1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 19 #include "mlir/IR/Attributes.h" 20 #include "mlir/IR/Module.h" 21 #include "mlir/IR/StandardTypes.h" 22 #include "mlir/Support/LLVM.h" 23 #include "llvm/ADT/TypeSwitch.h" 24 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Cloning.h" 36 37 using namespace mlir; 38 using namespace mlir::LLVM; 39 using namespace mlir::LLVM::detail; 40 41 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 42 43 /// Builds a constant of a sequential LLVM type `type`, potentially containing 44 /// other sequential types recursively, from the individual constant values 45 /// provided in `constants`. `shape` contains the number of elements in nested 46 /// sequential types. Reports errors at `loc` and returns nullptr on error. 47 static llvm::Constant * 48 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 49 ArrayRef<int64_t> shape, llvm::Type *type, 50 Location loc) { 51 if (shape.empty()) { 52 llvm::Constant *result = constants.front(); 53 constants = constants.drop_front(); 54 return result; 55 } 56 57 llvm::Type *elementType; 58 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 59 elementType = arrayTy->getElementType(); 60 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 61 elementType = vectorTy->getElementType(); 62 } else { 63 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 64 return nullptr; 65 } 66 67 SmallVector<llvm::Constant *, 8> nested; 68 nested.reserve(shape.front()); 69 for (int64_t i = 0; i < shape.front(); ++i) { 70 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 71 elementType, loc)); 72 if (!nested.back()) 73 return nullptr; 74 } 75 76 if (shape.size() == 1 && type->isVectorTy()) 77 return llvm::ConstantVector::get(nested); 78 return llvm::ConstantArray::get( 79 llvm::ArrayType::get(elementType, shape.front()), nested); 80 } 81 82 /// Returns the first non-sequential type nested in sequential types. 83 static llvm::Type *getInnermostElementType(llvm::Type *type) { 84 do { 85 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 86 type = arrayTy->getElementType(); 87 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 88 type = vectorTy->getElementType(); 89 } else { 90 return type; 91 } 92 } while (1); 93 } 94 95 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 96 /// This currently supports integer, floating point, splat and dense element 97 /// attributes and combinations thereof. In case of error, report it to `loc` 98 /// and return nullptr. 99 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 100 Attribute attr, 101 Location loc) { 102 if (!attr) 103 return llvm::UndefValue::get(llvmType); 104 if (llvmType->isStructTy()) { 105 emitError(loc, "struct types are not supported in constants"); 106 return nullptr; 107 } 108 // For integer types, we allow a mismatch in sizes as the index type in 109 // MLIR might have a different size than the index type in the LLVM module. 110 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 111 return llvm::ConstantInt::get( 112 llvmType, 113 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 114 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 115 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 116 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 117 return llvm::ConstantExpr::getBitCast( 118 functionMapping.lookup(funcAttr.getValue()), llvmType); 119 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 120 llvm::Type *elementType; 121 uint64_t numElements; 122 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 123 elementType = arrayTy->getElementType(); 124 numElements = arrayTy->getNumElements(); 125 } else { 126 auto *vectorTy = cast<llvm::FixedVectorType>(llvmType); 127 elementType = vectorTy->getElementType(); 128 numElements = vectorTy->getNumElements(); 129 } 130 // Splat value is a scalar. Extract it only if the element type is not 131 // another sequence type. The recursion terminates because each step removes 132 // one outer sequential type. 133 bool elementTypeSequential = 134 isa<llvm::ArrayType, llvm::VectorType>(elementType); 135 llvm::Constant *child = getLLVMConstant( 136 elementType, 137 elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc); 138 if (!child) 139 return nullptr; 140 if (llvmType->isVectorTy()) 141 return llvm::ConstantVector::getSplat( 142 llvm::ElementCount(numElements, /*Scalable=*/false), child); 143 if (llvmType->isArrayTy()) { 144 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 145 SmallVector<llvm::Constant *, 8> constants(numElements, child); 146 return llvm::ConstantArray::get(arrayType, constants); 147 } 148 } 149 150 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 151 assert(elementsAttr.getType().hasStaticShape()); 152 assert(elementsAttr.getNumElements() != 0 && 153 "unexpected empty elements attribute"); 154 assert(!elementsAttr.getType().getShape().empty() && 155 "unexpected empty elements attribute shape"); 156 157 SmallVector<llvm::Constant *, 8> constants; 158 constants.reserve(elementsAttr.getNumElements()); 159 llvm::Type *innermostType = getInnermostElementType(llvmType); 160 for (auto n : elementsAttr.getValues<Attribute>()) { 161 constants.push_back(getLLVMConstant(innermostType, n, loc)); 162 if (!constants.back()) 163 return nullptr; 164 } 165 ArrayRef<llvm::Constant *> constantsRef = constants; 166 llvm::Constant *result = buildSequentialConstant( 167 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 168 assert(constantsRef.empty() && "did not consume all elemental constants"); 169 return result; 170 } 171 172 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 173 return llvm::ConstantDataArray::get( 174 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 175 stringAttr.getValue().size()}); 176 } 177 emitError(loc, "unsupported constant value"); 178 return nullptr; 179 } 180 181 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 182 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 183 switch (p) { 184 case LLVM::ICmpPredicate::eq: 185 return llvm::CmpInst::Predicate::ICMP_EQ; 186 case LLVM::ICmpPredicate::ne: 187 return llvm::CmpInst::Predicate::ICMP_NE; 188 case LLVM::ICmpPredicate::slt: 189 return llvm::CmpInst::Predicate::ICMP_SLT; 190 case LLVM::ICmpPredicate::sle: 191 return llvm::CmpInst::Predicate::ICMP_SLE; 192 case LLVM::ICmpPredicate::sgt: 193 return llvm::CmpInst::Predicate::ICMP_SGT; 194 case LLVM::ICmpPredicate::sge: 195 return llvm::CmpInst::Predicate::ICMP_SGE; 196 case LLVM::ICmpPredicate::ult: 197 return llvm::CmpInst::Predicate::ICMP_ULT; 198 case LLVM::ICmpPredicate::ule: 199 return llvm::CmpInst::Predicate::ICMP_ULE; 200 case LLVM::ICmpPredicate::ugt: 201 return llvm::CmpInst::Predicate::ICMP_UGT; 202 case LLVM::ICmpPredicate::uge: 203 return llvm::CmpInst::Predicate::ICMP_UGE; 204 } 205 llvm_unreachable("incorrect comparison predicate"); 206 } 207 208 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 209 switch (p) { 210 case LLVM::FCmpPredicate::_false: 211 return llvm::CmpInst::Predicate::FCMP_FALSE; 212 case LLVM::FCmpPredicate::oeq: 213 return llvm::CmpInst::Predicate::FCMP_OEQ; 214 case LLVM::FCmpPredicate::ogt: 215 return llvm::CmpInst::Predicate::FCMP_OGT; 216 case LLVM::FCmpPredicate::oge: 217 return llvm::CmpInst::Predicate::FCMP_OGE; 218 case LLVM::FCmpPredicate::olt: 219 return llvm::CmpInst::Predicate::FCMP_OLT; 220 case LLVM::FCmpPredicate::ole: 221 return llvm::CmpInst::Predicate::FCMP_OLE; 222 case LLVM::FCmpPredicate::one: 223 return llvm::CmpInst::Predicate::FCMP_ONE; 224 case LLVM::FCmpPredicate::ord: 225 return llvm::CmpInst::Predicate::FCMP_ORD; 226 case LLVM::FCmpPredicate::ueq: 227 return llvm::CmpInst::Predicate::FCMP_UEQ; 228 case LLVM::FCmpPredicate::ugt: 229 return llvm::CmpInst::Predicate::FCMP_UGT; 230 case LLVM::FCmpPredicate::uge: 231 return llvm::CmpInst::Predicate::FCMP_UGE; 232 case LLVM::FCmpPredicate::ult: 233 return llvm::CmpInst::Predicate::FCMP_ULT; 234 case LLVM::FCmpPredicate::ule: 235 return llvm::CmpInst::Predicate::FCMP_ULE; 236 case LLVM::FCmpPredicate::une: 237 return llvm::CmpInst::Predicate::FCMP_UNE; 238 case LLVM::FCmpPredicate::uno: 239 return llvm::CmpInst::Predicate::FCMP_UNO; 240 case LLVM::FCmpPredicate::_true: 241 return llvm::CmpInst::Predicate::FCMP_TRUE; 242 } 243 llvm_unreachable("incorrect comparison predicate"); 244 } 245 246 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) { 247 switch (op) { 248 case LLVM::AtomicBinOp::xchg: 249 return llvm::AtomicRMWInst::BinOp::Xchg; 250 case LLVM::AtomicBinOp::add: 251 return llvm::AtomicRMWInst::BinOp::Add; 252 case LLVM::AtomicBinOp::sub: 253 return llvm::AtomicRMWInst::BinOp::Sub; 254 case LLVM::AtomicBinOp::_and: 255 return llvm::AtomicRMWInst::BinOp::And; 256 case LLVM::AtomicBinOp::nand: 257 return llvm::AtomicRMWInst::BinOp::Nand; 258 case LLVM::AtomicBinOp::_or: 259 return llvm::AtomicRMWInst::BinOp::Or; 260 case LLVM::AtomicBinOp::_xor: 261 return llvm::AtomicRMWInst::BinOp::Xor; 262 case LLVM::AtomicBinOp::max: 263 return llvm::AtomicRMWInst::BinOp::Max; 264 case LLVM::AtomicBinOp::min: 265 return llvm::AtomicRMWInst::BinOp::Min; 266 case LLVM::AtomicBinOp::umax: 267 return llvm::AtomicRMWInst::BinOp::UMax; 268 case LLVM::AtomicBinOp::umin: 269 return llvm::AtomicRMWInst::BinOp::UMin; 270 case LLVM::AtomicBinOp::fadd: 271 return llvm::AtomicRMWInst::BinOp::FAdd; 272 case LLVM::AtomicBinOp::fsub: 273 return llvm::AtomicRMWInst::BinOp::FSub; 274 } 275 llvm_unreachable("incorrect atomic binary operator"); 276 } 277 278 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) { 279 switch (ordering) { 280 case LLVM::AtomicOrdering::not_atomic: 281 return llvm::AtomicOrdering::NotAtomic; 282 case LLVM::AtomicOrdering::unordered: 283 return llvm::AtomicOrdering::Unordered; 284 case LLVM::AtomicOrdering::monotonic: 285 return llvm::AtomicOrdering::Monotonic; 286 case LLVM::AtomicOrdering::acquire: 287 return llvm::AtomicOrdering::Acquire; 288 case LLVM::AtomicOrdering::release: 289 return llvm::AtomicOrdering::Release; 290 case LLVM::AtomicOrdering::acq_rel: 291 return llvm::AtomicOrdering::AcquireRelease; 292 case LLVM::AtomicOrdering::seq_cst: 293 return llvm::AtomicOrdering::SequentiallyConsistent; 294 } 295 llvm_unreachable("incorrect atomic ordering"); 296 } 297 298 ModuleTranslation::ModuleTranslation(Operation *module, 299 std::unique_ptr<llvm::Module> llvmModule) 300 : mlirModule(module), llvmModule(std::move(llvmModule)), 301 debugTranslation( 302 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 303 ompDialect( 304 module->getContext()->getRegisteredDialect<omp::OpenMPDialect>()), 305 llvmDialect(module->getContext()->getRegisteredDialect<LLVMDialect>()) { 306 assert(satisfiesLLVMModule(mlirModule) && 307 "mlirModule should honor LLVM's module semantics."); 308 } 309 ModuleTranslation::~ModuleTranslation() { 310 if (ompBuilder) 311 ompBuilder->finalize(); 312 } 313 314 /// Get the SSA value passed to the current block from the terminator operation 315 /// of its predecessor. 316 static Value getPHISourceValue(Block *current, Block *pred, 317 unsigned numArguments, unsigned index) { 318 Operation &terminator = *pred->getTerminator(); 319 if (isa<LLVM::BrOp>(terminator)) 320 return terminator.getOperand(index); 321 322 // For conditional branches, we need to check if the current block is reached 323 // through the "true" or the "false" branch and take the relevant operands. 324 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 325 assert(condBranchOp && 326 "only branch operations can be terminators of a block that " 327 "has successors"); 328 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 329 "successors with arguments in LLVM conditional branches must be " 330 "different blocks"); 331 332 return condBranchOp.getSuccessor(0) == current 333 ? condBranchOp.trueDestOperands()[index] 334 : condBranchOp.falseDestOperands()[index]; 335 } 336 337 /// Connect the PHI nodes to the results of preceding blocks. 338 template <typename T> 339 static void 340 connectPHINodes(T &func, const DenseMap<Value, llvm::Value *> &valueMapping, 341 const DenseMap<Block *, llvm::BasicBlock *> &blockMapping) { 342 // Skip the first block, it cannot be branched to and its arguments correspond 343 // to the arguments of the LLVM function. 344 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 345 Block *bb = &*it; 346 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 347 auto phis = llvmBB->phis(); 348 auto numArguments = bb->getNumArguments(); 349 assert(numArguments == std::distance(phis.begin(), phis.end())); 350 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 351 auto &phiNode = numberedPhiNode.value(); 352 unsigned index = numberedPhiNode.index(); 353 for (auto *pred : bb->getPredecessors()) { 354 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 355 bb, pred, numArguments, index)), 356 blockMapping.lookup(pred)); 357 } 358 } 359 } 360 } 361 362 // TODO: implement an iterative version 363 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) { 364 blocks.insert(b); 365 for (Block *bb : b->getSuccessors()) { 366 if (blocks.count(bb) == 0) 367 topologicalSortImpl(blocks, bb); 368 } 369 } 370 371 /// Sort function blocks topologically. 372 template <typename T> 373 static llvm::SetVector<Block *> topologicalSort(T &f) { 374 // For each blocks that has not been visited yet (i.e. that has no 375 // predecessors), add it to the list and traverse its successors in DFS 376 // preorder. 377 llvm::SetVector<Block *> blocks; 378 for (Block &b : f) { 379 if (blocks.count(&b) == 0) 380 topologicalSortImpl(blocks, &b); 381 } 382 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 383 384 return blocks; 385 } 386 387 /// Convert the OpenMP parallel Operation to LLVM IR. 388 LogicalResult 389 ModuleTranslation::convertOmpParallel(Operation &opInst, 390 llvm::IRBuilder<> &builder) { 391 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 392 393 auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP, 394 llvm::BasicBlock &continuationIP) { 395 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 396 397 llvm::BasicBlock *codeGenIPBB = codeGenIP.getBlock(); 398 llvm::Instruction *codeGenIPBBTI = codeGenIPBB->getTerminator(); 399 400 builder.SetInsertPoint(codeGenIPBB); 401 402 for (auto ®ion : opInst.getRegions()) { 403 for (auto &bb : region) { 404 auto *llvmBB = llvm::BasicBlock::Create( 405 llvmContext, "omp.par.region", codeGenIP.getBlock()->getParent()); 406 blockMapping[&bb] = llvmBB; 407 } 408 409 // Then, convert blocks one by one in topological order to ensure 410 // defs are converted before uses. 411 llvm::SetVector<Block *> blocks = topologicalSort(region); 412 for (auto indexedBB : llvm::enumerate(blocks)) { 413 Block *bb = indexedBB.value(); 414 llvm::BasicBlock *curLLVMBB = blockMapping[bb]; 415 if (bb->isEntryBlock()) 416 codeGenIPBBTI->setSuccessor(0, curLLVMBB); 417 418 // TODO: Error not returned up the hierarchy 419 if (failed( 420 convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 421 return; 422 423 // If this block has the terminator then add a jump to 424 // continuation bb 425 for (auto &op : *bb) { 426 if (isa<omp::TerminatorOp>(op)) { 427 builder.SetInsertPoint(curLLVMBB); 428 builder.CreateBr(&continuationIP); 429 } 430 } 431 } 432 // Finally, after all blocks have been traversed and values mapped, 433 // connect the PHI nodes to the results of preceding blocks. 434 connectPHINodes(region, valueMapping, blockMapping); 435 } 436 }; 437 438 // TODO: Perform appropriate actions according to the data-sharing 439 // attribute (shared, private, firstprivate, ...) of variables. 440 // Currently defaults to shared. 441 auto privCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP, 442 llvm::Value &vPtr, 443 llvm::Value *&replacementValue) -> InsertPointTy { 444 replacementValue = &vPtr; 445 446 return codeGenIP; 447 }; 448 449 // TODO: Perform finalization actions for variables. This has to be 450 // called for variables which have destructors/finalizers. 451 auto finiCB = [&](InsertPointTy codeGenIP) {}; 452 453 // TODO: The various operands of parallel operation are not handled. 454 // Parallel operation is created with some default options for now. 455 llvm::Value *ifCond = nullptr; 456 llvm::Value *numThreads = nullptr; 457 bool isCancellable = false; 458 builder.restoreIP(ompBuilder->CreateParallel( 459 builder, bodyGenCB, privCB, finiCB, ifCond, numThreads, 460 llvm::omp::OMP_PROC_BIND_default, isCancellable)); 461 return success(); 462 } 463 464 /// Given an OpenMP MLIR operation, create the corresponding LLVM IR 465 /// (including OpenMP runtime calls). 466 LogicalResult 467 ModuleTranslation::convertOmpOperation(Operation &opInst, 468 llvm::IRBuilder<> &builder) { 469 if (!ompBuilder) { 470 ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule); 471 ompBuilder->initialize(); 472 } 473 return llvm::TypeSwitch<Operation *, LogicalResult>(&opInst) 474 .Case([&](omp::BarrierOp) { 475 ompBuilder->CreateBarrier(builder.saveIP(), llvm::omp::OMPD_barrier); 476 return success(); 477 }) 478 .Case([&](omp::TaskwaitOp) { 479 ompBuilder->CreateTaskwait(builder.saveIP()); 480 return success(); 481 }) 482 .Case([&](omp::TaskyieldOp) { 483 ompBuilder->CreateTaskyield(builder.saveIP()); 484 return success(); 485 }) 486 .Case([&](omp::FlushOp) { 487 // No support in Openmp runtime funciton (__kmpc_flush) to accept 488 // the argument list. 489 // OpenMP standard states the following: 490 // "An implementation may implement a flush with a list by ignoring 491 // the list, and treating it the same as a flush without a list." 492 // 493 // The argument list is discarded so that, flush with a list is treated 494 // same as a flush without a list. 495 ompBuilder->CreateFlush(builder.saveIP()); 496 return success(); 497 }) 498 .Case([&](omp::TerminatorOp) { return success(); }) 499 .Case( 500 [&](omp::ParallelOp) { return convertOmpParallel(opInst, builder); }) 501 .Default([&](Operation *inst) { 502 return inst->emitError("unsupported OpenMP operation: ") 503 << inst->getName(); 504 }); 505 } 506 507 /// Given a single MLIR operation, create the corresponding LLVM IR operation 508 /// using the `builder`. LLVM IR Builder does not have a generic interface so 509 /// this has to be a long chain of `if`s calling different functions with a 510 /// different number of arguments. 511 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 512 llvm::IRBuilder<> &builder) { 513 auto extractPosition = [](ArrayAttr attr) { 514 SmallVector<unsigned, 4> position; 515 position.reserve(attr.size()); 516 for (Attribute v : attr) 517 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 518 return position; 519 }; 520 521 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 522 523 // Emit function calls. If the "callee" attribute is present, this is a 524 // direct function call and we also need to look up the remapped function 525 // itself. Otherwise, this is an indirect call and the callee is the first 526 // operand, look it up as a normal value. Return the llvm::Value representing 527 // the function result, which may be of llvm::VoidTy type. 528 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 529 auto operands = lookupValues(op.getOperands()); 530 ArrayRef<llvm::Value *> operandsRef(operands); 531 if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) { 532 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 533 operandsRef); 534 } else { 535 auto *calleePtrType = 536 cast<llvm::PointerType>(operandsRef.front()->getType()); 537 auto *calleeType = 538 cast<llvm::FunctionType>(calleePtrType->getElementType()); 539 return builder.CreateCall(calleeType, operandsRef.front(), 540 operandsRef.drop_front()); 541 } 542 }; 543 544 // Emit calls. If the called function has a result, remap the corresponding 545 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 546 if (isa<LLVM::CallOp>(opInst)) { 547 llvm::Value *result = convertCall(opInst); 548 if (opInst.getNumResults() != 0) { 549 valueMapping[opInst.getResult(0)] = result; 550 return success(); 551 } 552 // Check that LLVM call returns void for 0-result functions. 553 return success(result->getType()->isVoidTy()); 554 } 555 556 if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) { 557 auto operands = lookupValues(opInst.getOperands()); 558 ArrayRef<llvm::Value *> operandsRef(operands); 559 if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) { 560 builder.CreateInvoke(functionMapping.lookup(attr.getValue()), 561 blockMapping[invOp.getSuccessor(0)], 562 blockMapping[invOp.getSuccessor(1)], operandsRef); 563 } else { 564 auto *calleePtrType = 565 cast<llvm::PointerType>(operandsRef.front()->getType()); 566 auto *calleeType = 567 cast<llvm::FunctionType>(calleePtrType->getElementType()); 568 builder.CreateInvoke( 569 calleeType, operandsRef.front(), blockMapping[invOp.getSuccessor(0)], 570 blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front()); 571 } 572 return success(); 573 } 574 575 if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) { 576 llvm::Type *ty = lpOp.getType().dyn_cast<LLVMType>().getUnderlyingType(); 577 llvm::LandingPadInst *lpi = 578 builder.CreateLandingPad(ty, lpOp.getNumOperands()); 579 580 // Add clauses 581 for (auto operand : lookupValues(lpOp.getOperands())) { 582 // All operands should be constant - checked by verifier 583 if (auto constOperand = dyn_cast<llvm::Constant>(operand)) 584 lpi->addClause(constOperand); 585 } 586 valueMapping[lpOp.getResult()] = lpi; 587 return success(); 588 } 589 590 // Emit branches. We need to look up the remapped blocks and ignore the block 591 // arguments that were transformed into PHI nodes. 592 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 593 builder.CreateBr(blockMapping[brOp.getSuccessor()]); 594 return success(); 595 } 596 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 597 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 598 blockMapping[condbrOp.getSuccessor(0)], 599 blockMapping[condbrOp.getSuccessor(1)]); 600 return success(); 601 } 602 603 // Emit addressof. We need to look up the global value referenced by the 604 // operation and store it in the MLIR-to-LLVM value mapping. This does not 605 // emit any LLVM instruction. 606 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 607 LLVM::GlobalOp global = addressOfOp.getGlobal(); 608 LLVM::LLVMFuncOp function = addressOfOp.getFunction(); 609 610 // The verifier should not have allowed this. 611 assert((global || function) && 612 "referencing an undefined global or function"); 613 614 valueMapping[addressOfOp.getResult()] = 615 global ? globalsMapping.lookup(global) 616 : functionMapping.lookup(function.getName()); 617 return success(); 618 } 619 620 if (opInst.getDialect() == ompDialect) { 621 return convertOmpOperation(opInst, builder); 622 } 623 624 return opInst.emitError("unsupported or non-LLVM operation: ") 625 << opInst.getName(); 626 } 627 628 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 629 /// to define values corresponding to the MLIR block arguments. These nodes 630 /// are not connected to the source basic blocks, which may not exist yet. 631 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 632 llvm::IRBuilder<> builder(blockMapping[&bb]); 633 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 634 635 // Before traversing operations, make block arguments available through 636 // value remapping and PHI nodes, but do not add incoming edges for the PHI 637 // nodes just yet: those values may be defined by this or following blocks. 638 // This step is omitted if "ignoreArguments" is set. The arguments of the 639 // first block have been already made available through the remapping of 640 // LLVM function arguments. 641 if (!ignoreArguments) { 642 auto predecessors = bb.getPredecessors(); 643 unsigned numPredecessors = 644 std::distance(predecessors.begin(), predecessors.end()); 645 for (auto arg : bb.getArguments()) { 646 auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>(); 647 if (!wrappedType) 648 return emitError(bb.front().getLoc(), 649 "block argument does not have an LLVM type"); 650 llvm::Type *type = wrappedType.getUnderlyingType(); 651 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 652 valueMapping[arg] = phi; 653 } 654 } 655 656 // Traverse operations. 657 for (auto &op : bb) { 658 // Set the current debug location within the builder. 659 builder.SetCurrentDebugLocation( 660 debugTranslation->translateLoc(op.getLoc(), subprogram)); 661 662 if (failed(convertOperation(op, builder))) 663 return failure(); 664 } 665 666 return success(); 667 } 668 669 /// Create named global variables that correspond to llvm.mlir.global 670 /// definitions. 671 LogicalResult ModuleTranslation::convertGlobals() { 672 // Lock access to the llvm context. 673 llvm::sys::SmartScopedLock<true> scopedLock( 674 llvmDialect->getLLVMContextMutex()); 675 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 676 llvm::Type *type = op.getType().getUnderlyingType(); 677 llvm::Constant *cst = llvm::UndefValue::get(type); 678 if (op.getValueOrNull()) { 679 // String attributes are treated separately because they cannot appear as 680 // in-function constants and are thus not supported by getLLVMConstant. 681 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 682 cst = llvm::ConstantDataArray::getString( 683 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 684 type = cst->getType(); 685 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), 686 op.getLoc()))) { 687 return failure(); 688 } 689 } else if (Block *initializer = op.getInitializerBlock()) { 690 llvm::IRBuilder<> builder(llvmModule->getContext()); 691 for (auto &op : initializer->without_terminator()) { 692 if (failed(convertOperation(op, builder)) || 693 !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) 694 return emitError(op.getLoc(), "unemittable constant value"); 695 } 696 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 697 cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0))); 698 } 699 700 auto linkage = convertLinkageToLLVM(op.linkage()); 701 bool anyExternalLinkage = 702 ((linkage == llvm::GlobalVariable::ExternalLinkage && 703 isa<llvm::UndefValue>(cst)) || 704 linkage == llvm::GlobalVariable::ExternalWeakLinkage); 705 auto addrSpace = op.addr_space().getLimitedValue(); 706 auto *var = new llvm::GlobalVariable( 707 *llvmModule, type, op.constant(), linkage, 708 anyExternalLinkage ? nullptr : cst, op.sym_name(), 709 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 710 711 globalsMapping.try_emplace(op, var); 712 } 713 714 return success(); 715 } 716 717 /// Attempts to add an attribute identified by `key`, optionally with the given 718 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 719 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 720 /// otherwise keep it as a string attribute. Performs additional checks for 721 /// attributes known to have or not have a value in order to avoid assertions 722 /// inside LLVM upon construction. 723 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 724 llvm::Function *llvmFunc, 725 StringRef key, 726 StringRef value = StringRef()) { 727 auto kind = llvm::Attribute::getAttrKindFromName(key); 728 if (kind == llvm::Attribute::None) { 729 llvmFunc->addFnAttr(key, value); 730 return success(); 731 } 732 733 if (llvm::Attribute::doesAttrKindHaveArgument(kind)) { 734 if (value.empty()) 735 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 736 737 int result; 738 if (!value.getAsInteger(/*Radix=*/0, result)) 739 llvmFunc->addFnAttr( 740 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 741 else 742 llvmFunc->addFnAttr(key, value); 743 return success(); 744 } 745 746 if (!value.empty()) 747 return emitError(loc) << "LLVM attribute '" << key 748 << "' does not expect a value, found '" << value 749 << "'"; 750 751 llvmFunc->addFnAttr(kind); 752 return success(); 753 } 754 755 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 756 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 757 /// to be an array attribute containing either string attributes, treated as 758 /// value-less LLVM attributes, or array attributes containing two string 759 /// attributes, with the first string being the name of the corresponding LLVM 760 /// attribute and the second string beings its value. Note that even integer 761 /// attributes are expected to have their values expressed as strings. 762 static LogicalResult 763 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes, 764 llvm::Function *llvmFunc) { 765 if (!attributes) 766 return success(); 767 768 for (Attribute attr : *attributes) { 769 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 770 if (failed( 771 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 772 return failure(); 773 continue; 774 } 775 776 auto arrayAttr = attr.dyn_cast<ArrayAttr>(); 777 if (!arrayAttr || arrayAttr.size() != 2) 778 return emitError(loc) 779 << "expected 'passthrough' to contain string or array attributes"; 780 781 auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>(); 782 auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>(); 783 if (!keyAttr || !valueAttr) 784 return emitError(loc) 785 << "expected arrays within 'passthrough' to contain two strings"; 786 787 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 788 valueAttr.getValue()))) 789 return failure(); 790 } 791 return success(); 792 } 793 794 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 795 // Clear the block and value mappings, they are only relevant within one 796 // function. 797 blockMapping.clear(); 798 valueMapping.clear(); 799 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 800 801 // Translate the debug information for this function. 802 debugTranslation->translate(func, *llvmFunc); 803 804 // Add function arguments to the value remapping table. 805 // If there was noalias info then we decorate each argument accordingly. 806 unsigned int argIdx = 0; 807 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 808 llvm::Argument &llvmArg = std::get<1>(kvp); 809 BlockArgument mlirArg = std::get<0>(kvp); 810 811 if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) { 812 // NB: Attribute already verified to be boolean, so check if we can indeed 813 // attach the attribute to this argument, based on its type. 814 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 815 if (!argTy.getUnderlyingType()->isPointerTy()) 816 return func.emitError( 817 "llvm.noalias attribute attached to LLVM non-pointer argument"); 818 if (attr.getValue()) 819 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 820 } 821 822 if (auto attr = func.getArgAttrOfType<IntegerAttr>(argIdx, "llvm.align")) { 823 // NB: Attribute already verified to be int, so check if we can indeed 824 // attach the attribute to this argument, based on its type. 825 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 826 if (!argTy.getUnderlyingType()->isPointerTy()) 827 return func.emitError( 828 "llvm.align attribute attached to LLVM non-pointer argument"); 829 llvmArg.addAttrs( 830 llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt()))); 831 } 832 833 valueMapping[mlirArg] = &llvmArg; 834 argIdx++; 835 } 836 837 // Check the personality and set it. 838 if (func.personality().hasValue()) { 839 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext()); 840 if (llvm::Constant *pfunc = 841 getLLVMConstant(ty, func.personalityAttr(), func.getLoc())) 842 llvmFunc->setPersonalityFn(pfunc); 843 } 844 845 // First, create all blocks so we can jump to them. 846 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 847 for (auto &bb : func) { 848 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 849 llvmBB->insertInto(llvmFunc); 850 blockMapping[&bb] = llvmBB; 851 } 852 853 // Then, convert blocks one by one in topological order to ensure defs are 854 // converted before uses. 855 auto blocks = topologicalSort(func); 856 for (auto indexedBB : llvm::enumerate(blocks)) { 857 auto *bb = indexedBB.value(); 858 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 859 return failure(); 860 } 861 862 // Finally, after all blocks have been traversed and values mapped, connect 863 // the PHI nodes to the results of preceding blocks. 864 connectPHINodes(func, valueMapping, blockMapping); 865 return success(); 866 } 867 868 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) { 869 for (Operation &o : getModuleBody(m).getOperations()) 870 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp>(&o) && !o.isKnownTerminator()) 871 return o.emitOpError("unsupported module-level operation"); 872 return success(); 873 } 874 875 LogicalResult ModuleTranslation::convertFunctionSignatures() { 876 // Lock access to the llvm context. 877 llvm::sys::SmartScopedLock<true> scopedLock( 878 llvmDialect->getLLVMContextMutex()); 879 880 // Declare all functions first because there may be function calls that form a 881 // call graph with cycles, or global initializers that reference functions. 882 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 883 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 884 function.getName(), 885 cast<llvm::FunctionType>(function.getType().getUnderlyingType())); 886 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 887 llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage())); 888 functionMapping[function.getName()] = llvmFunc; 889 890 // Forward the pass-through attributes to LLVM. 891 if (failed(forwardPassthroughAttributes(function.getLoc(), 892 function.passthrough(), llvmFunc))) 893 return failure(); 894 } 895 896 return success(); 897 } 898 899 LogicalResult ModuleTranslation::convertFunctions() { 900 // Lock access to the llvm context. 901 llvm::sys::SmartScopedLock<true> scopedLock( 902 llvmDialect->getLLVMContextMutex()); 903 904 // Convert functions. 905 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 906 // Ignore external functions. 907 if (function.isExternal()) 908 continue; 909 910 if (failed(convertOneFunction(function))) 911 return failure(); 912 } 913 914 return success(); 915 } 916 917 /// A helper to look up remapped operands in the value remapping table.` 918 SmallVector<llvm::Value *, 8> 919 ModuleTranslation::lookupValues(ValueRange values) { 920 SmallVector<llvm::Value *, 8> remapped; 921 remapped.reserve(values.size()); 922 for (Value v : values) { 923 assert(valueMapping.count(v) && "referencing undefined value"); 924 remapped.push_back(valueMapping.lookup(v)); 925 } 926 return remapped; 927 } 928 929 std::unique_ptr<llvm::Module> 930 ModuleTranslation::prepareLLVMModule(Operation *m) { 931 auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>(); 932 assert(dialect && "LLVM dialect must be registered"); 933 // Lock the LLVM context as we might create new types here. 934 llvm::sys::SmartScopedLock<true> scopedLock(dialect->getLLVMContextMutex()); 935 936 auto llvmModule = llvm::CloneModule(dialect->getLLVMModule()); 937 if (!llvmModule) 938 return nullptr; 939 940 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 941 llvm::IRBuilder<> builder(llvmContext); 942 943 // Inject declarations for `malloc` and `free` functions that can be used in 944 // memref allocation/deallocation coming from standard ops lowering. 945 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 946 builder.getInt64Ty()); 947 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 948 builder.getInt8PtrTy()); 949 950 return llvmModule; 951 } 952