1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 19 #include "mlir/IR/Attributes.h" 20 #include "mlir/IR/Module.h" 21 #include "mlir/IR/StandardTypes.h" 22 #include "mlir/Support/LLVM.h" 23 #include "llvm/ADT/TypeSwitch.h" 24 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/IRBuilder.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/Transforms/Utils/Cloning.h" 34 35 using namespace mlir; 36 using namespace mlir::LLVM; 37 using namespace mlir::LLVM::detail; 38 39 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 40 41 /// Builds a constant of a sequential LLVM type `type`, potentially containing 42 /// other sequential types recursively, from the individual constant values 43 /// provided in `constants`. `shape` contains the number of elements in nested 44 /// sequential types. Reports errors at `loc` and returns nullptr on error. 45 static llvm::Constant * 46 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 47 ArrayRef<int64_t> shape, llvm::Type *type, 48 Location loc) { 49 if (shape.empty()) { 50 llvm::Constant *result = constants.front(); 51 constants = constants.drop_front(); 52 return result; 53 } 54 55 llvm::Type *elementType; 56 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 57 elementType = arrayTy->getElementType(); 58 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 59 elementType = vectorTy->getElementType(); 60 } else { 61 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 62 return nullptr; 63 } 64 65 SmallVector<llvm::Constant *, 8> nested; 66 nested.reserve(shape.front()); 67 for (int64_t i = 0; i < shape.front(); ++i) { 68 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 69 elementType, loc)); 70 if (!nested.back()) 71 return nullptr; 72 } 73 74 if (shape.size() == 1 && type->isVectorTy()) 75 return llvm::ConstantVector::get(nested); 76 return llvm::ConstantArray::get( 77 llvm::ArrayType::get(elementType, shape.front()), nested); 78 } 79 80 /// Returns the first non-sequential type nested in sequential types. 81 static llvm::Type *getInnermostElementType(llvm::Type *type) { 82 do { 83 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 84 type = arrayTy->getElementType(); 85 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 86 type = vectorTy->getElementType(); 87 } else { 88 return type; 89 } 90 } while (1); 91 } 92 93 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 94 /// This currently supports integer, floating point, splat and dense element 95 /// attributes and combinations thereof. In case of error, report it to `loc` 96 /// and return nullptr. 97 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 98 Attribute attr, 99 Location loc) { 100 if (!attr) 101 return llvm::UndefValue::get(llvmType); 102 if (llvmType->isStructTy()) { 103 emitError(loc, "struct types are not supported in constants"); 104 return nullptr; 105 } 106 // For integer types, we allow a mismatch in sizes as the index type in 107 // MLIR might have a different size than the index type in the LLVM module. 108 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 109 return llvm::ConstantInt::get( 110 llvmType, 111 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 112 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 113 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 114 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 115 return llvm::ConstantExpr::getBitCast( 116 functionMapping.lookup(funcAttr.getValue()), llvmType); 117 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 118 llvm::Type *elementType; 119 uint64_t numElements; 120 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 121 elementType = arrayTy->getElementType(); 122 numElements = arrayTy->getNumElements(); 123 } else { 124 auto *vectorTy = cast<llvm::FixedVectorType>(llvmType); 125 elementType = vectorTy->getElementType(); 126 numElements = vectorTy->getNumElements(); 127 } 128 // Splat value is a scalar. Extract it only if the element type is not 129 // another sequence type. The recursion terminates because each step removes 130 // one outer sequential type. 131 bool elementTypeSequential = 132 isa<llvm::ArrayType, llvm::VectorType>(elementType); 133 llvm::Constant *child = getLLVMConstant( 134 elementType, 135 elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc); 136 if (!child) 137 return nullptr; 138 if (llvmType->isVectorTy()) 139 return llvm::ConstantVector::getSplat( 140 llvm::ElementCount(numElements, /*Scalable=*/false), child); 141 if (llvmType->isArrayTy()) { 142 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 143 SmallVector<llvm::Constant *, 8> constants(numElements, child); 144 return llvm::ConstantArray::get(arrayType, constants); 145 } 146 } 147 148 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 149 assert(elementsAttr.getType().hasStaticShape()); 150 assert(elementsAttr.getNumElements() != 0 && 151 "unexpected empty elements attribute"); 152 assert(!elementsAttr.getType().getShape().empty() && 153 "unexpected empty elements attribute shape"); 154 155 SmallVector<llvm::Constant *, 8> constants; 156 constants.reserve(elementsAttr.getNumElements()); 157 llvm::Type *innermostType = getInnermostElementType(llvmType); 158 for (auto n : elementsAttr.getValues<Attribute>()) { 159 constants.push_back(getLLVMConstant(innermostType, n, loc)); 160 if (!constants.back()) 161 return nullptr; 162 } 163 ArrayRef<llvm::Constant *> constantsRef = constants; 164 llvm::Constant *result = buildSequentialConstant( 165 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 166 assert(constantsRef.empty() && "did not consume all elemental constants"); 167 return result; 168 } 169 170 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 171 return llvm::ConstantDataArray::get( 172 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 173 stringAttr.getValue().size()}); 174 } 175 emitError(loc, "unsupported constant value"); 176 return nullptr; 177 } 178 179 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 180 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 181 switch (p) { 182 case LLVM::ICmpPredicate::eq: 183 return llvm::CmpInst::Predicate::ICMP_EQ; 184 case LLVM::ICmpPredicate::ne: 185 return llvm::CmpInst::Predicate::ICMP_NE; 186 case LLVM::ICmpPredicate::slt: 187 return llvm::CmpInst::Predicate::ICMP_SLT; 188 case LLVM::ICmpPredicate::sle: 189 return llvm::CmpInst::Predicate::ICMP_SLE; 190 case LLVM::ICmpPredicate::sgt: 191 return llvm::CmpInst::Predicate::ICMP_SGT; 192 case LLVM::ICmpPredicate::sge: 193 return llvm::CmpInst::Predicate::ICMP_SGE; 194 case LLVM::ICmpPredicate::ult: 195 return llvm::CmpInst::Predicate::ICMP_ULT; 196 case LLVM::ICmpPredicate::ule: 197 return llvm::CmpInst::Predicate::ICMP_ULE; 198 case LLVM::ICmpPredicate::ugt: 199 return llvm::CmpInst::Predicate::ICMP_UGT; 200 case LLVM::ICmpPredicate::uge: 201 return llvm::CmpInst::Predicate::ICMP_UGE; 202 } 203 llvm_unreachable("incorrect comparison predicate"); 204 } 205 206 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 207 switch (p) { 208 case LLVM::FCmpPredicate::_false: 209 return llvm::CmpInst::Predicate::FCMP_FALSE; 210 case LLVM::FCmpPredicate::oeq: 211 return llvm::CmpInst::Predicate::FCMP_OEQ; 212 case LLVM::FCmpPredicate::ogt: 213 return llvm::CmpInst::Predicate::FCMP_OGT; 214 case LLVM::FCmpPredicate::oge: 215 return llvm::CmpInst::Predicate::FCMP_OGE; 216 case LLVM::FCmpPredicate::olt: 217 return llvm::CmpInst::Predicate::FCMP_OLT; 218 case LLVM::FCmpPredicate::ole: 219 return llvm::CmpInst::Predicate::FCMP_OLE; 220 case LLVM::FCmpPredicate::one: 221 return llvm::CmpInst::Predicate::FCMP_ONE; 222 case LLVM::FCmpPredicate::ord: 223 return llvm::CmpInst::Predicate::FCMP_ORD; 224 case LLVM::FCmpPredicate::ueq: 225 return llvm::CmpInst::Predicate::FCMP_UEQ; 226 case LLVM::FCmpPredicate::ugt: 227 return llvm::CmpInst::Predicate::FCMP_UGT; 228 case LLVM::FCmpPredicate::uge: 229 return llvm::CmpInst::Predicate::FCMP_UGE; 230 case LLVM::FCmpPredicate::ult: 231 return llvm::CmpInst::Predicate::FCMP_ULT; 232 case LLVM::FCmpPredicate::ule: 233 return llvm::CmpInst::Predicate::FCMP_ULE; 234 case LLVM::FCmpPredicate::une: 235 return llvm::CmpInst::Predicate::FCMP_UNE; 236 case LLVM::FCmpPredicate::uno: 237 return llvm::CmpInst::Predicate::FCMP_UNO; 238 case LLVM::FCmpPredicate::_true: 239 return llvm::CmpInst::Predicate::FCMP_TRUE; 240 } 241 llvm_unreachable("incorrect comparison predicate"); 242 } 243 244 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) { 245 switch (op) { 246 case LLVM::AtomicBinOp::xchg: 247 return llvm::AtomicRMWInst::BinOp::Xchg; 248 case LLVM::AtomicBinOp::add: 249 return llvm::AtomicRMWInst::BinOp::Add; 250 case LLVM::AtomicBinOp::sub: 251 return llvm::AtomicRMWInst::BinOp::Sub; 252 case LLVM::AtomicBinOp::_and: 253 return llvm::AtomicRMWInst::BinOp::And; 254 case LLVM::AtomicBinOp::nand: 255 return llvm::AtomicRMWInst::BinOp::Nand; 256 case LLVM::AtomicBinOp::_or: 257 return llvm::AtomicRMWInst::BinOp::Or; 258 case LLVM::AtomicBinOp::_xor: 259 return llvm::AtomicRMWInst::BinOp::Xor; 260 case LLVM::AtomicBinOp::max: 261 return llvm::AtomicRMWInst::BinOp::Max; 262 case LLVM::AtomicBinOp::min: 263 return llvm::AtomicRMWInst::BinOp::Min; 264 case LLVM::AtomicBinOp::umax: 265 return llvm::AtomicRMWInst::BinOp::UMax; 266 case LLVM::AtomicBinOp::umin: 267 return llvm::AtomicRMWInst::BinOp::UMin; 268 case LLVM::AtomicBinOp::fadd: 269 return llvm::AtomicRMWInst::BinOp::FAdd; 270 case LLVM::AtomicBinOp::fsub: 271 return llvm::AtomicRMWInst::BinOp::FSub; 272 } 273 llvm_unreachable("incorrect atomic binary operator"); 274 } 275 276 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) { 277 switch (ordering) { 278 case LLVM::AtomicOrdering::not_atomic: 279 return llvm::AtomicOrdering::NotAtomic; 280 case LLVM::AtomicOrdering::unordered: 281 return llvm::AtomicOrdering::Unordered; 282 case LLVM::AtomicOrdering::monotonic: 283 return llvm::AtomicOrdering::Monotonic; 284 case LLVM::AtomicOrdering::acquire: 285 return llvm::AtomicOrdering::Acquire; 286 case LLVM::AtomicOrdering::release: 287 return llvm::AtomicOrdering::Release; 288 case LLVM::AtomicOrdering::acq_rel: 289 return llvm::AtomicOrdering::AcquireRelease; 290 case LLVM::AtomicOrdering::seq_cst: 291 return llvm::AtomicOrdering::SequentiallyConsistent; 292 } 293 llvm_unreachable("incorrect atomic ordering"); 294 } 295 296 ModuleTranslation::ModuleTranslation(Operation *module, 297 std::unique_ptr<llvm::Module> llvmModule) 298 : mlirModule(module), llvmModule(std::move(llvmModule)), 299 debugTranslation( 300 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 301 ompDialect( 302 module->getContext()->getRegisteredDialect<omp::OpenMPDialect>()), 303 llvmDialect(module->getContext()->getRegisteredDialect<LLVMDialect>()) { 304 assert(satisfiesLLVMModule(mlirModule) && 305 "mlirModule should honor LLVM's module semantics."); 306 } 307 ModuleTranslation::~ModuleTranslation() {} 308 309 /// Given an OpenMP MLIR operation, create the corresponding LLVM IR 310 /// (including OpenMP runtime calls). 311 LogicalResult 312 ModuleTranslation::convertOmpOperation(Operation &opInst, 313 llvm::IRBuilder<> &builder) { 314 if (!ompBuilder) { 315 ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule); 316 ompBuilder->initialize(); 317 } 318 return llvm::TypeSwitch<Operation *, LogicalResult>(&opInst) 319 .Case([&](omp::BarrierOp) { 320 ompBuilder->CreateBarrier(builder.saveIP(), llvm::omp::OMPD_barrier); 321 return success(); 322 }) 323 .Case([&](omp::TaskwaitOp) { 324 ompBuilder->CreateTaskwait(builder.saveIP()); 325 return success(); 326 }) 327 .Case([&](omp::TaskyieldOp) { 328 ompBuilder->CreateTaskyield(builder.saveIP()); 329 return success(); 330 }) 331 .Case([&](omp::FlushOp) { 332 // No support in Openmp runtime funciton (__kmpc_flush) to accept 333 // the argument list. 334 // OpenMP standard states the following: 335 // "An implementation may implement a flush with a list by ignoring 336 // the list, and treating it the same as a flush without a list." 337 // 338 // The argument list is discarded so that, flush with a list is treated 339 // same as a flush without a list. 340 ompBuilder->CreateFlush(builder.saveIP()); 341 return success(); 342 }) 343 .Default([&](Operation *inst) { 344 return inst->emitError("unsupported OpenMP operation: ") 345 << inst->getName(); 346 }); 347 } 348 349 /// Given a single MLIR operation, create the corresponding LLVM IR operation 350 /// using the `builder`. LLVM IR Builder does not have a generic interface so 351 /// this has to be a long chain of `if`s calling different functions with a 352 /// different number of arguments. 353 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 354 llvm::IRBuilder<> &builder) { 355 auto extractPosition = [](ArrayAttr attr) { 356 SmallVector<unsigned, 4> position; 357 position.reserve(attr.size()); 358 for (Attribute v : attr) 359 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 360 return position; 361 }; 362 363 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 364 365 // Emit function calls. If the "callee" attribute is present, this is a 366 // direct function call and we also need to look up the remapped function 367 // itself. Otherwise, this is an indirect call and the callee is the first 368 // operand, look it up as a normal value. Return the llvm::Value representing 369 // the function result, which may be of llvm::VoidTy type. 370 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 371 auto operands = lookupValues(op.getOperands()); 372 ArrayRef<llvm::Value *> operandsRef(operands); 373 if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) { 374 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 375 operandsRef); 376 } else { 377 auto *calleePtrType = 378 cast<llvm::PointerType>(operandsRef.front()->getType()); 379 auto *calleeType = 380 cast<llvm::FunctionType>(calleePtrType->getElementType()); 381 return builder.CreateCall(calleeType, operandsRef.front(), 382 operandsRef.drop_front()); 383 } 384 }; 385 386 // Emit calls. If the called function has a result, remap the corresponding 387 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 388 if (isa<LLVM::CallOp>(opInst)) { 389 llvm::Value *result = convertCall(opInst); 390 if (opInst.getNumResults() != 0) { 391 valueMapping[opInst.getResult(0)] = result; 392 return success(); 393 } 394 // Check that LLVM call returns void for 0-result functions. 395 return success(result->getType()->isVoidTy()); 396 } 397 398 if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) { 399 auto operands = lookupValues(opInst.getOperands()); 400 ArrayRef<llvm::Value *> operandsRef(operands); 401 if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) { 402 builder.CreateInvoke(functionMapping.lookup(attr.getValue()), 403 blockMapping[invOp.getSuccessor(0)], 404 blockMapping[invOp.getSuccessor(1)], operandsRef); 405 } else { 406 auto *calleePtrType = 407 cast<llvm::PointerType>(operandsRef.front()->getType()); 408 auto *calleeType = 409 cast<llvm::FunctionType>(calleePtrType->getElementType()); 410 builder.CreateInvoke( 411 calleeType, operandsRef.front(), blockMapping[invOp.getSuccessor(0)], 412 blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front()); 413 } 414 return success(); 415 } 416 417 if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) { 418 llvm::Type *ty = lpOp.getType().dyn_cast<LLVMType>().getUnderlyingType(); 419 llvm::LandingPadInst *lpi = 420 builder.CreateLandingPad(ty, lpOp.getNumOperands()); 421 422 // Add clauses 423 for (auto operand : lookupValues(lpOp.getOperands())) { 424 // All operands should be constant - checked by verifier 425 if (auto constOperand = dyn_cast<llvm::Constant>(operand)) 426 lpi->addClause(constOperand); 427 } 428 valueMapping[lpOp.getResult()] = lpi; 429 return success(); 430 } 431 432 // Emit branches. We need to look up the remapped blocks and ignore the block 433 // arguments that were transformed into PHI nodes. 434 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 435 builder.CreateBr(blockMapping[brOp.getSuccessor()]); 436 return success(); 437 } 438 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 439 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 440 blockMapping[condbrOp.getSuccessor(0)], 441 blockMapping[condbrOp.getSuccessor(1)]); 442 return success(); 443 } 444 445 // Emit addressof. We need to look up the global value referenced by the 446 // operation and store it in the MLIR-to-LLVM value mapping. This does not 447 // emit any LLVM instruction. 448 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 449 LLVM::GlobalOp global = addressOfOp.getGlobal(); 450 LLVM::LLVMFuncOp function = addressOfOp.getFunction(); 451 452 // The verifier should not have allowed this. 453 assert((global || function) && 454 "referencing an undefined global or function"); 455 456 valueMapping[addressOfOp.getResult()] = 457 global ? globalsMapping.lookup(global) 458 : functionMapping.lookup(function.getName()); 459 return success(); 460 } 461 462 if (opInst.getDialect() == ompDialect) { 463 return convertOmpOperation(opInst, builder); 464 } 465 466 return opInst.emitError("unsupported or non-LLVM operation: ") 467 << opInst.getName(); 468 } 469 470 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 471 /// to define values corresponding to the MLIR block arguments. These nodes 472 /// are not connected to the source basic blocks, which may not exist yet. 473 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 474 llvm::IRBuilder<> builder(blockMapping[&bb]); 475 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 476 477 // Before traversing operations, make block arguments available through 478 // value remapping and PHI nodes, but do not add incoming edges for the PHI 479 // nodes just yet: those values may be defined by this or following blocks. 480 // This step is omitted if "ignoreArguments" is set. The arguments of the 481 // first block have been already made available through the remapping of 482 // LLVM function arguments. 483 if (!ignoreArguments) { 484 auto predecessors = bb.getPredecessors(); 485 unsigned numPredecessors = 486 std::distance(predecessors.begin(), predecessors.end()); 487 for (auto arg : bb.getArguments()) { 488 auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>(); 489 if (!wrappedType) 490 return emitError(bb.front().getLoc(), 491 "block argument does not have an LLVM type"); 492 llvm::Type *type = wrappedType.getUnderlyingType(); 493 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 494 valueMapping[arg] = phi; 495 } 496 } 497 498 // Traverse operations. 499 for (auto &op : bb) { 500 // Set the current debug location within the builder. 501 builder.SetCurrentDebugLocation( 502 debugTranslation->translateLoc(op.getLoc(), subprogram)); 503 504 if (failed(convertOperation(op, builder))) 505 return failure(); 506 } 507 508 return success(); 509 } 510 511 /// Create named global variables that correspond to llvm.mlir.global 512 /// definitions. 513 LogicalResult ModuleTranslation::convertGlobals() { 514 // Lock access to the llvm context. 515 llvm::sys::SmartScopedLock<true> scopedLock( 516 llvmDialect->getLLVMContextMutex()); 517 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 518 llvm::Type *type = op.getType().getUnderlyingType(); 519 llvm::Constant *cst = llvm::UndefValue::get(type); 520 if (op.getValueOrNull()) { 521 // String attributes are treated separately because they cannot appear as 522 // in-function constants and are thus not supported by getLLVMConstant. 523 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 524 cst = llvm::ConstantDataArray::getString( 525 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 526 type = cst->getType(); 527 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), 528 op.getLoc()))) { 529 return failure(); 530 } 531 } else if (Block *initializer = op.getInitializerBlock()) { 532 llvm::IRBuilder<> builder(llvmModule->getContext()); 533 for (auto &op : initializer->without_terminator()) { 534 if (failed(convertOperation(op, builder)) || 535 !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) 536 return emitError(op.getLoc(), "unemittable constant value"); 537 } 538 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 539 cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0))); 540 } 541 542 auto linkage = convertLinkageToLLVM(op.linkage()); 543 bool anyExternalLinkage = 544 ((linkage == llvm::GlobalVariable::ExternalLinkage && 545 isa<llvm::UndefValue>(cst)) || 546 linkage == llvm::GlobalVariable::ExternalWeakLinkage); 547 auto addrSpace = op.addr_space().getLimitedValue(); 548 auto *var = new llvm::GlobalVariable( 549 *llvmModule, type, op.constant(), linkage, 550 anyExternalLinkage ? nullptr : cst, op.sym_name(), 551 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 552 553 globalsMapping.try_emplace(op, var); 554 } 555 556 return success(); 557 } 558 559 /// Get the SSA value passed to the current block from the terminator operation 560 /// of its predecessor. 561 static Value getPHISourceValue(Block *current, Block *pred, 562 unsigned numArguments, unsigned index) { 563 auto &terminator = *pred->getTerminator(); 564 if (isa<LLVM::BrOp>(terminator)) { 565 return terminator.getOperand(index); 566 } 567 568 // For conditional branches, we need to check if the current block is reached 569 // through the "true" or the "false" branch and take the relevant operands. 570 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 571 assert(condBranchOp && 572 "only branch operations can be terminators of a block that " 573 "has successors"); 574 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 575 "successors with arguments in LLVM conditional branches must be " 576 "different blocks"); 577 578 return condBranchOp.getSuccessor(0) == current 579 ? condBranchOp.trueDestOperands()[index] 580 : condBranchOp.falseDestOperands()[index]; 581 } 582 583 void ModuleTranslation::connectPHINodes(LLVMFuncOp func) { 584 // Skip the first block, it cannot be branched to and its arguments correspond 585 // to the arguments of the LLVM function. 586 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 587 Block *bb = &*it; 588 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 589 auto phis = llvmBB->phis(); 590 auto numArguments = bb->getNumArguments(); 591 assert(numArguments == std::distance(phis.begin(), phis.end())); 592 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 593 auto &phiNode = numberedPhiNode.value(); 594 unsigned index = numberedPhiNode.index(); 595 for (auto *pred : bb->getPredecessors()) { 596 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 597 bb, pred, numArguments, index)), 598 blockMapping.lookup(pred)); 599 } 600 } 601 } 602 } 603 604 // TODO(mlir-team): implement an iterative version 605 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) { 606 blocks.insert(b); 607 for (Block *bb : b->getSuccessors()) { 608 if (blocks.count(bb) == 0) 609 topologicalSortImpl(blocks, bb); 610 } 611 } 612 613 /// Sort function blocks topologically. 614 static llvm::SetVector<Block *> topologicalSort(LLVMFuncOp f) { 615 // For each blocks that has not been visited yet (i.e. that has no 616 // predecessors), add it to the list and traverse its successors in DFS 617 // preorder. 618 llvm::SetVector<Block *> blocks; 619 for (Block &b : f) { 620 if (blocks.count(&b) == 0) 621 topologicalSortImpl(blocks, &b); 622 } 623 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 624 625 return blocks; 626 } 627 628 /// Attempts to add an attribute identified by `key`, optionally with the given 629 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 630 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 631 /// otherwise keep it as a string attribute. Performs additional checks for 632 /// attributes known to have or not have a value in order to avoid assertions 633 /// inside LLVM upon construction. 634 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 635 llvm::Function *llvmFunc, 636 StringRef key, 637 StringRef value = StringRef()) { 638 auto kind = llvm::Attribute::getAttrKindFromName(key); 639 if (kind == llvm::Attribute::None) { 640 llvmFunc->addFnAttr(key, value); 641 return success(); 642 } 643 644 if (llvm::Attribute::doesAttrKindHaveArgument(kind)) { 645 if (value.empty()) 646 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 647 648 int result; 649 if (!value.getAsInteger(/*Radix=*/0, result)) 650 llvmFunc->addFnAttr( 651 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 652 else 653 llvmFunc->addFnAttr(key, value); 654 return success(); 655 } 656 657 if (!value.empty()) 658 return emitError(loc) << "LLVM attribute '" << key 659 << "' does not expect a value, found '" << value 660 << "'"; 661 662 llvmFunc->addFnAttr(kind); 663 return success(); 664 } 665 666 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 667 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 668 /// to be an array attribute containing either string attributes, treated as 669 /// value-less LLVM attributes, or array attributes containing two string 670 /// attributes, with the first string being the name of the corresponding LLVM 671 /// attribute and the second string beings its value. Note that even integer 672 /// attributes are expected to have their values expressed as strings. 673 static LogicalResult 674 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes, 675 llvm::Function *llvmFunc) { 676 if (!attributes) 677 return success(); 678 679 for (Attribute attr : *attributes) { 680 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 681 if (failed( 682 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 683 return failure(); 684 continue; 685 } 686 687 auto arrayAttr = attr.dyn_cast<ArrayAttr>(); 688 if (!arrayAttr || arrayAttr.size() != 2) 689 return emitError(loc) 690 << "expected 'passthrough' to contain string or array attributes"; 691 692 auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>(); 693 auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>(); 694 if (!keyAttr || !valueAttr) 695 return emitError(loc) 696 << "expected arrays within 'passthrough' to contain two strings"; 697 698 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 699 valueAttr.getValue()))) 700 return failure(); 701 } 702 return success(); 703 } 704 705 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 706 // Clear the block and value mappings, they are only relevant within one 707 // function. 708 blockMapping.clear(); 709 valueMapping.clear(); 710 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 711 712 // Translate the debug information for this function. 713 debugTranslation->translate(func, *llvmFunc); 714 715 // Add function arguments to the value remapping table. 716 // If there was noalias info then we decorate each argument accordingly. 717 unsigned int argIdx = 0; 718 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 719 llvm::Argument &llvmArg = std::get<1>(kvp); 720 BlockArgument mlirArg = std::get<0>(kvp); 721 722 if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) { 723 // NB: Attribute already verified to be boolean, so check if we can indeed 724 // attach the attribute to this argument, based on its type. 725 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 726 if (!argTy.getUnderlyingType()->isPointerTy()) 727 return func.emitError( 728 "llvm.noalias attribute attached to LLVM non-pointer argument"); 729 if (attr.getValue()) 730 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 731 } 732 733 if (auto attr = func.getArgAttrOfType<IntegerAttr>(argIdx, "llvm.align")) { 734 // NB: Attribute already verified to be int, so check if we can indeed 735 // attach the attribute to this argument, based on its type. 736 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 737 if (!argTy.getUnderlyingType()->isPointerTy()) 738 return func.emitError( 739 "llvm.align attribute attached to LLVM non-pointer argument"); 740 llvmArg.addAttrs( 741 llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt()))); 742 } 743 744 valueMapping[mlirArg] = &llvmArg; 745 argIdx++; 746 } 747 748 // Check the personality and set it. 749 if (func.personality().hasValue()) { 750 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext()); 751 if (llvm::Constant *pfunc = 752 getLLVMConstant(ty, func.personalityAttr(), func.getLoc())) 753 llvmFunc->setPersonalityFn(pfunc); 754 } 755 756 // First, create all blocks so we can jump to them. 757 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 758 for (auto &bb : func) { 759 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 760 llvmBB->insertInto(llvmFunc); 761 blockMapping[&bb] = llvmBB; 762 } 763 764 // Then, convert blocks one by one in topological order to ensure defs are 765 // converted before uses. 766 auto blocks = topologicalSort(func); 767 for (auto indexedBB : llvm::enumerate(blocks)) { 768 auto *bb = indexedBB.value(); 769 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 770 return failure(); 771 } 772 773 // Finally, after all blocks have been traversed and values mapped, connect 774 // the PHI nodes to the results of preceding blocks. 775 connectPHINodes(func); 776 return success(); 777 } 778 779 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) { 780 for (Operation &o : getModuleBody(m).getOperations()) 781 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp>(&o) && !o.isKnownTerminator()) 782 return o.emitOpError("unsupported module-level operation"); 783 return success(); 784 } 785 786 LogicalResult ModuleTranslation::convertFunctions() { 787 // Lock access to the llvm context. 788 llvm::sys::SmartScopedLock<true> scopedLock( 789 llvmDialect->getLLVMContextMutex()); 790 // Declare all functions first because there may be function calls that form a 791 // call graph with cycles. 792 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 793 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 794 function.getName(), 795 cast<llvm::FunctionType>(function.getType().getUnderlyingType())); 796 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 797 functionMapping[function.getName()] = llvmFunc; 798 799 // Forward the pass-through attributes to LLVM. 800 if (failed(forwardPassthroughAttributes(function.getLoc(), 801 function.passthrough(), llvmFunc))) 802 return failure(); 803 } 804 805 // Convert functions. 806 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 807 // Ignore external functions. 808 if (function.isExternal()) 809 continue; 810 811 if (failed(convertOneFunction(function))) 812 return failure(); 813 } 814 815 return success(); 816 } 817 818 /// A helper to look up remapped operands in the value remapping table.` 819 SmallVector<llvm::Value *, 8> 820 ModuleTranslation::lookupValues(ValueRange values) { 821 SmallVector<llvm::Value *, 8> remapped; 822 remapped.reserve(values.size()); 823 for (Value v : values) { 824 assert(valueMapping.count(v) && "referencing undefined value"); 825 remapped.push_back(valueMapping.lookup(v)); 826 } 827 return remapped; 828 } 829 830 std::unique_ptr<llvm::Module> 831 ModuleTranslation::prepareLLVMModule(Operation *m) { 832 auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>(); 833 assert(dialect && "LLVM dialect must be registered"); 834 // Lock the LLVM context as we might create new types here. 835 llvm::sys::SmartScopedLock<true> scopedLock(dialect->getLLVMContextMutex()); 836 837 auto llvmModule = llvm::CloneModule(dialect->getLLVMModule()); 838 if (!llvmModule) 839 return nullptr; 840 841 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 842 llvm::IRBuilder<> builder(llvmContext); 843 844 // Inject declarations for `malloc` and `free` functions that can be used in 845 // memref allocation/deallocation coming from standard ops lowering. 846 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 847 builder.getInt64Ty()); 848 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 849 builder.getInt8PtrTy()); 850 851 return llvmModule; 852 } 853