1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "DebugTranslation.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/OpenMP/OpenMPDialect.h" 19 #include "mlir/IR/Attributes.h" 20 #include "mlir/IR/Module.h" 21 #include "mlir/IR/StandardTypes.h" 22 #include "mlir/Support/LLVM.h" 23 #include "llvm/ADT/TypeSwitch.h" 24 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/MDBuilder.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 #include "llvm/Transforms/Utils/Cloning.h" 37 38 using namespace mlir; 39 using namespace mlir::LLVM; 40 using namespace mlir::LLVM::detail; 41 42 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" 43 44 /// Builds a constant of a sequential LLVM type `type`, potentially containing 45 /// other sequential types recursively, from the individual constant values 46 /// provided in `constants`. `shape` contains the number of elements in nested 47 /// sequential types. Reports errors at `loc` and returns nullptr on error. 48 static llvm::Constant * 49 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 50 ArrayRef<int64_t> shape, llvm::Type *type, 51 Location loc) { 52 if (shape.empty()) { 53 llvm::Constant *result = constants.front(); 54 constants = constants.drop_front(); 55 return result; 56 } 57 58 llvm::Type *elementType; 59 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 60 elementType = arrayTy->getElementType(); 61 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 62 elementType = vectorTy->getElementType(); 63 } else { 64 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 65 return nullptr; 66 } 67 68 SmallVector<llvm::Constant *, 8> nested; 69 nested.reserve(shape.front()); 70 for (int64_t i = 0; i < shape.front(); ++i) { 71 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 72 elementType, loc)); 73 if (!nested.back()) 74 return nullptr; 75 } 76 77 if (shape.size() == 1 && type->isVectorTy()) 78 return llvm::ConstantVector::get(nested); 79 return llvm::ConstantArray::get( 80 llvm::ArrayType::get(elementType, shape.front()), nested); 81 } 82 83 /// Returns the first non-sequential type nested in sequential types. 84 static llvm::Type *getInnermostElementType(llvm::Type *type) { 85 do { 86 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { 87 type = arrayTy->getElementType(); 88 } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { 89 type = vectorTy->getElementType(); 90 } else { 91 return type; 92 } 93 } while (1); 94 } 95 96 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 97 /// This currently supports integer, floating point, splat and dense element 98 /// attributes and combinations thereof. In case of error, report it to `loc` 99 /// and return nullptr. 100 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 101 Attribute attr, 102 Location loc) { 103 if (!attr) 104 return llvm::UndefValue::get(llvmType); 105 if (llvmType->isStructTy()) { 106 emitError(loc, "struct types are not supported in constants"); 107 return nullptr; 108 } 109 // For integer types, we allow a mismatch in sizes as the index type in 110 // MLIR might have a different size than the index type in the LLVM module. 111 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 112 return llvm::ConstantInt::get( 113 llvmType, 114 intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); 115 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 116 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 117 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 118 return llvm::ConstantExpr::getBitCast( 119 functionMapping.lookup(funcAttr.getValue()), llvmType); 120 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 121 llvm::Type *elementType; 122 uint64_t numElements; 123 if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { 124 elementType = arrayTy->getElementType(); 125 numElements = arrayTy->getNumElements(); 126 } else { 127 auto *vectorTy = cast<llvm::FixedVectorType>(llvmType); 128 elementType = vectorTy->getElementType(); 129 numElements = vectorTy->getNumElements(); 130 } 131 // Splat value is a scalar. Extract it only if the element type is not 132 // another sequence type. The recursion terminates because each step removes 133 // one outer sequential type. 134 bool elementTypeSequential = 135 isa<llvm::ArrayType, llvm::VectorType>(elementType); 136 llvm::Constant *child = getLLVMConstant( 137 elementType, 138 elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc); 139 if (!child) 140 return nullptr; 141 if (llvmType->isVectorTy()) 142 return llvm::ConstantVector::getSplat( 143 llvm::ElementCount(numElements, /*Scalable=*/false), child); 144 if (llvmType->isArrayTy()) { 145 auto *arrayType = llvm::ArrayType::get(elementType, numElements); 146 SmallVector<llvm::Constant *, 8> constants(numElements, child); 147 return llvm::ConstantArray::get(arrayType, constants); 148 } 149 } 150 151 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 152 assert(elementsAttr.getType().hasStaticShape()); 153 assert(elementsAttr.getNumElements() != 0 && 154 "unexpected empty elements attribute"); 155 assert(!elementsAttr.getType().getShape().empty() && 156 "unexpected empty elements attribute shape"); 157 158 SmallVector<llvm::Constant *, 8> constants; 159 constants.reserve(elementsAttr.getNumElements()); 160 llvm::Type *innermostType = getInnermostElementType(llvmType); 161 for (auto n : elementsAttr.getValues<Attribute>()) { 162 constants.push_back(getLLVMConstant(innermostType, n, loc)); 163 if (!constants.back()) 164 return nullptr; 165 } 166 ArrayRef<llvm::Constant *> constantsRef = constants; 167 llvm::Constant *result = buildSequentialConstant( 168 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 169 assert(constantsRef.empty() && "did not consume all elemental constants"); 170 return result; 171 } 172 173 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 174 return llvm::ConstantDataArray::get( 175 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 176 stringAttr.getValue().size()}); 177 } 178 emitError(loc, "unsupported constant value"); 179 return nullptr; 180 } 181 182 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 183 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 184 switch (p) { 185 case LLVM::ICmpPredicate::eq: 186 return llvm::CmpInst::Predicate::ICMP_EQ; 187 case LLVM::ICmpPredicate::ne: 188 return llvm::CmpInst::Predicate::ICMP_NE; 189 case LLVM::ICmpPredicate::slt: 190 return llvm::CmpInst::Predicate::ICMP_SLT; 191 case LLVM::ICmpPredicate::sle: 192 return llvm::CmpInst::Predicate::ICMP_SLE; 193 case LLVM::ICmpPredicate::sgt: 194 return llvm::CmpInst::Predicate::ICMP_SGT; 195 case LLVM::ICmpPredicate::sge: 196 return llvm::CmpInst::Predicate::ICMP_SGE; 197 case LLVM::ICmpPredicate::ult: 198 return llvm::CmpInst::Predicate::ICMP_ULT; 199 case LLVM::ICmpPredicate::ule: 200 return llvm::CmpInst::Predicate::ICMP_ULE; 201 case LLVM::ICmpPredicate::ugt: 202 return llvm::CmpInst::Predicate::ICMP_UGT; 203 case LLVM::ICmpPredicate::uge: 204 return llvm::CmpInst::Predicate::ICMP_UGE; 205 } 206 llvm_unreachable("incorrect comparison predicate"); 207 } 208 209 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 210 switch (p) { 211 case LLVM::FCmpPredicate::_false: 212 return llvm::CmpInst::Predicate::FCMP_FALSE; 213 case LLVM::FCmpPredicate::oeq: 214 return llvm::CmpInst::Predicate::FCMP_OEQ; 215 case LLVM::FCmpPredicate::ogt: 216 return llvm::CmpInst::Predicate::FCMP_OGT; 217 case LLVM::FCmpPredicate::oge: 218 return llvm::CmpInst::Predicate::FCMP_OGE; 219 case LLVM::FCmpPredicate::olt: 220 return llvm::CmpInst::Predicate::FCMP_OLT; 221 case LLVM::FCmpPredicate::ole: 222 return llvm::CmpInst::Predicate::FCMP_OLE; 223 case LLVM::FCmpPredicate::one: 224 return llvm::CmpInst::Predicate::FCMP_ONE; 225 case LLVM::FCmpPredicate::ord: 226 return llvm::CmpInst::Predicate::FCMP_ORD; 227 case LLVM::FCmpPredicate::ueq: 228 return llvm::CmpInst::Predicate::FCMP_UEQ; 229 case LLVM::FCmpPredicate::ugt: 230 return llvm::CmpInst::Predicate::FCMP_UGT; 231 case LLVM::FCmpPredicate::uge: 232 return llvm::CmpInst::Predicate::FCMP_UGE; 233 case LLVM::FCmpPredicate::ult: 234 return llvm::CmpInst::Predicate::FCMP_ULT; 235 case LLVM::FCmpPredicate::ule: 236 return llvm::CmpInst::Predicate::FCMP_ULE; 237 case LLVM::FCmpPredicate::une: 238 return llvm::CmpInst::Predicate::FCMP_UNE; 239 case LLVM::FCmpPredicate::uno: 240 return llvm::CmpInst::Predicate::FCMP_UNO; 241 case LLVM::FCmpPredicate::_true: 242 return llvm::CmpInst::Predicate::FCMP_TRUE; 243 } 244 llvm_unreachable("incorrect comparison predicate"); 245 } 246 247 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) { 248 switch (op) { 249 case LLVM::AtomicBinOp::xchg: 250 return llvm::AtomicRMWInst::BinOp::Xchg; 251 case LLVM::AtomicBinOp::add: 252 return llvm::AtomicRMWInst::BinOp::Add; 253 case LLVM::AtomicBinOp::sub: 254 return llvm::AtomicRMWInst::BinOp::Sub; 255 case LLVM::AtomicBinOp::_and: 256 return llvm::AtomicRMWInst::BinOp::And; 257 case LLVM::AtomicBinOp::nand: 258 return llvm::AtomicRMWInst::BinOp::Nand; 259 case LLVM::AtomicBinOp::_or: 260 return llvm::AtomicRMWInst::BinOp::Or; 261 case LLVM::AtomicBinOp::_xor: 262 return llvm::AtomicRMWInst::BinOp::Xor; 263 case LLVM::AtomicBinOp::max: 264 return llvm::AtomicRMWInst::BinOp::Max; 265 case LLVM::AtomicBinOp::min: 266 return llvm::AtomicRMWInst::BinOp::Min; 267 case LLVM::AtomicBinOp::umax: 268 return llvm::AtomicRMWInst::BinOp::UMax; 269 case LLVM::AtomicBinOp::umin: 270 return llvm::AtomicRMWInst::BinOp::UMin; 271 case LLVM::AtomicBinOp::fadd: 272 return llvm::AtomicRMWInst::BinOp::FAdd; 273 case LLVM::AtomicBinOp::fsub: 274 return llvm::AtomicRMWInst::BinOp::FSub; 275 } 276 llvm_unreachable("incorrect atomic binary operator"); 277 } 278 279 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) { 280 switch (ordering) { 281 case LLVM::AtomicOrdering::not_atomic: 282 return llvm::AtomicOrdering::NotAtomic; 283 case LLVM::AtomicOrdering::unordered: 284 return llvm::AtomicOrdering::Unordered; 285 case LLVM::AtomicOrdering::monotonic: 286 return llvm::AtomicOrdering::Monotonic; 287 case LLVM::AtomicOrdering::acquire: 288 return llvm::AtomicOrdering::Acquire; 289 case LLVM::AtomicOrdering::release: 290 return llvm::AtomicOrdering::Release; 291 case LLVM::AtomicOrdering::acq_rel: 292 return llvm::AtomicOrdering::AcquireRelease; 293 case LLVM::AtomicOrdering::seq_cst: 294 return llvm::AtomicOrdering::SequentiallyConsistent; 295 } 296 llvm_unreachable("incorrect atomic ordering"); 297 } 298 299 ModuleTranslation::ModuleTranslation(Operation *module, 300 std::unique_ptr<llvm::Module> llvmModule) 301 : mlirModule(module), llvmModule(std::move(llvmModule)), 302 debugTranslation( 303 std::make_unique<DebugTranslation>(module, *this->llvmModule)), 304 ompDialect( 305 module->getContext()->getRegisteredDialect<omp::OpenMPDialect>()), 306 llvmDialect(module->getContext()->getRegisteredDialect<LLVMDialect>()) { 307 assert(satisfiesLLVMModule(mlirModule) && 308 "mlirModule should honor LLVM's module semantics."); 309 } 310 ModuleTranslation::~ModuleTranslation() { 311 if (ompBuilder) 312 ompBuilder->finalize(); 313 } 314 315 /// Get the SSA value passed to the current block from the terminator operation 316 /// of its predecessor. 317 static Value getPHISourceValue(Block *current, Block *pred, 318 unsigned numArguments, unsigned index) { 319 Operation &terminator = *pred->getTerminator(); 320 if (isa<LLVM::BrOp>(terminator)) 321 return terminator.getOperand(index); 322 323 // For conditional branches, we need to check if the current block is reached 324 // through the "true" or the "false" branch and take the relevant operands. 325 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 326 assert(condBranchOp && 327 "only branch operations can be terminators of a block that " 328 "has successors"); 329 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 330 "successors with arguments in LLVM conditional branches must be " 331 "different blocks"); 332 333 return condBranchOp.getSuccessor(0) == current 334 ? condBranchOp.trueDestOperands()[index] 335 : condBranchOp.falseDestOperands()[index]; 336 } 337 338 /// Connect the PHI nodes to the results of preceding blocks. 339 template <typename T> 340 static void 341 connectPHINodes(T &func, const DenseMap<Value, llvm::Value *> &valueMapping, 342 const DenseMap<Block *, llvm::BasicBlock *> &blockMapping) { 343 // Skip the first block, it cannot be branched to and its arguments correspond 344 // to the arguments of the LLVM function. 345 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 346 Block *bb = &*it; 347 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 348 auto phis = llvmBB->phis(); 349 auto numArguments = bb->getNumArguments(); 350 assert(numArguments == std::distance(phis.begin(), phis.end())); 351 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 352 auto &phiNode = numberedPhiNode.value(); 353 unsigned index = numberedPhiNode.index(); 354 for (auto *pred : bb->getPredecessors()) { 355 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 356 bb, pred, numArguments, index)), 357 blockMapping.lookup(pred)); 358 } 359 } 360 } 361 } 362 363 // TODO: implement an iterative version 364 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) { 365 blocks.insert(b); 366 for (Block *bb : b->getSuccessors()) { 367 if (blocks.count(bb) == 0) 368 topologicalSortImpl(blocks, bb); 369 } 370 } 371 372 /// Sort function blocks topologically. 373 template <typename T> 374 static llvm::SetVector<Block *> topologicalSort(T &f) { 375 // For each blocks that has not been visited yet (i.e. that has no 376 // predecessors), add it to the list and traverse its successors in DFS 377 // preorder. 378 llvm::SetVector<Block *> blocks; 379 for (Block &b : f) { 380 if (blocks.count(&b) == 0) 381 topologicalSortImpl(blocks, &b); 382 } 383 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 384 385 return blocks; 386 } 387 388 /// Convert the OpenMP parallel Operation to LLVM IR. 389 LogicalResult 390 ModuleTranslation::convertOmpParallel(Operation &opInst, 391 llvm::IRBuilder<> &builder) { 392 using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; 393 394 auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP, 395 llvm::BasicBlock &continuationIP) { 396 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 397 398 llvm::BasicBlock *codeGenIPBB = codeGenIP.getBlock(); 399 llvm::Instruction *codeGenIPBBTI = codeGenIPBB->getTerminator(); 400 401 builder.SetInsertPoint(codeGenIPBB); 402 403 for (auto ®ion : opInst.getRegions()) { 404 for (auto &bb : region) { 405 auto *llvmBB = llvm::BasicBlock::Create( 406 llvmContext, "omp.par.region", codeGenIP.getBlock()->getParent()); 407 blockMapping[&bb] = llvmBB; 408 } 409 410 // Then, convert blocks one by one in topological order to ensure 411 // defs are converted before uses. 412 llvm::SetVector<Block *> blocks = topologicalSort(region); 413 for (auto indexedBB : llvm::enumerate(blocks)) { 414 Block *bb = indexedBB.value(); 415 llvm::BasicBlock *curLLVMBB = blockMapping[bb]; 416 if (bb->isEntryBlock()) 417 codeGenIPBBTI->setSuccessor(0, curLLVMBB); 418 419 // TODO: Error not returned up the hierarchy 420 if (failed( 421 convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 422 return; 423 424 // If this block has the terminator then add a jump to 425 // continuation bb 426 for (auto &op : *bb) { 427 if (isa<omp::TerminatorOp>(op)) { 428 builder.SetInsertPoint(curLLVMBB); 429 builder.CreateBr(&continuationIP); 430 } 431 } 432 } 433 // Finally, after all blocks have been traversed and values mapped, 434 // connect the PHI nodes to the results of preceding blocks. 435 connectPHINodes(region, valueMapping, blockMapping); 436 } 437 }; 438 439 // TODO: Perform appropriate actions according to the data-sharing 440 // attribute (shared, private, firstprivate, ...) of variables. 441 // Currently defaults to shared. 442 auto privCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP, 443 llvm::Value &vPtr, 444 llvm::Value *&replacementValue) -> InsertPointTy { 445 replacementValue = &vPtr; 446 447 return codeGenIP; 448 }; 449 450 // TODO: Perform finalization actions for variables. This has to be 451 // called for variables which have destructors/finalizers. 452 auto finiCB = [&](InsertPointTy codeGenIP) {}; 453 454 // TODO: The various operands of parallel operation are not handled. 455 // Parallel operation is created with some default options for now. 456 llvm::Value *ifCond = nullptr; 457 llvm::Value *numThreads = nullptr; 458 bool isCancellable = false; 459 builder.restoreIP(ompBuilder->CreateParallel( 460 builder, bodyGenCB, privCB, finiCB, ifCond, numThreads, 461 llvm::omp::OMP_PROC_BIND_default, isCancellable)); 462 return success(); 463 } 464 465 /// Given an OpenMP MLIR operation, create the corresponding LLVM IR 466 /// (including OpenMP runtime calls). 467 LogicalResult 468 ModuleTranslation::convertOmpOperation(Operation &opInst, 469 llvm::IRBuilder<> &builder) { 470 if (!ompBuilder) { 471 ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule); 472 ompBuilder->initialize(); 473 } 474 return llvm::TypeSwitch<Operation *, LogicalResult>(&opInst) 475 .Case([&](omp::BarrierOp) { 476 ompBuilder->CreateBarrier(builder.saveIP(), llvm::omp::OMPD_barrier); 477 return success(); 478 }) 479 .Case([&](omp::TaskwaitOp) { 480 ompBuilder->CreateTaskwait(builder.saveIP()); 481 return success(); 482 }) 483 .Case([&](omp::TaskyieldOp) { 484 ompBuilder->CreateTaskyield(builder.saveIP()); 485 return success(); 486 }) 487 .Case([&](omp::FlushOp) { 488 // No support in Openmp runtime funciton (__kmpc_flush) to accept 489 // the argument list. 490 // OpenMP standard states the following: 491 // "An implementation may implement a flush with a list by ignoring 492 // the list, and treating it the same as a flush without a list." 493 // 494 // The argument list is discarded so that, flush with a list is treated 495 // same as a flush without a list. 496 ompBuilder->CreateFlush(builder.saveIP()); 497 return success(); 498 }) 499 .Case([&](omp::TerminatorOp) { return success(); }) 500 .Case( 501 [&](omp::ParallelOp) { return convertOmpParallel(opInst, builder); }) 502 .Default([&](Operation *inst) { 503 return inst->emitError("unsupported OpenMP operation: ") 504 << inst->getName(); 505 }); 506 } 507 508 /// Given a single MLIR operation, create the corresponding LLVM IR operation 509 /// using the `builder`. LLVM IR Builder does not have a generic interface so 510 /// this has to be a long chain of `if`s calling different functions with a 511 /// different number of arguments. 512 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 513 llvm::IRBuilder<> &builder) { 514 auto extractPosition = [](ArrayAttr attr) { 515 SmallVector<unsigned, 4> position; 516 position.reserve(attr.size()); 517 for (Attribute v : attr) 518 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 519 return position; 520 }; 521 522 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 523 524 // Emit function calls. If the "callee" attribute is present, this is a 525 // direct function call and we also need to look up the remapped function 526 // itself. Otherwise, this is an indirect call and the callee is the first 527 // operand, look it up as a normal value. Return the llvm::Value representing 528 // the function result, which may be of llvm::VoidTy type. 529 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 530 auto operands = lookupValues(op.getOperands()); 531 ArrayRef<llvm::Value *> operandsRef(operands); 532 if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) { 533 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 534 operandsRef); 535 } else { 536 auto *calleePtrType = 537 cast<llvm::PointerType>(operandsRef.front()->getType()); 538 auto *calleeType = 539 cast<llvm::FunctionType>(calleePtrType->getElementType()); 540 return builder.CreateCall(calleeType, operandsRef.front(), 541 operandsRef.drop_front()); 542 } 543 }; 544 545 // Emit calls. If the called function has a result, remap the corresponding 546 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 547 if (isa<LLVM::CallOp>(opInst)) { 548 llvm::Value *result = convertCall(opInst); 549 if (opInst.getNumResults() != 0) { 550 valueMapping[opInst.getResult(0)] = result; 551 return success(); 552 } 553 // Check that LLVM call returns void for 0-result functions. 554 return success(result->getType()->isVoidTy()); 555 } 556 557 if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) { 558 auto operands = lookupValues(opInst.getOperands()); 559 ArrayRef<llvm::Value *> operandsRef(operands); 560 if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) { 561 builder.CreateInvoke(functionMapping.lookup(attr.getValue()), 562 blockMapping[invOp.getSuccessor(0)], 563 blockMapping[invOp.getSuccessor(1)], operandsRef); 564 } else { 565 auto *calleePtrType = 566 cast<llvm::PointerType>(operandsRef.front()->getType()); 567 auto *calleeType = 568 cast<llvm::FunctionType>(calleePtrType->getElementType()); 569 builder.CreateInvoke( 570 calleeType, operandsRef.front(), blockMapping[invOp.getSuccessor(0)], 571 blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front()); 572 } 573 return success(); 574 } 575 576 if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) { 577 llvm::Type *ty = convertType(lpOp.getType().cast<LLVMType>()); 578 llvm::LandingPadInst *lpi = 579 builder.CreateLandingPad(ty, lpOp.getNumOperands()); 580 581 // Add clauses 582 for (auto operand : lookupValues(lpOp.getOperands())) { 583 // All operands should be constant - checked by verifier 584 if (auto constOperand = dyn_cast<llvm::Constant>(operand)) 585 lpi->addClause(constOperand); 586 } 587 valueMapping[lpOp.getResult()] = lpi; 588 return success(); 589 } 590 591 // Emit branches. We need to look up the remapped blocks and ignore the block 592 // arguments that were transformed into PHI nodes. 593 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 594 builder.CreateBr(blockMapping[brOp.getSuccessor()]); 595 return success(); 596 } 597 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 598 auto weights = condbrOp.branch_weights(); 599 llvm::MDNode *branchWeights = nullptr; 600 if (weights) { 601 // Map weight attributes to LLVM metadata. 602 auto trueWeight = 603 weights.getValue().getValue(0).cast<IntegerAttr>().getInt(); 604 auto falseWeight = 605 weights.getValue().getValue(1).cast<IntegerAttr>().getInt(); 606 branchWeights = 607 llvm::MDBuilder(llvmModule->getContext()) 608 .createBranchWeights(static_cast<uint32_t>(trueWeight), 609 static_cast<uint32_t>(falseWeight)); 610 } 611 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 612 blockMapping[condbrOp.getSuccessor(0)], 613 blockMapping[condbrOp.getSuccessor(1)], branchWeights); 614 return success(); 615 } 616 617 // Emit addressof. We need to look up the global value referenced by the 618 // operation and store it in the MLIR-to-LLVM value mapping. This does not 619 // emit any LLVM instruction. 620 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 621 LLVM::GlobalOp global = addressOfOp.getGlobal(); 622 LLVM::LLVMFuncOp function = addressOfOp.getFunction(); 623 624 // The verifier should not have allowed this. 625 assert((global || function) && 626 "referencing an undefined global or function"); 627 628 valueMapping[addressOfOp.getResult()] = 629 global ? globalsMapping.lookup(global) 630 : functionMapping.lookup(function.getName()); 631 return success(); 632 } 633 634 if (opInst.getDialect() == ompDialect) { 635 return convertOmpOperation(opInst, builder); 636 } 637 638 return opInst.emitError("unsupported or non-LLVM operation: ") 639 << opInst.getName(); 640 } 641 642 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 643 /// to define values corresponding to the MLIR block arguments. These nodes 644 /// are not connected to the source basic blocks, which may not exist yet. 645 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 646 llvm::IRBuilder<> builder(blockMapping[&bb]); 647 auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); 648 649 // Before traversing operations, make block arguments available through 650 // value remapping and PHI nodes, but do not add incoming edges for the PHI 651 // nodes just yet: those values may be defined by this or following blocks. 652 // This step is omitted if "ignoreArguments" is set. The arguments of the 653 // first block have been already made available through the remapping of 654 // LLVM function arguments. 655 if (!ignoreArguments) { 656 auto predecessors = bb.getPredecessors(); 657 unsigned numPredecessors = 658 std::distance(predecessors.begin(), predecessors.end()); 659 for (auto arg : bb.getArguments()) { 660 auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>(); 661 if (!wrappedType) 662 return emitError(bb.front().getLoc(), 663 "block argument does not have an LLVM type"); 664 llvm::Type *type = convertType(wrappedType); 665 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 666 valueMapping[arg] = phi; 667 } 668 } 669 670 // Traverse operations. 671 for (auto &op : bb) { 672 // Set the current debug location within the builder. 673 builder.SetCurrentDebugLocation( 674 debugTranslation->translateLoc(op.getLoc(), subprogram)); 675 676 if (failed(convertOperation(op, builder))) 677 return failure(); 678 } 679 680 return success(); 681 } 682 683 /// Create named global variables that correspond to llvm.mlir.global 684 /// definitions. 685 LogicalResult ModuleTranslation::convertGlobals() { 686 // Lock access to the llvm context. 687 llvm::sys::SmartScopedLock<true> scopedLock( 688 llvmDialect->getLLVMContextMutex()); 689 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 690 llvm::Type *type = convertType(op.getType()); 691 llvm::Constant *cst = llvm::UndefValue::get(type); 692 if (op.getValueOrNull()) { 693 // String attributes are treated separately because they cannot appear as 694 // in-function constants and are thus not supported by getLLVMConstant. 695 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 696 cst = llvm::ConstantDataArray::getString( 697 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 698 type = cst->getType(); 699 } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), 700 op.getLoc()))) { 701 return failure(); 702 } 703 } else if (Block *initializer = op.getInitializerBlock()) { 704 llvm::IRBuilder<> builder(llvmModule->getContext()); 705 for (auto &op : initializer->without_terminator()) { 706 if (failed(convertOperation(op, builder)) || 707 !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) 708 return emitError(op.getLoc(), "unemittable constant value"); 709 } 710 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 711 cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0))); 712 } 713 714 auto linkage = convertLinkageToLLVM(op.linkage()); 715 bool anyExternalLinkage = 716 ((linkage == llvm::GlobalVariable::ExternalLinkage && 717 isa<llvm::UndefValue>(cst)) || 718 linkage == llvm::GlobalVariable::ExternalWeakLinkage); 719 auto addrSpace = op.addr_space().getLimitedValue(); 720 auto *var = new llvm::GlobalVariable( 721 *llvmModule, type, op.constant(), linkage, 722 anyExternalLinkage ? nullptr : cst, op.sym_name(), 723 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 724 725 globalsMapping.try_emplace(op, var); 726 } 727 728 return success(); 729 } 730 731 /// Attempts to add an attribute identified by `key`, optionally with the given 732 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the 733 /// attribute has a kind known to LLVM IR, create the attribute of this kind, 734 /// otherwise keep it as a string attribute. Performs additional checks for 735 /// attributes known to have or not have a value in order to avoid assertions 736 /// inside LLVM upon construction. 737 static LogicalResult checkedAddLLVMFnAttribute(Location loc, 738 llvm::Function *llvmFunc, 739 StringRef key, 740 StringRef value = StringRef()) { 741 auto kind = llvm::Attribute::getAttrKindFromName(key); 742 if (kind == llvm::Attribute::None) { 743 llvmFunc->addFnAttr(key, value); 744 return success(); 745 } 746 747 if (llvm::Attribute::doesAttrKindHaveArgument(kind)) { 748 if (value.empty()) 749 return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; 750 751 int result; 752 if (!value.getAsInteger(/*Radix=*/0, result)) 753 llvmFunc->addFnAttr( 754 llvm::Attribute::get(llvmFunc->getContext(), kind, result)); 755 else 756 llvmFunc->addFnAttr(key, value); 757 return success(); 758 } 759 760 if (!value.empty()) 761 return emitError(loc) << "LLVM attribute '" << key 762 << "' does not expect a value, found '" << value 763 << "'"; 764 765 llvmFunc->addFnAttr(kind); 766 return success(); 767 } 768 769 /// Attaches the attributes listed in the given array attribute to `llvmFunc`. 770 /// Reports error to `loc` if any and returns immediately. Expects `attributes` 771 /// to be an array attribute containing either string attributes, treated as 772 /// value-less LLVM attributes, or array attributes containing two string 773 /// attributes, with the first string being the name of the corresponding LLVM 774 /// attribute and the second string beings its value. Note that even integer 775 /// attributes are expected to have their values expressed as strings. 776 static LogicalResult 777 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes, 778 llvm::Function *llvmFunc) { 779 if (!attributes) 780 return success(); 781 782 for (Attribute attr : *attributes) { 783 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 784 if (failed( 785 checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) 786 return failure(); 787 continue; 788 } 789 790 auto arrayAttr = attr.dyn_cast<ArrayAttr>(); 791 if (!arrayAttr || arrayAttr.size() != 2) 792 return emitError(loc) 793 << "expected 'passthrough' to contain string or array attributes"; 794 795 auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>(); 796 auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>(); 797 if (!keyAttr || !valueAttr) 798 return emitError(loc) 799 << "expected arrays within 'passthrough' to contain two strings"; 800 801 if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), 802 valueAttr.getValue()))) 803 return failure(); 804 } 805 return success(); 806 } 807 808 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 809 // Clear the block and value mappings, they are only relevant within one 810 // function. 811 blockMapping.clear(); 812 valueMapping.clear(); 813 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 814 815 // Translate the debug information for this function. 816 debugTranslation->translate(func, *llvmFunc); 817 818 // Add function arguments to the value remapping table. 819 // If there was noalias info then we decorate each argument accordingly. 820 unsigned int argIdx = 0; 821 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 822 llvm::Argument &llvmArg = std::get<1>(kvp); 823 BlockArgument mlirArg = std::get<0>(kvp); 824 825 if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) { 826 // NB: Attribute already verified to be boolean, so check if we can indeed 827 // attach the attribute to this argument, based on its type. 828 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 829 if (!argTy.isPointerTy()) 830 return func.emitError( 831 "llvm.noalias attribute attached to LLVM non-pointer argument"); 832 if (attr.getValue()) 833 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 834 } 835 836 if (auto attr = func.getArgAttrOfType<IntegerAttr>(argIdx, "llvm.align")) { 837 // NB: Attribute already verified to be int, so check if we can indeed 838 // attach the attribute to this argument, based on its type. 839 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 840 if (!argTy.isPointerTy()) 841 return func.emitError( 842 "llvm.align attribute attached to LLVM non-pointer argument"); 843 llvmArg.addAttrs( 844 llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt()))); 845 } 846 847 valueMapping[mlirArg] = &llvmArg; 848 argIdx++; 849 } 850 851 // Check the personality and set it. 852 if (func.personality().hasValue()) { 853 llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext()); 854 if (llvm::Constant *pfunc = 855 getLLVMConstant(ty, func.personalityAttr(), func.getLoc())) 856 llvmFunc->setPersonalityFn(pfunc); 857 } 858 859 // First, create all blocks so we can jump to them. 860 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 861 for (auto &bb : func) { 862 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 863 llvmBB->insertInto(llvmFunc); 864 blockMapping[&bb] = llvmBB; 865 } 866 867 // Then, convert blocks one by one in topological order to ensure defs are 868 // converted before uses. 869 auto blocks = topologicalSort(func); 870 for (auto indexedBB : llvm::enumerate(blocks)) { 871 auto *bb = indexedBB.value(); 872 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 873 return failure(); 874 } 875 876 // Finally, after all blocks have been traversed and values mapped, connect 877 // the PHI nodes to the results of preceding blocks. 878 connectPHINodes(func, valueMapping, blockMapping); 879 return success(); 880 } 881 882 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) { 883 for (Operation &o : getModuleBody(m).getOperations()) 884 if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp>(&o) && !o.isKnownTerminator()) 885 return o.emitOpError("unsupported module-level operation"); 886 return success(); 887 } 888 889 LogicalResult ModuleTranslation::convertFunctionSignatures() { 890 // Lock access to the llvm context. 891 llvm::sys::SmartScopedLock<true> scopedLock( 892 llvmDialect->getLLVMContextMutex()); 893 894 // Declare all functions first because there may be function calls that form a 895 // call graph with cycles, or global initializers that reference functions. 896 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 897 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 898 function.getName(), 899 cast<llvm::FunctionType>(convertType(function.getType()))); 900 llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); 901 llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage())); 902 functionMapping[function.getName()] = llvmFunc; 903 904 // Forward the pass-through attributes to LLVM. 905 if (failed(forwardPassthroughAttributes(function.getLoc(), 906 function.passthrough(), llvmFunc))) 907 return failure(); 908 } 909 910 return success(); 911 } 912 913 LogicalResult ModuleTranslation::convertFunctions() { 914 // Lock access to the llvm context. 915 llvm::sys::SmartScopedLock<true> scopedLock( 916 llvmDialect->getLLVMContextMutex()); 917 918 // Convert functions. 919 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 920 // Ignore external functions. 921 if (function.isExternal()) 922 continue; 923 924 if (failed(convertOneFunction(function))) 925 return failure(); 926 } 927 928 return success(); 929 } 930 931 llvm::Type *ModuleTranslation::convertType(LLVMType type) { 932 return LLVM::convertLLVMType(type); 933 } 934 935 /// A helper to look up remapped operands in the value remapping table.` 936 SmallVector<llvm::Value *, 8> 937 ModuleTranslation::lookupValues(ValueRange values) { 938 SmallVector<llvm::Value *, 8> remapped; 939 remapped.reserve(values.size()); 940 for (Value v : values) { 941 assert(valueMapping.count(v) && "referencing undefined value"); 942 remapped.push_back(valueMapping.lookup(v)); 943 } 944 return remapped; 945 } 946 947 std::unique_ptr<llvm::Module> 948 ModuleTranslation::prepareLLVMModule(Operation *m) { 949 auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>(); 950 assert(dialect && "LLVM dialect must be registered"); 951 // Lock the LLVM context as we might create new types here. 952 llvm::sys::SmartScopedLock<true> scopedLock(dialect->getLLVMContextMutex()); 953 954 auto llvmModule = llvm::CloneModule(dialect->getLLVMModule()); 955 if (!llvmModule) 956 return nullptr; 957 958 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 959 llvm::IRBuilder<> builder(llvmContext); 960 961 // Inject declarations for `malloc` and `free` functions that can be used in 962 // memref allocation/deallocation coming from standard ops lowering. 963 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 964 builder.getInt64Ty()); 965 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 966 builder.getInt8PtrTy()); 967 968 return llvmModule; 969 } 970