1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// 2 // 3 // Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the translation between an MLIR LLVM dialect module and 10 // the corresponding LLVMIR module. It only handles core LLVM IR operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "mlir/Target/LLVMIR/ModuleTranslation.h" 15 16 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 17 #include "mlir/IR/Attributes.h" 18 #include "mlir/IR/Module.h" 19 #include "mlir/IR/StandardTypes.h" 20 #include "mlir/Support/LLVM.h" 21 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Transforms/Utils/Cloning.h" 30 31 using namespace mlir; 32 using namespace mlir::LLVM; 33 34 /// Builds a constant of a sequential LLVM type `type`, potentially containing 35 /// other sequential types recursively, from the individual constant values 36 /// provided in `constants`. `shape` contains the number of elements in nested 37 /// sequential types. Reports errors at `loc` and returns nullptr on error. 38 static llvm::Constant * 39 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, 40 ArrayRef<int64_t> shape, llvm::Type *type, 41 Location loc) { 42 if (shape.empty()) { 43 llvm::Constant *result = constants.front(); 44 constants = constants.drop_front(); 45 return result; 46 } 47 48 if (!isa<llvm::SequentialType>(type)) { 49 emitError(loc) << "expected sequential LLVM types wrapping a scalar"; 50 return nullptr; 51 } 52 53 llvm::Type *elementType = type->getSequentialElementType(); 54 SmallVector<llvm::Constant *, 8> nested; 55 nested.reserve(shape.front()); 56 for (int64_t i = 0; i < shape.front(); ++i) { 57 nested.push_back(buildSequentialConstant(constants, shape.drop_front(), 58 elementType, loc)); 59 if (!nested.back()) 60 return nullptr; 61 } 62 63 if (shape.size() == 1 && type->isVectorTy()) 64 return llvm::ConstantVector::get(nested); 65 return llvm::ConstantArray::get( 66 llvm::ArrayType::get(elementType, shape.front()), nested); 67 } 68 69 /// Returns the first non-sequential type nested in sequential types. 70 static llvm::Type *getInnermostElementType(llvm::Type *type) { 71 while (isa<llvm::SequentialType>(type)) 72 type = type->getSequentialElementType(); 73 return type; 74 } 75 76 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. 77 /// This currently supports integer, floating point, splat and dense element 78 /// attributes and combinations thereof. In case of error, report it to `loc` 79 /// and return nullptr. 80 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType, 81 Attribute attr, 82 Location loc) { 83 if (!attr) 84 return llvm::UndefValue::get(llvmType); 85 if (llvmType->isStructTy()) { 86 emitError(loc, "struct types are not supported in constants"); 87 return nullptr; 88 } 89 if (auto intAttr = attr.dyn_cast<IntegerAttr>()) 90 return llvm::ConstantInt::get(llvmType, intAttr.getValue()); 91 if (auto floatAttr = attr.dyn_cast<FloatAttr>()) 92 return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); 93 if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>()) 94 return functionMapping.lookup(funcAttr.getValue()); 95 if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) { 96 auto *sequentialType = cast<llvm::SequentialType>(llvmType); 97 auto elementType = sequentialType->getElementType(); 98 uint64_t numElements = sequentialType->getNumElements(); 99 // Splat value is a scalar. Extract it only if the element type is not 100 // another sequence type. The recursion terminates because each step removes 101 // one outer sequential type. 102 llvm::Constant *child = getLLVMConstant( 103 elementType, 104 isa<llvm::SequentialType>(elementType) ? splatAttr 105 : splatAttr.getSplatValue(), 106 loc); 107 if (!child) 108 return nullptr; 109 if (llvmType->isVectorTy()) 110 return llvm::ConstantVector::getSplat(numElements, child); 111 if (llvmType->isArrayTy()) { 112 auto arrayType = llvm::ArrayType::get(elementType, numElements); 113 SmallVector<llvm::Constant *, 8> constants(numElements, child); 114 return llvm::ConstantArray::get(arrayType, constants); 115 } 116 } 117 118 if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) { 119 assert(elementsAttr.getType().hasStaticShape()); 120 assert(elementsAttr.getNumElements() != 0 && 121 "unexpected empty elements attribute"); 122 assert(!elementsAttr.getType().getShape().empty() && 123 "unexpected empty elements attribute shape"); 124 125 SmallVector<llvm::Constant *, 8> constants; 126 constants.reserve(elementsAttr.getNumElements()); 127 llvm::Type *innermostType = getInnermostElementType(llvmType); 128 for (auto n : elementsAttr.getValues<Attribute>()) { 129 constants.push_back(getLLVMConstant(innermostType, n, loc)); 130 if (!constants.back()) 131 return nullptr; 132 } 133 ArrayRef<llvm::Constant *> constantsRef = constants; 134 llvm::Constant *result = buildSequentialConstant( 135 constantsRef, elementsAttr.getType().getShape(), llvmType, loc); 136 assert(constantsRef.empty() && "did not consume all elemental constants"); 137 return result; 138 } 139 140 if (auto stringAttr = attr.dyn_cast<StringAttr>()) { 141 return llvm::ConstantDataArray::get( 142 llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(), 143 stringAttr.getValue().size()}); 144 } 145 emitError(loc, "unsupported constant value"); 146 return nullptr; 147 } 148 149 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate. 150 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) { 151 switch (p) { 152 case LLVM::ICmpPredicate::eq: 153 return llvm::CmpInst::Predicate::ICMP_EQ; 154 case LLVM::ICmpPredicate::ne: 155 return llvm::CmpInst::Predicate::ICMP_NE; 156 case LLVM::ICmpPredicate::slt: 157 return llvm::CmpInst::Predicate::ICMP_SLT; 158 case LLVM::ICmpPredicate::sle: 159 return llvm::CmpInst::Predicate::ICMP_SLE; 160 case LLVM::ICmpPredicate::sgt: 161 return llvm::CmpInst::Predicate::ICMP_SGT; 162 case LLVM::ICmpPredicate::sge: 163 return llvm::CmpInst::Predicate::ICMP_SGE; 164 case LLVM::ICmpPredicate::ult: 165 return llvm::CmpInst::Predicate::ICMP_ULT; 166 case LLVM::ICmpPredicate::ule: 167 return llvm::CmpInst::Predicate::ICMP_ULE; 168 case LLVM::ICmpPredicate::ugt: 169 return llvm::CmpInst::Predicate::ICMP_UGT; 170 case LLVM::ICmpPredicate::uge: 171 return llvm::CmpInst::Predicate::ICMP_UGE; 172 } 173 llvm_unreachable("incorrect comparison predicate"); 174 } 175 176 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) { 177 switch (p) { 178 case LLVM::FCmpPredicate::_false: 179 return llvm::CmpInst::Predicate::FCMP_FALSE; 180 case LLVM::FCmpPredicate::oeq: 181 return llvm::CmpInst::Predicate::FCMP_OEQ; 182 case LLVM::FCmpPredicate::ogt: 183 return llvm::CmpInst::Predicate::FCMP_OGT; 184 case LLVM::FCmpPredicate::oge: 185 return llvm::CmpInst::Predicate::FCMP_OGE; 186 case LLVM::FCmpPredicate::olt: 187 return llvm::CmpInst::Predicate::FCMP_OLT; 188 case LLVM::FCmpPredicate::ole: 189 return llvm::CmpInst::Predicate::FCMP_OLE; 190 case LLVM::FCmpPredicate::one: 191 return llvm::CmpInst::Predicate::FCMP_ONE; 192 case LLVM::FCmpPredicate::ord: 193 return llvm::CmpInst::Predicate::FCMP_ORD; 194 case LLVM::FCmpPredicate::ueq: 195 return llvm::CmpInst::Predicate::FCMP_UEQ; 196 case LLVM::FCmpPredicate::ugt: 197 return llvm::CmpInst::Predicate::FCMP_UGT; 198 case LLVM::FCmpPredicate::uge: 199 return llvm::CmpInst::Predicate::FCMP_UGE; 200 case LLVM::FCmpPredicate::ult: 201 return llvm::CmpInst::Predicate::FCMP_ULT; 202 case LLVM::FCmpPredicate::ule: 203 return llvm::CmpInst::Predicate::FCMP_ULE; 204 case LLVM::FCmpPredicate::une: 205 return llvm::CmpInst::Predicate::FCMP_UNE; 206 case LLVM::FCmpPredicate::uno: 207 return llvm::CmpInst::Predicate::FCMP_UNO; 208 case LLVM::FCmpPredicate::_true: 209 return llvm::CmpInst::Predicate::FCMP_TRUE; 210 } 211 llvm_unreachable("incorrect comparison predicate"); 212 } 213 214 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) { 215 switch (op) { 216 case LLVM::AtomicBinOp::xchg: 217 return llvm::AtomicRMWInst::BinOp::Xchg; 218 case LLVM::AtomicBinOp::add: 219 return llvm::AtomicRMWInst::BinOp::Add; 220 case LLVM::AtomicBinOp::sub: 221 return llvm::AtomicRMWInst::BinOp::Sub; 222 case LLVM::AtomicBinOp::_and: 223 return llvm::AtomicRMWInst::BinOp::And; 224 case LLVM::AtomicBinOp::nand: 225 return llvm::AtomicRMWInst::BinOp::Nand; 226 case LLVM::AtomicBinOp::_or: 227 return llvm::AtomicRMWInst::BinOp::Or; 228 case LLVM::AtomicBinOp::_xor: 229 return llvm::AtomicRMWInst::BinOp::Xor; 230 case LLVM::AtomicBinOp::max: 231 return llvm::AtomicRMWInst::BinOp::Max; 232 case LLVM::AtomicBinOp::min: 233 return llvm::AtomicRMWInst::BinOp::Min; 234 case LLVM::AtomicBinOp::umax: 235 return llvm::AtomicRMWInst::BinOp::UMax; 236 case LLVM::AtomicBinOp::umin: 237 return llvm::AtomicRMWInst::BinOp::UMin; 238 case LLVM::AtomicBinOp::fadd: 239 return llvm::AtomicRMWInst::BinOp::FAdd; 240 case LLVM::AtomicBinOp::fsub: 241 return llvm::AtomicRMWInst::BinOp::FSub; 242 } 243 llvm_unreachable("incorrect atomic binary operator"); 244 } 245 246 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) { 247 switch (ordering) { 248 case LLVM::AtomicOrdering::not_atomic: 249 return llvm::AtomicOrdering::NotAtomic; 250 case LLVM::AtomicOrdering::unordered: 251 return llvm::AtomicOrdering::Unordered; 252 case LLVM::AtomicOrdering::monotonic: 253 return llvm::AtomicOrdering::Monotonic; 254 case LLVM::AtomicOrdering::acquire: 255 return llvm::AtomicOrdering::Acquire; 256 case LLVM::AtomicOrdering::release: 257 return llvm::AtomicOrdering::Release; 258 case LLVM::AtomicOrdering::acq_rel: 259 return llvm::AtomicOrdering::AcquireRelease; 260 case LLVM::AtomicOrdering::seq_cst: 261 return llvm::AtomicOrdering::SequentiallyConsistent; 262 } 263 llvm_unreachable("incorrect atomic ordering"); 264 } 265 266 /// Given a single MLIR operation, create the corresponding LLVM IR operation 267 /// using the `builder`. LLVM IR Builder does not have a generic interface so 268 /// this has to be a long chain of `if`s calling different functions with a 269 /// different number of arguments. 270 LogicalResult ModuleTranslation::convertOperation(Operation &opInst, 271 llvm::IRBuilder<> &builder) { 272 auto extractPosition = [](ArrayAttr attr) { 273 SmallVector<unsigned, 4> position; 274 position.reserve(attr.size()); 275 for (Attribute v : attr) 276 position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue()); 277 return position; 278 }; 279 280 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc" 281 282 // Emit function calls. If the "callee" attribute is present, this is a 283 // direct function call and we also need to look up the remapped function 284 // itself. Otherwise, this is an indirect call and the callee is the first 285 // operand, look it up as a normal value. Return the llvm::Value representing 286 // the function result, which may be of llvm::VoidTy type. 287 auto convertCall = [this, &builder](Operation &op) -> llvm::Value * { 288 auto operands = lookupValues(op.getOperands()); 289 ArrayRef<llvm::Value *> operandsRef(operands); 290 if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) { 291 return builder.CreateCall(functionMapping.lookup(attr.getValue()), 292 operandsRef); 293 } else { 294 return builder.CreateCall(operandsRef.front(), operandsRef.drop_front()); 295 } 296 }; 297 298 // Emit calls. If the called function has a result, remap the corresponding 299 // value. Note that LLVM IR dialect CallOp has either 0 or 1 result. 300 if (isa<LLVM::CallOp>(opInst)) { 301 llvm::Value *result = convertCall(opInst); 302 if (opInst.getNumResults() != 0) { 303 valueMapping[opInst.getResult(0)] = result; 304 return success(); 305 } 306 // Check that LLVM call returns void for 0-result functions. 307 return success(result->getType()->isVoidTy()); 308 } 309 310 // Emit branches. We need to look up the remapped blocks and ignore the block 311 // arguments that were transformed into PHI nodes. 312 if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) { 313 builder.CreateBr(blockMapping[brOp.getSuccessor(0)]); 314 return success(); 315 } 316 if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) { 317 builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)), 318 blockMapping[condbrOp.getSuccessor(0)], 319 blockMapping[condbrOp.getSuccessor(1)]); 320 return success(); 321 } 322 323 // Emit addressof. We need to look up the global value referenced by the 324 // operation and store it in the MLIR-to-LLVM value mapping. This does not 325 // emit any LLVM instruction. 326 if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) { 327 LLVM::GlobalOp global = addressOfOp.getGlobal(); 328 // The verifier should not have allowed this. 329 assert(global && "referencing an undefined global"); 330 331 valueMapping[addressOfOp.getResult()] = globalsMapping.lookup(global); 332 return success(); 333 } 334 335 return opInst.emitError("unsupported or non-LLVM operation: ") 336 << opInst.getName(); 337 } 338 339 /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes 340 /// to define values corresponding to the MLIR block arguments. These nodes 341 /// are not connected to the source basic blocks, which may not exist yet. 342 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) { 343 llvm::IRBuilder<> builder(blockMapping[&bb]); 344 345 // Before traversing operations, make block arguments available through 346 // value remapping and PHI nodes, but do not add incoming edges for the PHI 347 // nodes just yet: those values may be defined by this or following blocks. 348 // This step is omitted if "ignoreArguments" is set. The arguments of the 349 // first block have been already made available through the remapping of 350 // LLVM function arguments. 351 if (!ignoreArguments) { 352 auto predecessors = bb.getPredecessors(); 353 unsigned numPredecessors = 354 std::distance(predecessors.begin(), predecessors.end()); 355 for (auto arg : bb.getArguments()) { 356 auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>(); 357 if (!wrappedType) 358 return emitError(bb.front().getLoc(), 359 "block argument does not have an LLVM type"); 360 llvm::Type *type = wrappedType.getUnderlyingType(); 361 llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); 362 valueMapping[arg] = phi; 363 } 364 } 365 366 // Traverse operations. 367 for (auto &op : bb) { 368 if (failed(convertOperation(op, builder))) 369 return failure(); 370 } 371 372 return success(); 373 } 374 375 /// Convert the LLVM dialect linkage type to LLVM IR linkage type. 376 llvm::GlobalVariable::LinkageTypes convertLinkageType(LLVM::Linkage linkage) { 377 switch (linkage) { 378 case LLVM::Linkage::Private: 379 return llvm::GlobalValue::PrivateLinkage; 380 case LLVM::Linkage::Internal: 381 return llvm::GlobalValue::InternalLinkage; 382 case LLVM::Linkage::AvailableExternally: 383 return llvm::GlobalValue::AvailableExternallyLinkage; 384 case LLVM::Linkage::Linkonce: 385 return llvm::GlobalValue::LinkOnceAnyLinkage; 386 case LLVM::Linkage::Weak: 387 return llvm::GlobalValue::WeakAnyLinkage; 388 case LLVM::Linkage::Common: 389 return llvm::GlobalValue::CommonLinkage; 390 case LLVM::Linkage::Appending: 391 return llvm::GlobalValue::AppendingLinkage; 392 case LLVM::Linkage::ExternWeak: 393 return llvm::GlobalValue::ExternalWeakLinkage; 394 case LLVM::Linkage::LinkonceODR: 395 return llvm::GlobalValue::LinkOnceODRLinkage; 396 case LLVM::Linkage::WeakODR: 397 return llvm::GlobalValue::WeakODRLinkage; 398 case LLVM::Linkage::External: 399 return llvm::GlobalValue::ExternalLinkage; 400 } 401 llvm_unreachable("unknown linkage type"); 402 } 403 404 /// Create named global variables that correspond to llvm.mlir.global 405 /// definitions. 406 void ModuleTranslation::convertGlobals() { 407 for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { 408 llvm::Type *type = op.getType().getUnderlyingType(); 409 llvm::Constant *cst = llvm::UndefValue::get(type); 410 if (op.getValueOrNull()) { 411 // String attributes are treated separately because they cannot appear as 412 // in-function constants and are thus not supported by getLLVMConstant. 413 if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) { 414 cst = llvm::ConstantDataArray::getString( 415 llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); 416 type = cst->getType(); 417 } else { 418 cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc()); 419 } 420 } else if (Block *initializer = op.getInitializerBlock()) { 421 llvm::IRBuilder<> builder(llvmModule->getContext()); 422 for (auto &op : initializer->without_terminator()) { 423 if (failed(convertOperation(op, builder)) || 424 !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) { 425 emitError(op.getLoc(), "unemittable constant value"); 426 return; 427 } 428 } 429 ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); 430 cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0))); 431 } 432 433 auto linkage = convertLinkageType(op.linkage()); 434 bool anyExternalLinkage = 435 (linkage == llvm::GlobalVariable::ExternalLinkage || 436 linkage == llvm::GlobalVariable::ExternalWeakLinkage); 437 auto addrSpace = op.addr_space().getLimitedValue(); 438 auto *var = new llvm::GlobalVariable( 439 *llvmModule, type, op.constant(), linkage, 440 anyExternalLinkage ? nullptr : cst, op.sym_name(), 441 /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace); 442 443 globalsMapping.try_emplace(op, var); 444 } 445 } 446 447 /// Get the SSA value passed to the current block from the terminator operation 448 /// of its predecessor. 449 static Value getPHISourceValue(Block *current, Block *pred, 450 unsigned numArguments, unsigned index) { 451 auto &terminator = *pred->getTerminator(); 452 if (isa<LLVM::BrOp>(terminator)) { 453 return terminator.getOperand(index); 454 } 455 456 // For conditional branches, we need to check if the current block is reached 457 // through the "true" or the "false" branch and take the relevant operands. 458 auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator); 459 assert(condBranchOp && 460 "only branch operations can be terminators of a block that " 461 "has successors"); 462 assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) && 463 "successors with arguments in LLVM conditional branches must be " 464 "different blocks"); 465 466 return condBranchOp.getSuccessor(0) == current 467 ? terminator.getSuccessorOperand(0, index) 468 : terminator.getSuccessorOperand(1, index); 469 } 470 471 void ModuleTranslation::connectPHINodes(LLVMFuncOp func) { 472 // Skip the first block, it cannot be branched to and its arguments correspond 473 // to the arguments of the LLVM function. 474 for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) { 475 Block *bb = &*it; 476 llvm::BasicBlock *llvmBB = blockMapping.lookup(bb); 477 auto phis = llvmBB->phis(); 478 auto numArguments = bb->getNumArguments(); 479 assert(numArguments == std::distance(phis.begin(), phis.end())); 480 for (auto &numberedPhiNode : llvm::enumerate(phis)) { 481 auto &phiNode = numberedPhiNode.value(); 482 unsigned index = numberedPhiNode.index(); 483 for (auto *pred : bb->getPredecessors()) { 484 phiNode.addIncoming(valueMapping.lookup(getPHISourceValue( 485 bb, pred, numArguments, index)), 486 blockMapping.lookup(pred)); 487 } 488 } 489 } 490 } 491 492 // TODO(mlir-team): implement an iterative version 493 static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) { 494 blocks.insert(b); 495 for (Block *bb : b->getSuccessors()) { 496 if (blocks.count(bb) == 0) 497 topologicalSortImpl(blocks, bb); 498 } 499 } 500 501 /// Sort function blocks topologically. 502 static llvm::SetVector<Block *> topologicalSort(LLVMFuncOp f) { 503 // For each blocks that has not been visited yet (i.e. that has no 504 // predecessors), add it to the list and traverse its successors in DFS 505 // preorder. 506 llvm::SetVector<Block *> blocks; 507 for (Block &b : f.getBlocks()) { 508 if (blocks.count(&b) == 0) 509 topologicalSortImpl(blocks, &b); 510 } 511 assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted"); 512 513 return blocks; 514 } 515 516 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { 517 // Clear the block and value mappings, they are only relevant within one 518 // function. 519 blockMapping.clear(); 520 valueMapping.clear(); 521 llvm::Function *llvmFunc = functionMapping.lookup(func.getName()); 522 // Add function arguments to the value remapping table. 523 // If there was noalias info then we decorate each argument accordingly. 524 unsigned int argIdx = 0; 525 for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) { 526 llvm::Argument &llvmArg = std::get<1>(kvp); 527 BlockArgument mlirArg = std::get<0>(kvp); 528 529 if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) { 530 // NB: Attribute already verified to be boolean, so check if we can indeed 531 // attach the attribute to this argument, based on its type. 532 auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>(); 533 if (!argTy.getUnderlyingType()->isPointerTy()) 534 return func.emitError( 535 "llvm.noalias attribute attached to LLVM non-pointer argument"); 536 if (attr.getValue()) 537 llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias); 538 } 539 valueMapping[mlirArg] = &llvmArg; 540 argIdx++; 541 } 542 543 // First, create all blocks so we can jump to them. 544 llvm::LLVMContext &llvmContext = llvmFunc->getContext(); 545 for (auto &bb : func) { 546 auto *llvmBB = llvm::BasicBlock::Create(llvmContext); 547 llvmBB->insertInto(llvmFunc); 548 blockMapping[&bb] = llvmBB; 549 } 550 551 // Then, convert blocks one by one in topological order to ensure defs are 552 // converted before uses. 553 auto blocks = topologicalSort(func); 554 for (auto indexedBB : llvm::enumerate(blocks)) { 555 auto *bb = indexedBB.value(); 556 if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))) 557 return failure(); 558 } 559 560 // Finally, after all blocks have been traversed and values mapped, connect 561 // the PHI nodes to the results of preceding blocks. 562 connectPHINodes(func); 563 return success(); 564 } 565 566 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) { 567 for (Operation &o : getModuleBody(m).getOperations()) 568 if (!isa<LLVM::LLVMFuncOp>(&o) && !isa<LLVM::GlobalOp>(&o) && 569 !o.isKnownTerminator()) 570 return o.emitOpError("unsupported module-level operation"); 571 return success(); 572 } 573 574 LogicalResult ModuleTranslation::convertFunctions() { 575 // Declare all functions first because there may be function calls that form a 576 // call graph with cycles. 577 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 578 llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( 579 function.getName(), 580 cast<llvm::FunctionType>(function.getType().getUnderlyingType())); 581 assert(isa<llvm::Function>(llvmFuncCst.getCallee())); 582 functionMapping[function.getName()] = 583 cast<llvm::Function>(llvmFuncCst.getCallee()); 584 } 585 586 // Convert functions. 587 for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { 588 // Ignore external functions. 589 if (function.isExternal()) 590 continue; 591 592 if (failed(convertOneFunction(function))) 593 return failure(); 594 } 595 596 return success(); 597 } 598 599 /// A helper to look up remapped operands in the value remapping table.` 600 SmallVector<llvm::Value *, 8> 601 ModuleTranslation::lookupValues(ValueRange values) { 602 SmallVector<llvm::Value *, 8> remapped; 603 remapped.reserve(values.size()); 604 for (Value v : values) 605 remapped.push_back(valueMapping.lookup(v)); 606 return remapped; 607 } 608 609 std::unique_ptr<llvm::Module> 610 ModuleTranslation::prepareLLVMModule(Operation *m) { 611 auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>(); 612 assert(dialect && "LLVM dialect must be registered"); 613 614 auto llvmModule = llvm::CloneModule(dialect->getLLVMModule()); 615 if (!llvmModule) 616 return nullptr; 617 618 llvm::LLVMContext &llvmContext = llvmModule->getContext(); 619 llvm::IRBuilder<> builder(llvmContext); 620 621 // Inject declarations for `malloc` and `free` functions that can be used in 622 // memref allocation/deallocation coming from standard ops lowering. 623 llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(), 624 builder.getInt64Ty()); 625 llvmModule->getOrInsertFunction("free", builder.getVoidTy(), 626 builder.getInt8PtrTy()); 627 628 return llvmModule; 629 } 630