getValueAsString("cppClassName");
848     StringRef cppNamespace = def->getValueAsString("cppNamespace");
849     std::string codeBlock =
850         llvm::formatv("return ::mlir::success(llvm::isa<{0}::{1}>(self));",
851                       cppNamespace, className)
852             .str();
853 
854     if (def->isSubClassOf("OpInterface")) {
855       decls.push_back(createODSNativePDLLConstraintDecl<ast::OpConstraintDecl>(
856           name, codeBlock, loc, opTy));
857     } else if (def->isSubClassOf("AttrInterface")) {
858       decls.push_back(
859           createODSNativePDLLConstraintDecl<ast::AttrConstraintDecl>(
860               name, codeBlock, loc, attrTy));
861     } else if (def->isSubClassOf("TypeInterface")) {
862       decls.push_back(
863           createODSNativePDLLConstraintDecl<ast::TypeConstraintDecl>(
864               name, codeBlock, loc, typeTy));
865     }
866   }
867 }
868 
869 template <typename ConstraintT>
870 ast::Decl *
871 Parser::createODSNativePDLLConstraintDecl(StringRef name, StringRef codeBlock,
872                                           SMRange loc, ast::Type type) {
873   // Build the single input parameter.
874   ast::DeclScope *argScope = pushDeclScope();
875   auto *paramVar = ast::VariableDecl::create(
876       ctx, ast::Name::create(ctx, "self", loc), type,
877       /*initExpr=*/nullptr, ast::ConstraintRef(ConstraintT::create(ctx, loc)));
878   argScope->add(paramVar);
879   popDeclScope();
880 
881   // Build the native constraint.
882   auto *constraintDecl = ast::UserConstraintDecl::createNative(
883       ctx, ast::Name::create(ctx, name, loc), paramVar,
884       /*results=*/llvm::None, codeBlock, ast::TupleType::get(ctx));
885   curDeclScope->add(constraintDecl);
886   return constraintDecl;
887 }
888 
889 template <typename ConstraintT>
890 ast::Decl *
891 Parser::createODSNativePDLLConstraintDecl(const tblgen::Constraint &constraint,
892                                           SMRange loc, ast::Type type) {
893   // Format the condition template.
894   tblgen::FmtContext fmtContext;
895   fmtContext.withSelf("self");
896   std::string codeBlock = tblgen::tgfmt(
897       "return ::mlir::success(" + constraint.getConditionTemplate() + ");",
898       &fmtContext);
899 
900   return createODSNativePDLLConstraintDecl<ConstraintT>(
901       constraint.getUniqueDefName(), codeBlock, loc, type);
902 }
903 
904 //===----------------------------------------------------------------------===//
905 // Decls
906 
907 FailureOr<ast::Decl *> Parser::parseTopLevelDecl() {
908   FailureOr<ast::Decl *> decl;
909   switch (curToken.getKind()) {
910   case Token::kw_Constraint:
911     decl = parseUserConstraintDecl();
912     break;
913   case Token::kw_Pattern:
914     decl = parsePatternDecl();
915     break;
916   case Token::kw_Rewrite:
917     decl = parseUserRewriteDecl();
918     break;
919   default:
920     return emitError("expected top-level declaration, such as a `Pattern`");
921   }
922   if (failed(decl))
923     return failure();
924 
925   // If the decl has a name, add it to the current scope.
926   if (const ast::Name *name = (*decl)->getName()) {
927     if (failed(checkDefineNamedDecl(*name)))
928       return failure();
929     curDeclScope->add(*decl);
930   }
931   return decl;
932 }
933 
934 FailureOr<ast::NamedAttributeDecl *>
935 Parser::parseNamedAttributeDecl(Optional<StringRef> parentOpName) {
936   // Check for name code completion.
937   if (curToken.is(Token::code_complete))
938     return codeCompleteAttributeName(parentOpName);
939 
940   std::string attrNameStr;
941   if (curToken.isString())
942     attrNameStr = curToken.getStringValue();
943   else if (curToken.is(Token::identifier) || curToken.isKeyword())
944     attrNameStr = curToken.getSpelling().str();
945   else
946     return emitError("expected identifier or string attribute name");
947   const auto &name = ast::Name::create(ctx, attrNameStr, curToken.getLoc());
948   consumeToken();
949 
950   // Check for a value of the attribute.
951   ast::Expr *attrValue = nullptr;
952   if (consumeIf(Token::equal)) {
953     FailureOr<ast::Expr *> attrExpr = parseExpr();
954     if (failed(attrExpr))
955       return failure();
956     attrValue = *attrExpr;
957   } else {
958     // If there isn't a concrete value, create an expression representing a
959     // UnitAttr.
960     attrValue = ast::AttributeExpr::create(ctx, name.getLoc(), "unit");
961   }
962 
963   return ast::NamedAttributeDecl::create(ctx, name, attrValue);
964 }
965 
966 FailureOr<ast::CompoundStmt *> Parser::parseLambdaBody(
967     function_ref<LogicalResult(ast::Stmt *&)> processStatementFn,
968     bool expectTerminalSemicolon) {
969   consumeToken(Token::equal_arrow);
970 
971   // Parse the single statement of the lambda body.
972   SMLoc bodyStartLoc = curToken.getStartLoc();
973   pushDeclScope();
974   FailureOr<ast::Stmt *> singleStatement = parseStmt(expectTerminalSemicolon);
975   bool failedToParse =
976       failed(singleStatement) || failed(processStatementFn(*singleStatement));
977   popDeclScope();
978   if (failedToParse)
979     return failure();
980 
981   SMRange bodyLoc(bodyStartLoc, curToken.getStartLoc());
982   return ast::CompoundStmt::create(ctx, bodyLoc, *singleStatement);
983 }
984 
985 FailureOr<ast::VariableDecl *> Parser::parseArgumentDecl() {
986   // Ensure that the argument is named.
987   if (curToken.isNot(Token::identifier) && !curToken.isDependentKeyword())
988     return emitError("expected identifier argument name");
989 
990   // Parse the argument similarly to a normal variable.
991   StringRef name = curToken.getSpelling();
992   SMRange nameLoc = curToken.getLoc();
993   consumeToken();
994 
995   if (failed(
996           parseToken(Token::colon, "expected `:` before argument constraint")))
997     return failure();
998 
999   FailureOr<ast::ConstraintRef> cst = parseArgOrResultConstraint();
1000   if (failed(cst))
1001     return failure();
1002 
1003   return createArgOrResultVariableDecl(name, nameLoc, *cst);
1004 }
1005 
1006 FailureOr<ast::VariableDecl *> Parser::parseResultDecl(unsigned resultNum) {
1007   // Check to see if this result is named.
1008   if (curToken.is(Token::identifier) || curToken.isDependentKeyword()) {
1009     // Check to see if this name actually refers to a Constraint.
1010     ast::Decl *existingDecl = curDeclScope->lookup(curToken.getSpelling());
1011     if (isa_and_nonnull<ast::ConstraintDecl>(existingDecl)) {
1012       // If yes, and this is a Rewrite, give a nice error message as non-Core
1013       // constraints are not supported on Rewrite results.
1014       if (parserContext == ParserContext::Rewrite) {
1015         return emitError(
1016             "`Rewrite` results are only permitted to use core constraints, "
1017             "such as `Attr`, `Op`, `Type`, `TypeRange`, `Value`, `ValueRange`");
1018       }
1019 
1020       // Otherwise, parse this as an unnamed result variable.
1021     } else {
1022       // If it wasn't a constraint, parse the result similarly to a variable. If
1023       // there is already an existing decl, we will emit an error when defining
1024       // this variable later.
1025       StringRef name = curToken.getSpelling();
1026       SMRange nameLoc = curToken.getLoc();
1027       consumeToken();
1028 
1029       if (failed(parseToken(Token::colon,
1030                             "expected `:` before result constraint")))
1031         return failure();
1032 
1033       FailureOr<ast::ConstraintRef> cst = parseArgOrResultConstraint();
1034       if (failed(cst))
1035         return failure();
1036 
1037       return createArgOrResultVariableDecl(name, nameLoc, *cst);
1038     }
1039   }
1040 
1041   // If it isn't named, we parse the constraint directly and create an unnamed
1042   // result variable.
1043   FailureOr<ast::ConstraintRef> cst = parseArgOrResultConstraint();
1044   if (failed(cst))
1045     return failure();
1046 
1047   return createArgOrResultVariableDecl("", cst->referenceLoc, *cst);
1048 }
1049 
1050 FailureOr<ast::UserConstraintDecl *>
1051 Parser::parseUserConstraintDecl(bool isInline) {
1052   // Constraints and rewrites have very similar formats, dispatch to a shared
1053   // interface for parsing.
1054   return parseUserConstraintOrRewriteDecl<ast::UserConstraintDecl>(
1055       [&](auto &&...args) {
1056         return this->parseUserPDLLConstraintDecl(args...);
1057       },
1058       ParserContext::Constraint, "constraint", isInline);
1059 }
1060 
1061 FailureOr<ast::UserConstraintDecl *> Parser::parseInlineUserConstraintDecl() {
1062   FailureOr<ast::UserConstraintDecl *> decl =
1063       parseUserConstraintDecl(/*isInline=*/true);
1064   if (failed(decl) || failed(checkDefineNamedDecl((*decl)->getName())))
1065     return failure();
1066 
1067   curDeclScope->add(*decl);
1068   return decl;
1069 }
1070 
1071 FailureOr<ast::UserConstraintDecl *> Parser::parseUserPDLLConstraintDecl(
1072     const ast::Name &name, bool isInline,
1073     ArrayRef<ast::VariableDecl *> arguments, ast::DeclScope *argumentScope,
1074     ArrayRef<ast::VariableDecl *> results, ast::Type resultType) {
1075   // Push the argument scope back onto the list, so that the body can
1076   // reference arguments.
1077   pushDeclScope(argumentScope);
1078 
1079   // Parse the body of the constraint. The body is either defined as a compound
1080   // block, i.e. `{ ... }`, or a lambda body, i.e. `=> <expr>`.
1081   ast::CompoundStmt *body;
1082   if (curToken.is(Token::equal_arrow)) {
1083     FailureOr<ast::CompoundStmt *> bodyResult = parseLambdaBody(
1084         [&](ast::Stmt *&stmt) -> LogicalResult {
1085           ast::Expr *stmtExpr = dyn_cast<ast::Expr>(stmt);
1086           if (!stmtExpr) {
1087             return emitError(stmt->getLoc(),
1088                              "expected `Constraint` lambda body to contain a "
1089                              "single expression");
1090           }
1091           stmt = ast::ReturnStmt::create(ctx, stmt->getLoc(), stmtExpr);
1092           return success();
1093         },
1094         /*expectTerminalSemicolon=*/!isInline);
1095     if (failed(bodyResult))
1096       return failure();
1097     body = *bodyResult;
1098   } else {
1099     FailureOr<ast::CompoundStmt *> bodyResult = parseCompoundStmt();
1100     if (failed(bodyResult))
1101       return failure();
1102     body = *bodyResult;
1103 
1104     // Verify the structure of the body.
1105     auto bodyIt = body->begin(), bodyE = body->end();
1106     for (; bodyIt != bodyE; ++bodyIt)
1107       if (isa<ast::ReturnStmt>(*bodyIt))
1108         break;
1109     if (failed(validateUserConstraintOrRewriteReturn(
1110             "Constraint", body, bodyIt, bodyE, results, resultType)))
1111       return failure();
1112   }
1113   popDeclScope();
1114 
1115   return createUserPDLLConstraintOrRewriteDecl<ast::UserConstraintDecl>(
1116       name, arguments, results, resultType, body);
1117 }
1118 
1119 FailureOr<ast::UserRewriteDecl *> Parser::parseUserRewriteDecl(bool isInline) {
1120   // Constraints and rewrites have very similar formats, dispatch to a shared
1121   // interface for parsing.
1122   return parseUserConstraintOrRewriteDecl<ast::UserRewriteDecl>(
1123       [&](auto &&...args) { return this->parseUserPDLLRewriteDecl(args...); },
1124       ParserContext::Rewrite, "rewrite", isInline);
1125 }
1126 
1127 FailureOr<ast::UserRewriteDecl *> Parser::parseInlineUserRewriteDecl() {
1128   FailureOr<ast::UserRewriteDecl *> decl =
1129       parseUserRewriteDecl(/*isInline=*/true);
1130   if (failed(decl) || failed(checkDefineNamedDecl((*decl)->getName())))
1131     return failure();
1132 
1133   curDeclScope->add(*decl);
1134   return decl;
1135 }
1136 
1137 FailureOr<ast::UserRewriteDecl *> Parser::parseUserPDLLRewriteDecl(
1138     const ast::Name &name, bool isInline,
1139     ArrayRef<ast::VariableDecl *> arguments, ast::DeclScope *argumentScope,
1140     ArrayRef<ast::VariableDecl *> results, ast::Type resultType) {
1141   // Push the argument scope back onto the list, so that the body can
1142   // reference arguments.
1143   curDeclScope = argumentScope;
1144   ast::CompoundStmt *body;
1145   if (curToken.is(Token::equal_arrow)) {
1146     FailureOr<ast::CompoundStmt *> bodyResult = parseLambdaBody(
1147         [&](ast::Stmt *&statement) -> LogicalResult {
1148           if (isa<ast::OpRewriteStmt>(statement))
1149             return success();
1150 
1151           ast::Expr *statementExpr = dyn_cast<ast::Expr>(statement);
1152           if (!statementExpr) {
1153             return emitError(
1154                 statement->getLoc(),
1155                 "expected `Rewrite` lambda body to contain a single expression "
1156                 "or an operation rewrite statement; such as `erase`, "
1157                 "`replace`, or `rewrite`");
1158           }
1159           statement =
1160               ast::ReturnStmt::create(ctx, statement->getLoc(), statementExpr);
1161           return success();
1162         },
1163         /*expectTerminalSemicolon=*/!isInline);
1164     if (failed(bodyResult))
1165       return failure();
1166     body = *bodyResult;
1167   } else {
1168     FailureOr<ast::CompoundStmt *> bodyResult = parseCompoundStmt();
1169     if (failed(bodyResult))
1170       return failure();
1171     body = *bodyResult;
1172   }
1173   popDeclScope();
1174 
1175   // Verify the structure of the body.
1176   auto bodyIt = body->begin(), bodyE = body->end();
1177   for (; bodyIt != bodyE; ++bodyIt)
1178     if (isa<ast::ReturnStmt>(*bodyIt))
1179       break;
1180   if (failed(validateUserConstraintOrRewriteReturn("Rewrite", body, bodyIt,
1181                                                    bodyE, results, resultType)))
1182     return failure();
1183   return createUserPDLLConstraintOrRewriteDecl<ast::UserRewriteDecl>(
1184       name, arguments, results, resultType, body);
1185 }
1186 
1187 template <typename T, typename ParseUserPDLLDeclFnT>
1188 FailureOr<T *> Parser::parseUserConstraintOrRewriteDecl(
1189     ParseUserPDLLDeclFnT &&parseUserPDLLFn, ParserContext declContext,
1190     StringRef anonymousNamePrefix, bool isInline) {
1191   SMRange loc = curToken.getLoc();
1192   consumeToken();
1193   llvm::SaveAndRestore<ParserContext> saveCtx(parserContext, declContext);
1194 
1195   // Parse the name of the decl.
1196   const ast::Name *name = nullptr;
1197   if (curToken.isNot(Token::identifier)) {
1198     // Only inline decls can be un-named. Inline decls are similar to "lambdas"
1199     // in C++, so being unnamed is fine.
1200     if (!isInline)
1201       return emitError("expected identifier name");
1202 
1203     // Create a unique anonymous name to use, as the name for this decl is not
1204     // important.
1205     std::string anonName =
1206         llvm::formatv("<anonymous_{0}_{1}>", anonymousNamePrefix,
1207                       anonymousDeclNameCounter++)
1208             .str();
1209     name = &ast::Name::create(ctx, anonName, loc);
1210   } else {
1211     // If a name was provided, we can use it directly.
1212     name = &ast::Name::create(ctx, curToken.getSpelling(), curToken.getLoc());
1213     consumeToken(Token::identifier);
1214   }
1215 
1216   // Parse the functional signature of the decl.
1217   SmallVector<ast::VariableDecl *> arguments, results;
1218   ast::DeclScope *argumentScope;
1219   ast::Type resultType;
1220   if (failed(parseUserConstraintOrRewriteSignature(arguments, results,
1221                                                    argumentScope, resultType)))
1222     return failure();
1223 
1224   // Check to see which type of constraint this is. If the constraint contains a
1225   // compound body, this is a PDLL decl.
1226   if (curToken.isAny(Token::l_brace, Token::equal_arrow))
1227     return parseUserPDLLFn(*name, isInline, arguments, argumentScope, results,
1228                            resultType);
1229 
1230   // Otherwise, this is a native decl.
1231   return parseUserNativeConstraintOrRewriteDecl<T>(*name, isInline, arguments,
1232                                                    results, resultType);
1233 }
1234 
1235 template <typename T>
1236 FailureOr<T *> Parser::parseUserNativeConstraintOrRewriteDecl(
1237     const ast::Name &name, bool isInline,
1238     ArrayRef<ast::VariableDecl *> arguments,
1239     ArrayRef<ast::VariableDecl *> results, ast::Type resultType) {
1240   // If followed by a string, the native code body has also been specified.
1241   std::string codeStrStorage;
1242   Optional<StringRef> optCodeStr;
1243   if (curToken.isString()) {
1244     codeStrStorage = curToken.getStringValue();
1245     optCodeStr = codeStrStorage;
1246     consumeToken();
1247   } else if (isInline) {
1248     return emitError(name.getLoc(),
1249                      "external declarations must be declared in global scope");
1250   } else if (curToken.is(Token::error)) {
1251     return failure();
1252   }
1253   if (failed(parseToken(Token::semicolon,
1254                         "expected `;` after native declaration")))
1255     return failure();
1256   // TODO: PDL should be able to support constraint results in certain
1257   // situations, we should revise this.
1258   if (std::is_same<ast::UserConstraintDecl, T>::value && !results.empty()) {
1259     return emitError(
1260         "native Constraints currently do not support returning results");
1261   }
1262   return T::createNative(ctx, name, arguments, results, optCodeStr, resultType);
1263 }
1264 
1265 LogicalResult Parser::parseUserConstraintOrRewriteSignature(
1266     SmallVectorImpl<ast::VariableDecl *> &arguments,
1267     SmallVectorImpl<ast::VariableDecl *> &results,
1268     ast::DeclScope *&argumentScope, ast::Type &resultType) {
1269   // Parse the argument list of the decl.
1270   if (failed(parseToken(Token::l_paren, "expected `(` to start argument list")))
1271     return failure();
1272 
1273   argumentScope = pushDeclScope();
1274   if (curToken.isNot(Token::r_paren)) {
1275     do {
1276       FailureOr<ast::VariableDecl *> argument = parseArgumentDecl();
1277       if (failed(argument))
1278         return failure();
1279       arguments.emplace_back(*argument);
1280     } while (consumeIf(Token::comma));
1281   }
1282   popDeclScope();
1283   if (failed(parseToken(Token::r_paren, "expected `)` to end argument list")))
1284     return failure();
1285 
1286   // Parse the results of the decl.
1287   pushDeclScope();
1288   if (consumeIf(Token::arrow)) {
1289     auto parseResultFn = [&]() -> LogicalResult {
1290       FailureOr<ast::VariableDecl *> result = parseResultDecl(results.size());
1291       if (failed(result))
1292         return failure();
1293       results.emplace_back(*result);
1294       return success();
1295     };
1296 
1297     // Check for a list of results.
1298     if (consumeIf(Token::l_paren)) {
1299       do {
1300         if (failed(parseResultFn()))
1301           return failure();
1302       } while (consumeIf(Token::comma));
1303       if (failed(parseToken(Token::r_paren, "expected `)` to end result list")))
1304         return failure();
1305 
1306       // Otherwise, there is only one result.
1307     } else if (failed(parseResultFn())) {
1308       return failure();
1309     }
1310   }
1311   popDeclScope();
1312 
1313   // Compute the result type of the decl.
1314   resultType = createUserConstraintRewriteResultType(results);
1315 
1316   // Verify that results are only named if there are more than one.
1317   if (results.size() == 1 && !results.front()->getName().getName().empty()) {
1318     return emitError(
1319         results.front()->getLoc(),
1320         "cannot create a single-element tuple with an element label");
1321   }
1322   return success();
1323 }
1324 
1325 LogicalResult Parser::validateUserConstraintOrRewriteReturn(
1326     StringRef declType, ast::CompoundStmt *body,
1327     ArrayRef<ast::Stmt *>::iterator bodyIt,
1328     ArrayRef<ast::Stmt *>::iterator bodyE,
1329     ArrayRef<ast::VariableDecl *> results, ast::Type &resultType) {
1330   // Handle if a `return` was provided.
1331   if (bodyIt != bodyE) {
1332     // Emit an error if we have trailing statements after the return.
1333     if (std::next(bodyIt) != bodyE) {
1334       return emitError(
1335           (*std::next(bodyIt))->getLoc(),
1336           llvm::formatv("`return` terminated the `{0}` body, but found "
1337                         "trailing statements afterwards",
1338                         declType));
1339     }
1340 
1341     // Otherwise if a return wasn't provided, check that no results are
1342     // expected.
1343   } else if (!results.empty()) {
1344     return emitError(
1345         {body->getLoc().End, body->getLoc().End},
1346         llvm::formatv("missing return in a `{0}` expected to return `{1}`",
1347                       declType, resultType));
1348   }
1349   return success();
1350 }
1351 
1352 FailureOr<ast::CompoundStmt *> Parser::parsePatternLambdaBody() {
1353   return parseLambdaBody([&](ast::Stmt *&statement) -> LogicalResult {
1354     if (isa<ast::OpRewriteStmt>(statement))
1355       return success();
1356     return emitError(
1357         statement->getLoc(),
1358         "expected Pattern lambda body to contain a single operation "
1359         "rewrite statement, such as `erase`, `replace`, or `rewrite`");
1360   });
1361 }
1362 
1363 FailureOr<ast::Decl *> Parser::parsePatternDecl() {
1364   SMRange loc = curToken.getLoc();
1365   consumeToken(Token::kw_Pattern);
1366   llvm::SaveAndRestore<ParserContext> saveCtx(parserContext,
1367                                               ParserContext::PatternMatch);
1368 
1369   // Check for an optional identifier for the pattern name.
1370   const ast::Name *name = nullptr;
1371   if (curToken.is(Token::identifier)) {
1372     name = &ast::Name::create(ctx, curToken.getSpelling(), curToken.getLoc());
1373     consumeToken(Token::identifier);
1374   }
1375 
1376   // Parse any pattern metadata.
1377   ParsedPatternMetadata metadata;
1378   if (consumeIf(Token::kw_with) && failed(parsePatternDeclMetadata(metadata)))
1379     return failure();
1380 
1381   // Parse the pattern body.
1382   ast::CompoundStmt *body;
1383 
1384   // Handle a lambda body.
1385   if (curToken.is(Token::equal_arrow)) {
1386     FailureOr<ast::CompoundStmt *> bodyResult = parsePatternLambdaBody();
1387     if (failed(bodyResult))
1388       return failure();
1389     body = *bodyResult;
1390   } else {
1391     if (curToken.isNot(Token::l_brace))
1392       return emitError("expected `{` or `=>` to start pattern body");
1393     FailureOr<ast::CompoundStmt *> bodyResult = parseCompoundStmt();
1394     if (failed(bodyResult))
1395       return failure();
1396     body = *bodyResult;
1397 
1398     // Verify the body of the pattern.
1399     auto bodyIt = body->begin(), bodyE = body->end();
1400     for (; bodyIt != bodyE; ++bodyIt) {
1401       if (isa<ast::ReturnStmt>(*bodyIt)) {
1402         return emitError((*bodyIt)->getLoc(),
1403                          "`return` statements are only permitted within a "
1404                          "`Constraint` or `Rewrite` body");
1405       }
1406       // Break when we've found the rewrite statement.
1407       if (isa<ast::OpRewriteStmt>(*bodyIt))
1408         break;
1409     }
1410     if (bodyIt == bodyE) {
1411       return emitError(loc,
1412                        "expected Pattern body to terminate with an operation "
1413                        "rewrite statement, such as `erase`");
1414     }
1415     if (std::next(bodyIt) != bodyE) {
1416       return emitError((*std::next(bodyIt))->getLoc(),
1417                        "Pattern body was terminated by an operation "
1418                        "rewrite statement, but found trailing statements");
1419     }
1420   }
1421 
1422   return createPatternDecl(loc, name, metadata, body);
1423 }
1424 
1425 LogicalResult
1426 Parser::parsePatternDeclMetadata(ParsedPatternMetadata &metadata) {
1427   Optional<SMRange> benefitLoc;
1428   Optional<SMRange> hasBoundedRecursionLoc;
1429 
1430   do {
1431     // Handle metadata code completion.
1432     if (curToken.is(Token::code_complete))
1433       return codeCompletePatternMetadata();
1434 
1435     if (curToken.isNot(Token::identifier))
1436       return emitError("expected pattern metadata identifier");
1437     StringRef metadataStr = curToken.getSpelling();
1438     SMRange metadataLoc = curToken.getLoc();
1439     consumeToken(Token::identifier);
1440 
1441     // Parse the benefit metadata: benefit(<integer-value>)
1442     if (metadataStr == "benefit") {
1443       if (benefitLoc) {
1444         return emitErrorAndNote(metadataLoc,
1445                                 "pattern benefit has already been specified",
1446                                 *benefitLoc, "see previous definition here");
1447       }
1448       if (failed(parseToken(Token::l_paren,
1449                             "expected `(` before pattern benefit")))
1450         return failure();
1451 
1452       uint16_t benefitValue = 0;
1453       if (curToken.isNot(Token::integer))
1454         return emitError("expected integral pattern benefit");
1455       if (curToken.getSpelling().getAsInteger(/*Radix=*/10, benefitValue))
1456         return emitError(
1457             "expected pattern benefit to fit within a 16-bit integer");
1458       consumeToken(Token::integer);
1459 
1460       metadata.benefit = benefitValue;
1461       benefitLoc = metadataLoc;
1462 
1463       if (failed(
1464               parseToken(Token::r_paren, "expected `)` after pattern benefit")))
1465         return failure();
1466       continue;
1467     }
1468 
1469     // Parse the bounded recursion metadata: recursion
1470     if (metadataStr == "recursion") {
1471       if (hasBoundedRecursionLoc) {
1472         return emitErrorAndNote(
1473             metadataLoc,
1474             "pattern recursion metadata has already been specified",
1475             *hasBoundedRecursionLoc, "see previous definition here");
1476       }
1477       metadata.hasBoundedRecursion = true;
1478       hasBoundedRecursionLoc = metadataLoc;
1479       continue;
1480     }
1481 
1482     return emitError(metadataLoc, "unknown pattern metadata");
1483   } while (consumeIf(Token::comma));
1484 
1485   return success();
1486 }
1487 
1488 FailureOr<ast::Expr *> Parser::parseTypeConstraintExpr() {
1489   consumeToken(Token::less);
1490 
1491   FailureOr<ast::Expr *> typeExpr = parseExpr();
1492   if (failed(typeExpr) ||
1493       failed(parseToken(Token::greater,
1494                         "expected `>` after variable type constraint")))
1495     return failure();
1496   return typeExpr;
1497 }
1498 
1499 LogicalResult Parser::checkDefineNamedDecl(const ast::Name &name) {
1500   assert(curDeclScope && "defining decl outside of a decl scope");
1501   if (ast::Decl *lastDecl = curDeclScope->lookup(name.getName())) {
1502     return emitErrorAndNote(
1503         name.getLoc(), "`" + name.getName() + "` has already been defined",
1504         lastDecl->getName()->getLoc(), "see previous definition here");
1505   }
1506   return success();
1507 }
1508 
1509 FailureOr<ast::VariableDecl *>
1510 Parser::defineVariableDecl(StringRef name, SMRange nameLoc, ast::Type type,
1511                            ast::Expr *initExpr,
1512                            ArrayRef<ast::ConstraintRef> constraints) {
1513   assert(curDeclScope && "defining variable outside of decl scope");
1514   const ast::Name &nameDecl = ast::Name::create(ctx, name, nameLoc);
1515 
1516   // If the name of the variable indicates a special variable, we don't add it
1517   // to the scope. This variable is local to the definition point.
1518   if (name.empty() || name == "_") {
1519     return ast::VariableDecl::create(ctx, nameDecl, type, initExpr,
1520                                      constraints);
1521   }
1522   if (failed(checkDefineNamedDecl(nameDecl)))
1523     return failure();
1524 
1525   auto *varDecl =
1526       ast::VariableDecl::create(ctx, nameDecl, type, initExpr, constraints);
1527   curDeclScope->add(varDecl);
1528   return varDecl;
1529 }
1530 
1531 FailureOr<ast::VariableDecl *>
1532 Parser::defineVariableDecl(StringRef name, SMRange nameLoc, ast::Type type,
1533                            ArrayRef<ast::ConstraintRef> constraints) {
1534   return defineVariableDecl(name, nameLoc, type, /*initExpr=*/nullptr,
1535                             constraints);
1536 }
1537 
1538 LogicalResult Parser::parseVariableDeclConstraintList(
1539     SmallVectorImpl<ast::ConstraintRef> &constraints) {
1540   Optional<SMRange> typeConstraint;
1541   auto parseSingleConstraint = [&] {
1542     FailureOr<ast::ConstraintRef> constraint = parseConstraint(
1543         typeConstraint, constraints, /*allowInlineTypeConstraints=*/true,
1544         /*allowNonCoreConstraints=*/true);
1545     if (failed(constraint))
1546       return failure();
1547     constraints.push_back(*constraint);
1548     return success();
1549   };
1550 
1551   // Check to see if this is a single constraint, or a list.
1552   if (!consumeIf(Token::l_square))
1553     return parseSingleConstraint();
1554 
1555   do {
1556     if (failed(parseSingleConstraint()))
1557       return failure();
1558   } while (consumeIf(Token::comma));
1559   return parseToken(Token::r_square, "expected `]` after constraint list");
1560 }
1561 
1562 FailureOr<ast::ConstraintRef>
1563 Parser::parseConstraint(Optional<SMRange> &typeConstraint,
1564                         ArrayRef<ast::ConstraintRef> existingConstraints,
1565                         bool allowInlineTypeConstraints,
1566                         bool allowNonCoreConstraints) {
1567   auto parseTypeConstraint = [&](ast::Expr *&typeExpr) -> LogicalResult {
1568     if (!allowInlineTypeConstraints) {
1569       return emitError(
1570           curToken.getLoc(),
1571           "inline `Attr`, `Value`, and `ValueRange` type constraints are not "
1572           "permitted on arguments or results");
1573     }
1574     if (typeConstraint)
1575       return emitErrorAndNote(
1576           curToken.getLoc(),
1577           "the type of this variable has already been constrained",
1578           *typeConstraint, "see previous constraint location here");
1579     FailureOr<ast::Expr *> constraintExpr = parseTypeConstraintExpr();
1580     if (failed(constraintExpr))
1581       return failure();
1582     typeExpr = *constraintExpr;
1583     typeConstraint = typeExpr->getLoc();
1584     return success();
1585   };
1586 
1587   SMRange loc = curToken.getLoc();
1588   switch (curToken.getKind()) {
1589   case Token::kw_Attr: {
1590     consumeToken(Token::kw_Attr);
1591 
1592     // Check for a type constraint.
1593     ast::Expr *typeExpr = nullptr;
1594     if (curToken.is(Token::less) && failed(parseTypeConstraint(typeExpr)))
1595       return failure();
1596     return ast::ConstraintRef(
1597         ast::AttrConstraintDecl::create(ctx, loc, typeExpr), loc);
1598   }
1599   case Token::kw_Op: {
1600     consumeToken(Token::kw_Op);
1601 
1602     // Parse an optional operation name. If the name isn't provided, this refers
1603     // to "any" operation.
1604     FailureOr<ast::OpNameDecl *> opName =
1605         parseWrappedOperationName(/*allowEmptyName=*/true);
1606     if (failed(opName))
1607       return failure();
1608 
1609     return ast::ConstraintRef(ast::OpConstraintDecl::create(ctx, loc, *opName),
1610                               loc);
1611   }
1612   case Token::kw_Type:
1613     consumeToken(Token::kw_Type);
1614     return ast::ConstraintRef(ast::TypeConstraintDecl::create(ctx, loc), loc);
1615   case Token::kw_TypeRange:
1616     consumeToken(Token::kw_TypeRange);
1617     return ast::ConstraintRef(ast::TypeRangeConstraintDecl::create(ctx, loc),
1618                               loc);
1619   case Token::kw_Value: {
1620     consumeToken(Token::kw_Value);
1621 
1622     // Check for a type constraint.
1623     ast::Expr *typeExpr = nullptr;
1624     if (curToken.is(Token::less) && failed(parseTypeConstraint(typeExpr)))
1625       return failure();
1626 
1627     return ast::ConstraintRef(
1628         ast::ValueConstraintDecl::create(ctx, loc, typeExpr), loc);
1629   }
1630   case Token::kw_ValueRange: {
1631     consumeToken(Token::kw_ValueRange);
1632 
1633     // Check for a type constraint.
1634     ast::Expr *typeExpr = nullptr;
1635     if (curToken.is(Token::less) && failed(parseTypeConstraint(typeExpr)))
1636       return failure();
1637 
1638     return ast::ConstraintRef(
1639         ast::ValueRangeConstraintDecl::create(ctx, loc, typeExpr), loc);
1640   }
1641 
1642   case Token::kw_Constraint: {
1643     // Handle an inline constraint.
1644     FailureOr<ast::UserConstraintDecl *> decl = parseInlineUserConstraintDecl();
1645     if (failed(decl))
1646       return failure();
1647     return ast::ConstraintRef(*decl, loc);
1648   }
1649   case Token::identifier: {
1650     StringRef constraintName = curToken.getSpelling();
1651     consumeToken(Token::identifier);
1652 
1653     // Lookup the referenced constraint.
1654     ast::Decl *cstDecl = curDeclScope->lookup<ast::Decl>(constraintName);
1655     if (!cstDecl) {
1656       return emitError(loc, "unknown reference to constraint `" +
1657                                 constraintName + "`");
1658     }
1659 
1660     // Handle a reference to a proper constraint.
1661     if (auto *cst = dyn_cast<ast::ConstraintDecl>(cstDecl))
1662       return ast::ConstraintRef(cst, loc);
1663 
1664     return emitErrorAndNote(
1665         loc, "invalid reference to non-constraint", cstDecl->getLoc(),
1666         "see the definition of `" + constraintName + "` here");
1667   }
1668     // Handle single entity constraint code completion.
1669   case Token::code_complete: {
1670     // Try to infer the current type for use by code completion.
1671     ast::Type inferredType;
1672     if (failed(validateVariableConstraints(existingConstraints, inferredType,
1673                                            allowNonCoreConstraints)))
1674       return failure();
1675 
1676     return codeCompleteConstraintName(inferredType, allowNonCoreConstraints,
1677                                       allowInlineTypeConstraints);
1678   }
1679   default:
1680     break;
1681   }
1682   return emitError(loc, "expected identifier constraint");
1683 }
1684 
1685 FailureOr<ast::ConstraintRef> Parser::parseArgOrResultConstraint() {
1686   // Constraint arguments may apply more complex constraints via the arguments.
1687   bool allowNonCoreConstraints = parserContext == ParserContext::Constraint;
1688 
1689   Optional<SMRange> typeConstraint;
1690   return parseConstraint(typeConstraint, /*existingConstraints=*/llvm::None,
1691                          /*allowInlineTypeConstraints=*/false,
1692                          allowNonCoreConstraints);
1693 }
1694 
1695 //===----------------------------------------------------------------------===//
1696 // Exprs
1697 
1698 FailureOr<ast::Expr *> Parser::parseExpr() {
1699   if (curToken.is(Token::underscore))
1700     return parseUnderscoreExpr();
1701 
1702   // Parse the LHS expression.
1703   FailureOr<ast::Expr *> lhsExpr;
1704   switch (curToken.getKind()) {
1705   case Token::kw_attr:
1706     lhsExpr = parseAttributeExpr();
1707     break;
1708   case Token::kw_Constraint:
1709     lhsExpr = parseInlineConstraintLambdaExpr();
1710     break;
1711   case Token::identifier:
1712     lhsExpr = parseIdentifierExpr();
1713     break;
1714   case Token::kw_op:
1715     lhsExpr = parseOperationExpr();
1716     break;
1717   case Token::kw_Rewrite:
1718     lhsExpr = parseInlineRewriteLambdaExpr();
1719     break;
1720   case Token::kw_type:
1721     lhsExpr = parseTypeExpr();
1722     break;
1723   case Token::l_paren:
1724     lhsExpr = parseTupleExpr();
1725     break;
1726   default:
1727     return emitError("expected expression");
1728   }
1729   if (failed(lhsExpr))
1730     return failure();
1731 
1732   // Check for an operator expression.
1733   while (true) {
1734     switch (curToken.getKind()) {
1735     case Token::dot:
1736       lhsExpr = parseMemberAccessExpr(*lhsExpr);
1737       break;
1738     case Token::l_paren:
1739       lhsExpr = parseCallExpr(*lhsExpr);
1740       break;
1741     default:
1742       return lhsExpr;
1743     }
1744     if (failed(lhsExpr))
1745       return failure();
1746   }
1747 }
1748 
1749 FailureOr<ast::Expr *> Parser::parseAttributeExpr() {
1750   SMRange loc = curToken.getLoc();
1751   consumeToken(Token::kw_attr);
1752 
1753   // If we aren't followed by a `<`, the `attr` keyword is treated as a normal
1754   // identifier.
1755   if (!consumeIf(Token::less)) {
1756     resetToken(loc);
1757     return parseIdentifierExpr();
1758   }
1759 
1760   if (!curToken.isString())
1761     return emitError("expected string literal containing MLIR attribute");
1762   std::string attrExpr = curToken.getStringValue();
1763   consumeToken();
1764 
1765   if (failed(
1766           parseToken(Token::greater, "expected `>` after attribute literal")))
1767     return failure();
1768   return ast::AttributeExpr::create(ctx, loc, attrExpr);
1769 }
1770 
1771 FailureOr<ast::Expr *> Parser::parseCallExpr(ast::Expr *parentExpr) {
1772   SMRange loc = curToken.getLoc();
1773   consumeToken(Token::l_paren);
1774 
1775   // Parse the arguments of the call.
1776   SmallVector<ast::Expr *> arguments;
1777   if (curToken.isNot(Token::r_paren)) {
1778     do {
1779       // Handle code completion for the call arguments.
1780       if (curToken.is(Token::code_complete)) {
1781         codeCompleteCallSignature(parentExpr, arguments.size());
1782         return failure();
1783       }
1784 
1785       FailureOr<ast::Expr *> argument = parseExpr();
1786       if (failed(argument))
1787         return failure();
1788       arguments.push_back(*argument);
1789     } while (consumeIf(Token::comma));
1790   }
1791   loc.End = curToken.getEndLoc();
1792   if (failed(parseToken(Token::r_paren, "expected `)` after argument list")))
1793     return failure();
1794 
1795   return createCallExpr(loc, parentExpr, arguments);
1796 }
1797 
1798 FailureOr<ast::Expr *> Parser::parseDeclRefExpr(StringRef name, SMRange loc) {
1799   ast::Decl *decl = curDeclScope->lookup(name);
1800   if (!decl)
1801     return emitError(loc, "undefined reference to `" + name + "`");
1802 
1803   return createDeclRefExpr(loc, decl);
1804 }
1805 
1806 FailureOr<ast::Expr *> Parser::parseIdentifierExpr() {
1807   StringRef name = curToken.getSpelling();
1808   SMRange nameLoc = curToken.getLoc();
1809   consumeToken();
1810 
1811   // Check to see if this is a decl ref expression that defines a variable
1812   // inline.
1813   if (consumeIf(Token::colon)) {
1814     SmallVector<ast::ConstraintRef> constraints;
1815     if (failed(parseVariableDeclConstraintList(constraints)))
1816       return failure();
1817     ast::Type type;
1818     if (failed(validateVariableConstraints(constraints, type)))
1819       return failure();
1820     return createInlineVariableExpr(type, name, nameLoc, constraints);
1821   }
1822 
1823   return parseDeclRefExpr(name, nameLoc);
1824 }
1825 
1826 FailureOr<ast::Expr *> Parser::parseInlineConstraintLambdaExpr() {
1827   FailureOr<ast::UserConstraintDecl *> decl = parseInlineUserConstraintDecl();
1828   if (failed(decl))
1829     return failure();
1830 
1831   return ast::DeclRefExpr::create(ctx, (*decl)->getLoc(), *decl,
1832                                   ast::ConstraintType::get(ctx));
1833 }
1834 
1835 FailureOr<ast::Expr *> Parser::parseInlineRewriteLambdaExpr() {
1836   FailureOr<ast::UserRewriteDecl *> decl = parseInlineUserRewriteDecl();
1837   if (failed(decl))
1838     return failure();
1839 
1840   return ast::DeclRefExpr::create(ctx, (*decl)->getLoc(), *decl,
1841                                   ast::RewriteType::get(ctx));
1842 }
1843 
1844 FailureOr<ast::Expr *> Parser::parseMemberAccessExpr(ast::Expr *parentExpr) {
1845   SMRange loc = curToken.getLoc();
1846   consumeToken(Token::dot);
1847 
1848   // Check for code completion of the member name.
1849   if (curToken.is(Token::code_complete))
1850     return codeCompleteMemberAccess(parentExpr);
1851 
1852   // Parse the member name.
1853   Token memberNameTok = curToken;
1854   if (memberNameTok.isNot(Token::identifier, Token::integer) &&
1855       !memberNameTok.isKeyword())
1856     return emitError(loc, "expected identifier or numeric member name");
1857   StringRef memberName = memberNameTok.getSpelling();
1858   consumeToken();
1859 
1860   return createMemberAccessExpr(parentExpr, memberName, loc);
1861 }
1862 
1863 FailureOr<ast::OpNameDecl *> Parser::parseOperationName(bool allowEmptyName) {
1864   SMRange loc = curToken.getLoc();
1865 
1866   // Check for code completion for the dialect name.
1867   if (curToken.is(Token::code_complete))
1868     return codeCompleteDialectName();
1869 
1870   // Handle the case of an no operation name.
1871   if (curToken.isNot(Token::identifier) && !curToken.isKeyword()) {
1872     if (allowEmptyName)
1873       return ast::OpNameDecl::create(ctx, SMRange());
1874     return emitError("expected dialect namespace");
1875   }
1876   StringRef name = curToken.getSpelling();
1877   consumeToken();
1878 
1879   // Otherwise, this is a literal operation name.
1880   if (failed(parseToken(Token::dot, "expected `.` after dialect namespace")))
1881     return failure();
1882 
1883   // Check for code completion for the operation name.
1884   if (curToken.is(Token::code_complete))
1885     return codeCompleteOperationName(name);
1886 
1887   if (curToken.isNot(Token::identifier) && !curToken.isKeyword())
1888     return emitError("expected operation name after dialect namespace");
1889 
1890   name = StringRef(name.data(), name.size() + 1);
1891   do {
1892     name = StringRef(name.data(), name.size() + curToken.getSpelling().size());
1893     loc.End = curToken.getEndLoc();
1894     consumeToken();
1895   } while (curToken.isAny(Token::identifier, Token::dot) ||
1896            curToken.isKeyword());
1897   return ast::OpNameDecl::create(ctx, ast::Name::create(ctx, name, loc));
1898 }
1899 
1900 FailureOr<ast::OpNameDecl *>
1901 Parser::parseWrappedOperationName(bool allowEmptyName) {
1902   if (!consumeIf(Token::less))
1903     return ast::OpNameDecl::create(ctx, SMRange());
1904 
1905   FailureOr<ast::OpNameDecl *> opNameDecl = parseOperationName(allowEmptyName);
1906   if (failed(opNameDecl))
1907     return failure();
1908 
1909   if (failed(parseToken(Token::greater, "expected `>` after operation name")))
1910     return failure();
1911   return opNameDecl;
1912 }
1913 
1914 FailureOr<ast::Expr *> Parser::parseOperationExpr() {
1915   SMRange loc = curToken.getLoc();
1916   consumeToken(Token::kw_op);
1917 
1918   // If it isn't followed by a `<`, the `op` keyword is treated as a normal
1919   // identifier.
1920   if (curToken.isNot(Token::less)) {
1921     resetToken(loc);
1922     return parseIdentifierExpr();
1923   }
1924 
1925   // Parse the operation name. The name may be elided, in which case the
1926   // operation refers to "any" operation(i.e. a difference between `MyOp` and
1927   // `Operation*`). Operation names within a rewrite context must be named.
1928   bool allowEmptyName = parserContext != ParserContext::Rewrite;
1929   FailureOr<ast::OpNameDecl *> opNameDecl =
1930       parseWrappedOperationName(allowEmptyName);
1931   if (failed(opNameDecl))
1932     return failure();
1933   Optional<StringRef> opName = (*opNameDecl)->getName();
1934 
1935   // Functor used to create an implicit range variable, used for implicit "all"
1936   // operand or results variables.
1937   auto createImplicitRangeVar = [&](ast::ConstraintDecl *cst, ast::Type type) {
1938     FailureOr<ast::VariableDecl *> rangeVar =
1939         defineVariableDecl("_", loc, type, ast::ConstraintRef(cst, loc));
1940     assert(succeeded(rangeVar) && "expected range variable to be valid");
1941     return ast::DeclRefExpr::create(ctx, loc, *rangeVar, type);
1942   };
1943 
1944   // Check for the optional list of operands.
1945   SmallVector<ast::Expr *> operands;
1946   if (!consumeIf(Token::l_paren)) {
1947     // If the operand list isn't specified and we are in a match context, define
1948     // an inplace unconstrained operand range corresponding to all of the
1949     // operands of the operation. This avoids treating zero operands the same
1950     // way as "unconstrained operands".
1951     if (parserContext != ParserContext::Rewrite) {
1952       operands.push_back(createImplicitRangeVar(
1953           ast::ValueRangeConstraintDecl::create(ctx, loc), valueRangeTy));
1954     }
1955   } else if (!consumeIf(Token::r_paren)) {
1956     // Check for operand signature code completion.
1957     if (curToken.is(Token::code_complete)) {
1958       codeCompleteOperationOperandsSignature(opName, operands.size());
1959       return failure();
1960     }
1961 
1962     // If the operand list was specified and non-empty, parse the operands.
1963     do {
1964       FailureOr<ast::Expr *> operand = parseExpr();
1965       if (failed(operand))
1966         return failure();
1967       operands.push_back(*operand);
1968     } while (consumeIf(Token::comma));
1969 
1970     if (failed(parseToken(Token::r_paren,
1971                           "expected `)` after operation operand list")))
1972       return failure();
1973   }
1974 
1975   // Check for the optional list of attributes.
1976   SmallVector<ast::NamedAttributeDecl *> attributes;
1977   if (consumeIf(Token::l_brace)) {
1978     do {
1979       FailureOr<ast::NamedAttributeDecl *> decl =
1980           parseNamedAttributeDecl(opName);
1981       if (failed(decl))
1982         return failure();
1983       attributes.emplace_back(*decl);
1984     } while (consumeIf(Token::comma));
1985 
1986     if (failed(parseToken(Token::r_brace,
1987                           "expected `}` after operation attribute list")))
1988       return failure();
1989   }
1990 
1991   // Check for the optional list of result types.
1992   SmallVector<ast::Expr *> resultTypes;
1993   if (consumeIf(Token::arrow)) {
1994     if (failed(parseToken(Token::l_paren,
1995                           "expected `(` before operation result type list")))
1996       return failure();
1997 
1998     // Handle the case of an empty result list.
1999     if (!consumeIf(Token::r_paren)) {
2000       do {
2001         // Check for result signature code completion.
2002         if (curToken.is(Token::code_complete)) {
2003           codeCompleteOperationResultsSignature(opName, resultTypes.size());
2004           return failure();
2005         }
2006 
2007         FailureOr<ast::Expr *> resultTypeExpr = parseExpr();
2008         if (failed(resultTypeExpr))
2009           return failure();
2010         resultTypes.push_back(*resultTypeExpr);
2011       } while (consumeIf(Token::comma));
2012 
2013       if (failed(parseToken(Token::r_paren,
2014                             "expected `)` after operation result type list")))
2015         return failure();
2016     }
2017   } else if (parserContext != ParserContext::Rewrite) {
2018     // If the result list isn't specified and we are in a match context, define
2019     // an inplace unconstrained result range corresponding to all of the results
2020     // of the operation. This avoids treating zero results the same way as
2021     // "unconstrained results".
2022     resultTypes.push_back(createImplicitRangeVar(
2023         ast::TypeRangeConstraintDecl::create(ctx, loc), typeRangeTy));
2024   }
2025 
2026   return createOperationExpr(loc, *opNameDecl, operands, attributes,
2027                              resultTypes);
2028 }
2029 
2030 FailureOr<ast::Expr *> Parser::parseTupleExpr() {
2031   SMRange loc = curToken.getLoc();
2032   consumeToken(Token::l_paren);
2033 
2034   DenseMap<StringRef, SMRange> usedNames;
2035   SmallVector<StringRef> elementNames;
2036   SmallVector<ast::Expr *> elements;
2037   if (curToken.isNot(Token::r_paren)) {
2038     do {
2039       // Check for the optional element name assignment before the value.
2040       StringRef elementName;
2041       if (curToken.is(Token::identifier) || curToken.isDependentKeyword()) {
2042         Token elementNameTok = curToken;
2043         consumeToken();
2044 
2045         // The element name is only present if followed by an `=`.
2046         if (consumeIf(Token::equal)) {
2047           elementName = elementNameTok.getSpelling();
2048 
2049           // Check to see if this name is already used.
2050           auto elementNameIt =
2051               usedNames.try_emplace(elementName, elementNameTok.getLoc());
2052           if (!elementNameIt.second) {
2053             return emitErrorAndNote(
2054                 elementNameTok.getLoc(),
2055                 llvm::formatv("duplicate tuple element label `{0}`",
2056                               elementName),
2057                 elementNameIt.first->getSecond(),
2058                 "see previous label use here");
2059           }
2060         } else {
2061           // Otherwise, we treat this as part of an expression so reset the
2062           // lexer.
2063           resetToken(elementNameTok.getLoc());
2064         }
2065       }
2066       elementNames.push_back(elementName);
2067 
2068       // Parse the tuple element value.
2069       FailureOr<ast::Expr *> element = parseExpr();
2070       if (failed(element))
2071         return failure();
2072       elements.push_back(*element);
2073     } while (consumeIf(Token::comma));
2074   }
2075   loc.End = curToken.getEndLoc();
2076   if (failed(
2077           parseToken(Token::r_paren, "expected `)` after tuple element list")))
2078     return failure();
2079   return createTupleExpr(loc, elements, elementNames);
2080 }
2081 
2082 FailureOr<ast::Expr *> Parser::parseTypeExpr() {
2083   SMRange loc = curToken.getLoc();
2084   consumeToken(Token::kw_type);
2085 
2086   // If we aren't followed by a `<`, the `type` keyword is treated as a normal
2087   // identifier.
2088   if (!consumeIf(Token::less)) {
2089     resetToken(loc);
2090     return parseIdentifierExpr();
2091   }
2092 
2093   if (!curToken.isString())
2094     return emitError("expected string literal containing MLIR type");
2095   std::string attrExpr = curToken.getStringValue();
2096   consumeToken();
2097 
2098   if (failed(parseToken(Token::greater, "expected `>` after type literal")))
2099     return failure();
2100   return ast::TypeExpr::create(ctx, loc, attrExpr);
2101 }
2102 
2103 FailureOr<ast::Expr *> Parser::parseUnderscoreExpr() {
2104   StringRef name = curToken.getSpelling();
2105   SMRange nameLoc = curToken.getLoc();
2106   consumeToken(Token::underscore);
2107 
2108   // Underscore expressions require a constraint list.
2109   if (failed(parseToken(Token::colon, "expected `:` after `_` variable")))
2110     return failure();
2111 
2112   // Parse the constraints for the expression.
2113   SmallVector<ast::ConstraintRef> constraints;
2114   if (failed(parseVariableDeclConstraintList(constraints)))
2115     return failure();
2116 
2117   ast::Type type;
2118   if (failed(validateVariableConstraints(constraints, type)))
2119     return failure();
2120   return createInlineVariableExpr(type, name, nameLoc, constraints);
2121 }
2122 
2123 //===----------------------------------------------------------------------===//
2124 // Stmts
2125 
2126 FailureOr<ast::Stmt *> Parser::parseStmt(bool expectTerminalSemicolon) {
2127   FailureOr<ast::Stmt *> stmt;
2128   switch (curToken.getKind()) {
2129   case Token::kw_erase:
2130     stmt = parseEraseStmt();
2131     break;
2132   case Token::kw_let:
2133     stmt = parseLetStmt();
2134     break;
2135   case Token::kw_replace:
2136     stmt = parseReplaceStmt();
2137     break;
2138   case Token::kw_return:
2139     stmt = parseReturnStmt();
2140     break;
2141   case Token::kw_rewrite:
2142     stmt = parseRewriteStmt();
2143     break;
2144   default:
2145     stmt = parseExpr();
2146     break;
2147   }
2148   if (failed(stmt) ||
2149       (expectTerminalSemicolon &&
2150        failed(parseToken(Token::semicolon, "expected `;` after statement"))))
2151     return failure();
2152   return stmt;
2153 }
2154 
2155 FailureOr<ast::CompoundStmt *> Parser::parseCompoundStmt() {
2156   SMLoc startLoc = curToken.getStartLoc();
2157   consumeToken(Token::l_brace);
2158 
2159   // Push a new block scope and parse any nested statements.
2160   pushDeclScope();
2161   SmallVector<ast::Stmt *> statements;
2162   while (curToken.isNot(Token::r_brace)) {
2163     FailureOr<ast::Stmt *> statement = parseStmt();
2164     if (failed(statement))
2165       return popDeclScope(), failure();
2166     statements.push_back(*statement);
2167   }
2168   popDeclScope();
2169 
2170   // Consume the end brace.
2171   SMRange location(startLoc, curToken.getEndLoc());
2172   consumeToken(Token::r_brace);
2173 
2174   return ast::CompoundStmt::create(ctx, location, statements);
2175 }
2176 
2177 FailureOr<ast::EraseStmt *> Parser::parseEraseStmt() {
2178   if (parserContext == ParserContext::Constraint)
2179     return emitError("`erase` cannot be used within a Constraint");
2180   SMRange loc = curToken.getLoc();
2181   consumeToken(Token::kw_erase);
2182 
2183   // Parse the root operation expression.
2184   FailureOr<ast::Expr *> rootOp = parseExpr();
2185   if (failed(rootOp))
2186     return failure();
2187 
2188   return createEraseStmt(loc, *rootOp);
2189 }
2190 
2191 FailureOr<ast::LetStmt *> Parser::parseLetStmt() {
2192   SMRange loc = curToken.getLoc();
2193   consumeToken(Token::kw_let);
2194 
2195   // Parse the name of the new variable.
2196   SMRange varLoc = curToken.getLoc();
2197   if (curToken.isNot(Token::identifier) && !curToken.isDependentKeyword()) {
2198     // `_` is a reserved variable name.
2199     if (curToken.is(Token::underscore)) {
2200       return emitError(varLoc,
2201                        "`_` may only be used to define \"inline\" variables");
2202     }
2203     return emitError(varLoc,
2204                      "expected identifier after `let` to name a new variable");
2205   }
2206   StringRef varName = curToken.getSpelling();
2207   consumeToken();
2208 
2209   // Parse the optional set of constraints.
2210   SmallVector<ast::ConstraintRef> constraints;
2211   if (consumeIf(Token::colon) &&
2212       failed(parseVariableDeclConstraintList(constraints)))
2213     return failure();
2214 
2215   // Parse the optional initializer expression.
2216   ast::Expr *initializer = nullptr;
2217   if (consumeIf(Token::equal)) {
2218     FailureOr<ast::Expr *> initOrFailure = parseExpr();
2219     if (failed(initOrFailure))
2220       return failure();
2221     initializer = *initOrFailure;
2222 
2223     // Check that the constraints are compatible with having an initializer,
2224     // e.g. type constraints cannot be used with initializers.
2225     for (ast::ConstraintRef constraint : constraints) {
2226       LogicalResult result =
2227           TypeSwitch<const ast::Node *, LogicalResult>(constraint.constraint)
2228               .Case<ast::AttrConstraintDecl, ast::ValueConstraintDecl,
2229                     ast::ValueRangeConstraintDecl>([&](const auto *cst) {
2230                 if (auto *typeConstraintExpr = cst->getTypeExpr()) {
2231                   return this->emitError(
2232                       constraint.referenceLoc,
2233                       "type constraints are not permitted on variables with "
2234                       "initializers");
2235                 }
2236                 return success();
2237               })
2238               .Default(success());
2239       if (failed(result))
2240         return failure();
2241     }
2242   }
2243 
2244   FailureOr<ast::VariableDecl *> varDecl =
2245       createVariableDecl(varName, varLoc, initializer, constraints);
2246   if (failed(varDecl))
2247     return failure();
2248   return ast::LetStmt::create(ctx, loc, *varDecl);
2249 }
2250 
2251 FailureOr<ast::ReplaceStmt *> Parser::parseReplaceStmt() {
2252   if (parserContext == ParserContext::Constraint)
2253     return emitError("`replace` cannot be used within a Constraint");
2254   SMRange loc = curToken.getLoc();
2255   consumeToken(Token::kw_replace);
2256 
2257   // Parse the root operation expression.
2258   FailureOr<ast::Expr *> rootOp = parseExpr();
2259   if (failed(rootOp))
2260     return failure();
2261 
2262   if (failed(
2263           parseToken(Token::kw_with, "expected `with` after root operation")))
2264     return failure();
2265 
2266   // The replacement portion of this statement is within a rewrite context.
2267   llvm::SaveAndRestore<ParserContext> saveCtx(parserContext,
2268                                               ParserContext::Rewrite);
2269 
2270   // Parse the replacement values.
2271   SmallVector<ast::Expr *> replValues;
2272   if (consumeIf(Token::l_paren)) {
2273     if (consumeIf(Token::r_paren)) {
2274       return emitError(
2275           loc, "expected at least one replacement value, consider using "
2276                "`erase` if no replacement values are desired");
2277     }
2278 
2279     do {
2280       FailureOr<ast::Expr *> replExpr = parseExpr();
2281       if (failed(replExpr))
2282         return failure();
2283       replValues.emplace_back(*replExpr);
2284     } while (consumeIf(Token::comma));
2285 
2286     if (failed(parseToken(Token::r_paren,
2287                           "expected `)` after replacement values")))
2288       return failure();
2289   } else {
2290     FailureOr<ast::Expr *> replExpr = parseExpr();
2291     if (failed(replExpr))
2292       return failure();
2293     replValues.emplace_back(*replExpr);
2294   }
2295 
2296   return createReplaceStmt(loc, *rootOp, replValues);
2297 }
2298 
2299 FailureOr<ast::ReturnStmt *> Parser::parseReturnStmt() {
2300   SMRange loc = curToken.getLoc();
2301   consumeToken(Token::kw_return);
2302 
2303   // Parse the result value.
2304   FailureOr<ast::Expr *> resultExpr = parseExpr();
2305   if (failed(resultExpr))
2306     return failure();
2307 
2308   return ast::ReturnStmt::create(ctx, loc, *resultExpr);
2309 }
2310 
2311 FailureOr<ast::RewriteStmt *> Parser::parseRewriteStmt() {
2312   if (parserContext == ParserContext::Constraint)
2313     return emitError("`rewrite` cannot be used within a Constraint");
2314   SMRange loc = curToken.getLoc();
2315   consumeToken(Token::kw_rewrite);
2316 
2317   // Parse the root operation.
2318   FailureOr<ast::Expr *> rootOp = parseExpr();
2319   if (failed(rootOp))
2320     return failure();
2321 
2322   if (failed(parseToken(Token::kw_with, "expected `with` before rewrite body")))
2323     return failure();
2324 
2325   if (curToken.isNot(Token::l_brace))
2326     return emitError("expected `{` to start rewrite body");
2327 
2328   // The rewrite body of this statement is within a rewrite context.
2329   llvm::SaveAndRestore<ParserContext> saveCtx(parserContext,
2330                                               ParserContext::Rewrite);
2331 
2332   FailureOr<ast::CompoundStmt *> rewriteBody = parseCompoundStmt();
2333   if (failed(rewriteBody))
2334     return failure();
2335 
2336   // Verify the rewrite body.
2337   for (const ast::Stmt *stmt : (*rewriteBody)->getChildren()) {
2338     if (isa<ast::ReturnStmt>(stmt)) {
2339       return emitError(stmt->getLoc(),
2340                        "`return` statements are only permitted within a "
2341                        "`Constraint` or `Rewrite` body");
2342     }
2343   }
2344 
2345   return createRewriteStmt(loc, *rootOp, *rewriteBody);
2346 }
2347 
2348 //===----------------------------------------------------------------------===//
2349 // Creation+Analysis
2350 //===----------------------------------------------------------------------===//
2351 
2352 //===----------------------------------------------------------------------===//
2353 // Decls
2354 
2355 ast::CallableDecl *Parser::tryExtractCallableDecl(ast::Node *node) {
2356   // Unwrap reference expressions.
2357   if (auto *init = dyn_cast<ast::DeclRefExpr>(node))
2358     node = init->getDecl();
2359   return dyn_cast<ast::CallableDecl>(node);
2360 }
2361 
2362 FailureOr<ast::PatternDecl *>
2363 Parser::createPatternDecl(SMRange loc, const ast::Name *name,
2364                           const ParsedPatternMetadata &metadata,
2365                           ast::CompoundStmt *body) {
2366   return ast::PatternDecl::create(ctx, loc, name, metadata.benefit,
2367                                   metadata.hasBoundedRecursion, body);
2368 }
2369 
2370 ast::Type Parser::createUserConstraintRewriteResultType(
2371     ArrayRef<ast::VariableDecl *> results) {
2372   // Single result decls use the type of the single result.
2373   if (results.size() == 1)
2374     return results[0]->getType();
2375 
2376   // Multiple results use a tuple type, with the types and names grabbed from
2377   // the result variable decls.
2378   auto resultTypes = llvm::map_range(
2379       results, [&](const auto *result) { return result->getType(); });
2380   auto resultNames = llvm::map_range(
2381       results, [&](const auto *result) { return result->getName().getName(); });
2382   return ast::TupleType::get(ctx, llvm::to_vector(resultTypes),
2383                              llvm::to_vector(resultNames));
2384 }
2385 
2386 template <typename T>
2387 FailureOr<T *> Parser::createUserPDLLConstraintOrRewriteDecl(
2388     const ast::Name &name, ArrayRef<ast::VariableDecl *> arguments,
2389     ArrayRef<ast::VariableDecl *> results, ast::Type resultType,
2390     ast::CompoundStmt *body) {
2391   if (!body->getChildren().empty()) {
2392     if (auto *retStmt = dyn_cast<ast::ReturnStmt>(body->getChildren().back())) {
2393       ast::Expr *resultExpr = retStmt->getResultExpr();
2394 
2395       // Process the result of the decl. If no explicit signature results
2396       // were provided, check for return type inference. Otherwise, check that
2397       // the return expression can be converted to the expected type.
2398       if (results.empty())
2399         resultType = resultExpr->getType();
2400       else if (failed(convertExpressionTo(resultExpr, resultType)))
2401         return failure();
2402       else
2403         retStmt->setResultExpr(resultExpr);
2404     }
2405   }
2406   return T::createPDLL(ctx, name, arguments, results, body, resultType);
2407 }
2408 
2409 FailureOr<ast::VariableDecl *>
2410 Parser::createVariableDecl(StringRef name, SMRange loc, ast::Expr *initializer,
2411                            ArrayRef<ast::ConstraintRef> constraints) {
2412   // The type of the variable, which is expected to be inferred by either a
2413   // constraint or an initializer expression.
2414   ast::Type type;
2415   if (failed(validateVariableConstraints(constraints, type)))
2416     return failure();
2417 
2418   if (initializer) {
2419     // Update the variable type based on the initializer, or try to convert the
2420     // initializer to the existing type.
2421     if (!type)
2422       type = initializer->getType();
2423     else if (ast::Type mergedType = type.refineWith(initializer->getType()))
2424       type = mergedType;
2425     else if (failed(convertExpressionTo(initializer, type)))
2426       return failure();
2427 
2428     // Otherwise, if there is no initializer check that the type has already
2429     // been resolved from the constraint list.
2430   } else if (!type) {
2431     return emitErrorAndNote(
2432         loc, "unable to infer type for variable `" + name + "`", loc,
2433         "the type of a variable must be inferable from the constraint "
2434         "list or the initializer");
2435   }
2436 
2437   // Constraint types cannot be used when defining variables.
2438   if (type.isa<ast::ConstraintType, ast::RewriteType>()) {
2439     return emitError(
2440         loc, llvm::formatv("unable to define variable of `{0}` type", type));
2441   }
2442 
2443   // Try to define a variable with the given name.
2444   FailureOr<ast::VariableDecl *> varDecl =
2445       defineVariableDecl(name, loc, type, initializer, constraints);
2446   if (failed(varDecl))
2447     return failure();
2448 
2449   return *varDecl;
2450 }
2451 
2452 FailureOr<ast::VariableDecl *>
2453 Parser::createArgOrResultVariableDecl(StringRef name, SMRange loc,
2454                                       const ast::ConstraintRef &constraint) {
2455   // Constraint arguments may apply more complex constraints via the arguments.
2456   bool allowNonCoreConstraints = parserContext == ParserContext::Constraint;
2457   ast::Type argType;
2458   if (failed(validateVariableConstraint(constraint, argType,
2459                                         allowNonCoreConstraints)))
2460     return failure();
2461   return defineVariableDecl(name, loc, argType, constraint);
2462 }
2463 
2464 LogicalResult
2465 Parser::validateVariableConstraints(ArrayRef<ast::ConstraintRef> constraints,
2466                                     ast::Type &inferredType,
2467                                     bool allowNonCoreConstraints) {
2468   for (const ast::ConstraintRef &ref : constraints)
2469     if (failed(validateVariableConstraint(ref, inferredType,
2470                                           allowNonCoreConstraints)))
2471       return failure();
2472   return success();
2473 }
2474 
2475 LogicalResult Parser::validateVariableConstraint(const ast::ConstraintRef &ref,
2476                                                  ast::Type &inferredType,
2477                                                  bool allowNonCoreConstraints) {
2478   ast::Type constraintType;
2479   if (const auto *cst = dyn_cast<ast::AttrConstraintDecl>(ref.constraint)) {
2480     if (const ast::Expr *typeExpr = cst->getTypeExpr()) {
2481       if (failed(validateTypeConstraintExpr(typeExpr)))
2482         return failure();
2483     }
2484     constraintType = ast::AttributeType::get(ctx);
2485   } else if (const auto *cst =
2486                  dyn_cast<ast::OpConstraintDecl>(ref.constraint)) {
2487     constraintType = ast::OperationType::get(ctx, cst->getName());
2488   } else if (isa<ast::TypeConstraintDecl>(ref.constraint)) {
2489     constraintType = typeTy;
2490   } else if (isa<ast::TypeRangeConstraintDecl>(ref.constraint)) {
2491     constraintType = typeRangeTy;
2492   } else if (const auto *cst =
2493                  dyn_cast<ast::ValueConstraintDecl>(ref.constraint)) {
2494     if (const ast::Expr *typeExpr = cst->getTypeExpr()) {
2495       if (failed(validateTypeConstraintExpr(typeExpr)))
2496         return failure();
2497     }
2498     constraintType = valueTy;
2499   } else if (const auto *cst =
2500                  dyn_cast<ast::ValueRangeConstraintDecl>(ref.constraint)) {
2501     if (const ast::Expr *typeExpr = cst->getTypeExpr()) {
2502       if (failed(validateTypeRangeConstraintExpr(typeExpr)))
2503         return failure();
2504     }
2505     constraintType = valueRangeTy;
2506   } else if (const auto *cst =
2507                  dyn_cast<ast::UserConstraintDecl>(ref.constraint)) {
2508     if (!allowNonCoreConstraints) {
2509       return emitError(ref.referenceLoc,
2510                        "`Rewrite` arguments and results are only permitted to "
2511                        "use core constraints, such as `Attr`, `Op`, `Type`, "
2512                        "`TypeRange`, `Value`, `ValueRange`");
2513     }
2514 
2515     ArrayRef<ast::VariableDecl *> inputs = cst->getInputs();
2516     if (inputs.size() != 1) {
2517       return emitErrorAndNote(ref.referenceLoc,
2518                               "`Constraint`s applied via a variable constraint "
2519                               "list must take a single input, but got " +
2520                                   Twine(inputs.size()),
2521                               cst->getLoc(),
2522                               "see definition of constraint here");
2523     }
2524     constraintType = inputs.front()->getType();
2525   } else {
2526     llvm_unreachable("unknown constraint type");
2527   }
2528 
2529   // Check that the constraint type is compatible with the current inferred
2530   // type.
2531   if (!inferredType) {
2532     inferredType = constraintType;
2533   } else if (ast::Type mergedTy = inferredType.refineWith(constraintType)) {
2534     inferredType = mergedTy;
2535   } else {
2536     return emitError(ref.referenceLoc,
2537                      llvm::formatv("constraint type `{0}` is incompatible "
2538                                    "with the previously inferred type `{1}`",
2539                                    constraintType, inferredType));
2540   }
2541   return success();
2542 }
2543 
2544 LogicalResult Parser::validateTypeConstraintExpr(const ast::Expr *typeExpr) {
2545   ast::Type typeExprType = typeExpr->getType();
2546   if (typeExprType != typeTy) {
2547     return emitError(typeExpr->getLoc(),
2548                      "expected expression of `Type` in type constraint");
2549   }
2550   return success();
2551 }
2552 
2553 LogicalResult
2554 Parser::validateTypeRangeConstraintExpr(const ast::Expr *typeExpr) {
2555   ast::Type typeExprType = typeExpr->getType();
2556   if (typeExprType != typeRangeTy) {
2557     return emitError(typeExpr->getLoc(),
2558                      "expected expression of `TypeRange` in type constraint");
2559   }
2560   return success();
2561 }
2562 
2563 //===----------------------------------------------------------------------===//
2564 // Exprs
2565 
2566 FailureOr<ast::CallExpr *>
2567 Parser::createCallExpr(SMRange loc, ast::Expr *parentExpr,
2568                        MutableArrayRef<ast::Expr *> arguments) {
2569   ast::Type parentType = parentExpr->getType();
2570 
2571   ast::CallableDecl *callableDecl = tryExtractCallableDecl(parentExpr);
2572   if (!callableDecl) {
2573     return emitError(loc,
2574                      llvm::formatv("expected a reference to a callable "
2575                                    "`Constraint` or `Rewrite`, but got: `{0}`",
2576                                    parentType));
2577   }
2578   if (parserContext == ParserContext::Rewrite) {
2579     if (isa<ast::UserConstraintDecl>(callableDecl))
2580       return emitError(
2581           loc, "unable to invoke `Constraint` within a rewrite section");
2582   } else if (isa<ast::UserRewriteDecl>(callableDecl)) {
2583     return emitError(loc, "unable to invoke `Rewrite` within a match section");
2584   }
2585 
2586   // Verify the arguments of the call.
2587   /// Handle size mismatch.
2588   ArrayRef<ast::VariableDecl *> callArgs = callableDecl->getInputs();
2589   if (callArgs.size() != arguments.size()) {
2590     return emitErrorAndNote(
2591         loc,
2592         llvm::formatv("invalid number of arguments for {0} call; expected "
2593                       "{1}, but got {2}",
2594                       callableDecl->getCallableType(), callArgs.size(),
2595                       arguments.size()),
2596         callableDecl->getLoc(),
2597         llvm::formatv("see the definition of {0} here",
2598                       callableDecl->getName()->getName()));
2599   }
2600 
2601   /// Handle argument type mismatch.
2602   auto attachDiagFn = [&](ast::Diagnostic &diag) {
2603     diag.attachNote(llvm::formatv("see the definition of `{0}` here",
2604                                   callableDecl->getName()->getName()),
2605                     callableDecl->getLoc());
2606   };
2607   for (auto it : llvm::zip(callArgs, arguments)) {
2608     if (failed(convertExpressionTo(std::get<1>(it), std::get<0>(it)->getType(),
2609                                    attachDiagFn)))
2610       return failure();
2611   }
2612 
2613   return ast::CallExpr::create(ctx, loc, parentExpr, arguments,
2614                                callableDecl->getResultType());
2615 }
2616 
2617 FailureOr<ast::DeclRefExpr *> Parser::createDeclRefExpr(SMRange loc,
2618                                                         ast::Decl *decl) {
2619   // Check the type of decl being referenced.
2620   ast::Type declType;
2621   if (isa<ast::ConstraintDecl>(decl))
2622     declType = ast::ConstraintType::get(ctx);
2623   else if (isa<ast::UserRewriteDecl>(decl))
2624     declType = ast::RewriteType::get(ctx);
2625   else if (auto *varDecl = dyn_cast<ast::VariableDecl>(decl))
2626     declType = varDecl->getType();
2627   else
2628     return emitError(loc, "invalid reference to `" +
2629                               decl->getName()->getName() + "`");
2630 
2631   return ast::DeclRefExpr::create(ctx, loc, decl, declType);
2632 }
2633 
2634 FailureOr<ast::DeclRefExpr *>
2635 Parser::createInlineVariableExpr(ast::Type type, StringRef name, SMRange loc,
2636                                  ArrayRef<ast::ConstraintRef> constraints) {
2637   FailureOr<ast::VariableDecl *> decl =
2638       defineVariableDecl(name, loc, type, constraints);
2639   if (failed(decl))
2640     return failure();
2641   return ast::DeclRefExpr::create(ctx, loc, *decl, type);
2642 }
2643 
2644 FailureOr<ast::MemberAccessExpr *>
2645 Parser::createMemberAccessExpr(ast::Expr *parentExpr, StringRef name,
2646                                SMRange loc) {
2647   // Validate the member name for the given parent expression.
2648   FailureOr<ast::Type> memberType = validateMemberAccess(parentExpr, name, loc);
2649   if (failed(memberType))
2650     return failure();
2651 
2652   return ast::MemberAccessExpr::create(ctx, loc, parentExpr, name, *memberType);
2653 }
2654 
2655 FailureOr<ast::Type> Parser::validateMemberAccess(ast::Expr *parentExpr,
2656                                                   StringRef name, SMRange loc) {
2657   ast::Type parentType = parentExpr->getType();
2658   if (ast::OperationType opType = parentType.dyn_cast<ast::OperationType>()) {
2659     if (name == ast::AllResultsMemberAccessExpr::getMemberName())
2660       return valueRangeTy;
2661 
2662     // Verify member access based on the operation type.
2663     if (const ods::Operation *odsOp = lookupODSOperation(opType.getName())) {
2664       auto results = odsOp->getResults();
2665 
2666       // Handle indexed results.
2667       unsigned index = 0;
2668       if (llvm::isDigit(name[0]) && !name.getAsInteger(/*Radix=*/10, index) &&
2669           index < results.size()) {
2670         return results[index].isVariadic() ? valueRangeTy : valueTy;
2671       }
2672 
2673       // Handle named results.
2674       const auto *it = llvm::find_if(results, [&](const auto &result) {
2675         return result.getName() == name;
2676       });
2677       if (it != results.end())
2678         return it->isVariadic() ? valueRangeTy : valueTy;
2679     }
2680 
2681   } else if (auto tupleType = parentType.dyn_cast<ast::TupleType>()) {
2682     // Handle indexed results.
2683     unsigned index = 0;
2684     if (llvm::isDigit(name[0]) && !name.getAsInteger(/*Radix=*/10, index) &&
2685         index < tupleType.size()) {
2686       return tupleType.getElementTypes()[index];
2687     }
2688 
2689     // Handle named results.
2690     auto elementNames = tupleType.getElementNames();
2691     const auto *it = llvm::find(elementNames, name);
2692     if (it != elementNames.end())
2693       return tupleType.getElementTypes()[it - elementNames.begin()];
2694   }
2695   return emitError(
2696       loc,
2697       llvm::formatv("invalid member access `{0}` on expression of type `{1}`",
2698                     name, parentType));
2699 }
2700 
2701 FailureOr<ast::OperationExpr *> Parser::createOperationExpr(
2702     SMRange loc, const ast::OpNameDecl *name,
2703     MutableArrayRef<ast::Expr *> operands,
2704     MutableArrayRef<ast::NamedAttributeDecl *> attributes,
2705     MutableArrayRef<ast::Expr *> results) {
2706   Optional<StringRef> opNameRef = name->getName();
2707   const ods::Operation *odsOp = lookupODSOperation(opNameRef);
2708 
2709   // Verify the inputs operands.
2710   if (failed(validateOperationOperands(loc, opNameRef, odsOp, operands)))
2711     return failure();
2712 
2713   // Verify the attribute list.
2714   for (ast::NamedAttributeDecl *attr : attributes) {
2715     // Check for an attribute type, or a type awaiting resolution.
2716     ast::Type attrType = attr->getValue()->getType();
2717     if (!attrType.isa<ast::AttributeType>()) {
2718       return emitError(
2719           attr->getValue()->getLoc(),
2720           llvm::formatv("expected `Attr` expression, but got `{0}`", attrType));
2721     }
2722   }
2723 
2724   // Verify the result types.
2725   if (failed(validateOperationResults(loc, opNameRef, odsOp, results)))
2726     return failure();
2727 
2728   return ast::OperationExpr::create(ctx, loc, name, operands, results,
2729                                     attributes);
2730 }
2731 
2732 LogicalResult
2733 Parser::validateOperationOperands(SMRange loc, Optional<StringRef> name,
2734                                   const ods::Operation *odsOp,
2735                                   MutableArrayRef<ast::Expr *> operands) {
2736   return validateOperationOperandsOrResults(
2737       "operand", loc, odsOp ? odsOp->getLoc() : Optional<SMRange>(), name,
2738       operands, odsOp ? odsOp->getOperands() : llvm::None, valueTy,
2739       valueRangeTy);
2740 }
2741 
2742 LogicalResult
2743 Parser::validateOperationResults(SMRange loc, Optional<StringRef> name,
2744                                  const ods::Operation *odsOp,
2745                                  MutableArrayRef<ast::Expr *> results) {
2746   return validateOperationOperandsOrResults(
2747       "result", loc, odsOp ? odsOp->getLoc() : Optional<SMRange>(), name,
2748       results, odsOp ? odsOp->getResults() : llvm::None, typeTy, typeRangeTy);
2749 }
2750 
2751 LogicalResult Parser::validateOperationOperandsOrResults(
2752     StringRef groupName, SMRange loc, Optional<SMRange> odsOpLoc,
2753     Optional<StringRef> name, MutableArrayRef<ast::Expr *> values,
2754     ArrayRef<ods::OperandOrResult> odsValues, ast::Type singleTy,
2755     ast::Type rangeTy) {
2756   // All operation types accept a single range parameter.
2757   if (values.size() == 1) {
2758     if (failed(convertExpressionTo(values[0], rangeTy)))
2759       return failure();
2760     return success();
2761   }
2762 
2763   /// If the operation has ODS information, we can more accurately verify the
2764   /// values.
2765   if (odsOpLoc) {
2766     if (odsValues.size() != values.size()) {
2767       return emitErrorAndNote(
2768           loc,
2769           llvm::formatv("invalid number of {0} groups for `{1}`; expected "
2770                         "{2}, but got {3}",
2771                         groupName, *name, odsValues.size(), values.size()),
2772           *odsOpLoc, llvm::formatv("see the definition of `{0}` here", *name));
2773     }
2774     auto diagFn = [&](ast::Diagnostic &diag) {
2775       diag.attachNote(llvm::formatv("see the definition of `{0}` here", *name),
2776                       *odsOpLoc);
2777     };
2778     for (unsigned i = 0, e = values.size(); i < e; ++i) {
2779       ast::Type expectedType = odsValues[i].isVariadic() ? rangeTy : singleTy;
2780       if (failed(convertExpressionTo(values[i], expectedType, diagFn)))
2781         return failure();
2782     }
2783     return success();
2784   }
2785 
2786   // Otherwise, accept the value groups as they have been defined and just
2787   // ensure they are one of the expected types.
2788   for (ast::Expr *&valueExpr : values) {
2789     ast::Type valueExprType = valueExpr->getType();
2790 
2791     // Check if this is one of the expected types.
2792     if (valueExprType == rangeTy || valueExprType == singleTy)
2793       continue;
2794 
2795     // If the operand is an Operation, allow converting to a Value or
2796     // ValueRange. This situations arises quite often with nested operation
2797     // expressions: `op<my_dialect.foo>(op<my_dialect.bar>)`
2798     if (singleTy == valueTy) {
2799       if (valueExprType.isa<ast::OperationType>()) {
2800         valueExpr = convertOpToValue(valueExpr);
2801         continue;
2802       }
2803     }
2804 
2805     return emitError(
2806         valueExpr->getLoc(),
2807         llvm::formatv(
2808             "expected `{0}` or `{1}` convertible expression, but got `{2}`",
2809             singleTy, rangeTy, valueExprType));
2810   }
2811   return success();
2812 }
2813 
2814 FailureOr<ast::TupleExpr *>
2815 Parser::createTupleExpr(SMRange loc, ArrayRef<ast::Expr *> elements,
2816                         ArrayRef<StringRef> elementNames) {
2817   for (const ast::Expr *element : elements) {
2818     ast::Type eleTy = element->getType();
2819     if (eleTy.isa<ast::ConstraintType, ast::RewriteType, ast::TupleType>()) {
2820       return emitError(
2821           element->getLoc(),
2822           llvm::formatv("unable to build a tuple with `{0}` element", eleTy));
2823     }
2824   }
2825   return ast::TupleExpr::create(ctx, loc, elements, elementNames);
2826 }
2827 
2828 //===----------------------------------------------------------------------===//
2829 // Stmts
2830 
2831 FailureOr<ast::EraseStmt *> Parser::createEraseStmt(SMRange loc,
2832                                                     ast::Expr *rootOp) {
2833   // Check that root is an Operation.
2834   ast::Type rootType = rootOp->getType();
2835   if (!rootType.isa<ast::OperationType>())
2836     return emitError(rootOp->getLoc(), "expected `Op` expression");
2837 
2838   return ast::EraseStmt::create(ctx, loc, rootOp);
2839 }
2840 
2841 FailureOr<ast::ReplaceStmt *>
2842 Parser::createReplaceStmt(SMRange loc, ast::Expr *rootOp,
2843                           MutableArrayRef<ast::Expr *> replValues) {
2844   // Check that root is an Operation.
2845   ast::Type rootType = rootOp->getType();
2846   if (!rootType.isa<ast::OperationType>()) {
2847     return emitError(
2848         rootOp->getLoc(),
2849         llvm::formatv("expected `Op` expression, but got `{0}`", rootType));
2850   }
2851 
2852   // If there are multiple replacement values, we implicitly convert any Op
2853   // expressions to the value form.
2854   bool shouldConvertOpToValues = replValues.size() > 1;
2855   for (ast::Expr *&replExpr : replValues) {
2856     ast::Type replType = replExpr->getType();
2857 
2858     // Check that replExpr is an Operation, Value, or ValueRange.
2859     if (replType.isa<ast::OperationType>()) {
2860       if (shouldConvertOpToValues)
2861         replExpr = convertOpToValue(replExpr);
2862       continue;
2863     }
2864 
2865     if (replType != valueTy && replType != valueRangeTy) {
2866       return emitError(replExpr->getLoc(),
2867                        llvm::formatv("expected `Op`, `Value` or `ValueRange` "
2868                                      "expression, but got `{0}`",
2869                                      replType));
2870     }
2871   }
2872 
2873   return ast::ReplaceStmt::create(ctx, loc, rootOp, replValues);
2874 }
2875 
2876 FailureOr<ast::RewriteStmt *>
2877 Parser::createRewriteStmt(SMRange loc, ast::Expr *rootOp,
2878                           ast::CompoundStmt *rewriteBody) {
2879   // Check that root is an Operation.
2880   ast::Type rootType = rootOp->getType();
2881   if (!rootType.isa<ast::OperationType>()) {
2882     return emitError(
2883         rootOp->getLoc(),
2884         llvm::formatv("expected `Op` expression, but got `{0}`", rootType));
2885   }
2886 
2887   return ast::RewriteStmt::create(ctx, loc, rootOp, rewriteBody);
2888 }
2889 
2890 //===----------------------------------------------------------------------===//
2891 // Code Completion
2892 //===----------------------------------------------------------------------===//
2893 
2894 LogicalResult Parser::codeCompleteMemberAccess(ast::Expr *parentExpr) {
2895   ast::Type parentType = parentExpr->getType();
2896   if (ast::OperationType opType = parentType.dyn_cast<ast::OperationType>())
2897     codeCompleteContext->codeCompleteOperationMemberAccess(opType);
2898   else if (ast::TupleType tupleType = parentType.dyn_cast<ast::TupleType>())
2899     codeCompleteContext->codeCompleteTupleMemberAccess(tupleType);
2900   return failure();
2901 }
2902 
2903 LogicalResult Parser::codeCompleteAttributeName(Optional<StringRef> opName) {
2904   if (opName)
2905     codeCompleteContext->codeCompleteOperationAttributeName(*opName);
2906   return failure();
2907 }
2908 
2909 LogicalResult
2910 Parser::codeCompleteConstraintName(ast::Type inferredType,
2911                                    bool allowNonCoreConstraints,
2912                                    bool allowInlineTypeConstraints) {
2913   codeCompleteContext->codeCompleteConstraintName(
2914       inferredType, allowNonCoreConstraints, allowInlineTypeConstraints,
2915       curDeclScope);
2916   return failure();
2917 }
2918 
2919 LogicalResult Parser::codeCompleteDialectName() {
2920   codeCompleteContext->codeCompleteDialectName();
2921   return failure();
2922 }
2923 
2924 LogicalResult Parser::codeCompleteOperationName(StringRef dialectName) {
2925   codeCompleteContext->codeCompleteOperationName(dialectName);
2926   return failure();
2927 }
2928 
2929 LogicalResult Parser::codeCompletePatternMetadata() {
2930   codeCompleteContext->codeCompletePatternMetadata();
2931   return failure();
2932 }
2933 
2934 LogicalResult Parser::codeCompleteIncludeFilename(StringRef curPath) {
2935   codeCompleteContext->codeCompleteIncludeFilename(curPath);
2936   return failure();
2937 }
2938 
2939 void Parser::codeCompleteCallSignature(ast::Node *parent,
2940                                        unsigned currentNumArgs) {
2941   ast::CallableDecl *callableDecl = tryExtractCallableDecl(parent);
2942   if (!callableDecl)
2943     return;
2944 
2945   codeCompleteContext->codeCompleteCallSignature(callableDecl, currentNumArgs);
2946 }
2947 
2948 void Parser::codeCompleteOperationOperandsSignature(
2949     Optional<StringRef> opName, unsigned currentNumOperands) {
2950   codeCompleteContext->codeCompleteOperationOperandsSignature(
2951       opName, currentNumOperands);
2952 }
2953 
2954 void Parser::codeCompleteOperationResultsSignature(Optional<StringRef> opName,
2955                                                    unsigned currentNumResults) {
2956   codeCompleteContext->codeCompleteOperationResultsSignature(opName,
2957                                                              currentNumResults);
2958 }
2959 
2960 //===----------------------------------------------------------------------===//
2961 // Parser
2962 //===----------------------------------------------------------------------===//
2963 
2964 FailureOr<ast::Module *>
2965 mlir::pdll::parsePDLAST(ast::Context &ctx, llvm::SourceMgr &sourceMgr,
2966                         CodeCompleteContext *codeCompleteContext) {
2967   Parser parser(ctx, sourceMgr, codeCompleteContext);
2968   return parser.parseModule();
2969 }
2970