1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h" 19 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 20 #include "mlir/IR/Attributes.h" 21 #include "mlir/IR/BuiltinOps.h" 22 #include "mlir/IR/BuiltinTypes.h" 23 #include "mlir/IR/RegionGraphTraits.h" 24 #include "mlir/Support/LLVM.h" 25 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h" 26 #include "mlir/Target/LLVMIR/TypeToLLVM.h" 27 #include "llvm/ADT/TypeSwitch.h" 28 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicsNVPTX.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Verifier.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/Cloning.h" 45 #include "llvm/Transforms/Utils/ModuleUtils.h" 46 47 using namespace mlir; 48 using namespace mlir::LLVM; 49 using namespace mlir::LLVM::detail; 50 51 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 52 53 /// Builds a constant of a sequential LLVM type `type`, potentially containing 54 /// other sequential types recursively, from the individual constant values 55 /// provided in `constants`. `shape` contains the number of elements in nested 56 /// sequential types. Reports errors at `loc` and returns nullptr on error. 57 static llvm::Constant * 58 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 59 ArrayRef<int64_t> shape, llvm::Type *type, 60 Location loc) { 61 if (shape.empty()) { 62 llvm::Constant *result = constants.front(); 63 constants = constants.drop_front(); 64 return result; 65 } 66 67 llvm::Type *elementType; 68 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 69 elementType = arrayTy->getElementType(); 70 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 71 elementType = vectorTy->getElementType(); 72 } else { 73 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 74 return nullptr; 75 } 76 77 SmallVector<llvm::Constant *, 8> nested; 78 nested.reserve(shape.front()); 79 for (int64_t i = 0; i < shape.front(); ++i) { 80 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 81 elementType, loc)); 82 if (!nested.back()) 83 return nullptr; 84 } 85 86 if (shape.size() == 1 && type->isVectorTy()) 87 return llvm::ConstantVector::get(nested); 88 return llvm::ConstantArray::get( 89 llvm::ArrayType::get(elementType, shape.front()), nested); 90 } 91 92 /// Returns the first non-sequential type nested in sequential types. 93 static llvm::Type *getInnermostElementType(llvm::Type *type) { 94 do { 95 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 96 type = arrayTy->getElementType(); 97 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 98 type = vectorTy->getElementType(); 99 } else { 100 return type; 101 } 102 } while (true); 103 } 104 105 /// Convert a dense elements attribute to an LLVM IR constant using its raw data 106 /// storage if possible. This supports elements attributes of tensor or vector 107 /// type and avoids constructing separate objects for individual values of the 108 /// innermost dimension. Constants for other dimensions are still constructed 109 /// recursively. Returns null if constructing from raw data is not supported for 110 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports 111 /// other errors at `loc`. 112 static llvm::Constant * 113 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr, 114 llvm::Type *llvmType, 115 const ModuleTranslation &moduleTranslation) { 116 if (!denseElementsAttr) 117 return nullptr; 118 119 llvm::Type *innermostLLVMType = getInnermostElementType(llvmType); 120 if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType)) 121 return nullptr; 122 123 ShapedType type = denseElementsAttr.getType(); 124 if (type.getNumElements() == 0) 125 return nullptr; 126 127 // Compute the shape of all dimensions but the innermost. Note that the 128 // innermost dimension may be that of the vector element type. 129 bool hasVectorElementType = type.getElementType().isa<VectorType>(); 130 unsigned numAggregates = 131 denseElementsAttr.getNumElements() / 132 (hasVectorElementType ? 1 133 : denseElementsAttr.getType().getShape().back()); 134 ArrayRef<int64_t> outerShape = type.getShape(); 135 if (!hasVectorElementType) 136 outerShape = outerShape.drop_back(); 137 138 // Handle the case of vector splat, LLVM has special support for it. 139 if (denseElementsAttr.isSplat() && 140 (type.isa<VectorType>() || hasVectorElementType)) { 141 llvm::Constant *splatValue = LLVM::detail::getLLVMConstant( 142 innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc, 143 moduleTranslation, /*isTopLevel=*/false); 144 llvm::Constant *splatVector = 145 llvm::ConstantDataVector::getSplat(0, splatValue); 146 SmallVector<llvm::Constant *> constants(numAggregates, splatVector); 147 ArrayRef<llvm::Constant *> constantsRef = constants; 148 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 149 } 150 if (denseElementsAttr.isSplat()) 151 return nullptr; 152 153 // In case of non-splat, create a constructor for the innermost constant from 154 // a piece of raw data. 155 std::function<llvm::Constant *(StringRef)> buildCstData; 156 if (type.isa<TensorType>()) { 157 auto vectorElementType = type.getElementType().dyn_cast<VectorType>(); 158 if (vectorElementType && vectorElementType.getRank() == 1) { 159 buildCstData = [&](StringRef data) { 160 return llvm::ConstantDataVector::getRaw( 161 data, vectorElementType.getShape().back(), innermostLLVMType); 162 }; 163 } else if (!vectorElementType) { 164 buildCstData = [&](StringRef data) { 165 return llvm::ConstantDataArray::getRaw(data, type.getShape().back(), 166 innermostLLVMType); 167 }; 168 } 169 } else if (type.isa<VectorType>()) { 170 buildCstData = [&](StringRef data) { 171 return llvm::ConstantDataVector::getRaw(data, type.getShape().back(), 172 innermostLLVMType); 173 }; 174 } 175 if (!buildCstData) 176 return nullptr; 177 178 // Create innermost constants and defer to the default constant creation 179 // mechanism for other dimensions. 180 SmallVector<llvm::Constant *> constants; 181 unsigned aggregateSize = denseElementsAttr.getType().getShape().back() * 182 (innermostLLVMType->getScalarSizeInBits() / 8); 183 constants.reserve(numAggregates); 184 for (unsigned i = 0; i < numAggregates; ++i) { 185 StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize, 186 aggregateSize); 187 constants.push_back(buildCstData(data)); 188 } 189 190 ArrayRef<llvm::Constant *> constantsRef = constants; 191 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 192 } 193 194 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 195 /// This currently supports integer, floating point, splat and dense element 196 /// attributes and combinations thereof. Also, an array attribute with two 197 /// elements is supported to represent a complex constant. In case of error, 198 /// report it to `loc` and return nullptr. 199 llvm::Constant *mlir::LLVM::detail::getLLVMConstant( 200 llvm::Type *llvmType, Attribute attr, Location loc, 201 const ModuleTranslation &moduleTranslation, bool isTopLevel) { 202 if (!attr) 203 return llvm::UndefValue::get(llvmType); 204 if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) { 205 if (!isTopLevel) { 206 emitError(loc, "nested struct types are not supported in constants"); 207 return nullptr; 208 } 209 auto arrayAttr = attr.cast<ArrayAttr>(); 210 llvm::Type *elementType = structType->getElementType(0); 211 llvm::Constant *real = getLLVMConstant(elementType, arrayAttr[0], loc, 212 moduleTranslation, false); 213 if (!real) 214 return nullptr; 215 llvm::Constant *imag = getLLVMConstant(elementType, arrayAttr[1], loc, 216 moduleTranslation, false); 217 if (!imag) 218 return nullptr; 219 return llvm::ConstantStruct::get(structType, {real, imag}); 220 } 221 // For integer types, we allow a mismatch in sizes as the index type in 222 // MLIR might have a different size than the index type in the LLVM module. 223 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 224 return llvm::ConstantInt::get( 225 llvmType, 226 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 227 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) { 228 if (llvmType != 229 llvm::Type::getFloatingPointTy(llvmType->getContext(), 230 floatAttr.getValue().getSemantics())) { 231 emitError(loc, "FloatAttr does not match expected type of the constant"); 232 return nullptr; 233 } 234 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 235 } 236 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 237 return llvm::ConstantExpr::getBitCast( 238 moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType); 239 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 240 llvm::Type *elementType; 241 uint64_t numElements; 242 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 243 elementType = arrayTy->getElementType(); 244 numElements = arrayTy->getNumElements(); 245 } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) { 246 elementType = fVectorTy->getElementType(); 247 numElements = fVectorTy->getNumElements(); 248 } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) { 249 elementType = sVectorTy->getElementType(); 250 numElements = sVectorTy->getMinNumElements(); 251 } else { 252 llvm_unreachable("unrecognized constant vector type"); 253 } 254 // Splat value is a scalar. Extract it only if the element type is not 255 // another sequence type. The recursion terminates because each step removes 256 // one outer sequential type. 257 bool elementTypeSequential = 258 isa<llvm::ArrayType, llvm::VectorType>(elementType); 259 llvm::Constant *child = getLLVMConstant( 260 elementType, 261 elementTypeSequential ? splatAttr 262 : splatAttr.getSplatValue<Attribute>(), 263 loc, moduleTranslation, false); 264 if (!child) 265 return nullptr; 266 if (llvmType->isVectorTy()) 267 return llvm::ConstantVector::getSplat( 268 llvm::ElementCount::get(numElements, /*Scalable=*/false), child); 269 if (llvmType->isArrayTy()) { 270 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 271 SmallVector<llvm::Constant *, 8> constants(numElements, child); 272 return llvm::ConstantArray::get(arrayType, constants); 273 } 274 } 275 276 // Try using raw elements data if possible. 277 if (llvm::Constant *result = 278 convertDenseElementsAttr(loc, attr.dyn_cast<DenseElementsAttr>(), 279 llvmType, moduleTranslation)) { 280 return result; 281 } 282 283 // Fall back to element-by-element construction otherwise. 284 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 285 assert(elementsAttr.getType().hasStaticShape()); 286 assert(!elementsAttr.getType().getShape().empty() && 287 "unexpected empty elements attribute shape"); 288 289 SmallVector<llvm::Constant *, 8> constants; 290 constants.reserve(elementsAttr.getNumElements()); 291 llvm::Type *innermostType = getInnermostElementType(llvmType); 292 for (auto n : elementsAttr.getValues<Attribute>()) { 293 constants.push_back( 294 getLLVMConstant(innermostType, n, loc, moduleTranslation, false)); 295 if (!constants.back()) 296 return nullptr; 297 } 298 ArrayRef<llvm::Constant *> constantsRef = constants; 299 llvm::Constant *result = buildSequentialConstant( 300 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 301 assert(constantsRef.empty() && "did not consume all elemental constants"); 302 return result; 303 } 304 305 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 306 return llvm::ConstantDataArray::get( 307 moduleTranslation.getLLVMContext(), 308 ArrayRef<char>{stringAttr.getValue().data(), 309 stringAttr.getValue().size()}); 310 } 311 emitError(loc, "unsupported constant value"); 312 return nullptr; 313 } 314 315 ModuleTranslation::ModuleTranslation(Operation *module, 316 std::unique_ptr<llvm::Module> llvmModule) 317 : mlirModule(module), llvmModule(std::move(llvmModule)), 318 debugTranslation( 319 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 320 typeTranslator(this->llvmModule->getContext()), 321 iface(module->getContext()) { 322 assert(satisfiesLLVMModule(mlirModule) && 323 "mlirModule should honor LLVM's module semantics."); 324 } 325 ModuleTranslation::~ModuleTranslation() { 326 if (ompBuilder) 327 ompBuilder->finalize(); 328 } 329 330 void ModuleTranslation::forgetMapping(Region ®ion) { 331 SmallVector<Region *> toProcess; 332 toProcess.push_back(®ion); 333 while (!toProcess.empty()) { 334 Region *current = toProcess.pop_back_val(); 335 for (Block &block : *current) { 336 blockMapping.erase(&block); 337 for (Value arg : block.getArguments()) 338 valueMapping.erase(arg); 339 for (Operation &op : block) { 340 for (Value value : op.getResults()) 341 valueMapping.erase(value); 342 if (op.hasSuccessors()) 343 branchMapping.erase(&op); 344 if (isa<LLVM::GlobalOp>(op)) 345 globalsMapping.erase(&op); 346 accessGroupMetadataMapping.erase(&op); 347 llvm::append_range( 348 toProcess, 349 llvm::map_range(op.getRegions(), [](Region &r) { return &r; })); 350 } 351 } 352 } 353 } 354 355 /// Get the SSA value passed to the current block from the terminator operation 356 /// of its predecessor. 357 static Value getPHISourceValue(Block *current, Block *pred, 358 unsigned numArguments, unsigned index) { 359 Operation &terminator = *pred->getTerminator(); 360 if (isa<LLVM::BrOp>(terminator)) 361 return terminator.getOperand(index); 362 363 SuccessorRange successors = terminator.getSuccessors(); 364 assert(std::adjacent_find(successors.begin(), successors.end()) == 365 successors.end() && 366 "successors with arguments in LLVM branches must be different blocks"); 367 (void)successors; 368 369 // For instructions that branch based on a condition value, we need to take 370 // the operands for the branch that was taken. 371 if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) { 372 // For conditional branches, we take the operands from either the "true" or 373 // the "false" branch. 374 return condBranchOp.getSuccessor(0) == current 375 ? condBranchOp.getTrueDestOperands()[index] 376 : condBranchOp.getFalseDestOperands()[index]; 377 } 378 379 if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) { 380 // For switches, we take the operands from either the default case, or from 381 // the case branch that was taken. 382 if (switchOp.getDefaultDestination() == current) 383 return switchOp.getDefaultOperands()[index]; 384 for (auto i : llvm::enumerate(switchOp.getCaseDestinations())) 385 if (i.value() == current) 386 return switchOp.getCaseOperands(i.index())[index]; 387 } 388 389 llvm_unreachable("only branch or switch operations can be terminators of a " 390 "block that has successors"); 391 } 392 393 /// Connect the PHI nodes to the results of preceding blocks. 394 void mlir::LLVM::detail::connectPHINodes(Region ®ion, 395 const ModuleTranslation &state) { 396 // Skip the first block, it cannot be branched to and its arguments correspond 397 // to the arguments of the LLVM function. 398 for (auto it = std::next(region.begin()), eit = region.end(); it != eit; 399 ++it) { 400 Block *bb = &*it; 401 llvm::BasicBlock *llvmBB = state.lookupBlock(bb); 402 auto phis = llvmBB->phis(); 403 auto numArguments = bb->getNumArguments(); 404 assert(numArguments == std::distance(phis.begin(), phis.end())); 405 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 406 auto &phiNode = numberedPhiNode.value(); 407 unsigned index = numberedPhiNode.index(); 408 for (auto *pred : bb->getPredecessors()) { 409 // Find the LLVM IR block that contains the converted terminator 410 // instruction and use it in the PHI node. Note that this block is not 411 // necessarily the same as state.lookupBlock(pred), some operations 412 // (in particular, OpenMP operations using OpenMPIRBuilder) may have 413 // split the blocks. 414 llvm::Instruction *terminator = 415 state.lookupBranch(pred->getTerminator()); 416 assert(terminator && "missing the mapping for a terminator"); 417 phiNode.addIncoming( 418 state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)), 419 terminator->getParent()); 420 } 421 } 422 } 423 } 424 425 /// Sort function blocks topologically. 426 SetVector<Block *> 427 mlir::LLVM::detail::getTopologicallySortedBlocks(Region ®ion) { 428 // For each block that has not been visited yet (i.e. that has no 429 // predecessors), add it to the list as well as its successors. 430 SetVector<Block *> blocks; 431 for (Block &b : region) { 432 if (blocks.count(&b) == 0) { 433 llvm::ReversePostOrderTraversal<Block *> traversal(&b); 434 blocks.insert(traversal.begin(), traversal.end()); 435 } 436 } 437 assert(blocks.size() == region.getBlocks().size() && 438 "some blocks are not sorted"); 439 440 return blocks; 441 } 442 443 llvm::Value *mlir::LLVM::detail::createIntrinsicCall( 444 llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic, 445 ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) { 446 llvm::Module *module = builder.GetInsertBlock()->getModule(); 447 llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys); 448 return builder.CreateCall(fn, args); 449 } 450 451 /// Given a single MLIR operation, create the corresponding LLVM IR operation 452 /// using the `builder`. 453 LogicalResult 454 ModuleTranslation::convertOperation(Operation &op, 455 llvm::IRBuilderBase &builder) { 456 const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op); 457 if (!opIface) 458 return op.emitError("cannot be converted to LLVM IR: missing " 459 "`LLVMTranslationDialectInterface` registration for " 460 "dialect for op: ") 461 << op.getName(); 462 463 if (failed(opIface->convertOperation(&op, builder, *this))) 464 return op.emitError("LLVM Translation failed for operation: ") 465 << op.getName(); 466 467 return convertDialectAttributes(&op); 468 } 469 470 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 471 /// to define values corresponding to the MLIR block arguments. These nodes 472 /// are not connected to the source basic blocks, which may not exist yet. Uses 473 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have 474 /// been created for `bb` and included in the block mapping. Inserts new 475 /// instructions at the end of the block and leaves `builder` in a state 476 /// suitable for further insertion into the end of the block. 477 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments, 478 llvm::IRBuilderBase &builder) { 479 builder.SetInsertPoint(lookupBlock(&bb)); 480 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 481 482 // Before traversing operations, make block arguments available through 483 // value remapping and PHI nodes, but do not add incoming edges for the PHI 484 // nodes just yet: those values may be defined by this or following blocks. 485 // This step is omitted if "ignoreArguments" is set. The arguments of the 486 // first block have been already made available through the remapping of 487 // LLVM function arguments. 488 if (!ignoreArguments) { 489 auto predecessors = bb.getPredecessors(); 490 unsigned numPredecessors = 491 std::distance(predecessors.begin(), predecessors.end()); 492 for (auto arg : bb.getArguments()) { 493 auto wrappedType = arg.getType(); 494 if (!isCompatibleType(wrappedType)) 495 return emitError(bb.front().getLoc(), 496 "block argument does not have an LLVM type"); 497 llvm::Type *type = convertType(wrappedType); 498 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 499 mapValue(arg, phi); 500 } 501 } 502 503 // Traverse operations. 504 for (auto &op : bb) { 505 // Set the current debug location within the builder. 506 builder.SetCurrentDebugLocation( 507 debugTranslation->translateLoc(op.getLoc(), subprogram)); 508 509 if (failed(convertOperation(op, builder))) 510 return failure(); 511 } 512 513 return success(); 514 } 515 516 /// A helper method to get the single Block in an operation honoring LLVM's 517 /// module requirements. 518 static Block &getModuleBody(Operation *module) { 519 return module->getRegion(0).front(); 520 } 521 522 /// A helper method to decide if a constant must not be set as a global variable 523 /// initializer. For an external linkage variable, the variable with an 524 /// initializer is considered externally visible and defined in this module, the 525 /// variable without an initializer is externally available and is defined 526 /// elsewhere. 527 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage, 528 llvm::Constant *cst) { 529 return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) || 530 linkage == llvm::GlobalVariable::ExternalWeakLinkage; 531 } 532 533 /// Sets the runtime preemption specifier of `gv` to dso_local if 534 /// `dsoLocalRequested` is true, otherwise it is left unchanged. 535 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested, 536 llvm::GlobalValue *gv) { 537 if (dsoLocalRequested) 538 gv->setDSOLocal(true); 539 } 540 541 /// Create named global variables that correspond to llvm.mlir.global 542 /// definitions. Convert llvm.global_ctors and global_dtors ops. 543 LogicalResult ModuleTranslation::convertGlobals() { 544 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 545 llvm::Type *type = convertType(op.getType()); 546 llvm::Constant *cst = nullptr; 547 if (op.getValueOrNull()) { 548 // String attributes are treated separately because they cannot appear as 549 // in-function constants and are thus not supported by getLLVMConstant. 550 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 551 cst = llvm::ConstantDataArray::getString( 552 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 553 type = cst->getType(); 554 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(), 555 *this))) { 556 return failure(); 557 } 558 } 559 560 auto linkage = convertLinkageToLLVM(op.getLinkage()); 561 auto addrSpace = op.getAddrSpace(); 562 563 // LLVM IR requires constant with linkage other than external or weak 564 // external to have initializers. If MLIR does not provide an initializer, 565 // default to undef. 566 bool dropInitializer = shouldDropGlobalInitializer(linkage, cst); 567 if (!dropInitializer && !cst) 568 cst = llvm::UndefValue::get(type); 569 else if (dropInitializer && cst) 570 cst = nullptr; 571 572 auto *var = new llvm::GlobalVariable( 573 *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(), 574 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 575 576 if (op.getUnnamedAddr().hasValue()) 577 var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr())); 578 579 if (op.getSection().hasValue()) 580 var->setSection(*op.getSection()); 581 582 addRuntimePreemptionSpecifier(op.getDsoLocal(), var); 583 584 Optional<uint64_t> alignment = op.getAlignment(); 585 if (alignment.hasValue()) 586 var->setAlignment(llvm::MaybeAlign(alignment.getValue())); 587 588 globalsMapping.try_emplace(op, var); 589 } 590 591 // Convert global variable bodies. This is done after all global variables 592 // have been created in LLVM IR because a global body may refer to another 593 // global or itself. So all global variables need to be mapped first. 594 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 595 if (Block *initializer = op.getInitializerBlock()) { 596 llvm::IRBuilder<> builder(llvmModule->getContext()); 597 for (auto &op : initializer->without_terminator()) { 598 if (failed(convertOperation(op, builder)) || 599 !isa<llvm::Constant>(lookupValue(op.getResult(0)))) 600 return emitError(op.getLoc(), "unemittable constant value"); 601 } 602 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 603 llvm::Constant *cst = 604 cast<llvm::Constant>(lookupValue(ret.getOperand(0))); 605 auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op)); 606 if (!shouldDropGlobalInitializer(global->getLinkage(), cst)) 607 global->setInitializer(cst); 608 } 609 } 610 611 // Convert llvm.mlir.global_ctors and dtors. 612 for (Operation &op : getModuleBody(mlirModule)) { 613 auto ctorOp = dyn_cast<GlobalCtorsOp>(op); 614 auto dtorOp = dyn_cast<GlobalDtorsOp>(op); 615 if (!ctorOp && !dtorOp) 616 continue; 617 auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities()) 618 : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities()); 619 auto appendGlobalFn = 620 ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors; 621 for (auto symbolAndPriority : range) { 622 llvm::Function *f = lookupFunction( 623 std::get<0>(symbolAndPriority).cast<FlatSymbolRefAttr>().getValue()); 624 appendGlobalFn( 625 *llvmModule.get(), f, 626 std::get<1>(symbolAndPriority).cast<IntegerAttr>().getInt(), 627 /*Data=*/nullptr); 628 } 629 } 630 631 return success(); 632 } 633 634 /// Attempts to add an attribute identified by `key`, optionally with the given 635 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 636 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 637 /// otherwise keep it as a string attribute. Performs additional checks for 638 /// attributes known to have or not have a value in order to avoid assertions 639 /// inside LLVM upon construction. 640 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 641 llvm::Function *llvmFunc, 642 StringRef key, 643 StringRef value = StringRef()) { 644 auto kind = llvm::Attribute::getAttrKindFromName(key); 645 if (kind == llvm::Attribute::None) { 646 llvmFunc->addFnAttr(key, value); 647 return success(); 648 } 649 650 if (llvm::Attribute::isIntAttrKind(kind)) { 651 if (value.empty()) 652 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 653 654 int result; 655 if (!value.getAsInteger(/*Radix=*/0, result)) 656 llvmFunc->addFnAttr( 657 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 658 else 659 llvmFunc->addFnAttr(key, value); 660 return success(); 661 } 662 663 if (!value.empty()) 664 return emitError(loc) << "LLVM attribute '" << key 665 << "' does not expect a value, found '" << value 666 << "'"; 667 668 llvmFunc->addFnAttr(kind); 669 return success(); 670 } 671 672 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 673 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 674 /// to be an array attribute containing either string attributes, treated as 675 /// value-less LLVM attributes, or array attributes containing two string 676 /// attributes, with the first string being the name of the corresponding LLVM 677 /// attribute and the second string beings its value. Note that even integer 678 /// attributes are expected to have their values expressed as strings. 679 static LogicalResult 680 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes, 681 llvm::Function *llvmFunc) { 682 if (!attributes) 683 return success(); 684 685 for (Attribute attr : *attributes) { 686 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 687 if (failed( 688 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 689 return failure(); 690 continue; 691 } 692 693 auto arrayAttr = attr.dyn_cast<ArrayAttr>(); 694 if (!arrayAttr || arrayAttr.size() != 2) 695 return emitError(loc) 696 << "expected 'passthrough' to contain string or array attributes"; 697 698 auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>(); 699 auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>(); 700 if (!keyAttr || !valueAttr) 701 return emitError(loc) 702 << "expected arrays within 'passthrough' to contain two strings"; 703 704 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 705 valueAttr.getValue()))) 706 return failure(); 707 } 708 return success(); 709 } 710 711 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 712 // Clear the block, branch value mappings, they are only relevant within one 713 // function. 714 blockMapping.clear(); 715 valueMapping.clear(); 716 branchMapping.clear(); 717 llvm::Function *llvmFunc = lookupFunction(func.getName()); 718 719 // Translate the debug information for this function. 720 debugTranslation->translate(func, *llvmFunc); 721 722 // Add function arguments to the value remapping table. 723 // If there was noalias info then we decorate each argument accordingly. 724 unsigned int argIdx = 0; 725 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 726 llvm::Argument &llvmArg = std::get<1>(kvp); 727 BlockArgument mlirArg = std::get<0>(kvp); 728 729 if (auto attr = func.getArgAttrOfType<UnitAttr>( 730 argIdx, LLVMDialect::getNoAliasAttrName())) { 731 // NB: Attribute already verified to be boolean, so check if we can indeed 732 // attach the attribute to this argument, based on its type. 733 auto argTy = mlirArg.getType(); 734 if (!argTy.isa<LLVM::LLVMPointerType>()) 735 return func.emitError( 736 "llvm.noalias attribute attached to LLVM non-pointer argument"); 737 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 738 } 739 740 if (auto attr = func.getArgAttrOfType<IntegerAttr>( 741 argIdx, LLVMDialect::getAlignAttrName())) { 742 // NB: Attribute already verified to be int, so check if we can indeed 743 // attach the attribute to this argument, based on its type. 744 auto argTy = mlirArg.getType(); 745 if (!argTy.isa<LLVM::LLVMPointerType>()) 746 return func.emitError( 747 "llvm.align attribute attached to LLVM non-pointer argument"); 748 llvmArg.addAttrs( 749 llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt()))); 750 } 751 752 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) { 753 auto argTy = mlirArg.getType(); 754 if (!argTy.isa<LLVM::LLVMPointerType>()) 755 return func.emitError( 756 "llvm.sret attribute attached to LLVM non-pointer argument"); 757 llvmArg.addAttrs(llvm::AttrBuilder().addStructRetAttr( 758 llvmArg.getType()->getPointerElementType())); 759 } 760 761 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) { 762 auto argTy = mlirArg.getType(); 763 if (!argTy.isa<LLVM::LLVMPointerType>()) 764 return func.emitError( 765 "llvm.byval attribute attached to LLVM non-pointer argument"); 766 llvmArg.addAttrs(llvm::AttrBuilder().addByValAttr( 767 llvmArg.getType()->getPointerElementType())); 768 } 769 770 mapValue(mlirArg, &llvmArg); 771 argIdx++; 772 } 773 774 // Check the personality and set it. 775 if (func.getPersonality().hasValue()) { 776 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext()); 777 if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(), 778 func.getLoc(), *this)) 779 llvmFunc->setPersonalityFn(pfunc); 780 } 781 782 // First, create all blocks so we can jump to them. 783 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 784 for (auto &bb : func) { 785 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 786 llvmBB->insertInto(llvmFunc); 787 mapBlock(&bb, llvmBB); 788 } 789 790 // Then, convert blocks one by one in topological order to ensure defs are 791 // converted before uses. 792 auto blocks = detail::getTopologicallySortedBlocks(func.getBody()); 793 for (Block *bb : blocks) { 794 llvm::IRBuilder<> builder(llvmContext); 795 if (failed(convertBlock(*bb, bb->isEntryBlock(), builder))) 796 return failure(); 797 } 798 799 // After all blocks have been traversed and values mapped, connect the PHI 800 // nodes to the results of preceding blocks. 801 detail::connectPHINodes(func.getBody(), *this); 802 803 // Finally, convert dialect attributes attached to the function. 804 return convertDialectAttributes(func); 805 } 806 807 LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) { 808 for (NamedAttribute attribute : op->getDialectAttrs()) 809 if (failed(iface.amendOperation(op, attribute, *this))) 810 return failure(); 811 return success(); 812 } 813 814 LogicalResult ModuleTranslation::convertFunctionSignatures() { 815 // Declare all functions first because there may be function calls that form a 816 // call graph with cycles, or global initializers that reference functions. 817 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 818 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 819 function.getName(), 820 cast<llvm::FunctionType>(convertType(function.getType()))); 821 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 822 llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage())); 823 mapFunction(function.getName(), llvmFunc); 824 addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc); 825 826 // Forward the pass-through attributes to LLVM. 827 if (failed(forwardPassthroughAttributes( 828 function.getLoc(), function.getPassthrough(), llvmFunc))) 829 return failure(); 830 } 831 832 return success(); 833 } 834 835 LogicalResult ModuleTranslation::convertFunctions() { 836 // Convert functions. 837 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 838 // Ignore external functions. 839 if (function.isExternal()) 840 continue; 841 842 if (failed(convertOneFunction(function))) 843 return failure(); 844 } 845 846 return success(); 847 } 848 849 llvm::MDNode * 850 ModuleTranslation::getAccessGroup(Operation &opInst, 851 SymbolRefAttr accessGroupRef) const { 852 auto metadataName = accessGroupRef.getRootReference(); 853 auto accessGroupName = accessGroupRef.getLeafReference(); 854 auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>( 855 opInst.getParentOp(), metadataName); 856 auto *accessGroupOp = 857 SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName); 858 return accessGroupMetadataMapping.lookup(accessGroupOp); 859 } 860 861 LogicalResult ModuleTranslation::createAccessGroupMetadata() { 862 mlirModule->walk([&](LLVM::MetadataOp metadatas) { 863 metadatas.walk([&](LLVM::AccessGroupMetadataOp op) { 864 llvm::LLVMContext &ctx = llvmModule->getContext(); 865 llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {}); 866 accessGroupMetadataMapping.insert({op, accessGroup}); 867 }); 868 }); 869 return success(); 870 } 871 872 void ModuleTranslation::setAccessGroupsMetadata(Operation *op, 873 llvm::Instruction *inst) { 874 auto accessGroups = 875 op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName()); 876 if (accessGroups && !accessGroups.empty()) { 877 llvm::Module *module = inst->getModule(); 878 SmallVector<llvm::Metadata *> metadatas; 879 for (SymbolRefAttr accessGroupRef : 880 accessGroups.getAsRange<SymbolRefAttr>()) 881 metadatas.push_back(getAccessGroup(*op, accessGroupRef)); 882 883 llvm::MDNode *unionMD = nullptr; 884 if (metadatas.size() == 1) 885 unionMD = llvm::cast<llvm::MDNode>(metadatas.front()); 886 else if (metadatas.size() >= 2) 887 unionMD = llvm::MDNode::get(module->getContext(), metadatas); 888 889 inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD); 890 } 891 } 892 893 LogicalResult ModuleTranslation::createAliasScopeMetadata() { 894 mlirModule->walk([&](LLVM::MetadataOp metadatas) { 895 // Create the domains first, so they can be reference below in the scopes. 896 DenseMap<Operation *, llvm::MDNode *> aliasScopeDomainMetadataMapping; 897 metadatas.walk([&](LLVM::AliasScopeDomainMetadataOp op) { 898 llvm::LLVMContext &ctx = llvmModule->getContext(); 899 llvm::SmallVector<llvm::Metadata *, 2> operands; 900 operands.push_back({}); // Placeholder for self-reference 901 if (Optional<StringRef> description = op.getDescription()) 902 operands.push_back(llvm::MDString::get(ctx, description.getValue())); 903 llvm::MDNode *domain = llvm::MDNode::get(ctx, operands); 904 domain->replaceOperandWith(0, domain); // Self-reference for uniqueness 905 aliasScopeDomainMetadataMapping.insert({op, domain}); 906 }); 907 908 // Now create the scopes, referencing the domains created above. 909 metadatas.walk([&](LLVM::AliasScopeMetadataOp op) { 910 llvm::LLVMContext &ctx = llvmModule->getContext(); 911 assert(isa<LLVM::MetadataOp>(op->getParentOp())); 912 auto metadataOp = dyn_cast<LLVM::MetadataOp>(op->getParentOp()); 913 Operation *domainOp = 914 SymbolTable::lookupNearestSymbolFrom(metadataOp, op.getDomainAttr()); 915 llvm::MDNode *domain = aliasScopeDomainMetadataMapping.lookup(domainOp); 916 assert(domain && "Scope's domain should already be valid"); 917 llvm::SmallVector<llvm::Metadata *, 3> operands; 918 operands.push_back({}); // Placeholder for self-reference 919 operands.push_back(domain); 920 if (Optional<StringRef> description = op.getDescription()) 921 operands.push_back(llvm::MDString::get(ctx, description.getValue())); 922 llvm::MDNode *scope = llvm::MDNode::get(ctx, operands); 923 scope->replaceOperandWith(0, scope); // Self-reference for uniqueness 924 aliasScopeMetadataMapping.insert({op, scope}); 925 }); 926 }); 927 return success(); 928 } 929 930 llvm::MDNode * 931 ModuleTranslation::getAliasScope(Operation &opInst, 932 SymbolRefAttr aliasScopeRef) const { 933 StringAttr metadataName = aliasScopeRef.getRootReference(); 934 StringAttr scopeName = aliasScopeRef.getLeafReference(); 935 auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>( 936 opInst.getParentOp(), metadataName); 937 Operation *aliasScopeOp = 938 SymbolTable::lookupNearestSymbolFrom(metadataOp, scopeName); 939 return aliasScopeMetadataMapping.lookup(aliasScopeOp); 940 } 941 942 void ModuleTranslation::setAliasScopeMetadata(Operation *op, 943 llvm::Instruction *inst) { 944 auto populateScopeMetadata = [this, op, inst](StringRef attrName, 945 StringRef llvmMetadataName) { 946 auto scopes = op->getAttrOfType<ArrayAttr>(attrName); 947 if (!scopes || scopes.empty()) 948 return; 949 llvm::Module *module = inst->getModule(); 950 SmallVector<llvm::Metadata *> scopeMDs; 951 for (SymbolRefAttr scopeRef : scopes.getAsRange<SymbolRefAttr>()) 952 scopeMDs.push_back(getAliasScope(*op, scopeRef)); 953 llvm::MDNode *unionMD = llvm::MDNode::get(module->getContext(), scopeMDs); 954 inst->setMetadata(module->getMDKindID(llvmMetadataName), unionMD); 955 }; 956 957 populateScopeMetadata(LLVMDialect::getAliasScopesAttrName(), "alias.scope"); 958 populateScopeMetadata(LLVMDialect::getNoAliasScopesAttrName(), "noalias"); 959 } 960 961 llvm::Type *ModuleTranslation::convertType(Type type) { 962 return typeTranslator.translateType(type); 963 } 964 965 /// A helper to look up remapped operands in the value remapping table. 966 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) { 967 SmallVector<llvm::Value *> remapped; 968 remapped.reserve(values.size()); 969 for (Value v : values) 970 remapped.push_back(lookupValue(v)); 971 return remapped; 972 } 973 974 const llvm::DILocation * 975 ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) { 976 return debugTranslation->translateLoc(loc, scope); 977 } 978 979 llvm::NamedMDNode * 980 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) { 981 return llvmModule->getOrInsertNamedMetadata(name); 982 } 983 984 void ModuleTranslation::StackFrame::anchor() {} 985 986 static std::unique_ptr<llvm::Module> 987 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext, 988 StringRef name) { 989 m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>(); 990 auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext); 991 if (auto dataLayoutAttr = 992 m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) 993 llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue()); 994 if (auto targetTripleAttr = 995 m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName())) 996 llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue()); 997 998 // Inject declarations for `malloc` and `free` functions that can be used in 999 // memref allocation/deallocation coming from standard ops lowering. 1000 llvm::IRBuilder<> builder(llvmContext); 1001 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 1002 builder.getInt64Ty()); 1003 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 1004 builder.getInt8PtrTy()); 1005 1006 return llvmModule; 1007 } 1008 1009 std::unique_ptr<llvm::Module> 1010 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext, 1011 StringRef name) { 1012 if (!satisfiesLLVMModule(module)) 1013 return nullptr; 1014 std::unique_ptr<llvm::Module> llvmModule = 1015 prepareLLVMModule(module, llvmContext, name); 1016 1017 LLVM::ensureDistinctSuccessors(module); 1018 1019 ModuleTranslation translator(module, std::move(llvmModule)); 1020 if (failed(translator.convertFunctionSignatures())) 1021 return nullptr; 1022 if (failed(translator.convertGlobals())) 1023 return nullptr; 1024 if (failed(translator.createAccessGroupMetadata())) 1025 return nullptr; 1026 if (failed(translator.createAliasScopeMetadata())) 1027 return nullptr; 1028 if (failed(translator.convertFunctions())) 1029 return nullptr; 1030 1031 // Convert other top-level operations if possible. 1032 llvm::IRBuilder<> llvmBuilder(llvmContext); 1033 for (Operation &o : getModuleBody(module).getOperations()) { 1034 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp, 1035 LLVM::GlobalDtorsOp, LLVM::MetadataOp>(&o) && 1036 !o.hasTrait<OpTrait::IsTerminator>() && 1037 failed(translator.convertOperation(o, llvmBuilder))) { 1038 return nullptr; 1039 } 1040 } 1041 1042 if (llvm::verifyModule(*translator.llvmModule, &llvm::errs())) 1043 return nullptr; 1044 1045 return std::move(translator.llvmModule); 1046 } 1047