1 //===- SerializeOps.cpp - MLIR SPIR-V Serialization (Ops) -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the serialization methods for MLIR SPIR-V module ops.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "Serializer.h"
14 
15 #include "mlir/Dialect/SPIRV/IR/SPIRVAttributes.h"
16 #include "mlir/IR/RegionGraphTraits.h"
17 #include "mlir/Support/LogicalResult.h"
18 #include "mlir/Target/SPIRV/SPIRVBinaryUtils.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/Support/Debug.h"
21 
22 #define DEBUG_TYPE "spirv-serialization"
23 
24 using namespace mlir;
25 
26 /// A pre-order depth-first visitor function for processing basic blocks.
27 ///
28 /// Visits the basic blocks starting from the given `headerBlock` in pre-order
29 /// depth-first manner and calls `blockHandler` on each block. Skips handling
30 /// blocks in the `skipBlocks` list. If `skipHeader` is true, `blockHandler`
31 /// will not be invoked in `headerBlock` but still handles all `headerBlock`'s
32 /// successors.
33 ///
34 /// SPIR-V spec "2.16.1. Universal Validation Rules" requires that "the order
35 /// of blocks in a function must satisfy the rule that blocks appear before
36 /// all blocks they dominate." This can be achieved by a pre-order CFG
37 /// traversal algorithm. To make the serialization output more logical and
38 /// readable to human, we perform depth-first CFG traversal and delay the
39 /// serialization of the merge block and the continue block, if exists, until
40 /// after all other blocks have been processed.
41 static LogicalResult
42 visitInPrettyBlockOrder(Block *headerBlock,
43                         function_ref<LogicalResult(Block *)> blockHandler,
44                         bool skipHeader = false, BlockRange skipBlocks = {}) {
45   llvm::df_iterator_default_set<Block *, 4> doneBlocks;
46   doneBlocks.insert(skipBlocks.begin(), skipBlocks.end());
47 
48   for (Block *block : llvm::depth_first_ext(headerBlock, doneBlocks)) {
49     if (skipHeader && block == headerBlock)
50       continue;
51     if (failed(blockHandler(block)))
52       return failure();
53   }
54   return success();
55 }
56 
57 namespace mlir {
58 namespace spirv {
59 LogicalResult Serializer::processConstantOp(spirv::ConstantOp op) {
60   if (auto resultID = prepareConstant(op.getLoc(), op.getType(), op.value())) {
61     valueIDMap[op.getResult()] = resultID;
62     return success();
63   }
64   return failure();
65 }
66 
67 LogicalResult Serializer::processSpecConstantOp(spirv::SpecConstantOp op) {
68   if (auto resultID = prepareConstantScalar(op.getLoc(), op.default_value(),
69                                             /*isSpec=*/true)) {
70     // Emit the OpDecorate instruction for SpecId.
71     if (auto specID = op->getAttrOfType<IntegerAttr>("spec_id")) {
72       auto val = static_cast<uint32_t>(specID.getInt());
73       (void)emitDecoration(resultID, spirv::Decoration::SpecId, {val});
74     }
75 
76     specConstIDMap[op.sym_name()] = resultID;
77     return processName(resultID, op.sym_name());
78   }
79   return failure();
80 }
81 
82 LogicalResult
83 Serializer::processSpecConstantCompositeOp(spirv::SpecConstantCompositeOp op) {
84   uint32_t typeID = 0;
85   if (failed(processType(op.getLoc(), op.type(), typeID))) {
86     return failure();
87   }
88 
89   auto resultID = getNextID();
90 
91   SmallVector<uint32_t, 8> operands;
92   operands.push_back(typeID);
93   operands.push_back(resultID);
94 
95   auto constituents = op.constituents();
96 
97   for (auto index : llvm::seq<uint32_t>(0, constituents.size())) {
98     auto constituent = constituents[index].dyn_cast<FlatSymbolRefAttr>();
99 
100     auto constituentName = constituent.getValue();
101     auto constituentID = getSpecConstID(constituentName);
102 
103     if (!constituentID) {
104       return op.emitError("unknown result <id> for specialization constant ")
105              << constituentName;
106     }
107 
108     operands.push_back(constituentID);
109   }
110 
111   (void)encodeInstructionInto(typesGlobalValues,
112                               spirv::Opcode::OpSpecConstantComposite, operands);
113   specConstIDMap[op.sym_name()] = resultID;
114 
115   return processName(resultID, op.sym_name());
116 }
117 
118 LogicalResult
119 Serializer::processSpecConstantOperationOp(spirv::SpecConstantOperationOp op) {
120   uint32_t typeID = 0;
121   if (failed(processType(op.getLoc(), op.getType(), typeID))) {
122     return failure();
123   }
124 
125   auto resultID = getNextID();
126 
127   SmallVector<uint32_t, 8> operands;
128   operands.push_back(typeID);
129   operands.push_back(resultID);
130 
131   Block &block = op.getRegion().getBlocks().front();
132   Operation &enclosedOp = block.getOperations().front();
133 
134   std::string enclosedOpName;
135   llvm::raw_string_ostream rss(enclosedOpName);
136   rss << "Op" << enclosedOp.getName().stripDialect();
137   auto enclosedOpcode = spirv::symbolizeOpcode(rss.str());
138 
139   if (!enclosedOpcode) {
140     op.emitError("Couldn't find op code for op ")
141         << enclosedOp.getName().getStringRef();
142     return failure();
143   }
144 
145   operands.push_back(static_cast<uint32_t>(enclosedOpcode.getValue()));
146 
147   // Append operands to the enclosed op to the list of operands.
148   for (Value operand : enclosedOp.getOperands()) {
149     uint32_t id = getValueID(operand);
150     assert(id && "use before def!");
151     operands.push_back(id);
152   }
153 
154   (void)encodeInstructionInto(typesGlobalValues,
155                               spirv::Opcode::OpSpecConstantOp, operands);
156   valueIDMap[op.getResult()] = resultID;
157 
158   return success();
159 }
160 
161 LogicalResult Serializer::processUndefOp(spirv::UndefOp op) {
162   auto undefType = op.getType();
163   auto &id = undefValIDMap[undefType];
164   if (!id) {
165     id = getNextID();
166     uint32_t typeID = 0;
167     if (failed(processType(op.getLoc(), undefType, typeID)) ||
168         failed(encodeInstructionInto(typesGlobalValues, spirv::Opcode::OpUndef,
169                                      {typeID, id}))) {
170       return failure();
171     }
172   }
173   valueIDMap[op.getResult()] = id;
174   return success();
175 }
176 
177 LogicalResult Serializer::processFuncOp(spirv::FuncOp op) {
178   LLVM_DEBUG(llvm::dbgs() << "-- start function '" << op.getName() << "' --\n");
179   assert(functionHeader.empty() && functionBody.empty());
180 
181   uint32_t fnTypeID = 0;
182   // Generate type of the function.
183   (void)processType(op.getLoc(), op.getType(), fnTypeID);
184 
185   // Add the function definition.
186   SmallVector<uint32_t, 4> operands;
187   uint32_t resTypeID = 0;
188   auto resultTypes = op.getType().getResults();
189   if (resultTypes.size() > 1) {
190     return op.emitError("cannot serialize function with multiple return types");
191   }
192   if (failed(processType(op.getLoc(),
193                          (resultTypes.empty() ? getVoidType() : resultTypes[0]),
194                          resTypeID))) {
195     return failure();
196   }
197   operands.push_back(resTypeID);
198   auto funcID = getOrCreateFunctionID(op.getName());
199   operands.push_back(funcID);
200   operands.push_back(static_cast<uint32_t>(op.function_control()));
201   operands.push_back(fnTypeID);
202   (void)encodeInstructionInto(functionHeader, spirv::Opcode::OpFunction,
203                               operands);
204 
205   // Add function name.
206   if (failed(processName(funcID, op.getName()))) {
207     return failure();
208   }
209 
210   // Declare the parameters.
211   for (auto arg : op.getArguments()) {
212     uint32_t argTypeID = 0;
213     if (failed(processType(op.getLoc(), arg.getType(), argTypeID))) {
214       return failure();
215     }
216     auto argValueID = getNextID();
217     valueIDMap[arg] = argValueID;
218     (void)encodeInstructionInto(functionHeader,
219                                 spirv::Opcode::OpFunctionParameter,
220                                 {argTypeID, argValueID});
221   }
222 
223   // Process the body.
224   if (op.isExternal()) {
225     return op.emitError("external function is unhandled");
226   }
227 
228   // Some instructions (e.g., OpVariable) in a function must be in the first
229   // block in the function. These instructions will be put in functionHeader.
230   // Thus, we put the label in functionHeader first, and omit it from the first
231   // block.
232   (void)encodeInstructionInto(functionHeader, spirv::Opcode::OpLabel,
233                               {getOrCreateBlockID(&op.front())});
234   (void)processBlock(&op.front(), /*omitLabel=*/true);
235   if (failed(visitInPrettyBlockOrder(
236           &op.front(), [&](Block *block) { return processBlock(block); },
237           /*skipHeader=*/true))) {
238     return failure();
239   }
240 
241   // There might be OpPhi instructions who have value references needing to fix.
242   for (auto deferredValue : deferredPhiValues) {
243     Value value = deferredValue.first;
244     uint32_t id = getValueID(value);
245     LLVM_DEBUG(llvm::dbgs() << "[phi] fix reference of value " << value
246                             << " to id = " << id << '\n');
247     assert(id && "OpPhi references undefined value!");
248     for (size_t offset : deferredValue.second)
249       functionBody[offset] = id;
250   }
251   deferredPhiValues.clear();
252 
253   LLVM_DEBUG(llvm::dbgs() << "-- completed function '" << op.getName()
254                           << "' --\n");
255   // Insert OpFunctionEnd.
256   if (failed(encodeInstructionInto(functionBody, spirv::Opcode::OpFunctionEnd,
257                                    {}))) {
258     return failure();
259   }
260 
261   functions.append(functionHeader.begin(), functionHeader.end());
262   functions.append(functionBody.begin(), functionBody.end());
263   functionHeader.clear();
264   functionBody.clear();
265 
266   return success();
267 }
268 
269 LogicalResult Serializer::processVariableOp(spirv::VariableOp op) {
270   SmallVector<uint32_t, 4> operands;
271   SmallVector<StringRef, 2> elidedAttrs;
272   uint32_t resultID = 0;
273   uint32_t resultTypeID = 0;
274   if (failed(processType(op.getLoc(), op.getType(), resultTypeID))) {
275     return failure();
276   }
277   operands.push_back(resultTypeID);
278   resultID = getNextID();
279   valueIDMap[op.getResult()] = resultID;
280   operands.push_back(resultID);
281   auto attr = op->getAttr(spirv::attributeName<spirv::StorageClass>());
282   if (attr) {
283     operands.push_back(static_cast<uint32_t>(
284         attr.cast<IntegerAttr>().getValue().getZExtValue()));
285   }
286   elidedAttrs.push_back(spirv::attributeName<spirv::StorageClass>());
287   for (auto arg : op.getODSOperands(0)) {
288     auto argID = getValueID(arg);
289     if (!argID) {
290       return emitError(op.getLoc(), "operand 0 has a use before def");
291     }
292     operands.push_back(argID);
293   }
294   (void)emitDebugLine(functionHeader, op.getLoc());
295   (void)encodeInstructionInto(functionHeader, spirv::Opcode::OpVariable,
296                               operands);
297   for (auto attr : op->getAttrs()) {
298     if (llvm::any_of(elidedAttrs, [&](StringRef elided) {
299           return attr.getName() == elided;
300         })) {
301       continue;
302     }
303     if (failed(processDecoration(op.getLoc(), resultID, attr))) {
304       return failure();
305     }
306   }
307   return success();
308 }
309 
310 LogicalResult
311 Serializer::processGlobalVariableOp(spirv::GlobalVariableOp varOp) {
312   // Get TypeID.
313   uint32_t resultTypeID = 0;
314   SmallVector<StringRef, 4> elidedAttrs;
315   if (failed(processType(varOp.getLoc(), varOp.type(), resultTypeID))) {
316     return failure();
317   }
318 
319   elidedAttrs.push_back("type");
320   SmallVector<uint32_t, 4> operands;
321   operands.push_back(resultTypeID);
322   auto resultID = getNextID();
323 
324   // Encode the name.
325   auto varName = varOp.sym_name();
326   elidedAttrs.push_back(SymbolTable::getSymbolAttrName());
327   if (failed(processName(resultID, varName))) {
328     return failure();
329   }
330   globalVarIDMap[varName] = resultID;
331   operands.push_back(resultID);
332 
333   // Encode StorageClass.
334   operands.push_back(static_cast<uint32_t>(varOp.storageClass()));
335 
336   // Encode initialization.
337   if (auto initializer = varOp.initializer()) {
338     auto initializerID = getVariableID(initializer.getValue());
339     if (!initializerID) {
340       return emitError(varOp.getLoc(),
341                        "invalid usage of undefined variable as initializer");
342     }
343     operands.push_back(initializerID);
344     elidedAttrs.push_back("initializer");
345   }
346 
347   (void)emitDebugLine(typesGlobalValues, varOp.getLoc());
348   if (failed(encodeInstructionInto(typesGlobalValues, spirv::Opcode::OpVariable,
349                                    operands))) {
350     elidedAttrs.push_back("initializer");
351     return failure();
352   }
353 
354   // Encode decorations.
355   for (auto attr : varOp->getAttrs()) {
356     if (llvm::any_of(elidedAttrs, [&](StringRef elided) {
357           return attr.getName() == elided;
358         })) {
359       continue;
360     }
361     if (failed(processDecoration(varOp.getLoc(), resultID, attr))) {
362       return failure();
363     }
364   }
365   return success();
366 }
367 
368 LogicalResult Serializer::processSelectionOp(spirv::SelectionOp selectionOp) {
369   // Assign <id>s to all blocks so that branches inside the SelectionOp can
370   // resolve properly.
371   auto &body = selectionOp.body();
372   for (Block &block : body)
373     getOrCreateBlockID(&block);
374 
375   auto *headerBlock = selectionOp.getHeaderBlock();
376   auto *mergeBlock = selectionOp.getMergeBlock();
377   auto mergeID = getBlockID(mergeBlock);
378   auto loc = selectionOp.getLoc();
379 
380   // Emit the selection header block, which dominates all other blocks, first.
381   // We need to emit an OpSelectionMerge instruction before the selection header
382   // block's terminator.
383   auto emitSelectionMerge = [&]() {
384     (void)emitDebugLine(functionBody, loc);
385     lastProcessedWasMergeInst = true;
386     (void)encodeInstructionInto(
387         functionBody, spirv::Opcode::OpSelectionMerge,
388         {mergeID, static_cast<uint32_t>(selectionOp.selection_control())});
389   };
390   // For structured selection, we cannot have blocks in the selection construct
391   // branching to the selection header block. Entering the selection (and
392   // reaching the selection header) must be from the block containing the
393   // spv.mlir.selection op. If there are ops ahead of the spv.mlir.selection op
394   // in the block, we can "merge" them into the selection header. So here we
395   // don't need to emit a separate block; just continue with the existing block.
396   if (failed(processBlock(headerBlock, /*omitLabel=*/true, emitSelectionMerge)))
397     return failure();
398 
399   // Process all blocks with a depth-first visitor starting from the header
400   // block. The selection header block and merge block are skipped by this
401   // visitor.
402   if (failed(visitInPrettyBlockOrder(
403           headerBlock, [&](Block *block) { return processBlock(block); },
404           /*skipHeader=*/true, /*skipBlocks=*/{mergeBlock})))
405     return failure();
406 
407   // There is nothing to do for the merge block in the selection, which just
408   // contains a spv.mlir.merge op, itself. But we need to have an OpLabel
409   // instruction to start a new SPIR-V block for ops following this SelectionOp.
410   // The block should use the <id> for the merge block.
411   return encodeInstructionInto(functionBody, spirv::Opcode::OpLabel, {mergeID});
412 }
413 
414 LogicalResult Serializer::processLoopOp(spirv::LoopOp loopOp) {
415   // Assign <id>s to all blocks so that branches inside the LoopOp can resolve
416   // properly. We don't need to assign for the entry block, which is just for
417   // satisfying MLIR region's structural requirement.
418   auto &body = loopOp.body();
419   for (Block &block :
420        llvm::make_range(std::next(body.begin(), 1), body.end())) {
421     getOrCreateBlockID(&block);
422   }
423   auto *headerBlock = loopOp.getHeaderBlock();
424   auto *continueBlock = loopOp.getContinueBlock();
425   auto *mergeBlock = loopOp.getMergeBlock();
426   auto headerID = getBlockID(headerBlock);
427   auto continueID = getBlockID(continueBlock);
428   auto mergeID = getBlockID(mergeBlock);
429   auto loc = loopOp.getLoc();
430 
431   // This LoopOp is in some MLIR block with preceding and following ops. In the
432   // binary format, it should reside in separate SPIR-V blocks from its
433   // preceding and following ops. So we need to emit unconditional branches to
434   // jump to this LoopOp's SPIR-V blocks and jumping back to the normal flow
435   // afterwards.
436   (void)encodeInstructionInto(functionBody, spirv::Opcode::OpBranch,
437                               {headerID});
438 
439   // LoopOp's entry block is just there for satisfying MLIR's structural
440   // requirements so we omit it and start serialization from the loop header
441   // block.
442 
443   // Emit the loop header block, which dominates all other blocks, first. We
444   // need to emit an OpLoopMerge instruction before the loop header block's
445   // terminator.
446   auto emitLoopMerge = [&]() {
447     (void)emitDebugLine(functionBody, loc);
448     lastProcessedWasMergeInst = true;
449     (void)encodeInstructionInto(
450         functionBody, spirv::Opcode::OpLoopMerge,
451         {mergeID, continueID, static_cast<uint32_t>(loopOp.loop_control())});
452   };
453   if (failed(processBlock(headerBlock, /*omitLabel=*/false, emitLoopMerge)))
454     return failure();
455 
456   // Process all blocks with a depth-first visitor starting from the header
457   // block. The loop header block, loop continue block, and loop merge block are
458   // skipped by this visitor and handled later in this function.
459   if (failed(visitInPrettyBlockOrder(
460           headerBlock, [&](Block *block) { return processBlock(block); },
461           /*skipHeader=*/true, /*skipBlocks=*/{continueBlock, mergeBlock})))
462     return failure();
463 
464   // We have handled all other blocks. Now get to the loop continue block.
465   if (failed(processBlock(continueBlock)))
466     return failure();
467 
468   // There is nothing to do for the merge block in the loop, which just contains
469   // a spv.mlir.merge op, itself. But we need to have an OpLabel instruction to
470   // start a new SPIR-V block for ops following this LoopOp. The block should
471   // use the <id> for the merge block.
472   return encodeInstructionInto(functionBody, spirv::Opcode::OpLabel, {mergeID});
473 }
474 
475 LogicalResult Serializer::processBranchConditionalOp(
476     spirv::BranchConditionalOp condBranchOp) {
477   auto conditionID = getValueID(condBranchOp.condition());
478   auto trueLabelID = getOrCreateBlockID(condBranchOp.getTrueBlock());
479   auto falseLabelID = getOrCreateBlockID(condBranchOp.getFalseBlock());
480   SmallVector<uint32_t, 5> arguments{conditionID, trueLabelID, falseLabelID};
481 
482   if (auto weights = condBranchOp.branch_weights()) {
483     for (auto val : weights->getValue())
484       arguments.push_back(val.cast<IntegerAttr>().getInt());
485   }
486 
487   (void)emitDebugLine(functionBody, condBranchOp.getLoc());
488   return encodeInstructionInto(functionBody, spirv::Opcode::OpBranchConditional,
489                                arguments);
490 }
491 
492 LogicalResult Serializer::processBranchOp(spirv::BranchOp branchOp) {
493   (void)emitDebugLine(functionBody, branchOp.getLoc());
494   return encodeInstructionInto(functionBody, spirv::Opcode::OpBranch,
495                                {getOrCreateBlockID(branchOp.getTarget())});
496 }
497 
498 LogicalResult Serializer::processAddressOfOp(spirv::AddressOfOp addressOfOp) {
499   auto varName = addressOfOp.variable();
500   auto variableID = getVariableID(varName);
501   if (!variableID) {
502     return addressOfOp.emitError("unknown result <id> for variable ")
503            << varName;
504   }
505   valueIDMap[addressOfOp.pointer()] = variableID;
506   return success();
507 }
508 
509 LogicalResult
510 Serializer::processReferenceOfOp(spirv::ReferenceOfOp referenceOfOp) {
511   auto constName = referenceOfOp.spec_const();
512   auto constID = getSpecConstID(constName);
513   if (!constID) {
514     return referenceOfOp.emitError(
515                "unknown result <id> for specialization constant ")
516            << constName;
517   }
518   valueIDMap[referenceOfOp.reference()] = constID;
519   return success();
520 }
521 
522 template <>
523 LogicalResult
524 Serializer::processOp<spirv::EntryPointOp>(spirv::EntryPointOp op) {
525   SmallVector<uint32_t, 4> operands;
526   // Add the ExecutionModel.
527   operands.push_back(static_cast<uint32_t>(op.execution_model()));
528   // Add the function <id>.
529   auto funcID = getFunctionID(op.fn());
530   if (!funcID) {
531     return op.emitError("missing <id> for function ")
532            << op.fn()
533            << "; function needs to be defined before spv.EntryPoint is "
534               "serialized";
535   }
536   operands.push_back(funcID);
537   // Add the name of the function.
538   (void)spirv::encodeStringLiteralInto(operands, op.fn());
539 
540   // Add the interface values.
541   if (auto interface = op.interface()) {
542     for (auto var : interface.getValue()) {
543       auto id = getVariableID(var.cast<FlatSymbolRefAttr>().getValue());
544       if (!id) {
545         return op.emitError("referencing undefined global variable."
546                             "spv.EntryPoint is at the end of spv.module. All "
547                             "referenced variables should already be defined");
548       }
549       operands.push_back(id);
550     }
551   }
552   return encodeInstructionInto(entryPoints, spirv::Opcode::OpEntryPoint,
553                                operands);
554 }
555 
556 template <>
557 LogicalResult
558 Serializer::processOp<spirv::ControlBarrierOp>(spirv::ControlBarrierOp op) {
559   StringRef argNames[] = {"execution_scope", "memory_scope",
560                           "memory_semantics"};
561   SmallVector<uint32_t, 3> operands;
562 
563   for (auto argName : argNames) {
564     auto argIntAttr = op->getAttrOfType<IntegerAttr>(argName);
565     auto operand = prepareConstantInt(op.getLoc(), argIntAttr);
566     if (!operand) {
567       return failure();
568     }
569     operands.push_back(operand);
570   }
571 
572   return encodeInstructionInto(functionBody, spirv::Opcode::OpControlBarrier,
573                                operands);
574 }
575 
576 template <>
577 LogicalResult
578 Serializer::processOp<spirv::ExecutionModeOp>(spirv::ExecutionModeOp op) {
579   SmallVector<uint32_t, 4> operands;
580   // Add the function <id>.
581   auto funcID = getFunctionID(op.fn());
582   if (!funcID) {
583     return op.emitError("missing <id> for function ")
584            << op.fn()
585            << "; function needs to be serialized before ExecutionModeOp is "
586               "serialized";
587   }
588   operands.push_back(funcID);
589   // Add the ExecutionMode.
590   operands.push_back(static_cast<uint32_t>(op.execution_mode()));
591 
592   // Serialize values if any.
593   auto values = op.values();
594   if (values) {
595     for (auto &intVal : values.getValue()) {
596       operands.push_back(static_cast<uint32_t>(
597           intVal.cast<IntegerAttr>().getValue().getZExtValue()));
598     }
599   }
600   return encodeInstructionInto(executionModes, spirv::Opcode::OpExecutionMode,
601                                operands);
602 }
603 
604 template <>
605 LogicalResult
606 Serializer::processOp<spirv::MemoryBarrierOp>(spirv::MemoryBarrierOp op) {
607   StringRef argNames[] = {"memory_scope", "memory_semantics"};
608   SmallVector<uint32_t, 2> operands;
609 
610   for (auto argName : argNames) {
611     auto argIntAttr = op->getAttrOfType<IntegerAttr>(argName);
612     auto operand = prepareConstantInt(op.getLoc(), argIntAttr);
613     if (!operand) {
614       return failure();
615     }
616     operands.push_back(operand);
617   }
618 
619   return encodeInstructionInto(functionBody, spirv::Opcode::OpMemoryBarrier,
620                                operands);
621 }
622 
623 template <>
624 LogicalResult
625 Serializer::processOp<spirv::FunctionCallOp>(spirv::FunctionCallOp op) {
626   auto funcName = op.callee();
627   uint32_t resTypeID = 0;
628 
629   Type resultTy = op.getNumResults() ? *op.result_type_begin() : getVoidType();
630   if (failed(processType(op.getLoc(), resultTy, resTypeID)))
631     return failure();
632 
633   auto funcID = getOrCreateFunctionID(funcName);
634   auto funcCallID = getNextID();
635   SmallVector<uint32_t, 8> operands{resTypeID, funcCallID, funcID};
636 
637   for (auto value : op.arguments()) {
638     auto valueID = getValueID(value);
639     assert(valueID && "cannot find a value for spv.FunctionCall");
640     operands.push_back(valueID);
641   }
642 
643   if (!resultTy.isa<NoneType>())
644     valueIDMap[op.getResult(0)] = funcCallID;
645 
646   return encodeInstructionInto(functionBody, spirv::Opcode::OpFunctionCall,
647                                operands);
648 }
649 
650 template <>
651 LogicalResult
652 Serializer::processOp<spirv::CopyMemoryOp>(spirv::CopyMemoryOp op) {
653   SmallVector<uint32_t, 4> operands;
654   SmallVector<StringRef, 2> elidedAttrs;
655 
656   for (Value operand : op->getOperands()) {
657     auto id = getValueID(operand);
658     assert(id && "use before def!");
659     operands.push_back(id);
660   }
661 
662   if (auto attr = op->getAttr("memory_access")) {
663     operands.push_back(static_cast<uint32_t>(
664         attr.cast<IntegerAttr>().getValue().getZExtValue()));
665   }
666 
667   elidedAttrs.push_back("memory_access");
668 
669   if (auto attr = op->getAttr("alignment")) {
670     operands.push_back(static_cast<uint32_t>(
671         attr.cast<IntegerAttr>().getValue().getZExtValue()));
672   }
673 
674   elidedAttrs.push_back("alignment");
675 
676   if (auto attr = op->getAttr("source_memory_access")) {
677     operands.push_back(static_cast<uint32_t>(
678         attr.cast<IntegerAttr>().getValue().getZExtValue()));
679   }
680 
681   elidedAttrs.push_back("source_memory_access");
682 
683   if (auto attr = op->getAttr("source_alignment")) {
684     operands.push_back(static_cast<uint32_t>(
685         attr.cast<IntegerAttr>().getValue().getZExtValue()));
686   }
687 
688   elidedAttrs.push_back("source_alignment");
689   (void)emitDebugLine(functionBody, op.getLoc());
690   (void)encodeInstructionInto(functionBody, spirv::Opcode::OpCopyMemory,
691                               operands);
692 
693   return success();
694 }
695 
696 // Pull in auto-generated Serializer::dispatchToAutogenSerialization() and
697 // various Serializer::processOp<...>() specializations.
698 #define GET_SERIALIZATION_FNS
699 #include "mlir/Dialect/SPIRV/IR/SPIRVSerialization.inc"
700 
701 } // namespace spirv
702 } // namespace mlir
703