1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the translation between an MLIR LLVM dialect module and
10 // the corresponding LLVMIR module. It only handles core LLVM IR operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
15 
16 #include "DebugTranslation.h"
17 #include "mlir/Dialect/DLTI/DLTI.h"
18 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
19 #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
20 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
21 #include "mlir/IR/Attributes.h"
22 #include "mlir/IR/BuiltinOps.h"
23 #include "mlir/IR/BuiltinTypes.h"
24 #include "mlir/IR/RegionGraphTraits.h"
25 #include "mlir/Support/LLVM.h"
26 #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
27 #include "mlir/Target/LLVMIR/TypeToLLVM.h"
28 #include "llvm/ADT/TypeSwitch.h"
29 
30 #include "llvm/ADT/PostOrderIterator.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicsNVPTX.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Verifier.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/Cloning.h"
46 #include "llvm/Transforms/Utils/ModuleUtils.h"
47 
48 using namespace mlir;
49 using namespace mlir::LLVM;
50 using namespace mlir::LLVM::detail;
51 
52 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
53 
54 /// Translates the given data layout spec attribute to the LLVM IR data layout.
55 /// Only integer, float and endianness entries are currently supported.
56 FailureOr<llvm::DataLayout>
57 translateDataLayout(DataLayoutSpecInterface attribute,
58                     const DataLayout &dataLayout,
59                     Optional<Location> loc = llvm::None) {
60   if (!loc)
61     loc = UnknownLoc::get(attribute.getContext());
62 
63   // Translate the endianness attribute.
64   std::string llvmDataLayout;
65   llvm::raw_string_ostream layoutStream(llvmDataLayout);
66   for (DataLayoutEntryInterface entry : attribute.getEntries()) {
67     auto key = entry.getKey().dyn_cast<StringAttr>();
68     if (!key)
69       continue;
70     if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) {
71       auto value = entry.getValue().cast<StringAttr>();
72       bool isLittleEndian =
73           value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle;
74       layoutStream << (isLittleEndian ? "e" : "E");
75       layoutStream.flush();
76       continue;
77     }
78     emitError(*loc) << "unsupported data layout key " << key;
79     return failure();
80   }
81 
82   // Go through the list of entries to check which types are explicitly
83   // specified in entries. Don't use the entries directly though but query the
84   // data from the layout.
85   for (DataLayoutEntryInterface entry : attribute.getEntries()) {
86     auto type = entry.getKey().dyn_cast<Type>();
87     if (!type)
88       continue;
89     FailureOr<std::string> prefix =
90         llvm::TypeSwitch<Type, FailureOr<std::string>>(type)
91             .Case<IntegerType>(
92                 [loc](IntegerType integerType) -> FailureOr<std::string> {
93                   if (integerType.getSignedness() == IntegerType::Signless)
94                     return std::string("i");
95                   emitError(*loc)
96                       << "unsupported data layout for non-signless integer "
97                       << integerType;
98                   return failure();
99                 })
100             .Case<Float16Type, Float32Type, Float64Type, Float80Type,
101                   Float128Type>([](Type) { return std::string("f"); })
102             .Default([loc](Type type) -> FailureOr<std::string> {
103               emitError(*loc) << "unsupported type in data layout: " << type;
104               return failure();
105             });
106     if (failed(prefix))
107       return failure();
108 
109     unsigned size = dataLayout.getTypeSizeInBits(type);
110     unsigned abi = dataLayout.getTypeABIAlignment(type) * 8u;
111     unsigned preferred = dataLayout.getTypePreferredAlignment(type) * 8u;
112     layoutStream << "-" << *prefix << size << ":" << abi;
113     if (abi != preferred)
114       layoutStream << ":" << preferred;
115   }
116   layoutStream.flush();
117   StringRef layoutSpec(llvmDataLayout);
118   if (layoutSpec.startswith("-"))
119     layoutSpec = layoutSpec.drop_front();
120 
121   return llvm::DataLayout(layoutSpec);
122 }
123 
124 /// Builds a constant of a sequential LLVM type `type`, potentially containing
125 /// other sequential types recursively, from the individual constant values
126 /// provided in `constants`. `shape` contains the number of elements in nested
127 /// sequential types. Reports errors at `loc` and returns nullptr on error.
128 static llvm::Constant *
129 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
130                         ArrayRef<int64_t> shape, llvm::Type *type,
131                         Location loc) {
132   if (shape.empty()) {
133     llvm::Constant *result = constants.front();
134     constants = constants.drop_front();
135     return result;
136   }
137 
138   llvm::Type *elementType;
139   if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
140     elementType = arrayTy->getElementType();
141   } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
142     elementType = vectorTy->getElementType();
143   } else {
144     emitError(loc) << "expected sequential LLVM types wrapping a scalar";
145     return nullptr;
146   }
147 
148   SmallVector<llvm::Constant *, 8> nested;
149   nested.reserve(shape.front());
150   for (int64_t i = 0; i < shape.front(); ++i) {
151     nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
152                                              elementType, loc));
153     if (!nested.back())
154       return nullptr;
155   }
156 
157   if (shape.size() == 1 && type->isVectorTy())
158     return llvm::ConstantVector::get(nested);
159   return llvm::ConstantArray::get(
160       llvm::ArrayType::get(elementType, shape.front()), nested);
161 }
162 
163 /// Returns the first non-sequential type nested in sequential types.
164 static llvm::Type *getInnermostElementType(llvm::Type *type) {
165   do {
166     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
167       type = arrayTy->getElementType();
168     } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
169       type = vectorTy->getElementType();
170     } else {
171       return type;
172     }
173   } while (true);
174 }
175 
176 /// Convert a dense elements attribute to an LLVM IR constant using its raw data
177 /// storage if possible. This supports elements attributes of tensor or vector
178 /// type and avoids constructing separate objects for individual values of the
179 /// innermost dimension. Constants for other dimensions are still constructed
180 /// recursively. Returns null if constructing from raw data is not supported for
181 /// this type, e.g., element type is not a power-of-two-sized primitive. Reports
182 /// other errors at `loc`.
183 static llvm::Constant *
184 convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
185                          llvm::Type *llvmType,
186                          const ModuleTranslation &moduleTranslation) {
187   if (!denseElementsAttr)
188     return nullptr;
189 
190   llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
191   if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType))
192     return nullptr;
193 
194   ShapedType type = denseElementsAttr.getType();
195   if (type.getNumElements() == 0)
196     return nullptr;
197 
198   // Compute the shape of all dimensions but the innermost. Note that the
199   // innermost dimension may be that of the vector element type.
200   bool hasVectorElementType = type.getElementType().isa<VectorType>();
201   unsigned numAggregates =
202       denseElementsAttr.getNumElements() /
203       (hasVectorElementType ? 1
204                             : denseElementsAttr.getType().getShape().back());
205   ArrayRef<int64_t> outerShape = type.getShape();
206   if (!hasVectorElementType)
207     outerShape = outerShape.drop_back();
208 
209   // Handle the case of vector splat, LLVM has special support for it.
210   if (denseElementsAttr.isSplat() &&
211       (type.isa<VectorType>() || hasVectorElementType)) {
212     llvm::Constant *splatValue = LLVM::detail::getLLVMConstant(
213         innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc,
214         moduleTranslation, /*isTopLevel=*/false);
215     llvm::Constant *splatVector =
216         llvm::ConstantDataVector::getSplat(0, splatValue);
217     SmallVector<llvm::Constant *> constants(numAggregates, splatVector);
218     ArrayRef<llvm::Constant *> constantsRef = constants;
219     return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
220   }
221   if (denseElementsAttr.isSplat())
222     return nullptr;
223 
224   // In case of non-splat, create a constructor for the innermost constant from
225   // a piece of raw data.
226   std::function<llvm::Constant *(StringRef)> buildCstData;
227   if (type.isa<TensorType>()) {
228     auto vectorElementType = type.getElementType().dyn_cast<VectorType>();
229     if (vectorElementType && vectorElementType.getRank() == 1) {
230       buildCstData = [&](StringRef data) {
231         return llvm::ConstantDataVector::getRaw(
232             data, vectorElementType.getShape().back(), innermostLLVMType);
233       };
234     } else if (!vectorElementType) {
235       buildCstData = [&](StringRef data) {
236         return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
237                                                innermostLLVMType);
238       };
239     }
240   } else if (type.isa<VectorType>()) {
241     buildCstData = [&](StringRef data) {
242       return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
243                                               innermostLLVMType);
244     };
245   }
246   if (!buildCstData)
247     return nullptr;
248 
249   // Create innermost constants and defer to the default constant creation
250   // mechanism for other dimensions.
251   SmallVector<llvm::Constant *> constants;
252   unsigned aggregateSize = denseElementsAttr.getType().getShape().back() *
253                            (innermostLLVMType->getScalarSizeInBits() / 8);
254   constants.reserve(numAggregates);
255   for (unsigned i = 0; i < numAggregates; ++i) {
256     StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize,
257                    aggregateSize);
258     constants.push_back(buildCstData(data));
259   }
260 
261   ArrayRef<llvm::Constant *> constantsRef = constants;
262   return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
263 }
264 
265 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
266 /// This currently supports integer, floating point, splat and dense element
267 /// attributes and combinations thereof. Also, an array attribute with two
268 /// elements is supported to represent a complex constant.  In case of error,
269 /// report it to `loc` and return nullptr.
270 llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
271     llvm::Type *llvmType, Attribute attr, Location loc,
272     const ModuleTranslation &moduleTranslation, bool isTopLevel) {
273   if (!attr)
274     return llvm::UndefValue::get(llvmType);
275   if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
276     if (!isTopLevel) {
277       emitError(loc, "nested struct types are not supported in constants");
278       return nullptr;
279     }
280     auto arrayAttr = attr.cast<ArrayAttr>();
281     llvm::Type *elementType = structType->getElementType(0);
282     llvm::Constant *real = getLLVMConstant(elementType, arrayAttr[0], loc,
283                                            moduleTranslation, false);
284     if (!real)
285       return nullptr;
286     llvm::Constant *imag = getLLVMConstant(elementType, arrayAttr[1], loc,
287                                            moduleTranslation, false);
288     if (!imag)
289       return nullptr;
290     return llvm::ConstantStruct::get(structType, {real, imag});
291   }
292   // For integer types, we allow a mismatch in sizes as the index type in
293   // MLIR might have a different size than the index type in the LLVM module.
294   if (auto intAttr = attr.dyn_cast<IntegerAttr>())
295     return llvm::ConstantInt::get(
296         llvmType,
297         intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
298   if (auto floatAttr = attr.dyn_cast<FloatAttr>()) {
299     if (llvmType !=
300         llvm::Type::getFloatingPointTy(llvmType->getContext(),
301                                        floatAttr.getValue().getSemantics())) {
302       emitError(loc, "FloatAttr does not match expected type of the constant");
303       return nullptr;
304     }
305     return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
306   }
307   if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
308     return llvm::ConstantExpr::getBitCast(
309         moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
310   if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
311     llvm::Type *elementType;
312     uint64_t numElements;
313     bool isScalable = false;
314     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
315       elementType = arrayTy->getElementType();
316       numElements = arrayTy->getNumElements();
317     } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) {
318       elementType = fVectorTy->getElementType();
319       numElements = fVectorTy->getNumElements();
320     } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) {
321       elementType = sVectorTy->getElementType();
322       numElements = sVectorTy->getMinNumElements();
323       isScalable = true;
324     } else {
325       llvm_unreachable("unrecognized constant vector type");
326     }
327     // Splat value is a scalar. Extract it only if the element type is not
328     // another sequence type. The recursion terminates because each step removes
329     // one outer sequential type.
330     bool elementTypeSequential =
331         isa<llvm::ArrayType, llvm::VectorType>(elementType);
332     llvm::Constant *child = getLLVMConstant(
333         elementType,
334         elementTypeSequential ? splatAttr
335                               : splatAttr.getSplatValue<Attribute>(),
336         loc, moduleTranslation, false);
337     if (!child)
338       return nullptr;
339     if (llvmType->isVectorTy())
340       return llvm::ConstantVector::getSplat(
341           llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child);
342     if (llvmType->isArrayTy()) {
343       auto *arrayType = llvm::ArrayType::get(elementType, numElements);
344       SmallVector<llvm::Constant *, 8> constants(numElements, child);
345       return llvm::ConstantArray::get(arrayType, constants);
346     }
347   }
348 
349   // Try using raw elements data if possible.
350   if (llvm::Constant *result =
351           convertDenseElementsAttr(loc, attr.dyn_cast<DenseElementsAttr>(),
352                                    llvmType, moduleTranslation)) {
353     return result;
354   }
355 
356   // Fall back to element-by-element construction otherwise.
357   if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
358     assert(elementsAttr.getType().hasStaticShape());
359     assert(!elementsAttr.getType().getShape().empty() &&
360            "unexpected empty elements attribute shape");
361 
362     SmallVector<llvm::Constant *, 8> constants;
363     constants.reserve(elementsAttr.getNumElements());
364     llvm::Type *innermostType = getInnermostElementType(llvmType);
365     for (auto n : elementsAttr.getValues<Attribute>()) {
366       constants.push_back(
367           getLLVMConstant(innermostType, n, loc, moduleTranslation, false));
368       if (!constants.back())
369         return nullptr;
370     }
371     ArrayRef<llvm::Constant *> constantsRef = constants;
372     llvm::Constant *result = buildSequentialConstant(
373         constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
374     assert(constantsRef.empty() && "did not consume all elemental constants");
375     return result;
376   }
377 
378   if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
379     return llvm::ConstantDataArray::get(
380         moduleTranslation.getLLVMContext(),
381         ArrayRef<char>{stringAttr.getValue().data(),
382                        stringAttr.getValue().size()});
383   }
384   emitError(loc, "unsupported constant value");
385   return nullptr;
386 }
387 
388 ModuleTranslation::ModuleTranslation(Operation *module,
389                                      std::unique_ptr<llvm::Module> llvmModule)
390     : mlirModule(module), llvmModule(std::move(llvmModule)),
391       debugTranslation(
392           std::make_unique<DebugTranslation>(module, *this->llvmModule)),
393       typeTranslator(this->llvmModule->getContext()),
394       iface(module->getContext()) {
395   assert(satisfiesLLVMModule(mlirModule) &&
396          "mlirModule should honor LLVM's module semantics.");
397 }
398 ModuleTranslation::~ModuleTranslation() {
399   if (ompBuilder)
400     ompBuilder->finalize();
401 }
402 
403 void ModuleTranslation::forgetMapping(Region &region) {
404   SmallVector<Region *> toProcess;
405   toProcess.push_back(&region);
406   while (!toProcess.empty()) {
407     Region *current = toProcess.pop_back_val();
408     for (Block &block : *current) {
409       blockMapping.erase(&block);
410       for (Value arg : block.getArguments())
411         valueMapping.erase(arg);
412       for (Operation &op : block) {
413         for (Value value : op.getResults())
414           valueMapping.erase(value);
415         if (op.hasSuccessors())
416           branchMapping.erase(&op);
417         if (isa<LLVM::GlobalOp>(op))
418           globalsMapping.erase(&op);
419         accessGroupMetadataMapping.erase(&op);
420         llvm::append_range(
421             toProcess,
422             llvm::map_range(op.getRegions(), [](Region &r) { return &r; }));
423       }
424     }
425   }
426 }
427 
428 /// Get the SSA value passed to the current block from the terminator operation
429 /// of its predecessor.
430 static Value getPHISourceValue(Block *current, Block *pred,
431                                unsigned numArguments, unsigned index) {
432   Operation &terminator = *pred->getTerminator();
433   if (isa<LLVM::BrOp>(terminator))
434     return terminator.getOperand(index);
435 
436 #ifndef NDEBUG
437   llvm::SmallPtrSet<Block *, 4> seenSuccessors;
438   for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) {
439     Block *successor = terminator.getSuccessor(i);
440     auto branch = cast<BranchOpInterface>(terminator);
441     Optional<OperandRange> successorOperands = branch.getSuccessorOperands(i);
442     assert(
443         (!seenSuccessors.contains(successor) ||
444          (successorOperands && successorOperands->empty())) &&
445         "successors with arguments in LLVM branches must be different blocks");
446     seenSuccessors.insert(successor);
447   }
448 #endif
449 
450   // For instructions that branch based on a condition value, we need to take
451   // the operands for the branch that was taken.
452   if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
453     // For conditional branches, we take the operands from either the "true" or
454     // the "false" branch.
455     return condBranchOp.getSuccessor(0) == current
456                ? condBranchOp.getTrueDestOperands()[index]
457                : condBranchOp.getFalseDestOperands()[index];
458   }
459 
460   if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
461     // For switches, we take the operands from either the default case, or from
462     // the case branch that was taken.
463     if (switchOp.getDefaultDestination() == current)
464       return switchOp.getDefaultOperands()[index];
465     for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations()))
466       if (i.value() == current)
467         return switchOp.getCaseOperands(i.index())[index];
468   }
469 
470   if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) {
471     return invokeOp.getNormalDest() == current
472                ? invokeOp.getNormalDestOperands()[index]
473                : invokeOp.getUnwindDestOperands()[index];
474   }
475 
476   llvm_unreachable(
477       "only branch, switch or invoke operations can be terminators "
478       "of a block that has successors");
479 }
480 
481 /// Connect the PHI nodes to the results of preceding blocks.
482 void mlir::LLVM::detail::connectPHINodes(Region &region,
483                                          const ModuleTranslation &state) {
484   // Skip the first block, it cannot be branched to and its arguments correspond
485   // to the arguments of the LLVM function.
486   for (auto it = std::next(region.begin()), eit = region.end(); it != eit;
487        ++it) {
488     Block *bb = &*it;
489     llvm::BasicBlock *llvmBB = state.lookupBlock(bb);
490     auto phis = llvmBB->phis();
491     auto numArguments = bb->getNumArguments();
492     assert(numArguments == std::distance(phis.begin(), phis.end()));
493     for (auto &numberedPhiNode : llvm::enumerate(phis)) {
494       auto &phiNode = numberedPhiNode.value();
495       unsigned index = numberedPhiNode.index();
496       for (auto *pred : bb->getPredecessors()) {
497         // Find the LLVM IR block that contains the converted terminator
498         // instruction and use it in the PHI node. Note that this block is not
499         // necessarily the same as state.lookupBlock(pred), some operations
500         // (in particular, OpenMP operations using OpenMPIRBuilder) may have
501         // split the blocks.
502         llvm::Instruction *terminator =
503             state.lookupBranch(pred->getTerminator());
504         assert(terminator && "missing the mapping for a terminator");
505         phiNode.addIncoming(
506             state.lookupValue(getPHISourceValue(bb, pred, numArguments, index)),
507             terminator->getParent());
508       }
509     }
510   }
511 }
512 
513 /// Sort function blocks topologically.
514 SetVector<Block *>
515 mlir::LLVM::detail::getTopologicallySortedBlocks(Region &region) {
516   // For each block that has not been visited yet (i.e. that has no
517   // predecessors), add it to the list as well as its successors.
518   SetVector<Block *> blocks;
519   for (Block &b : region) {
520     if (blocks.count(&b) == 0) {
521       llvm::ReversePostOrderTraversal<Block *> traversal(&b);
522       blocks.insert(traversal.begin(), traversal.end());
523     }
524   }
525   assert(blocks.size() == region.getBlocks().size() &&
526          "some blocks are not sorted");
527 
528   return blocks;
529 }
530 
531 llvm::Value *mlir::LLVM::detail::createIntrinsicCall(
532     llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
533     ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
534   llvm::Module *module = builder.GetInsertBlock()->getModule();
535   llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
536   return builder.CreateCall(fn, args);
537 }
538 
539 /// Given a single MLIR operation, create the corresponding LLVM IR operation
540 /// using the `builder`.
541 LogicalResult
542 ModuleTranslation::convertOperation(Operation &op,
543                                     llvm::IRBuilderBase &builder) {
544   const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
545   if (!opIface)
546     return op.emitError("cannot be converted to LLVM IR: missing "
547                         "`LLVMTranslationDialectInterface` registration for "
548                         "dialect for op: ")
549            << op.getName();
550 
551   if (failed(opIface->convertOperation(&op, builder, *this)))
552     return op.emitError("LLVM Translation failed for operation: ")
553            << op.getName();
554 
555   return convertDialectAttributes(&op);
556 }
557 
558 /// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
559 /// to define values corresponding to the MLIR block arguments.  These nodes
560 /// are not connected to the source basic blocks, which may not exist yet.  Uses
561 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
562 /// been created for `bb` and included in the block mapping.  Inserts new
563 /// instructions at the end of the block and leaves `builder` in a state
564 /// suitable for further insertion into the end of the block.
565 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments,
566                                               llvm::IRBuilderBase &builder) {
567   builder.SetInsertPoint(lookupBlock(&bb));
568   auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
569 
570   // Before traversing operations, make block arguments available through
571   // value remapping and PHI nodes, but do not add incoming edges for the PHI
572   // nodes just yet: those values may be defined by this or following blocks.
573   // This step is omitted if "ignoreArguments" is set.  The arguments of the
574   // first block have been already made available through the remapping of
575   // LLVM function arguments.
576   if (!ignoreArguments) {
577     auto predecessors = bb.getPredecessors();
578     unsigned numPredecessors =
579         std::distance(predecessors.begin(), predecessors.end());
580     for (auto arg : bb.getArguments()) {
581       auto wrappedType = arg.getType();
582       if (!isCompatibleType(wrappedType))
583         return emitError(bb.front().getLoc(),
584                          "block argument does not have an LLVM type");
585       llvm::Type *type = convertType(wrappedType);
586       llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
587       mapValue(arg, phi);
588     }
589   }
590 
591   // Traverse operations.
592   for (auto &op : bb) {
593     // Set the current debug location within the builder.
594     builder.SetCurrentDebugLocation(
595         debugTranslation->translateLoc(op.getLoc(), subprogram));
596 
597     if (failed(convertOperation(op, builder)))
598       return failure();
599   }
600 
601   return success();
602 }
603 
604 /// A helper method to get the single Block in an operation honoring LLVM's
605 /// module requirements.
606 static Block &getModuleBody(Operation *module) {
607   return module->getRegion(0).front();
608 }
609 
610 /// A helper method to decide if a constant must not be set as a global variable
611 /// initializer. For an external linkage variable, the variable with an
612 /// initializer is considered externally visible and defined in this module, the
613 /// variable without an initializer is externally available and is defined
614 /// elsewhere.
615 static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
616                                         llvm::Constant *cst) {
617   return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
618          linkage == llvm::GlobalVariable::ExternalWeakLinkage;
619 }
620 
621 /// Sets the runtime preemption specifier of `gv` to dso_local if
622 /// `dsoLocalRequested` is true, otherwise it is left unchanged.
623 static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
624                                           llvm::GlobalValue *gv) {
625   if (dsoLocalRequested)
626     gv->setDSOLocal(true);
627 }
628 
629 /// Create named global variables that correspond to llvm.mlir.global
630 /// definitions. Convert llvm.global_ctors and global_dtors ops.
631 LogicalResult ModuleTranslation::convertGlobals() {
632   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
633     llvm::Type *type = convertType(op.getType());
634     llvm::Constant *cst = nullptr;
635     if (op.getValueOrNull()) {
636       // String attributes are treated separately because they cannot appear as
637       // in-function constants and are thus not supported by getLLVMConstant.
638       if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
639         cst = llvm::ConstantDataArray::getString(
640             llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
641         type = cst->getType();
642       } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
643                                          *this))) {
644         return failure();
645       }
646     }
647 
648     auto linkage = convertLinkageToLLVM(op.getLinkage());
649     auto addrSpace = op.getAddrSpace();
650 
651     // LLVM IR requires constant with linkage other than external or weak
652     // external to have initializers. If MLIR does not provide an initializer,
653     // default to undef.
654     bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
655     if (!dropInitializer && !cst)
656       cst = llvm::UndefValue::get(type);
657     else if (dropInitializer && cst)
658       cst = nullptr;
659 
660     auto *var = new llvm::GlobalVariable(
661         *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(),
662         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace);
663 
664     if (op.getUnnamedAddr().hasValue())
665       var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr()));
666 
667     if (op.getSection().hasValue())
668       var->setSection(*op.getSection());
669 
670     addRuntimePreemptionSpecifier(op.getDsoLocal(), var);
671 
672     Optional<uint64_t> alignment = op.getAlignment();
673     if (alignment.hasValue())
674       var->setAlignment(llvm::MaybeAlign(alignment.getValue()));
675 
676     globalsMapping.try_emplace(op, var);
677   }
678 
679   // Convert global variable bodies. This is done after all global variables
680   // have been created in LLVM IR because a global body may refer to another
681   // global or itself. So all global variables need to be mapped first.
682   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
683     if (Block *initializer = op.getInitializerBlock()) {
684       llvm::IRBuilder<> builder(llvmModule->getContext());
685       for (auto &op : initializer->without_terminator()) {
686         if (failed(convertOperation(op, builder)) ||
687             !isa<llvm::Constant>(lookupValue(op.getResult(0))))
688           return emitError(op.getLoc(), "unemittable constant value");
689       }
690       ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
691       llvm::Constant *cst =
692           cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
693       auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
694       if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
695         global->setInitializer(cst);
696     }
697   }
698 
699   // Convert llvm.mlir.global_ctors and dtors.
700   for (Operation &op : getModuleBody(mlirModule)) {
701     auto ctorOp = dyn_cast<GlobalCtorsOp>(op);
702     auto dtorOp = dyn_cast<GlobalDtorsOp>(op);
703     if (!ctorOp && !dtorOp)
704       continue;
705     auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities())
706                         : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities());
707     auto appendGlobalFn =
708         ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors;
709     for (auto symbolAndPriority : range) {
710       llvm::Function *f = lookupFunction(
711           std::get<0>(symbolAndPriority).cast<FlatSymbolRefAttr>().getValue());
712       appendGlobalFn(
713           *llvmModule, f,
714           std::get<1>(symbolAndPriority).cast<IntegerAttr>().getInt(),
715           /*Data=*/nullptr);
716     }
717   }
718 
719   return success();
720 }
721 
722 /// Attempts to add an attribute identified by `key`, optionally with the given
723 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
724 /// attribute has a kind known to LLVM IR, create the attribute of this kind,
725 /// otherwise keep it as a string attribute. Performs additional checks for
726 /// attributes known to have or not have a value in order to avoid assertions
727 /// inside LLVM upon construction.
728 static LogicalResult checkedAddLLVMFnAttribute(Location loc,
729                                                llvm::Function *llvmFunc,
730                                                StringRef key,
731                                                StringRef value = StringRef()) {
732   auto kind = llvm::Attribute::getAttrKindFromName(key);
733   if (kind == llvm::Attribute::None) {
734     llvmFunc->addFnAttr(key, value);
735     return success();
736   }
737 
738   if (llvm::Attribute::isIntAttrKind(kind)) {
739     if (value.empty())
740       return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
741 
742     int result;
743     if (!value.getAsInteger(/*Radix=*/0, result))
744       llvmFunc->addFnAttr(
745           llvm::Attribute::get(llvmFunc->getContext(), kind, result));
746     else
747       llvmFunc->addFnAttr(key, value);
748     return success();
749   }
750 
751   if (!value.empty())
752     return emitError(loc) << "LLVM attribute '" << key
753                           << "' does not expect a value, found '" << value
754                           << "'";
755 
756   llvmFunc->addFnAttr(kind);
757   return success();
758 }
759 
760 /// Attaches the attributes listed in the given array attribute to `llvmFunc`.
761 /// Reports error to `loc` if any and returns immediately. Expects `attributes`
762 /// to be an array attribute containing either string attributes, treated as
763 /// value-less LLVM attributes, or array attributes containing two string
764 /// attributes, with the first string being the name of the corresponding LLVM
765 /// attribute and the second string beings its value. Note that even integer
766 /// attributes are expected to have their values expressed as strings.
767 static LogicalResult
768 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes,
769                              llvm::Function *llvmFunc) {
770   if (!attributes)
771     return success();
772 
773   for (Attribute attr : *attributes) {
774     if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
775       if (failed(
776               checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
777         return failure();
778       continue;
779     }
780 
781     auto arrayAttr = attr.dyn_cast<ArrayAttr>();
782     if (!arrayAttr || arrayAttr.size() != 2)
783       return emitError(loc)
784              << "expected 'passthrough' to contain string or array attributes";
785 
786     auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>();
787     auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>();
788     if (!keyAttr || !valueAttr)
789       return emitError(loc)
790              << "expected arrays within 'passthrough' to contain two strings";
791 
792     if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
793                                          valueAttr.getValue())))
794       return failure();
795   }
796   return success();
797 }
798 
799 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
800   // Clear the block, branch value mappings, they are only relevant within one
801   // function.
802   blockMapping.clear();
803   valueMapping.clear();
804   branchMapping.clear();
805   llvm::Function *llvmFunc = lookupFunction(func.getName());
806 
807   // Translate the debug information for this function.
808   debugTranslation->translate(func, *llvmFunc);
809 
810   // Add function arguments to the value remapping table.
811   // If there was noalias info then we decorate each argument accordingly.
812   unsigned int argIdx = 0;
813   for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
814     llvm::Argument &llvmArg = std::get<1>(kvp);
815     BlockArgument mlirArg = std::get<0>(kvp);
816 
817     if (auto attr = func.getArgAttrOfType<UnitAttr>(
818             argIdx, LLVMDialect::getNoAliasAttrName())) {
819       // NB: Attribute already verified to be boolean, so check if we can indeed
820       // attach the attribute to this argument, based on its type.
821       auto argTy = mlirArg.getType();
822       if (!argTy.isa<LLVM::LLVMPointerType>())
823         return func.emitError(
824             "llvm.noalias attribute attached to LLVM non-pointer argument");
825       llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
826     }
827 
828     if (auto attr = func.getArgAttrOfType<IntegerAttr>(
829             argIdx, LLVMDialect::getAlignAttrName())) {
830       // NB: Attribute already verified to be int, so check if we can indeed
831       // attach the attribute to this argument, based on its type.
832       auto argTy = mlirArg.getType();
833       if (!argTy.isa<LLVM::LLVMPointerType>())
834         return func.emitError(
835             "llvm.align attribute attached to LLVM non-pointer argument");
836       llvmArg.addAttrs(
837           llvm::AttrBuilder(llvmArg.getContext()).addAlignmentAttr(llvm::Align(attr.getInt())));
838     }
839 
840     if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) {
841       auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMPointerType>();
842       if (!argTy)
843         return func.emitError(
844             "llvm.sret attribute attached to LLVM non-pointer argument");
845       llvmArg.addAttrs(
846           llvm::AttrBuilder(llvmArg.getContext())
847               .addStructRetAttr(convertType(argTy.getElementType())));
848     }
849 
850     if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) {
851       auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMPointerType>();
852       if (!argTy)
853         return func.emitError(
854             "llvm.byval attribute attached to LLVM non-pointer argument");
855       llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext())
856                            .addByValAttr(convertType(argTy.getElementType())));
857     }
858 
859     mapValue(mlirArg, &llvmArg);
860     argIdx++;
861   }
862 
863   // Check the personality and set it.
864   if (func.getPersonality().hasValue()) {
865     llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
866     if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(),
867                                                 func.getLoc(), *this))
868       llvmFunc->setPersonalityFn(pfunc);
869   }
870 
871   if (auto gc = func.getGarbageCollector())
872     llvmFunc->setGC(gc->str());
873 
874   // First, create all blocks so we can jump to them.
875   llvm::LLVMContext &llvmContext = llvmFunc->getContext();
876   for (auto &bb : func) {
877     auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
878     llvmBB->insertInto(llvmFunc);
879     mapBlock(&bb, llvmBB);
880   }
881 
882   // Then, convert blocks one by one in topological order to ensure defs are
883   // converted before uses.
884   auto blocks = detail::getTopologicallySortedBlocks(func.getBody());
885   for (Block *bb : blocks) {
886     llvm::IRBuilder<> builder(llvmContext);
887     if (failed(convertBlock(*bb, bb->isEntryBlock(), builder)))
888       return failure();
889   }
890 
891   // After all blocks have been traversed and values mapped, connect the PHI
892   // nodes to the results of preceding blocks.
893   detail::connectPHINodes(func.getBody(), *this);
894 
895   // Finally, convert dialect attributes attached to the function.
896   return convertDialectAttributes(func);
897 }
898 
899 LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) {
900   for (NamedAttribute attribute : op->getDialectAttrs())
901     if (failed(iface.amendOperation(op, attribute, *this)))
902       return failure();
903   return success();
904 }
905 
906 LogicalResult ModuleTranslation::convertFunctionSignatures() {
907   // Declare all functions first because there may be function calls that form a
908   // call graph with cycles, or global initializers that reference functions.
909   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
910     llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
911         function.getName(),
912         cast<llvm::FunctionType>(convertType(function.getType())));
913     llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
914     llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage()));
915     mapFunction(function.getName(), llvmFunc);
916     addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc);
917 
918     // Forward the pass-through attributes to LLVM.
919     if (failed(forwardPassthroughAttributes(
920             function.getLoc(), function.getPassthrough(), llvmFunc)))
921       return failure();
922   }
923 
924   return success();
925 }
926 
927 LogicalResult ModuleTranslation::convertFunctions() {
928   // Convert functions.
929   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
930     // Ignore external functions.
931     if (function.isExternal())
932       continue;
933 
934     if (failed(convertOneFunction(function)))
935       return failure();
936   }
937 
938   return success();
939 }
940 
941 llvm::MDNode *
942 ModuleTranslation::getAccessGroup(Operation &opInst,
943                                   SymbolRefAttr accessGroupRef) const {
944   auto metadataName = accessGroupRef.getRootReference();
945   auto accessGroupName = accessGroupRef.getLeafReference();
946   auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
947       opInst.getParentOp(), metadataName);
948   auto *accessGroupOp =
949       SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName);
950   return accessGroupMetadataMapping.lookup(accessGroupOp);
951 }
952 
953 LogicalResult ModuleTranslation::createAccessGroupMetadata() {
954   mlirModule->walk([&](LLVM::MetadataOp metadatas) {
955     metadatas.walk([&](LLVM::AccessGroupMetadataOp op) {
956       llvm::LLVMContext &ctx = llvmModule->getContext();
957       llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {});
958       accessGroupMetadataMapping.insert({op, accessGroup});
959     });
960   });
961   return success();
962 }
963 
964 void ModuleTranslation::setAccessGroupsMetadata(Operation *op,
965                                                 llvm::Instruction *inst) {
966   auto accessGroups =
967       op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName());
968   if (accessGroups && !accessGroups.empty()) {
969     llvm::Module *module = inst->getModule();
970     SmallVector<llvm::Metadata *> metadatas;
971     for (SymbolRefAttr accessGroupRef :
972          accessGroups.getAsRange<SymbolRefAttr>())
973       metadatas.push_back(getAccessGroup(*op, accessGroupRef));
974 
975     llvm::MDNode *unionMD = nullptr;
976     if (metadatas.size() == 1)
977       unionMD = llvm::cast<llvm::MDNode>(metadatas.front());
978     else if (metadatas.size() >= 2)
979       unionMD = llvm::MDNode::get(module->getContext(), metadatas);
980 
981     inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD);
982   }
983 }
984 
985 LogicalResult ModuleTranslation::createAliasScopeMetadata() {
986   mlirModule->walk([&](LLVM::MetadataOp metadatas) {
987     // Create the domains first, so they can be reference below in the scopes.
988     DenseMap<Operation *, llvm::MDNode *> aliasScopeDomainMetadataMapping;
989     metadatas.walk([&](LLVM::AliasScopeDomainMetadataOp op) {
990       llvm::LLVMContext &ctx = llvmModule->getContext();
991       llvm::SmallVector<llvm::Metadata *, 2> operands;
992       operands.push_back({}); // Placeholder for self-reference
993       if (Optional<StringRef> description = op.getDescription())
994         operands.push_back(llvm::MDString::get(ctx, description.getValue()));
995       llvm::MDNode *domain = llvm::MDNode::get(ctx, operands);
996       domain->replaceOperandWith(0, domain); // Self-reference for uniqueness
997       aliasScopeDomainMetadataMapping.insert({op, domain});
998     });
999 
1000     // Now create the scopes, referencing the domains created above.
1001     metadatas.walk([&](LLVM::AliasScopeMetadataOp op) {
1002       llvm::LLVMContext &ctx = llvmModule->getContext();
1003       assert(isa<LLVM::MetadataOp>(op->getParentOp()));
1004       auto metadataOp = dyn_cast<LLVM::MetadataOp>(op->getParentOp());
1005       Operation *domainOp =
1006           SymbolTable::lookupNearestSymbolFrom(metadataOp, op.getDomainAttr());
1007       llvm::MDNode *domain = aliasScopeDomainMetadataMapping.lookup(domainOp);
1008       assert(domain && "Scope's domain should already be valid");
1009       llvm::SmallVector<llvm::Metadata *, 3> operands;
1010       operands.push_back({}); // Placeholder for self-reference
1011       operands.push_back(domain);
1012       if (Optional<StringRef> description = op.getDescription())
1013         operands.push_back(llvm::MDString::get(ctx, description.getValue()));
1014       llvm::MDNode *scope = llvm::MDNode::get(ctx, operands);
1015       scope->replaceOperandWith(0, scope); // Self-reference for uniqueness
1016       aliasScopeMetadataMapping.insert({op, scope});
1017     });
1018   });
1019   return success();
1020 }
1021 
1022 llvm::MDNode *
1023 ModuleTranslation::getAliasScope(Operation &opInst,
1024                                  SymbolRefAttr aliasScopeRef) const {
1025   StringAttr metadataName = aliasScopeRef.getRootReference();
1026   StringAttr scopeName = aliasScopeRef.getLeafReference();
1027   auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
1028       opInst.getParentOp(), metadataName);
1029   Operation *aliasScopeOp =
1030       SymbolTable::lookupNearestSymbolFrom(metadataOp, scopeName);
1031   return aliasScopeMetadataMapping.lookup(aliasScopeOp);
1032 }
1033 
1034 void ModuleTranslation::setAliasScopeMetadata(Operation *op,
1035                                               llvm::Instruction *inst) {
1036   auto populateScopeMetadata = [this, op, inst](StringRef attrName,
1037                                                 StringRef llvmMetadataName) {
1038     auto scopes = op->getAttrOfType<ArrayAttr>(attrName);
1039     if (!scopes || scopes.empty())
1040       return;
1041     llvm::Module *module = inst->getModule();
1042     SmallVector<llvm::Metadata *> scopeMDs;
1043     for (SymbolRefAttr scopeRef : scopes.getAsRange<SymbolRefAttr>())
1044       scopeMDs.push_back(getAliasScope(*op, scopeRef));
1045     llvm::MDNode *unionMD = llvm::MDNode::get(module->getContext(), scopeMDs);
1046     inst->setMetadata(module->getMDKindID(llvmMetadataName), unionMD);
1047   };
1048 
1049   populateScopeMetadata(LLVMDialect::getAliasScopesAttrName(), "alias.scope");
1050   populateScopeMetadata(LLVMDialect::getNoAliasScopesAttrName(), "noalias");
1051 }
1052 
1053 llvm::Type *ModuleTranslation::convertType(Type type) {
1054   return typeTranslator.translateType(type);
1055 }
1056 
1057 /// A helper to look up remapped operands in the value remapping table.
1058 SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) {
1059   SmallVector<llvm::Value *> remapped;
1060   remapped.reserve(values.size());
1061   for (Value v : values)
1062     remapped.push_back(lookupValue(v));
1063   return remapped;
1064 }
1065 
1066 const llvm::DILocation *
1067 ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) {
1068   return debugTranslation->translateLoc(loc, scope);
1069 }
1070 
1071 llvm::NamedMDNode *
1072 ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
1073   return llvmModule->getOrInsertNamedMetadata(name);
1074 }
1075 
1076 void ModuleTranslation::StackFrame::anchor() {}
1077 
1078 static std::unique_ptr<llvm::Module>
1079 prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
1080                   StringRef name) {
1081   m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
1082   auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
1083   if (auto dataLayoutAttr =
1084           m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) {
1085     llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue());
1086   } else {
1087     FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout(""));
1088     if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) {
1089       if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) {
1090         llvmDataLayout =
1091             translateDataLayout(spec, DataLayout(iface), m->getLoc());
1092       }
1093     } else if (auto mod = dyn_cast<ModuleOp>(m)) {
1094       if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) {
1095         llvmDataLayout =
1096             translateDataLayout(spec, DataLayout(mod), m->getLoc());
1097       }
1098     }
1099     if (failed(llvmDataLayout))
1100       return nullptr;
1101     llvmModule->setDataLayout(*llvmDataLayout);
1102   }
1103   if (auto targetTripleAttr =
1104           m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
1105     llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue());
1106 
1107   // Inject declarations for `malloc` and `free` functions that can be used in
1108   // memref allocation/deallocation coming from standard ops lowering.
1109   llvm::IRBuilder<> builder(llvmContext);
1110   llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
1111                                   builder.getInt64Ty());
1112   llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
1113                                   builder.getInt8PtrTy());
1114 
1115   return llvmModule;
1116 }
1117 
1118 std::unique_ptr<llvm::Module>
1119 mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
1120                               StringRef name) {
1121   if (!satisfiesLLVMModule(module))
1122     return nullptr;
1123 
1124   std::unique_ptr<llvm::Module> llvmModule =
1125       prepareLLVMModule(module, llvmContext, name);
1126   if (!llvmModule)
1127     return nullptr;
1128 
1129   LLVM::ensureDistinctSuccessors(module);
1130 
1131   ModuleTranslation translator(module, std::move(llvmModule));
1132   if (failed(translator.convertFunctionSignatures()))
1133     return nullptr;
1134   if (failed(translator.convertGlobals()))
1135     return nullptr;
1136   if (failed(translator.createAccessGroupMetadata()))
1137     return nullptr;
1138   if (failed(translator.createAliasScopeMetadata()))
1139     return nullptr;
1140   if (failed(translator.convertFunctions()))
1141     return nullptr;
1142 
1143   // Convert other top-level operations if possible.
1144   llvm::IRBuilder<> llvmBuilder(llvmContext);
1145   for (Operation &o : getModuleBody(module).getOperations()) {
1146     if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp,
1147              LLVM::GlobalDtorsOp, LLVM::MetadataOp>(&o) &&
1148         !o.hasTrait<OpTrait::IsTerminator>() &&
1149         failed(translator.convertOperation(o, llvmBuilder))) {
1150       return nullptr;
1151     }
1152   }
1153 
1154   if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
1155     return nullptr;
1156 
1157   return std::move(translator.llvmModule);
1158 }
1159