1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h" 19 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 20 #include "mlir/IR/Attributes.h" 21 #include "mlir/IR/BuiltinOps.h" 22 #include "mlir/IR/BuiltinTypes.h" 23 #include "mlir/IR/RegionGraphTraits.h" 24 #include "mlir/Support/LLVM.h" 25 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h" 26 #include "mlir/Target/LLVMIR/TypeToLLVM.h" 27 #include "llvm/ADT/TypeSwitch.h" 28 29 #include "llvm/ADT/PostOrderIterator.h" 30 #include "llvm/ADT/SetVector.h" 31 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CFG.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicsNVPTX.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/Verifier.h" 43 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 44 #include "llvm/Transforms/Utils/Cloning.h" 45 #include "llvm/Transforms/Utils/ModuleUtils.h" 46 47 using namespace mlir; 48 using namespace mlir::LLVM; 49 using namespace mlir::LLVM::detail; 50 51 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 52 53 /// Builds a constant of a sequential LLVM type `type`, potentially containing 54 /// other sequential types recursively, from the individual constant values 55 /// provided in `constants`. `shape` contains the number of elements in nested 56 /// sequential types. Reports errors at `loc` and returns nullptr on error. 57 static llvm::Constant * 58 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 59 ArrayRef<int64_t> shape, llvm::Type *type, 60 Location loc) { 61 if (shape.empty()) { 62 llvm::Constant *result = constants.front(); 63 constants = constants.drop_front(); 64 return result; 65 } 66 67 llvm::Type *elementType; 68 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 69 elementType = arrayTy->getElementType(); 70 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 71 elementType = vectorTy->getElementType(); 72 } else { 73 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 74 return nullptr; 75 } 76 77 SmallVector<llvm::Constant *, 8> nested; 78 nested.reserve(shape.front()); 79 for (int64_t i = 0; i < shape.front(); ++i) { 80 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 81 elementType, loc)); 82 if (!nested.back()) 83 return nullptr; 84 } 85 86 if (shape.size() == 1 && type->isVectorTy()) 87 return llvm::ConstantVector::get(nested); 88 return llvm::ConstantArray::get( 89 llvm::ArrayType::get(elementType, shape.front()), nested); 90 } 91 92 /// Returns the first non-sequential type nested in sequential types. 93 static llvm::Type *getInnermostElementType(llvm::Type *type) { 94 do { 95 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 96 type = arrayTy->getElementType(); 97 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 98 type = vectorTy->getElementType(); 99 } else { 100 return type; 101 } 102 } while (true); 103 } 104 105 /// Convert a dense elements attribute to an LLVM IR constant using its raw data 106 /// storage if possible. This supports elements attributes of tensor or vector 107 /// type and avoids constructing separate objects for individual values of the 108 /// innermost dimension. Constants for other dimensions are still constructed 109 /// recursively. Returns null if constructing from raw data is not supported for 110 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports 111 /// other errors at `loc`. 112 static llvm::Constant * 113 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr, 114 llvm::Type *llvmType, 115 const ModuleTranslation &moduleTranslation) { 116 if (!denseElementsAttr) 117 return nullptr; 118 119 llvm::Type *innermostLLVMType = getInnermostElementType(llvmType); 120 if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType)) 121 return nullptr; 122 123 ShapedType type = denseElementsAttr.getType(); 124 if (type.getNumElements() == 0) 125 return nullptr; 126 127 // Compute the shape of all dimensions but the innermost. Note that the 128 // innermost dimension may be that of the vector element type. 129 bool hasVectorElementType = type.getElementType().isa<VectorType>(); 130 unsigned numAggregates = 131 denseElementsAttr.getNumElements() / 132 (hasVectorElementType ? 1 133 : denseElementsAttr.getType().getShape().back()); 134 ArrayRef<int64_t> outerShape = type.getShape(); 135 if (!hasVectorElementType) 136 outerShape = outerShape.drop_back(); 137 138 // Handle the case of vector splat, LLVM has special support for it. 139 if (denseElementsAttr.isSplat() && 140 (type.isa<VectorType>() || hasVectorElementType)) { 141 llvm::Constant *splatValue = LLVM::detail::getLLVMConstant( 142 innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc, 143 moduleTranslation, /*isTopLevel=*/false); 144 llvm::Constant *splatVector = 145 llvm::ConstantDataVector::getSplat(0, splatValue); 146 SmallVector<llvm::Constant *> constants(numAggregates, splatVector); 147 ArrayRef<llvm::Constant *> constantsRef = constants; 148 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 149 } 150 if (denseElementsAttr.isSplat()) 151 return nullptr; 152 153 // In case of non-splat, create a constructor for the innermost constant from 154 // a piece of raw data. 155 std::function<llvm::Constant *(StringRef)> buildCstData; 156 if (type.isa<TensorType>()) { 157 auto vectorElementType = type.getElementType().dyn_cast<VectorType>(); 158 if (vectorElementType && vectorElementType.getRank() == 1) { 159 buildCstData = [&](StringRef data) { 160 return llvm::ConstantDataVector::getRaw( 161 data, vectorElementType.getShape().back(), innermostLLVMType); 162 }; 163 } else if (!vectorElementType) { 164 buildCstData = [&](StringRef data) { 165 return llvm::ConstantDataArray::getRaw(data, type.getShape().back(), 166 innermostLLVMType); 167 }; 168 } 169 } else if (type.isa<VectorType>()) { 170 buildCstData = [&](StringRef data) { 171 return llvm::ConstantDataVector::getRaw(data, type.getShape().back(), 172 innermostLLVMType); 173 }; 174 } 175 if (!buildCstData) 176 return nullptr; 177 178 // Create innermost constants and defer to the default constant creation 179 // mechanism for other dimensions. 180 SmallVector<llvm::Constant *> constants; 181 unsigned aggregateSize = denseElementsAttr.getType().getShape().back() * 182 (innermostLLVMType->getScalarSizeInBits() / 8); 183 constants.reserve(numAggregates); 184 for (unsigned i = 0; i < numAggregates; ++i) { 185 StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize, 186 aggregateSize); 187 constants.push_back(buildCstData(data)); 188 } 189 190 ArrayRef<llvm::Constant *> constantsRef = constants; 191 return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); 192 } 193 194 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 195 /// This currently supports integer, floating point, splat and dense element 196 /// attributes and combinations thereof. Also, an array attribute with two 197 /// elements is supported to represent a complex constant. In case of error, 198 /// report it to `loc` and return nullptr. 199 llvm::Constant *mlir::LLVM::detail::getLLVMConstant( 200 llvm::Type *llvmType, Attribute attr, Location loc, 201 const ModuleTranslation &moduleTranslation, bool isTopLevel) { 202 if (!attr) 203 return llvm::UndefValue::get(llvmType); 204 if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) { 205 if (!isTopLevel) { 206 emitError(loc, "nested struct types are not supported in constants"); 207 return nullptr; 208 } 209 auto arrayAttr = attr.cast<ArrayAttr>(); 210 llvm::Type *elementType = structType->getElementType(0); 211 llvm::Constant *real = getLLVMConstant(elementType, arrayAttr[0], loc, 212 moduleTranslation, false); 213 if (!real) 214 return nullptr; 215 llvm::Constant *imag = getLLVMConstant(elementType, arrayAttr[1], loc, 216 moduleTranslation, false); 217 if (!imag) 218 return nullptr; 219 return llvm::ConstantStruct::get(structType, {real, imag}); 220 } 221 // For integer types, we allow a mismatch in sizes as the index type in 222 // MLIR might have a different size than the index type in the LLVM module. 223 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 224 return llvm::ConstantInt::get( 225 llvmType, 226 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 227 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) { 228 if (llvmType != 229 llvm::Type::getFloatingPointTy(llvmType->getContext(), 230 floatAttr.getValue().getSemantics())) { 231 emitError(loc, "FloatAttr does not match expected type of the constant"); 232 return nullptr; 233 } 234 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 235 } 236 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 237 return llvm::ConstantExpr::getBitCast( 238 moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType); 239 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 240 llvm::Type *elementType; 241 uint64_t numElements; 242 bool isScalable = false; 243 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 244 elementType = arrayTy->getElementType(); 245 numElements = arrayTy->getNumElements(); 246 } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) { 247 elementType = fVectorTy->getElementType(); 248 numElements = fVectorTy->getNumElements(); 249 } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) { 250 elementType = sVectorTy->getElementType(); 251 numElements = sVectorTy->getMinNumElements(); 252 isScalable = true; 253 } else { 254 llvm_unreachable("unrecognized constant vector type"); 255 } 256 // Splat value is a scalar. Extract it only if the element type is not 257 // another sequence type. The recursion terminates because each step removes 258 // one outer sequential type. 259 bool elementTypeSequential = 260 isa<llvm::ArrayType, llvm::VectorType>(elementType); 261 llvm::Constant *child = getLLVMConstant( 262 elementType, 263 elementTypeSequential ? splatAttr 264 : splatAttr.getSplatValue<Attribute>(), 265 loc, moduleTranslation, false); 266 if (!child) 267 return nullptr; 268 if (llvmType->isVectorTy()) 269 return llvm::ConstantVector::getSplat( 270 llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child); 271 if (llvmType->isArrayTy()) { 272 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 273 SmallVector<llvm::Constant *, 8> constants(numElements, child); 274 return llvm::ConstantArray::get(arrayType, constants); 275 } 276 } 277 278 // Try using raw elements data if possible. 279 if (llvm::Constant *result = 280 convertDenseElementsAttr(loc, attr.dyn_cast<DenseElementsAttr>(), 281 llvmType, moduleTranslation)) { 282 return result; 283 } 284 285 // Fall back to element-by-element construction otherwise. 286 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 287 assert(elementsAttr.getType().hasStaticShape()); 288 assert(!elementsAttr.getType().getShape().empty() && 289 "unexpected empty elements attribute shape"); 290 291 SmallVector<llvm::Constant *, 8> constants; 292 constants.reserve(elementsAttr.getNumElements()); 293 llvm::Type *innermostType = getInnermostElementType(llvmType); 294 for (auto n : elementsAttr.getValues<Attribute>()) { 295 constants.push_back( 296 getLLVMConstant(innermostType, n, loc, moduleTranslation, false)); 297 if (!constants.back()) 298 return nullptr; 299 } 300 ArrayRef<llvm::Constant *> constantsRef = constants; 301 llvm::Constant *result = buildSequentialConstant( 302 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 303 assert(constantsRef.empty() && "did not consume all elemental constants"); 304 return result; 305 } 306 307 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 308 return llvm::ConstantDataArray::get( 309 moduleTranslation.getLLVMContext(), 310 ArrayRef<char>{stringAttr.getValue().data(), 311 stringAttr.getValue().size()}); 312 } 313 emitError(loc, "unsupported constant value"); 314 return nullptr; 315 } 316 317 ModuleTranslation::ModuleTranslation(Operation *module, 318 std::unique_ptr<llvm::Module> llvmModule) 319 : mlirModule(module), llvmModule(std::move(llvmModule)), 320 debugTranslation( 321 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 322 typeTranslator(this->llvmModule->getContext()), 323 iface(module->getContext()) { 324 assert(satisfiesLLVMModule(mlirModule) && 325 "mlirModule should honor LLVM's module semantics."); 326 } 327 ModuleTranslation::~ModuleTranslation() { 328 if (ompBuilder) 329 ompBuilder->finalize(); 330 } 331 332 void ModuleTranslation::forgetMapping(Region ®ion) { 333 SmallVector<Region *> toProcess; 334 toProcess.push_back(®ion); 335 while (!toProcess.empty()) { 336 Region *current = toProcess.pop_back_val(); 337 for (Block &block : *current) { 338 blockMapping.erase(&block); 339 for (Value arg : block.getArguments()) 340 valueMapping.erase(arg); 341 for (Operation &op : block) { 342 for (Value value : op.getResults()) 343 valueMapping.erase(value); 344 if (op.hasSuccessors()) 345 branchMapping.erase(&op); 346 if (isa<LLVM::GlobalOp>(op)) 347 globalsMapping.erase(&op); 348 accessGroupMetadataMapping.erase(&op); 349 llvm::append_range( 350 toProcess, 351 llvm::map_range(op.getRegions(), [](Region &r) { return &r; })); 352 } 353 } 354 } 355 } 356 357 /// Get the SSA value passed to the current block from the terminator operation 358 /// of its predecessor. 359 static Value getPHISourceValue(Block *current, Block *pred, 360 unsigned numArguments, unsigned index) { 361 Operation &terminator = *pred->getTerminator(); 362 if (isa<LLVM::BrOp>(terminator)) 363 return terminator.getOperand(index); 364 365 SuccessorRange successors = terminator.getSuccessors(); 366 assert(std::adjacent_find(successors.begin(), successors.end()) == 367 successors.end() && 368 "successors with arguments in LLVM branches must be different blocks"); 369 (void)successors; 370 371 // For instructions that branch based on a condition value, we need to take 372 // the operands for the branch that was taken. 373 if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) { 374 // For conditional branches, we take the operands from either the "true" or 375 // the "false" branch. 376 return condBranchOp.getSuccessor(0) == current 377 ? condBranchOp.getTrueDestOperands()[index] 378 : condBranchOp.getFalseDestOperands()[index]; 379 } 380 381 if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) { 382 // For switches, we take the operands from either the default case, or from 383 // the case branch that was taken. 384 if (switchOp.getDefaultDestination() == current) 385 return switchOp.getDefaultOperands()[index]; 386 for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations())) 387 if (i.value() == current) 388 return switchOp.getCaseOperands(i.index())[index]; 389 } 390 391 if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) { 392 return invokeOp.getNormalDest() == current 393 ? invokeOp.getNormalDestOperands()[index] 394 : invokeOp.getUnwindDestOperands()[index]; 395 } 396 397 llvm_unreachable( 398 "only branch, switch or invoke operations can be terminators " 399 "of a block that has successors"); 400 } 401 402 /// Connect the PHI nodes to the results of preceding blocks. 403 void mlir::LLVM::detail::connectPHINodes(Region ®ion, 404 const ModuleTranslation &state) { 405 // Skip the first block, it cannot be branched to and its arguments correspond 406 // to the arguments of the LLVM function. 407 for (auto it = std::next(region.begin()), eit = region.end(); it != eit; 408 ++it) { 409 Block *bb = &*it; 410 llvm::BasicBlock *llvmBB = state.lookupBlock(bb); 411 auto phis = llvmBB->phis(); 412 auto numArguments = bb->getNumArguments(); 413 assert(numArguments == std::distance(phis.begin(), phis.end())); 414 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 415 auto &phiNode = numberedPhiNode.value(); 416 unsigned index = numberedPhiNode.index(); 417 for (auto *pred : bb->getPredecessors()) { 418 // Find the LLVM IR block that contains the converted terminator 419 // instruction and use it in the PHI node. Note that this block is not 420 // necessarily the same as state.lookupBlock(pred), some operations 421 // (in particular, OpenMP operations using OpenMPIRBuilder) may have 422 // split the blocks. 423 llvm::Instruction *terminator = 424 state.lookupBranch(pred->getTerminator()); 425 assert(terminator && "missing the mapping for a terminator"); 426 phiNode.addIncoming( 427 state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)), 428 terminator->getParent()); 429 } 430 } 431 } 432 } 433 434 /// Sort function blocks topologically. 435 SetVector<Block *> 436 mlir::LLVM::detail::getTopologicallySortedBlocks(Region ®ion) { 437 // For each block that has not been visited yet (i.e. that has no 438 // predecessors), add it to the list as well as its successors. 439 SetVector<Block *> blocks; 440 for (Block &b : region) { 441 if (blocks.count(&b) == 0) { 442 llvm::ReversePostOrderTraversal<Block *> traversal(&b); 443 blocks.insert(traversal.begin(), traversal.end()); 444 } 445 } 446 assert(blocks.size() == region.getBlocks().size() && 447 "some blocks are not sorted"); 448 449 return blocks; 450 } 451 452 llvm::Value *mlir::LLVM::detail::createIntrinsicCall( 453 llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic, 454 ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) { 455 llvm::Module *module = builder.GetInsertBlock()->getModule(); 456 llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys); 457 return builder.CreateCall(fn, args); 458 } 459 460 /// Given a single MLIR operation, create the corresponding LLVM IR operation 461 /// using the `builder`. 462 LogicalResult 463 ModuleTranslation::convertOperation(Operation &op, 464 llvm::IRBuilderBase &builder) { 465 const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op); 466 if (!opIface) 467 return op.emitError("cannot be converted to LLVM IR: missing " 468 "`LLVMTranslationDialectInterface` registration for " 469 "dialect for op: ") 470 << op.getName(); 471 472 if (failed(opIface->convertOperation(&op, builder, *this))) 473 return op.emitError("LLVM Translation failed for operation: ") 474 << op.getName(); 475 476 return convertDialectAttributes(&op); 477 } 478 479 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 480 /// to define values corresponding to the MLIR block arguments. These nodes 481 /// are not connected to the source basic blocks, which may not exist yet. Uses 482 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have 483 /// been created for `bb` and included in the block mapping. Inserts new 484 /// instructions at the end of the block and leaves `builder` in a state 485 /// suitable for further insertion into the end of the block. 486 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments, 487 llvm::IRBuilderBase &builder) { 488 builder.SetInsertPoint(lookupBlock(&bb)); 489 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 490 491 // Before traversing operations, make block arguments available through 492 // value remapping and PHI nodes, but do not add incoming edges for the PHI 493 // nodes just yet: those values may be defined by this or following blocks. 494 // This step is omitted if "ignoreArguments" is set. The arguments of the 495 // first block have been already made available through the remapping of 496 // LLVM function arguments. 497 if (!ignoreArguments) { 498 auto predecessors = bb.getPredecessors(); 499 unsigned numPredecessors = 500 std::distance(predecessors.begin(), predecessors.end()); 501 for (auto arg : bb.getArguments()) { 502 auto wrappedType = arg.getType(); 503 if (!isCompatibleType(wrappedType)) 504 return emitError(bb.front().getLoc(), 505 "block argument does not have an LLVM type"); 506 llvm::Type *type = convertType(wrappedType); 507 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 508 mapValue(arg, phi); 509 } 510 } 511 512 // Traverse operations. 513 for (auto &op : bb) { 514 // Set the current debug location within the builder. 515 builder.SetCurrentDebugLocation( 516 debugTranslation->translateLoc(op.getLoc(), subprogram)); 517 518 if (failed(convertOperation(op, builder))) 519 return failure(); 520 } 521 522 return success(); 523 } 524 525 /// A helper method to get the single Block in an operation honoring LLVM's 526 /// module requirements. 527 static Block &getModuleBody(Operation *module) { 528 return module->getRegion(0).front(); 529 } 530 531 /// A helper method to decide if a constant must not be set as a global variable 532 /// initializer. For an external linkage variable, the variable with an 533 /// initializer is considered externally visible and defined in this module, the 534 /// variable without an initializer is externally available and is defined 535 /// elsewhere. 536 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage, 537 llvm::Constant *cst) { 538 return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) || 539 linkage == llvm::GlobalVariable::ExternalWeakLinkage; 540 } 541 542 /// Sets the runtime preemption specifier of `gv` to dso_local if 543 /// `dsoLocalRequested` is true, otherwise it is left unchanged. 544 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested, 545 llvm::GlobalValue *gv) { 546 if (dsoLocalRequested) 547 gv->setDSOLocal(true); 548 } 549 550 /// Create named global variables that correspond to llvm.mlir.global 551 /// definitions. Convert llvm.global_ctors and global_dtors ops. 552 LogicalResult ModuleTranslation::convertGlobals() { 553 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 554 llvm::Type *type = convertType(op.getType()); 555 llvm::Constant *cst = nullptr; 556 if (op.getValueOrNull()) { 557 // String attributes are treated separately because they cannot appear as 558 // in-function constants and are thus not supported by getLLVMConstant. 559 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 560 cst = llvm::ConstantDataArray::getString( 561 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 562 type = cst->getType(); 563 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(), 564 *this))) { 565 return failure(); 566 } 567 } 568 569 auto linkage = convertLinkageToLLVM(op.getLinkage()); 570 auto addrSpace = op.getAddrSpace(); 571 572 // LLVM IR requires constant with linkage other than external or weak 573 // external to have initializers. If MLIR does not provide an initializer, 574 // default to undef. 575 bool dropInitializer = shouldDropGlobalInitializer(linkage, cst); 576 if (!dropInitializer && !cst) 577 cst = llvm::UndefValue::get(type); 578 else if (dropInitializer && cst) 579 cst = nullptr; 580 581 auto *var = new llvm::GlobalVariable( 582 *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(), 583 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 584 585 if (op.getUnnamedAddr().hasValue()) 586 var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr())); 587 588 if (op.getSection().hasValue()) 589 var->setSection(*op.getSection()); 590 591 addRuntimePreemptionSpecifier(op.getDsoLocal(), var); 592 593 Optional<uint64_t> alignment = op.getAlignment(); 594 if (alignment.hasValue()) 595 var->setAlignment(llvm::MaybeAlign(alignment.getValue())); 596 597 globalsMapping.try_emplace(op, var); 598 } 599 600 // Convert global variable bodies. This is done after all global variables 601 // have been created in LLVM IR because a global body may refer to another 602 // global or itself. So all global variables need to be mapped first. 603 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 604 if (Block *initializer = op.getInitializerBlock()) { 605 llvm::IRBuilder<> builder(llvmModule->getContext()); 606 for (auto &op : initializer->without_terminator()) { 607 if (failed(convertOperation(op, builder)) || 608 !isa<llvm::Constant>(lookupValue(op.getResult(0)))) 609 return emitError(op.getLoc(), "unemittable constant value"); 610 } 611 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 612 llvm::Constant *cst = 613 cast<llvm::Constant>(lookupValue(ret.getOperand(0))); 614 auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op)); 615 if (!shouldDropGlobalInitializer(global->getLinkage(), cst)) 616 global->setInitializer(cst); 617 } 618 } 619 620 // Convert llvm.mlir.global_ctors and dtors. 621 for (Operation &op : getModuleBody(mlirModule)) { 622 auto ctorOp = dyn_cast<GlobalCtorsOp>(op); 623 auto dtorOp = dyn_cast<GlobalDtorsOp>(op); 624 if (!ctorOp && !dtorOp) 625 continue; 626 auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities()) 627 : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities()); 628 auto appendGlobalFn = 629 ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors; 630 for (auto symbolAndPriority : range) { 631 llvm::Function *f = lookupFunction( 632 std::get<0>(symbolAndPriority).cast<FlatSymbolRefAttr>().getValue()); 633 appendGlobalFn( 634 *llvmModule, f, 635 std::get<1>(symbolAndPriority).cast<IntegerAttr>().getInt(), 636 /*Data=*/nullptr); 637 } 638 } 639 640 return success(); 641 } 642 643 /// Attempts to add an attribute identified by `key`, optionally with the given 644 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 645 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 646 /// otherwise keep it as a string attribute. Performs additional checks for 647 /// attributes known to have or not have a value in order to avoid assertions 648 /// inside LLVM upon construction. 649 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 650 llvm::Function *llvmFunc, 651 StringRef key, 652 StringRef value = StringRef()) { 653 auto kind = llvm::Attribute::getAttrKindFromName(key); 654 if (kind == llvm::Attribute::None) { 655 llvmFunc->addFnAttr(key, value); 656 return success(); 657 } 658 659 if (llvm::Attribute::isIntAttrKind(kind)) { 660 if (value.empty()) 661 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 662 663 int result; 664 if (!value.getAsInteger(/*Radix=*/0, result)) 665 llvmFunc->addFnAttr( 666 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 667 else 668 llvmFunc->addFnAttr(key, value); 669 return success(); 670 } 671 672 if (!value.empty()) 673 return emitError(loc) << "LLVM attribute '" << key 674 << "' does not expect a value, found '" << value 675 << "'"; 676 677 llvmFunc->addFnAttr(kind); 678 return success(); 679 } 680 681 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 682 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 683 /// to be an array attribute containing either string attributes, treated as 684 /// value-less LLVM attributes, or array attributes containing two string 685 /// attributes, with the first string being the name of the corresponding LLVM 686 /// attribute and the second string beings its value. Note that even integer 687 /// attributes are expected to have their values expressed as strings. 688 static LogicalResult 689 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes, 690 llvm::Function *llvmFunc) { 691 if (!attributes) 692 return success(); 693 694 for (Attribute attr : *attributes) { 695 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 696 if (failed( 697 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 698 return failure(); 699 continue; 700 } 701 702 auto arrayAttr = attr.dyn_cast<ArrayAttr>(); 703 if (!arrayAttr || arrayAttr.size() != 2) 704 return emitError(loc) 705 << "expected 'passthrough' to contain string or array attributes"; 706 707 auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>(); 708 auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>(); 709 if (!keyAttr || !valueAttr) 710 return emitError(loc) 711 << "expected arrays within 'passthrough' to contain two strings"; 712 713 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 714 valueAttr.getValue()))) 715 return failure(); 716 } 717 return success(); 718 } 719 720 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 721 // Clear the block, branch value mappings, they are only relevant within one 722 // function. 723 blockMapping.clear(); 724 valueMapping.clear(); 725 branchMapping.clear(); 726 llvm::Function *llvmFunc = lookupFunction(func.getName()); 727 728 // Translate the debug information for this function. 729 debugTranslation->translate(func, *llvmFunc); 730 731 // Add function arguments to the value remapping table. 732 // If there was noalias info then we decorate each argument accordingly. 733 unsigned int argIdx = 0; 734 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 735 llvm::Argument &llvmArg = std::get<1>(kvp); 736 BlockArgument mlirArg = std::get<0>(kvp); 737 738 if (auto attr = func.getArgAttrOfType<UnitAttr>( 739 argIdx, LLVMDialect::getNoAliasAttrName())) { 740 // NB: Attribute already verified to be boolean, so check if we can indeed 741 // attach the attribute to this argument, based on its type. 742 auto argTy = mlirArg.getType(); 743 if (!argTy.isa<LLVM::LLVMPointerType>()) 744 return func.emitError( 745 "llvm.noalias attribute attached to LLVM non-pointer argument"); 746 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 747 } 748 749 if (auto attr = func.getArgAttrOfType<IntegerAttr>( 750 argIdx, LLVMDialect::getAlignAttrName())) { 751 // NB: Attribute already verified to be int, so check if we can indeed 752 // attach the attribute to this argument, based on its type. 753 auto argTy = mlirArg.getType(); 754 if (!argTy.isa<LLVM::LLVMPointerType>()) 755 return func.emitError( 756 "llvm.align attribute attached to LLVM non-pointer argument"); 757 llvmArg.addAttrs( 758 llvm::AttrBuilder(llvmArg.getContext()).addAlignmentAttr(llvm::Align(attr.getInt()))); 759 } 760 761 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) { 762 auto argTy = mlirArg.getType(); 763 if (!argTy.isa<LLVM::LLVMPointerType>()) 764 return func.emitError( 765 "llvm.sret attribute attached to LLVM non-pointer argument"); 766 llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext()).addStructRetAttr( 767 llvmArg.getType()->getPointerElementType())); 768 } 769 770 if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) { 771 auto argTy = mlirArg.getType(); 772 if (!argTy.isa<LLVM::LLVMPointerType>()) 773 return func.emitError( 774 "llvm.byval attribute attached to LLVM non-pointer argument"); 775 llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext()).addByValAttr( 776 llvmArg.getType()->getPointerElementType())); 777 } 778 779 mapValue(mlirArg, &llvmArg); 780 argIdx++; 781 } 782 783 // Check the personality and set it. 784 if (func.getPersonality().hasValue()) { 785 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext()); 786 if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(), 787 func.getLoc(), *this)) 788 llvmFunc->setPersonalityFn(pfunc); 789 } 790 791 // First, create all blocks so we can jump to them. 792 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 793 for (auto &bb : func) { 794 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 795 llvmBB->insertInto(llvmFunc); 796 mapBlock(&bb, llvmBB); 797 } 798 799 // Then, convert blocks one by one in topological order to ensure defs are 800 // converted before uses. 801 auto blocks = detail::getTopologicallySortedBlocks(func.getBody()); 802 for (Block *bb : blocks) { 803 llvm::IRBuilder<> builder(llvmContext); 804 if (failed(convertBlock(*bb, bb->isEntryBlock(), builder))) 805 return failure(); 806 } 807 808 // After all blocks have been traversed and values mapped, connect the PHI 809 // nodes to the results of preceding blocks. 810 detail::connectPHINodes(func.getBody(), *this); 811 812 // Finally, convert dialect attributes attached to the function. 813 return convertDialectAttributes(func); 814 } 815 816 LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) { 817 for (NamedAttribute attribute : op->getDialectAttrs()) 818 if (failed(iface.amendOperation(op, attribute, *this))) 819 return failure(); 820 return success(); 821 } 822 823 LogicalResult ModuleTranslation::convertFunctionSignatures() { 824 // Declare all functions first because there may be function calls that form a 825 // call graph with cycles, or global initializers that reference functions. 826 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 827 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 828 function.getName(), 829 cast<llvm::FunctionType>(convertType(function.getType()))); 830 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 831 llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage())); 832 mapFunction(function.getName(), llvmFunc); 833 addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc); 834 835 // Forward the pass-through attributes to LLVM. 836 if (failed(forwardPassthroughAttributes( 837 function.getLoc(), function.getPassthrough(), llvmFunc))) 838 return failure(); 839 } 840 841 return success(); 842 } 843 844 LogicalResult ModuleTranslation::convertFunctions() { 845 // Convert functions. 846 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 847 // Ignore external functions. 848 if (function.isExternal()) 849 continue; 850 851 if (failed(convertOneFunction(function))) 852 return failure(); 853 } 854 855 return success(); 856 } 857 858 llvm::MDNode * 859 ModuleTranslation::getAccessGroup(Operation &opInst, 860 SymbolRefAttr accessGroupRef) const { 861 auto metadataName = accessGroupRef.getRootReference(); 862 auto accessGroupName = accessGroupRef.getLeafReference(); 863 auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>( 864 opInst.getParentOp(), metadataName); 865 auto *accessGroupOp = 866 SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName); 867 return accessGroupMetadataMapping.lookup(accessGroupOp); 868 } 869 870 LogicalResult ModuleTranslation::createAccessGroupMetadata() { 871 mlirModule->walk([&](LLVM::MetadataOp metadatas) { 872 metadatas.walk([&](LLVM::AccessGroupMetadataOp op) { 873 llvm::LLVMContext &ctx = llvmModule->getContext(); 874 llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {}); 875 accessGroupMetadataMapping.insert({op, accessGroup}); 876 }); 877 }); 878 return success(); 879 } 880 881 void ModuleTranslation::setAccessGroupsMetadata(Operation *op, 882 llvm::Instruction *inst) { 883 auto accessGroups = 884 op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName()); 885 if (accessGroups && !accessGroups.empty()) { 886 llvm::Module *module = inst->getModule(); 887 SmallVector<llvm::Metadata *> metadatas; 888 for (SymbolRefAttr accessGroupRef : 889 accessGroups.getAsRange<SymbolRefAttr>()) 890 metadatas.push_back(getAccessGroup(*op, accessGroupRef)); 891 892 llvm::MDNode *unionMD = nullptr; 893 if (metadatas.size() == 1) 894 unionMD = llvm::cast<llvm::MDNode>(metadatas.front()); 895 else if (metadatas.size() >= 2) 896 unionMD = llvm::MDNode::get(module->getContext(), metadatas); 897 898 inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD); 899 } 900 } 901 902 LogicalResult ModuleTranslation::createAliasScopeMetadata() { 903 mlirModule->walk([&](LLVM::MetadataOp metadatas) { 904 // Create the domains first, so they can be reference below in the scopes. 905 DenseMap<Operation *, llvm::MDNode *> aliasScopeDomainMetadataMapping; 906 metadatas.walk([&](LLVM::AliasScopeDomainMetadataOp op) { 907 llvm::LLVMContext &ctx = llvmModule->getContext(); 908 llvm::SmallVector<llvm::Metadata *, 2> operands; 909 operands.push_back({}); // Placeholder for self-reference 910 if (Optional<StringRef> description = op.getDescription()) 911 operands.push_back(llvm::MDString::get(ctx, description.getValue())); 912 llvm::MDNode *domain = llvm::MDNode::get(ctx, operands); 913 domain->replaceOperandWith(0, domain); // Self-reference for uniqueness 914 aliasScopeDomainMetadataMapping.insert({op, domain}); 915 }); 916 917 // Now create the scopes, referencing the domains created above. 918 metadatas.walk([&](LLVM::AliasScopeMetadataOp op) { 919 llvm::LLVMContext &ctx = llvmModule->getContext(); 920 assert(isa<LLVM::MetadataOp>(op->getParentOp())); 921 auto metadataOp = dyn_cast<LLVM::MetadataOp>(op->getParentOp()); 922 Operation *domainOp = 923 SymbolTable::lookupNearestSymbolFrom(metadataOp, op.getDomainAttr()); 924 llvm::MDNode *domain = aliasScopeDomainMetadataMapping.lookup(domainOp); 925 assert(domain && "Scope's domain should already be valid"); 926 llvm::SmallVector<llvm::Metadata *, 3> operands; 927 operands.push_back({}); // Placeholder for self-reference 928 operands.push_back(domain); 929 if (Optional<StringRef> description = op.getDescription()) 930 operands.push_back(llvm::MDString::get(ctx, description.getValue())); 931 llvm::MDNode *scope = llvm::MDNode::get(ctx, operands); 932 scope->replaceOperandWith(0, scope); // Self-reference for uniqueness 933 aliasScopeMetadataMapping.insert({op, scope}); 934 }); 935 }); 936 return success(); 937 } 938 939 llvm::MDNode * 940 ModuleTranslation::getAliasScope(Operation &opInst, 941 SymbolRefAttr aliasScopeRef) const { 942 StringAttr metadataName = aliasScopeRef.getRootReference(); 943 StringAttr scopeName = aliasScopeRef.getLeafReference(); 944 auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>( 945 opInst.getParentOp(), metadataName); 946 Operation *aliasScopeOp = 947 SymbolTable::lookupNearestSymbolFrom(metadataOp, scopeName); 948 return aliasScopeMetadataMapping.lookup(aliasScopeOp); 949 } 950 951 void ModuleTranslation::setAliasScopeMetadata(Operation *op, 952 llvm::Instruction *inst) { 953 auto populateScopeMetadata = [this, op, inst](StringRef attrName, 954 StringRef llvmMetadataName) { 955 auto scopes = op->getAttrOfType<ArrayAttr>(attrName); 956 if (!scopes || scopes.empty()) 957 return; 958 llvm::Module *module = inst->getModule(); 959 SmallVector<llvm::Metadata *> scopeMDs; 960 for (SymbolRefAttr scopeRef : scopes.getAsRange<SymbolRefAttr>()) 961 scopeMDs.push_back(getAliasScope(*op, scopeRef)); 962 llvm::MDNode *unionMD = llvm::MDNode::get(module->getContext(), scopeMDs); 963 inst->setMetadata(module->getMDKindID(llvmMetadataName), unionMD); 964 }; 965 966 populateScopeMetadata(LLVMDialect::getAliasScopesAttrName(), "alias.scope"); 967 populateScopeMetadata(LLVMDialect::getNoAliasScopesAttrName(), "noalias"); 968 } 969 970 llvm::Type *ModuleTranslation::convertType(Type type) { 971 return typeTranslator.translateType(type); 972 } 973 974 /// A helper to look up remapped operands in the value remapping table. 975 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) { 976 SmallVector<llvm::Value *> remapped; 977 remapped.reserve(values.size()); 978 for (Value v : values) 979 remapped.push_back(lookupValue(v)); 980 return remapped; 981 } 982 983 const llvm::DILocation * 984 ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) { 985 return debugTranslation->translateLoc(loc, scope); 986 } 987 988 llvm::NamedMDNode * 989 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) { 990 return llvmModule->getOrInsertNamedMetadata(name); 991 } 992 993 void ModuleTranslation::StackFrame::anchor() {} 994 995 static std::unique_ptr<llvm::Module> 996 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext, 997 StringRef name) { 998 m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>(); 999 auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext); 1000 if (auto dataLayoutAttr = 1001 m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) 1002 llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue()); 1003 if (auto targetTripleAttr = 1004 m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName())) 1005 llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue()); 1006 1007 // Inject declarations for `malloc` and `free` functions that can be used in 1008 // memref allocation/deallocation coming from standard ops lowering. 1009 llvm::IRBuilder<> builder(llvmContext); 1010 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 1011 builder.getInt64Ty()); 1012 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 1013 builder.getInt8PtrTy()); 1014 1015 return llvmModule; 1016 } 1017 1018 std::unique_ptr<llvm::Module> 1019 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext, 1020 StringRef name) { 1021 if (!satisfiesLLVMModule(module)) 1022 return nullptr; 1023 std::unique_ptr<llvm::Module> llvmModule = 1024 prepareLLVMModule(module, llvmContext, name); 1025 1026 LLVM::ensureDistinctSuccessors(module); 1027 1028 ModuleTranslation translator(module, std::move(llvmModule)); 1029 if (failed(translator.convertFunctionSignatures())) 1030 return nullptr; 1031 if (failed(translator.convertGlobals())) 1032 return nullptr; 1033 if (failed(translator.createAccessGroupMetadata())) 1034 return nullptr; 1035 if (failed(translator.createAliasScopeMetadata())) 1036 return nullptr; 1037 if (failed(translator.convertFunctions())) 1038 return nullptr; 1039 1040 // Convert other top-level operations if possible. 1041 llvm::IRBuilder<> llvmBuilder(llvmContext); 1042 for (Operation &o : getModuleBody(module).getOperations()) { 1043 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp, 1044 LLVM::GlobalDtorsOp, LLVM::MetadataOp>(&o) && 1045 !o.hasTrait<OpTrait::IsTerminator>() && 1046 failed(translator.convertOperation(o, llvmBuilder))) { 1047 return nullptr; 1048 } 1049 } 1050 1051 if (llvm::verifyModule(*translator.llvmModule, &llvm::errs())) 1052 return nullptr; 1053 1054 return std::move(translator.llvmModule); 1055 } 1056