1 //===- Serializer.h - MLIR SPIR-V Serializer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file declares the MLIR SPIR-V module to SPIR-V binary serializer. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef MLIR_LIB_TARGET_SPIRV_SERIALIZATION_SERIALIZER_H 14 #define MLIR_LIB_TARGET_SPIRV_SERIALIZATION_SERIALIZER_H 15 16 #include "mlir/Dialect/SPIRV/IR/SPIRVOps.h" 17 #include "mlir/IR/Builders.h" 18 #include "mlir/Target/SPIRV/Serialization.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/Support/raw_ostream.h" 22 23 namespace mlir { 24 namespace spirv { 25 26 void encodeInstructionInto(SmallVectorImpl<uint32_t> &binary, spirv::Opcode op, 27 ArrayRef<uint32_t> operands); 28 29 /// A SPIR-V module serializer. 30 /// 31 /// A SPIR-V binary module is a single linear stream of instructions; each 32 /// instruction is composed of 32-bit words with the layout: 33 /// 34 /// | <word-count>|<opcode> | <operand> | <operand> | ... | 35 /// | <------ word -------> | <-- word --> | <-- word --> | ... | 36 /// 37 /// For the first word, the 16 high-order bits are the word count of the 38 /// instruction, the 16 low-order bits are the opcode enumerant. The 39 /// instructions then belong to different sections, which must be laid out in 40 /// the particular order as specified in "2.4 Logical Layout of a Module" of 41 /// the SPIR-V spec. 42 class Serializer { 43 public: 44 /// Creates a serializer for the given SPIR-V `module`. 45 explicit Serializer(spirv::ModuleOp module, 46 const SerializationOptions &options); 47 48 /// Serializes the remembered SPIR-V module. 49 LogicalResult serialize(); 50 51 /// Collects the final SPIR-V `binary`. 52 void collect(SmallVectorImpl<uint32_t> &binary); 53 54 #ifndef NDEBUG 55 /// (For debugging) prints each value and its corresponding result <id>. 56 void printValueIDMap(raw_ostream &os); 57 #endif 58 59 private: 60 // Note that there are two main categories of methods in this class: 61 // * process*() methods are meant to fully serialize a SPIR-V module entity 62 // (header, type, op, etc.). They update internal vectors containing 63 // different binary sections. They are not meant to be called except the 64 // top-level serialization loop. 65 // * prepare*() methods are meant to be helpers that prepare for serializing 66 // certain entity. They may or may not update internal vectors containing 67 // different binary sections. They are meant to be called among themselves 68 // or by other process*() methods for subtasks. 69 70 //===--------------------------------------------------------------------===// 71 // <id> 72 //===--------------------------------------------------------------------===// 73 74 // Note that it is illegal to use id <0> in SPIR-V binary module. Various 75 // methods in this class, if using SPIR-V word (uint32_t) as interface, 76 // check or return id <0> to indicate error in processing. 77 78 /// Consumes the next unused <id>. This method will never return 0. 79 uint32_t getNextID() { return nextID++; } 80 81 //===--------------------------------------------------------------------===// 82 // Module structure 83 //===--------------------------------------------------------------------===// 84 85 uint32_t getSpecConstID(StringRef constName) const { 86 return specConstIDMap.lookup(constName); 87 } 88 89 uint32_t getVariableID(StringRef varName) const { 90 return globalVarIDMap.lookup(varName); 91 } 92 93 uint32_t getFunctionID(StringRef fnName) const { 94 return funcIDMap.lookup(fnName); 95 } 96 97 /// Gets the <id> for the function with the given name. Assigns the next 98 /// available <id> if the function haven't been deserialized. 99 uint32_t getOrCreateFunctionID(StringRef fnName); 100 101 void processCapability(); 102 103 void processDebugInfo(); 104 105 void processExtension(); 106 107 void processMemoryModel(); 108 109 LogicalResult processConstantOp(spirv::ConstantOp op); 110 111 LogicalResult processSpecConstantOp(spirv::SpecConstantOp op); 112 113 LogicalResult 114 processSpecConstantCompositeOp(spirv::SpecConstantCompositeOp op); 115 116 LogicalResult 117 processSpecConstantOperationOp(spirv::SpecConstantOperationOp op); 118 119 /// SPIR-V dialect supports OpUndef using spv.UndefOp that produces a SSA 120 /// value to use with other operations. The SPIR-V spec recommends that 121 /// OpUndef be generated at module level. The serialization generates an 122 /// OpUndef for each type needed at module level. 123 LogicalResult processUndefOp(spirv::UndefOp op); 124 125 /// Emit OpName for the given `resultID`. 126 LogicalResult processName(uint32_t resultID, StringRef name); 127 128 /// Processes a SPIR-V function op. 129 LogicalResult processFuncOp(spirv::FuncOp op); 130 131 LogicalResult processVariableOp(spirv::VariableOp op); 132 133 /// Process a SPIR-V GlobalVariableOp 134 LogicalResult processGlobalVariableOp(spirv::GlobalVariableOp varOp); 135 136 /// Process attributes that translate to decorations on the result <id> 137 LogicalResult processDecoration(Location loc, uint32_t resultID, 138 NamedAttribute attr); 139 140 template <typename DType> 141 LogicalResult processTypeDecoration(Location loc, DType type, 142 uint32_t resultId) { 143 return emitError(loc, "unhandled decoration for type:") << type; 144 } 145 146 /// Process member decoration 147 LogicalResult processMemberDecoration( 148 uint32_t structID, 149 const spirv::StructType::MemberDecorationInfo &memberDecorationInfo); 150 151 //===--------------------------------------------------------------------===// 152 // Types 153 //===--------------------------------------------------------------------===// 154 155 uint32_t getTypeID(Type type) const { return typeIDMap.lookup(type); } 156 157 Type getVoidType() { return mlirBuilder.getNoneType(); } 158 159 bool isVoidType(Type type) const { return type.isa<NoneType>(); } 160 161 /// Returns true if the given type is a pointer type to a struct in some 162 /// interface storage class. 163 bool isInterfaceStructPtrType(Type type) const; 164 165 /// Main dispatch method for serializing a type. The result <id> of the 166 /// serialized type will be returned as `typeID`. 167 LogicalResult processType(Location loc, Type type, uint32_t &typeID); 168 LogicalResult processTypeImpl(Location loc, Type type, uint32_t &typeID, 169 SetVector<StringRef> &serializationCtx); 170 171 /// Method for preparing basic SPIR-V type serialization. Returns the type's 172 /// opcode and operands for the instruction via `typeEnum` and `operands`. 173 LogicalResult prepareBasicType(Location loc, Type type, uint32_t resultID, 174 spirv::Opcode &typeEnum, 175 SmallVectorImpl<uint32_t> &operands, 176 bool &deferSerialization, 177 SetVector<StringRef> &serializationCtx); 178 179 LogicalResult prepareFunctionType(Location loc, FunctionType type, 180 spirv::Opcode &typeEnum, 181 SmallVectorImpl<uint32_t> &operands); 182 183 //===--------------------------------------------------------------------===// 184 // Constant 185 //===--------------------------------------------------------------------===// 186 187 uint32_t getConstantID(Attribute value) const { 188 return constIDMap.lookup(value); 189 } 190 191 /// Main dispatch method for processing a constant with the given `constType` 192 /// and `valueAttr`. `constType` is needed here because we can interpret the 193 /// `valueAttr` as a different type than the type of `valueAttr` itself; for 194 /// example, ArrayAttr, whose type is NoneType, is used for spirv::ArrayType 195 /// constants. 196 uint32_t prepareConstant(Location loc, Type constType, Attribute valueAttr); 197 198 /// Prepares array attribute serialization. This method emits corresponding 199 /// OpConstant* and returns the result <id> associated with it. Returns 0 if 200 /// failed. 201 uint32_t prepareArrayConstant(Location loc, Type constType, ArrayAttr attr); 202 203 /// Prepares bool/int/float DenseElementsAttr serialization. This method 204 /// iterates the DenseElementsAttr to construct the constant array, and 205 /// returns the result <id> associated with it. Returns 0 if failed. Note 206 /// that the size of `index` must match the rank. 207 /// TODO: Consider to enhance splat elements cases. For splat cases, 208 /// we don't need to loop over all elements, especially when the splat value 209 /// is zero. We can use OpConstantNull when the value is zero. 210 uint32_t prepareDenseElementsConstant(Location loc, Type constType, 211 DenseElementsAttr valueAttr, int dim, 212 MutableArrayRef<uint64_t> index); 213 214 /// Prepares scalar attribute serialization. This method emits corresponding 215 /// OpConstant* and returns the result <id> associated with it. Returns 0 if 216 /// the attribute is not for a scalar bool/integer/float value. If `isSpec` is 217 /// true, then the constant will be serialized as a specialization constant. 218 uint32_t prepareConstantScalar(Location loc, Attribute valueAttr, 219 bool isSpec = false); 220 221 uint32_t prepareConstantBool(Location loc, BoolAttr boolAttr, 222 bool isSpec = false); 223 224 uint32_t prepareConstantInt(Location loc, IntegerAttr intAttr, 225 bool isSpec = false); 226 227 uint32_t prepareConstantFp(Location loc, FloatAttr floatAttr, 228 bool isSpec = false); 229 230 //===--------------------------------------------------------------------===// 231 // Control flow 232 //===--------------------------------------------------------------------===// 233 234 /// Returns the result <id> for the given block. 235 uint32_t getBlockID(Block *block) const { return blockIDMap.lookup(block); } 236 237 /// Returns the result <id> for the given block. If no <id> has been assigned, 238 /// assigns the next available <id> 239 uint32_t getOrCreateBlockID(Block *block); 240 241 #ifndef NDEBUG 242 /// (For debugging) prints the block with its result <id>. 243 void printBlock(Block *block, raw_ostream &os); 244 #endif 245 246 /// Processes the given `block` and emits SPIR-V instructions for all ops 247 /// inside. Does not emit OpLabel for this block if `omitLabel` is true. 248 /// `emitMerge` is a callback that will be invoked before handling the 249 /// terminator op to inject the Op*Merge instruction if this is a SPIR-V 250 /// selection/loop header block. 251 LogicalResult processBlock(Block *block, bool omitLabel = false, 252 function_ref<LogicalResult()> emitMerge = nullptr); 253 254 /// Emits OpPhi instructions for the given block if it has block arguments. 255 LogicalResult emitPhiForBlockArguments(Block *block); 256 257 LogicalResult processSelectionOp(spirv::SelectionOp selectionOp); 258 259 LogicalResult processLoopOp(spirv::LoopOp loopOp); 260 261 LogicalResult processBranchConditionalOp(spirv::BranchConditionalOp); 262 263 LogicalResult processBranchOp(spirv::BranchOp branchOp); 264 265 //===--------------------------------------------------------------------===// 266 // Operations 267 //===--------------------------------------------------------------------===// 268 269 LogicalResult encodeExtensionInstruction(Operation *op, 270 StringRef extensionSetName, 271 uint32_t opcode, 272 ArrayRef<uint32_t> operands); 273 274 uint32_t getValueID(Value val) const { return valueIDMap.lookup(val); } 275 276 LogicalResult processAddressOfOp(spirv::AddressOfOp addressOfOp); 277 278 LogicalResult processReferenceOfOp(spirv::ReferenceOfOp referenceOfOp); 279 280 /// Main dispatch method for serializing an operation. 281 LogicalResult processOperation(Operation *op); 282 283 /// Serializes an operation `op` as core instruction with `opcode` if 284 /// `extInstSet` is empty. Otherwise serializes it as an extended instruction 285 /// with `opcode` from `extInstSet`. 286 /// This method is a generic one for dispatching any SPIR-V ops that has no 287 /// variadic operands and attributes in TableGen definitions. 288 LogicalResult processOpWithoutGrammarAttr(Operation *op, StringRef extInstSet, 289 uint32_t opcode); 290 291 /// Dispatches to the serialization function for an operation in SPIR-V 292 /// dialect that is a mirror of an instruction in the SPIR-V spec. This is 293 /// auto-generated from ODS. Dispatch is handled for all operations in SPIR-V 294 /// dialect that have hasOpcode == 1. 295 LogicalResult dispatchToAutogenSerialization(Operation *op); 296 297 /// Serializes an operation in the SPIR-V dialect that is a mirror of an 298 /// instruction in the SPIR-V spec. This is auto generated if hasOpcode == 1 299 /// and autogenSerialization == 1 in ODS. 300 template <typename OpTy> LogicalResult processOp(OpTy op) { 301 return op.emitError("unsupported op serialization"); 302 } 303 304 //===--------------------------------------------------------------------===// 305 // Utilities 306 //===--------------------------------------------------------------------===// 307 308 /// Emits an OpDecorate instruction to decorate the given `target` with the 309 /// given `decoration`. 310 LogicalResult emitDecoration(uint32_t target, spirv::Decoration decoration, 311 ArrayRef<uint32_t> params = {}); 312 313 /// Emits an OpLine instruction with the given `loc` location information into 314 /// the given `binary` vector. 315 LogicalResult emitDebugLine(SmallVectorImpl<uint32_t> &binary, Location loc); 316 317 private: 318 /// The SPIR-V module to be serialized. 319 spirv::ModuleOp module; 320 321 /// An MLIR builder for getting MLIR constructs. 322 mlir::Builder mlirBuilder; 323 324 /// Serialization options. 325 SerializationOptions options; 326 327 /// A flag which indicates if the last processed instruction was a merge 328 /// instruction. 329 /// According to SPIR-V spec: "If a branch merge instruction is used, the last 330 /// OpLine in the block must be before its merge instruction". 331 bool lastProcessedWasMergeInst = false; 332 333 /// The <id> of the OpString instruction, which specifies a file name, for 334 /// use by other debug instructions. 335 uint32_t fileID = 0; 336 337 /// The next available result <id>. 338 uint32_t nextID = 1; 339 340 // The following are for different SPIR-V instruction sections. They follow 341 // the logical layout of a SPIR-V module. 342 343 SmallVector<uint32_t, 4> capabilities; 344 SmallVector<uint32_t, 0> extensions; 345 SmallVector<uint32_t, 0> extendedSets; 346 SmallVector<uint32_t, 3> memoryModel; 347 SmallVector<uint32_t, 0> entryPoints; 348 SmallVector<uint32_t, 4> executionModes; 349 SmallVector<uint32_t, 0> debug; 350 SmallVector<uint32_t, 0> names; 351 SmallVector<uint32_t, 0> decorations; 352 SmallVector<uint32_t, 0> typesGlobalValues; 353 SmallVector<uint32_t, 0> functions; 354 355 /// Recursive struct references are serialized as OpTypePointer instructions 356 /// to the recursive struct type. However, the OpTypePointer instruction 357 /// cannot be emitted before the recursive struct's OpTypeStruct. 358 /// RecursiveStructPointerInfo stores the data needed to emit such 359 /// OpTypePointer instructions after forward references to such types. 360 struct RecursiveStructPointerInfo { 361 uint32_t pointerTypeID; 362 spirv::StorageClass storageClass; 363 }; 364 365 // Maps spirv::StructType to its recursive reference member info. 366 DenseMap<Type, SmallVector<RecursiveStructPointerInfo, 0>> 367 recursiveStructInfos; 368 369 /// `functionHeader` contains all the instructions that must be in the first 370 /// block in the function, and `functionBody` contains the rest. After 371 /// processing FuncOp, the encoded instructions of a function are appended to 372 /// `functions`. An example of instructions in `functionHeader` in order: 373 /// OpFunction ... 374 /// OpFunctionParameter ... 375 /// OpFunctionParameter ... 376 /// OpLabel ... 377 /// OpVariable ... 378 /// OpVariable ... 379 SmallVector<uint32_t, 0> functionHeader; 380 SmallVector<uint32_t, 0> functionBody; 381 382 /// Map from type used in SPIR-V module to their <id>s. 383 DenseMap<Type, uint32_t> typeIDMap; 384 385 /// Map from constant values to their <id>s. 386 DenseMap<Attribute, uint32_t> constIDMap; 387 388 /// Map from specialization constant names to their <id>s. 389 llvm::StringMap<uint32_t> specConstIDMap; 390 391 /// Map from GlobalVariableOps name to <id>s. 392 llvm::StringMap<uint32_t> globalVarIDMap; 393 394 /// Map from FuncOps name to <id>s. 395 llvm::StringMap<uint32_t> funcIDMap; 396 397 /// Map from blocks to their <id>s. 398 DenseMap<Block *, uint32_t> blockIDMap; 399 400 /// Map from the Type to the <id> that represents undef value of that type. 401 DenseMap<Type, uint32_t> undefValIDMap; 402 403 /// Map from results of normal operations to their <id>s. 404 DenseMap<Value, uint32_t> valueIDMap; 405 406 /// Map from extended instruction set name to <id>s. 407 llvm::StringMap<uint32_t> extendedInstSetIDMap; 408 409 /// Map from values used in OpPhi instructions to their offset in the 410 /// `functions` section. 411 /// 412 /// When processing a block with arguments, we need to emit OpPhi 413 /// instructions to record the predecessor block <id>s and the values they 414 /// send to the block in question. But it's not guaranteed all values are 415 /// visited and thus assigned result <id>s. So we need this list to capture 416 /// the offsets into `functions` where a value is used so that we can fix it 417 /// up later after processing all the blocks in a function. 418 /// 419 /// More concretely, say if we are visiting the following blocks: 420 /// 421 /// ```mlir 422 /// ^phi(%arg0: i32): 423 /// ... 424 /// ^parent1: 425 /// ... 426 /// spv.Branch ^phi(%val0: i32) 427 /// ^parent2: 428 /// ... 429 /// spv.Branch ^phi(%val1: i32) 430 /// ``` 431 /// 432 /// When we are serializing the `^phi` block, we need to emit at the beginning 433 /// of the block OpPhi instructions which has the following parameters: 434 /// 435 /// OpPhi id-for-i32 id-for-%arg0 id-for-%val0 id-for-^parent1 436 /// id-for-%val1 id-for-^parent2 437 /// 438 /// But we don't know the <id> for %val0 and %val1 yet. One way is to visit 439 /// all the blocks twice and use the first visit to assign an <id> to each 440 /// value. But it's paying the overheads just for OpPhi emission. Instead, 441 /// we still visit the blocks once for emission. When we emit the OpPhi 442 /// instructions, we use 0 as a placeholder for the <id>s for %val0 and %val1. 443 /// At the same time, we record their offsets in the emitted binary (which is 444 /// placed inside `functions`) here. And then after emitting all blocks, we 445 /// replace the dummy <id> 0 with the real result <id> by overwriting 446 /// `functions[offset]`. 447 DenseMap<Value, SmallVector<size_t, 1>> deferredPhiValues; 448 }; 449 } // namespace spirv 450 } // namespace mlir 451 452 #endif // MLIR_LIB_TARGET_SPIRV_SERIALIZATION_SERIALIZER_H 453