1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the translation between an MLIR LLVM dialect module and
10 // the corresponding LLVMIR module. It only handles core LLVM IR operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
15 
16 #include "DebugTranslation.h"
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
19 #include "mlir/IR/Attributes.h"
20 #include "mlir/IR/Module.h"
21 #include "mlir/IR/StandardTypes.h"
22 #include "mlir/Support/LLVM.h"
23 #include "llvm/ADT/TypeSwitch.h"
24 
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/MDBuilder.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Cloning.h"
37 
38 using namespace mlir;
39 using namespace mlir::LLVM;
40 using namespace mlir::LLVM::detail;
41 
42 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
43 
44 /// Builds a constant of a sequential LLVM type `type`, potentially containing
45 /// other sequential types recursively, from the individual constant values
46 /// provided in `constants`. `shape` contains the number of elements in nested
47 /// sequential types. Reports errors at `loc` and returns nullptr on error.
48 static llvm::Constant *
49 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
50                         ArrayRef<int64_t> shape, llvm::Type *type,
51                         Location loc) {
52   if (shape.empty()) {
53     llvm::Constant *result = constants.front();
54     constants = constants.drop_front();
55     return result;
56   }
57 
58   llvm::Type *elementType;
59   if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
60     elementType = arrayTy->getElementType();
61   } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
62     elementType = vectorTy->getElementType();
63   } else {
64     emitError(loc) << "expected sequential LLVM types wrapping a scalar";
65     return nullptr;
66   }
67 
68   SmallVector<llvm::Constant *, 8> nested;
69   nested.reserve(shape.front());
70   for (int64_t i = 0; i < shape.front(); ++i) {
71     nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
72                                              elementType, loc));
73     if (!nested.back())
74       return nullptr;
75   }
76 
77   if (shape.size() == 1 && type->isVectorTy())
78     return llvm::ConstantVector::get(nested);
79   return llvm::ConstantArray::get(
80       llvm::ArrayType::get(elementType, shape.front()), nested);
81 }
82 
83 /// Returns the first non-sequential type nested in sequential types.
84 static llvm::Type *getInnermostElementType(llvm::Type *type) {
85   do {
86     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
87       type = arrayTy->getElementType();
88     } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
89       type = vectorTy->getElementType();
90     } else {
91       return type;
92     }
93   } while (1);
94 }
95 
96 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
97 /// This currently supports integer, floating point, splat and dense element
98 /// attributes and combinations thereof.  In case of error, report it to `loc`
99 /// and return nullptr.
100 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType,
101                                                    Attribute attr,
102                                                    Location loc) {
103   if (!attr)
104     return llvm::UndefValue::get(llvmType);
105   if (llvmType->isStructTy()) {
106     emitError(loc, "struct types are not supported in constants");
107     return nullptr;
108   }
109   // For integer types, we allow a mismatch in sizes as the index type in
110   // MLIR might have a different size than the index type in the LLVM module.
111   if (auto intAttr = attr.dyn_cast<IntegerAttr>())
112     return llvm::ConstantInt::get(
113         llvmType,
114         intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
115   if (auto floatAttr = attr.dyn_cast<FloatAttr>())
116     return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
117   if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
118     return llvm::ConstantExpr::getBitCast(
119         functionMapping.lookup(funcAttr.getValue()), llvmType);
120   if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
121     llvm::Type *elementType;
122     uint64_t numElements;
123     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
124       elementType = arrayTy->getElementType();
125       numElements = arrayTy->getNumElements();
126     } else {
127       auto *vectorTy = cast<llvm::FixedVectorType>(llvmType);
128       elementType = vectorTy->getElementType();
129       numElements = vectorTy->getNumElements();
130     }
131     // Splat value is a scalar. Extract it only if the element type is not
132     // another sequence type. The recursion terminates because each step removes
133     // one outer sequential type.
134     bool elementTypeSequential =
135         isa<llvm::ArrayType, llvm::VectorType>(elementType);
136     llvm::Constant *child = getLLVMConstant(
137         elementType,
138         elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc);
139     if (!child)
140       return nullptr;
141     if (llvmType->isVectorTy())
142       return llvm::ConstantVector::getSplat(
143           llvm::ElementCount(numElements, /*Scalable=*/false), child);
144     if (llvmType->isArrayTy()) {
145       auto *arrayType = llvm::ArrayType::get(elementType, numElements);
146       SmallVector<llvm::Constant *, 8> constants(numElements, child);
147       return llvm::ConstantArray::get(arrayType, constants);
148     }
149   }
150 
151   if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
152     assert(elementsAttr.getType().hasStaticShape());
153     assert(elementsAttr.getNumElements() != 0 &&
154            "unexpected empty elements attribute");
155     assert(!elementsAttr.getType().getShape().empty() &&
156            "unexpected empty elements attribute shape");
157 
158     SmallVector<llvm::Constant *, 8> constants;
159     constants.reserve(elementsAttr.getNumElements());
160     llvm::Type *innermostType = getInnermostElementType(llvmType);
161     for (auto n : elementsAttr.getValues<Attribute>()) {
162       constants.push_back(getLLVMConstant(innermostType, n, loc));
163       if (!constants.back())
164         return nullptr;
165     }
166     ArrayRef<llvm::Constant *> constantsRef = constants;
167     llvm::Constant *result = buildSequentialConstant(
168         constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
169     assert(constantsRef.empty() && "did not consume all elemental constants");
170     return result;
171   }
172 
173   if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
174     return llvm::ConstantDataArray::get(
175         llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(),
176                                                  stringAttr.getValue().size()});
177   }
178   emitError(loc, "unsupported constant value");
179   return nullptr;
180 }
181 
182 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate.
183 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) {
184   switch (p) {
185   case LLVM::ICmpPredicate::eq:
186     return llvm::CmpInst::Predicate::ICMP_EQ;
187   case LLVM::ICmpPredicate::ne:
188     return llvm::CmpInst::Predicate::ICMP_NE;
189   case LLVM::ICmpPredicate::slt:
190     return llvm::CmpInst::Predicate::ICMP_SLT;
191   case LLVM::ICmpPredicate::sle:
192     return llvm::CmpInst::Predicate::ICMP_SLE;
193   case LLVM::ICmpPredicate::sgt:
194     return llvm::CmpInst::Predicate::ICMP_SGT;
195   case LLVM::ICmpPredicate::sge:
196     return llvm::CmpInst::Predicate::ICMP_SGE;
197   case LLVM::ICmpPredicate::ult:
198     return llvm::CmpInst::Predicate::ICMP_ULT;
199   case LLVM::ICmpPredicate::ule:
200     return llvm::CmpInst::Predicate::ICMP_ULE;
201   case LLVM::ICmpPredicate::ugt:
202     return llvm::CmpInst::Predicate::ICMP_UGT;
203   case LLVM::ICmpPredicate::uge:
204     return llvm::CmpInst::Predicate::ICMP_UGE;
205   }
206   llvm_unreachable("incorrect comparison predicate");
207 }
208 
209 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) {
210   switch (p) {
211   case LLVM::FCmpPredicate::_false:
212     return llvm::CmpInst::Predicate::FCMP_FALSE;
213   case LLVM::FCmpPredicate::oeq:
214     return llvm::CmpInst::Predicate::FCMP_OEQ;
215   case LLVM::FCmpPredicate::ogt:
216     return llvm::CmpInst::Predicate::FCMP_OGT;
217   case LLVM::FCmpPredicate::oge:
218     return llvm::CmpInst::Predicate::FCMP_OGE;
219   case LLVM::FCmpPredicate::olt:
220     return llvm::CmpInst::Predicate::FCMP_OLT;
221   case LLVM::FCmpPredicate::ole:
222     return llvm::CmpInst::Predicate::FCMP_OLE;
223   case LLVM::FCmpPredicate::one:
224     return llvm::CmpInst::Predicate::FCMP_ONE;
225   case LLVM::FCmpPredicate::ord:
226     return llvm::CmpInst::Predicate::FCMP_ORD;
227   case LLVM::FCmpPredicate::ueq:
228     return llvm::CmpInst::Predicate::FCMP_UEQ;
229   case LLVM::FCmpPredicate::ugt:
230     return llvm::CmpInst::Predicate::FCMP_UGT;
231   case LLVM::FCmpPredicate::uge:
232     return llvm::CmpInst::Predicate::FCMP_UGE;
233   case LLVM::FCmpPredicate::ult:
234     return llvm::CmpInst::Predicate::FCMP_ULT;
235   case LLVM::FCmpPredicate::ule:
236     return llvm::CmpInst::Predicate::FCMP_ULE;
237   case LLVM::FCmpPredicate::une:
238     return llvm::CmpInst::Predicate::FCMP_UNE;
239   case LLVM::FCmpPredicate::uno:
240     return llvm::CmpInst::Predicate::FCMP_UNO;
241   case LLVM::FCmpPredicate::_true:
242     return llvm::CmpInst::Predicate::FCMP_TRUE;
243   }
244   llvm_unreachable("incorrect comparison predicate");
245 }
246 
247 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) {
248   switch (op) {
249   case LLVM::AtomicBinOp::xchg:
250     return llvm::AtomicRMWInst::BinOp::Xchg;
251   case LLVM::AtomicBinOp::add:
252     return llvm::AtomicRMWInst::BinOp::Add;
253   case LLVM::AtomicBinOp::sub:
254     return llvm::AtomicRMWInst::BinOp::Sub;
255   case LLVM::AtomicBinOp::_and:
256     return llvm::AtomicRMWInst::BinOp::And;
257   case LLVM::AtomicBinOp::nand:
258     return llvm::AtomicRMWInst::BinOp::Nand;
259   case LLVM::AtomicBinOp::_or:
260     return llvm::AtomicRMWInst::BinOp::Or;
261   case LLVM::AtomicBinOp::_xor:
262     return llvm::AtomicRMWInst::BinOp::Xor;
263   case LLVM::AtomicBinOp::max:
264     return llvm::AtomicRMWInst::BinOp::Max;
265   case LLVM::AtomicBinOp::min:
266     return llvm::AtomicRMWInst::BinOp::Min;
267   case LLVM::AtomicBinOp::umax:
268     return llvm::AtomicRMWInst::BinOp::UMax;
269   case LLVM::AtomicBinOp::umin:
270     return llvm::AtomicRMWInst::BinOp::UMin;
271   case LLVM::AtomicBinOp::fadd:
272     return llvm::AtomicRMWInst::BinOp::FAdd;
273   case LLVM::AtomicBinOp::fsub:
274     return llvm::AtomicRMWInst::BinOp::FSub;
275   }
276   llvm_unreachable("incorrect atomic binary operator");
277 }
278 
279 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) {
280   switch (ordering) {
281   case LLVM::AtomicOrdering::not_atomic:
282     return llvm::AtomicOrdering::NotAtomic;
283   case LLVM::AtomicOrdering::unordered:
284     return llvm::AtomicOrdering::Unordered;
285   case LLVM::AtomicOrdering::monotonic:
286     return llvm::AtomicOrdering::Monotonic;
287   case LLVM::AtomicOrdering::acquire:
288     return llvm::AtomicOrdering::Acquire;
289   case LLVM::AtomicOrdering::release:
290     return llvm::AtomicOrdering::Release;
291   case LLVM::AtomicOrdering::acq_rel:
292     return llvm::AtomicOrdering::AcquireRelease;
293   case LLVM::AtomicOrdering::seq_cst:
294     return llvm::AtomicOrdering::SequentiallyConsistent;
295   }
296   llvm_unreachable("incorrect atomic ordering");
297 }
298 
299 ModuleTranslation::ModuleTranslation(Operation *module,
300                                      std::unique_ptr<llvm::Module> llvmModule)
301     : mlirModule(module), llvmModule(std::move(llvmModule)),
302       debugTranslation(
303           std::make_unique<DebugTranslation>(module, *this->llvmModule)),
304       ompDialect(
305           module->getContext()->getRegisteredDialect<omp::OpenMPDialect>()),
306       llvmDialect(module->getContext()->getRegisteredDialect<LLVMDialect>()) {
307   assert(satisfiesLLVMModule(mlirModule) &&
308          "mlirModule should honor LLVM's module semantics.");
309 }
310 ModuleTranslation::~ModuleTranslation() {
311   if (ompBuilder)
312     ompBuilder->finalize();
313 }
314 
315 /// Get the SSA value passed to the current block from the terminator operation
316 /// of its predecessor.
317 static Value getPHISourceValue(Block *current, Block *pred,
318                                unsigned numArguments, unsigned index) {
319   Operation &terminator = *pred->getTerminator();
320   if (isa<LLVM::BrOp>(terminator))
321     return terminator.getOperand(index);
322 
323   // For conditional branches, we need to check if the current block is reached
324   // through the "true" or the "false" branch and take the relevant operands.
325   auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator);
326   assert(condBranchOp &&
327          "only branch operations can be terminators of a block that "
328          "has successors");
329   assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) &&
330          "successors with arguments in LLVM conditional branches must be "
331          "different blocks");
332 
333   return condBranchOp.getSuccessor(0) == current
334              ? condBranchOp.trueDestOperands()[index]
335              : condBranchOp.falseDestOperands()[index];
336 }
337 
338 /// Connect the PHI nodes to the results of preceding blocks.
339 template <typename T>
340 static void
341 connectPHINodes(T &func, const DenseMap<Value, llvm::Value *> &valueMapping,
342                 const DenseMap<Block *, llvm::BasicBlock *> &blockMapping) {
343   // Skip the first block, it cannot be branched to and its arguments correspond
344   // to the arguments of the LLVM function.
345   for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) {
346     Block *bb = &*it;
347     llvm::BasicBlock *llvmBB = blockMapping.lookup(bb);
348     auto phis = llvmBB->phis();
349     auto numArguments = bb->getNumArguments();
350     assert(numArguments == std::distance(phis.begin(), phis.end()));
351     for (auto &numberedPhiNode : llvm::enumerate(phis)) {
352       auto &phiNode = numberedPhiNode.value();
353       unsigned index = numberedPhiNode.index();
354       for (auto *pred : bb->getPredecessors()) {
355         phiNode.addIncoming(valueMapping.lookup(getPHISourceValue(
356                                 bb, pred, numArguments, index)),
357                             blockMapping.lookup(pred));
358       }
359     }
360   }
361 }
362 
363 // TODO: implement an iterative version
364 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) {
365   blocks.insert(b);
366   for (Block *bb : b->getSuccessors()) {
367     if (blocks.count(bb) == 0)
368       topologicalSortImpl(blocks, bb);
369   }
370 }
371 
372 /// Sort function blocks topologically.
373 template <typename T>
374 static llvm::SetVector<Block *> topologicalSort(T &f) {
375   // For each blocks that has not been visited yet (i.e. that has no
376   // predecessors), add it to the list and traverse its successors in DFS
377   // preorder.
378   llvm::SetVector<Block *> blocks;
379   for (Block &b : f) {
380     if (blocks.count(&b) == 0)
381       topologicalSortImpl(blocks, &b);
382   }
383   assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted");
384 
385   return blocks;
386 }
387 
388 /// Convert the OpenMP parallel Operation to LLVM IR.
389 LogicalResult
390 ModuleTranslation::convertOmpParallel(Operation &opInst,
391                                       llvm::IRBuilder<> &builder) {
392   using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
393 
394   auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP,
395                        llvm::BasicBlock &continuationIP) {
396     llvm::LLVMContext &llvmContext = llvmModule->getContext();
397 
398     llvm::BasicBlock *codeGenIPBB = codeGenIP.getBlock();
399     llvm::Instruction *codeGenIPBBTI = codeGenIPBB->getTerminator();
400 
401     builder.SetInsertPoint(codeGenIPBB);
402 
403     for (auto &region : opInst.getRegions()) {
404       for (auto &bb : region) {
405         auto *llvmBB = llvm::BasicBlock::Create(
406             llvmContext, "omp.par.region", codeGenIP.getBlock()->getParent());
407         blockMapping[&bb] = llvmBB;
408       }
409 
410       // Then, convert blocks one by one in topological order to ensure
411       // defs are converted before uses.
412       llvm::SetVector<Block *> blocks = topologicalSort(region);
413       for (auto indexedBB : llvm::enumerate(blocks)) {
414         Block *bb = indexedBB.value();
415         llvm::BasicBlock *curLLVMBB = blockMapping[bb];
416         if (bb->isEntryBlock())
417           codeGenIPBBTI->setSuccessor(0, curLLVMBB);
418 
419         // TODO: Error not returned up the hierarchy
420         if (failed(
421                 convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0)))
422           return;
423 
424         // If this block has the terminator then add a jump to
425         // continuation bb
426         for (auto &op : *bb) {
427           if (isa<omp::TerminatorOp>(op)) {
428             builder.SetInsertPoint(curLLVMBB);
429             builder.CreateBr(&continuationIP);
430           }
431         }
432       }
433       // Finally, after all blocks have been traversed and values mapped,
434       // connect the PHI nodes to the results of preceding blocks.
435       connectPHINodes(region, valueMapping, blockMapping);
436     }
437   };
438 
439   // TODO: Perform appropriate actions according to the data-sharing
440   // attribute (shared, private, firstprivate, ...) of variables.
441   // Currently defaults to shared.
442   auto privCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP,
443                     llvm::Value &vPtr,
444                     llvm::Value *&replacementValue) -> InsertPointTy {
445     replacementValue = &vPtr;
446 
447     return codeGenIP;
448   };
449 
450   // TODO: Perform finalization actions for variables. This has to be
451   // called for variables which have destructors/finalizers.
452   auto finiCB = [&](InsertPointTy codeGenIP) {};
453 
454   // TODO: The various operands of parallel operation are not handled.
455   // Parallel operation is created with some default options for now.
456   llvm::Value *ifCond = nullptr;
457   llvm::Value *numThreads = nullptr;
458   bool isCancellable = false;
459   builder.restoreIP(ompBuilder->CreateParallel(
460       builder, bodyGenCB, privCB, finiCB, ifCond, numThreads,
461       llvm::omp::OMP_PROC_BIND_default, isCancellable));
462   return success();
463 }
464 
465 /// Given an OpenMP MLIR operation, create the corresponding LLVM IR
466 /// (including OpenMP runtime calls).
467 LogicalResult
468 ModuleTranslation::convertOmpOperation(Operation &opInst,
469                                        llvm::IRBuilder<> &builder) {
470   if (!ompBuilder) {
471     ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule);
472     ompBuilder->initialize();
473   }
474   return llvm::TypeSwitch<Operation *, LogicalResult>(&opInst)
475       .Case([&](omp::BarrierOp) {
476         ompBuilder->CreateBarrier(builder.saveIP(), llvm::omp::OMPD_barrier);
477         return success();
478       })
479       .Case([&](omp::TaskwaitOp) {
480         ompBuilder->CreateTaskwait(builder.saveIP());
481         return success();
482       })
483       .Case([&](omp::TaskyieldOp) {
484         ompBuilder->CreateTaskyield(builder.saveIP());
485         return success();
486       })
487       .Case([&](omp::FlushOp) {
488         // No support in Openmp runtime funciton (__kmpc_flush) to accept
489         // the argument list.
490         // OpenMP standard states the following:
491         //  "An implementation may implement a flush with a list by ignoring
492         //   the list, and treating it the same as a flush without a list."
493         //
494         // The argument list is discarded so that, flush with a list is treated
495         // same as a flush without a list.
496         ompBuilder->CreateFlush(builder.saveIP());
497         return success();
498       })
499       .Case([&](omp::TerminatorOp) { return success(); })
500       .Case(
501           [&](omp::ParallelOp) { return convertOmpParallel(opInst, builder); })
502       .Default([&](Operation *inst) {
503         return inst->emitError("unsupported OpenMP operation: ")
504                << inst->getName();
505       });
506 }
507 
508 /// Given a single MLIR operation, create the corresponding LLVM IR operation
509 /// using the `builder`.  LLVM IR Builder does not have a generic interface so
510 /// this has to be a long chain of `if`s calling different functions with a
511 /// different number of arguments.
512 LogicalResult ModuleTranslation::convertOperation(Operation &opInst,
513                                                   llvm::IRBuilder<> &builder) {
514   auto extractPosition = [](ArrayAttr attr) {
515     SmallVector<unsigned, 4> position;
516     position.reserve(attr.size());
517     for (Attribute v : attr)
518       position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue());
519     return position;
520   };
521 
522 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc"
523 
524   // Emit function calls.  If the "callee" attribute is present, this is a
525   // direct function call and we also need to look up the remapped function
526   // itself.  Otherwise, this is an indirect call and the callee is the first
527   // operand, look it up as a normal value.  Return the llvm::Value representing
528   // the function result, which may be of llvm::VoidTy type.
529   auto convertCall = [this, &builder](Operation &op) -> llvm::Value * {
530     auto operands = lookupValues(op.getOperands());
531     ArrayRef<llvm::Value *> operandsRef(operands);
532     if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) {
533       return builder.CreateCall(functionMapping.lookup(attr.getValue()),
534                                 operandsRef);
535     } else {
536       auto *calleePtrType =
537           cast<llvm::PointerType>(operandsRef.front()->getType());
538       auto *calleeType =
539           cast<llvm::FunctionType>(calleePtrType->getElementType());
540       return builder.CreateCall(calleeType, operandsRef.front(),
541                                 operandsRef.drop_front());
542     }
543   };
544 
545   // Emit calls.  If the called function has a result, remap the corresponding
546   // value.  Note that LLVM IR dialect CallOp has either 0 or 1 result.
547   if (isa<LLVM::CallOp>(opInst)) {
548     llvm::Value *result = convertCall(opInst);
549     if (opInst.getNumResults() != 0) {
550       valueMapping[opInst.getResult(0)] = result;
551       return success();
552     }
553     // Check that LLVM call returns void for 0-result functions.
554     return success(result->getType()->isVoidTy());
555   }
556 
557   if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) {
558     auto operands = lookupValues(opInst.getOperands());
559     ArrayRef<llvm::Value *> operandsRef(operands);
560     if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) {
561       builder.CreateInvoke(functionMapping.lookup(attr.getValue()),
562                            blockMapping[invOp.getSuccessor(0)],
563                            blockMapping[invOp.getSuccessor(1)], operandsRef);
564     } else {
565       auto *calleePtrType =
566           cast<llvm::PointerType>(operandsRef.front()->getType());
567       auto *calleeType =
568           cast<llvm::FunctionType>(calleePtrType->getElementType());
569       builder.CreateInvoke(
570           calleeType, operandsRef.front(), blockMapping[invOp.getSuccessor(0)],
571           blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front());
572     }
573     return success();
574   }
575 
576   if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) {
577     llvm::Type *ty = convertType(lpOp.getType().cast<LLVMType>());
578     llvm::LandingPadInst *lpi =
579         builder.CreateLandingPad(ty, lpOp.getNumOperands());
580 
581     // Add clauses
582     for (auto operand : lookupValues(lpOp.getOperands())) {
583       // All operands should be constant - checked by verifier
584       if (auto constOperand = dyn_cast<llvm::Constant>(operand))
585         lpi->addClause(constOperand);
586     }
587     valueMapping[lpOp.getResult()] = lpi;
588     return success();
589   }
590 
591   // Emit branches.  We need to look up the remapped blocks and ignore the block
592   // arguments that were transformed into PHI nodes.
593   if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) {
594     builder.CreateBr(blockMapping[brOp.getSuccessor()]);
595     return success();
596   }
597   if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) {
598     auto weights = condbrOp.branch_weights();
599     llvm::MDNode *branchWeights = nullptr;
600     if (weights) {
601       // Map weight attributes to LLVM metadata.
602       auto trueWeight =
603           weights.getValue().getValue(0).cast<IntegerAttr>().getInt();
604       auto falseWeight =
605           weights.getValue().getValue(1).cast<IntegerAttr>().getInt();
606       branchWeights =
607           llvm::MDBuilder(llvmModule->getContext())
608               .createBranchWeights(static_cast<uint32_t>(trueWeight),
609                                    static_cast<uint32_t>(falseWeight));
610     }
611     builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)),
612                          blockMapping[condbrOp.getSuccessor(0)],
613                          blockMapping[condbrOp.getSuccessor(1)], branchWeights);
614     return success();
615   }
616 
617   // Emit addressof.  We need to look up the global value referenced by the
618   // operation and store it in the MLIR-to-LLVM value mapping.  This does not
619   // emit any LLVM instruction.
620   if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) {
621     LLVM::GlobalOp global = addressOfOp.getGlobal();
622     LLVM::LLVMFuncOp function = addressOfOp.getFunction();
623 
624     // The verifier should not have allowed this.
625     assert((global || function) &&
626            "referencing an undefined global or function");
627 
628     valueMapping[addressOfOp.getResult()] =
629         global ? globalsMapping.lookup(global)
630                : functionMapping.lookup(function.getName());
631     return success();
632   }
633 
634   if (opInst.getDialect() == ompDialect) {
635     return convertOmpOperation(opInst, builder);
636   }
637 
638   return opInst.emitError("unsupported or non-LLVM operation: ")
639          << opInst.getName();
640 }
641 
642 /// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
643 /// to define values corresponding to the MLIR block arguments.  These nodes
644 /// are not connected to the source basic blocks, which may not exist yet.
645 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) {
646   llvm::IRBuilder<> builder(blockMapping[&bb]);
647   auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
648 
649   // Before traversing operations, make block arguments available through
650   // value remapping and PHI nodes, but do not add incoming edges for the PHI
651   // nodes just yet: those values may be defined by this or following blocks.
652   // This step is omitted if "ignoreArguments" is set.  The arguments of the
653   // first block have been already made available through the remapping of
654   // LLVM function arguments.
655   if (!ignoreArguments) {
656     auto predecessors = bb.getPredecessors();
657     unsigned numPredecessors =
658         std::distance(predecessors.begin(), predecessors.end());
659     for (auto arg : bb.getArguments()) {
660       auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>();
661       if (!wrappedType)
662         return emitError(bb.front().getLoc(),
663                          "block argument does not have an LLVM type");
664       llvm::Type *type = convertType(wrappedType);
665       llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
666       valueMapping[arg] = phi;
667     }
668   }
669 
670   // Traverse operations.
671   for (auto &op : bb) {
672     // Set the current debug location within the builder.
673     builder.SetCurrentDebugLocation(
674         debugTranslation->translateLoc(op.getLoc(), subprogram));
675 
676     if (failed(convertOperation(op, builder)))
677       return failure();
678   }
679 
680   return success();
681 }
682 
683 /// Create named global variables that correspond to llvm.mlir.global
684 /// definitions.
685 LogicalResult ModuleTranslation::convertGlobals() {
686   // Lock access to the llvm context.
687   llvm::sys::SmartScopedLock<true> scopedLock(
688       llvmDialect->getLLVMContextMutex());
689   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
690     llvm::Type *type = convertType(op.getType());
691     llvm::Constant *cst = llvm::UndefValue::get(type);
692     if (op.getValueOrNull()) {
693       // String attributes are treated separately because they cannot appear as
694       // in-function constants and are thus not supported by getLLVMConstant.
695       if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
696         cst = llvm::ConstantDataArray::getString(
697             llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
698         type = cst->getType();
699       } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(),
700                                          op.getLoc()))) {
701         return failure();
702       }
703     } else if (Block *initializer = op.getInitializerBlock()) {
704       llvm::IRBuilder<> builder(llvmModule->getContext());
705       for (auto &op : initializer->without_terminator()) {
706         if (failed(convertOperation(op, builder)) ||
707             !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0))))
708           return emitError(op.getLoc(), "unemittable constant value");
709       }
710       ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
711       cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0)));
712     }
713 
714     auto linkage = convertLinkageToLLVM(op.linkage());
715     bool anyExternalLinkage =
716         ((linkage == llvm::GlobalVariable::ExternalLinkage &&
717           isa<llvm::UndefValue>(cst)) ||
718          linkage == llvm::GlobalVariable::ExternalWeakLinkage);
719     auto addrSpace = op.addr_space().getLimitedValue();
720     auto *var = new llvm::GlobalVariable(
721         *llvmModule, type, op.constant(), linkage,
722         anyExternalLinkage ? nullptr : cst, op.sym_name(),
723         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace);
724 
725     globalsMapping.try_emplace(op, var);
726   }
727 
728   return success();
729 }
730 
731 /// Attempts to add an attribute identified by `key`, optionally with the given
732 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
733 /// attribute has a kind known to LLVM IR, create the attribute of this kind,
734 /// otherwise keep it as a string attribute. Performs additional checks for
735 /// attributes known to have or not have a value in order to avoid assertions
736 /// inside LLVM upon construction.
737 static LogicalResult checkedAddLLVMFnAttribute(Location loc,
738                                                llvm::Function *llvmFunc,
739                                                StringRef key,
740                                                StringRef value = StringRef()) {
741   auto kind = llvm::Attribute::getAttrKindFromName(key);
742   if (kind == llvm::Attribute::None) {
743     llvmFunc->addFnAttr(key, value);
744     return success();
745   }
746 
747   if (llvm::Attribute::doesAttrKindHaveArgument(kind)) {
748     if (value.empty())
749       return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
750 
751     int result;
752     if (!value.getAsInteger(/*Radix=*/0, result))
753       llvmFunc->addFnAttr(
754           llvm::Attribute::get(llvmFunc->getContext(), kind, result));
755     else
756       llvmFunc->addFnAttr(key, value);
757     return success();
758   }
759 
760   if (!value.empty())
761     return emitError(loc) << "LLVM attribute '" << key
762                           << "' does not expect a value, found '" << value
763                           << "'";
764 
765   llvmFunc->addFnAttr(kind);
766   return success();
767 }
768 
769 /// Attaches the attributes listed in the given array attribute to `llvmFunc`.
770 /// Reports error to `loc` if any and returns immediately. Expects `attributes`
771 /// to be an array attribute containing either string attributes, treated as
772 /// value-less LLVM attributes, or array attributes containing two string
773 /// attributes, with the first string being the name of the corresponding LLVM
774 /// attribute and the second string beings its value. Note that even integer
775 /// attributes are expected to have their values expressed as strings.
776 static LogicalResult
777 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes,
778                              llvm::Function *llvmFunc) {
779   if (!attributes)
780     return success();
781 
782   for (Attribute attr : *attributes) {
783     if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
784       if (failed(
785               checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
786         return failure();
787       continue;
788     }
789 
790     auto arrayAttr = attr.dyn_cast<ArrayAttr>();
791     if (!arrayAttr || arrayAttr.size() != 2)
792       return emitError(loc)
793              << "expected 'passthrough' to contain string or array attributes";
794 
795     auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>();
796     auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>();
797     if (!keyAttr || !valueAttr)
798       return emitError(loc)
799              << "expected arrays within 'passthrough' to contain two strings";
800 
801     if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
802                                          valueAttr.getValue())))
803       return failure();
804   }
805   return success();
806 }
807 
808 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
809   // Clear the block and value mappings, they are only relevant within one
810   // function.
811   blockMapping.clear();
812   valueMapping.clear();
813   llvm::Function *llvmFunc = functionMapping.lookup(func.getName());
814 
815   // Translate the debug information for this function.
816   debugTranslation->translate(func, *llvmFunc);
817 
818   // Add function arguments to the value remapping table.
819   // If there was noalias info then we decorate each argument accordingly.
820   unsigned int argIdx = 0;
821   for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
822     llvm::Argument &llvmArg = std::get<1>(kvp);
823     BlockArgument mlirArg = std::get<0>(kvp);
824 
825     if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) {
826       // NB: Attribute already verified to be boolean, so check if we can indeed
827       // attach the attribute to this argument, based on its type.
828       auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>();
829       if (!argTy.isPointerTy())
830         return func.emitError(
831             "llvm.noalias attribute attached to LLVM non-pointer argument");
832       if (attr.getValue())
833         llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
834     }
835 
836     if (auto attr = func.getArgAttrOfType<IntegerAttr>(argIdx, "llvm.align")) {
837       // NB: Attribute already verified to be int, so check if we can indeed
838       // attach the attribute to this argument, based on its type.
839       auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>();
840       if (!argTy.isPointerTy())
841         return func.emitError(
842             "llvm.align attribute attached to LLVM non-pointer argument");
843       llvmArg.addAttrs(
844           llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt())));
845     }
846 
847     valueMapping[mlirArg] = &llvmArg;
848     argIdx++;
849   }
850 
851   // Check the personality and set it.
852   if (func.personality().hasValue()) {
853     llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
854     if (llvm::Constant *pfunc =
855             getLLVMConstant(ty, func.personalityAttr(), func.getLoc()))
856       llvmFunc->setPersonalityFn(pfunc);
857   }
858 
859   // First, create all blocks so we can jump to them.
860   llvm::LLVMContext &llvmContext = llvmFunc->getContext();
861   for (auto &bb : func) {
862     auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
863     llvmBB->insertInto(llvmFunc);
864     blockMapping[&bb] = llvmBB;
865   }
866 
867   // Then, convert blocks one by one in topological order to ensure defs are
868   // converted before uses.
869   auto blocks = topologicalSort(func);
870   for (auto indexedBB : llvm::enumerate(blocks)) {
871     auto *bb = indexedBB.value();
872     if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0)))
873       return failure();
874   }
875 
876   // Finally, after all blocks have been traversed and values mapped, connect
877   // the PHI nodes to the results of preceding blocks.
878   connectPHINodes(func, valueMapping, blockMapping);
879   return success();
880 }
881 
882 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) {
883   for (Operation &o : getModuleBody(m).getOperations())
884     if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp>(&o) && !o.isKnownTerminator())
885       return o.emitOpError("unsupported module-level operation");
886   return success();
887 }
888 
889 LogicalResult ModuleTranslation::convertFunctionSignatures() {
890   // Lock access to the llvm context.
891   llvm::sys::SmartScopedLock<true> scopedLock(
892       llvmDialect->getLLVMContextMutex());
893 
894   // Declare all functions first because there may be function calls that form a
895   // call graph with cycles, or global initializers that reference functions.
896   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
897     llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
898         function.getName(),
899         cast<llvm::FunctionType>(convertType(function.getType())));
900     llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
901     llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage()));
902     functionMapping[function.getName()] = llvmFunc;
903 
904     // Forward the pass-through attributes to LLVM.
905     if (failed(forwardPassthroughAttributes(function.getLoc(),
906                                             function.passthrough(), llvmFunc)))
907       return failure();
908   }
909 
910   return success();
911 }
912 
913 LogicalResult ModuleTranslation::convertFunctions() {
914   // Lock access to the llvm context.
915   llvm::sys::SmartScopedLock<true> scopedLock(
916       llvmDialect->getLLVMContextMutex());
917 
918   // Convert functions.
919   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
920     // Ignore external functions.
921     if (function.isExternal())
922       continue;
923 
924     if (failed(convertOneFunction(function)))
925       return failure();
926   }
927 
928   return success();
929 }
930 
931 llvm::Type *ModuleTranslation::convertType(LLVMType type) {
932   return LLVM::convertLLVMType(type);
933 }
934 
935 /// A helper to look up remapped operands in the value remapping table.`
936 SmallVector<llvm::Value *, 8>
937 ModuleTranslation::lookupValues(ValueRange values) {
938   SmallVector<llvm::Value *, 8> remapped;
939   remapped.reserve(values.size());
940   for (Value v : values) {
941     assert(valueMapping.count(v) && "referencing undefined value");
942     remapped.push_back(valueMapping.lookup(v));
943   }
944   return remapped;
945 }
946 
947 std::unique_ptr<llvm::Module>
948 ModuleTranslation::prepareLLVMModule(Operation *m) {
949   auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>();
950   assert(dialect && "LLVM dialect must be registered");
951   // Lock the LLVM context as we might create new types here.
952   llvm::sys::SmartScopedLock<true> scopedLock(dialect->getLLVMContextMutex());
953 
954   auto llvmModule = llvm::CloneModule(dialect->getLLVMModule());
955   if (!llvmModule)
956     return nullptr;
957 
958   llvm::LLVMContext &llvmContext = llvmModule->getContext();
959   llvm::IRBuilder<> builder(llvmContext);
960 
961   // Inject declarations for `malloc` and `free` functions that can be used in
962   // memref allocation/deallocation coming from standard ops lowering.
963   llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
964                                   builder.getInt64Ty());
965   llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
966                                   builder.getInt8PtrTy());
967 
968   return llvmModule;
969 }
970