1 //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the translation between an MLIR LLVM dialect module and
10 // the corresponding LLVMIR module. It only handles core LLVM IR operations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "mlir/Target/LLVMIR/ModuleTranslation.h"
15 
16 #include "DebugTranslation.h"
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/OpenMP/OpenMPDialect.h"
19 #include "mlir/IR/Attributes.h"
20 #include "mlir/IR/BuiltinOps.h"
21 #include "mlir/IR/BuiltinTypes.h"
22 #include "mlir/IR/RegionGraphTraits.h"
23 #include "mlir/Support/LLVM.h"
24 #include "mlir/Target/LLVMIR/TypeTranslation.h"
25 #include "llvm/ADT/TypeSwitch.h"
26 
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/InlineAsm.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/MDBuilder.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include "llvm/Transforms/Utils/Cloning.h"
41 
42 using namespace mlir;
43 using namespace mlir::LLVM;
44 using namespace mlir::LLVM::detail;
45 
46 #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
47 
48 /// Builds a constant of a sequential LLVM type `type`, potentially containing
49 /// other sequential types recursively, from the individual constant values
50 /// provided in `constants`. `shape` contains the number of elements in nested
51 /// sequential types. Reports errors at `loc` and returns nullptr on error.
52 static llvm::Constant *
53 buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
54                         ArrayRef<int64_t> shape, llvm::Type *type,
55                         Location loc) {
56   if (shape.empty()) {
57     llvm::Constant *result = constants.front();
58     constants = constants.drop_front();
59     return result;
60   }
61 
62   llvm::Type *elementType;
63   if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
64     elementType = arrayTy->getElementType();
65   } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
66     elementType = vectorTy->getElementType();
67   } else {
68     emitError(loc) << "expected sequential LLVM types wrapping a scalar";
69     return nullptr;
70   }
71 
72   SmallVector<llvm::Constant *, 8> nested;
73   nested.reserve(shape.front());
74   for (int64_t i = 0; i < shape.front(); ++i) {
75     nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
76                                              elementType, loc));
77     if (!nested.back())
78       return nullptr;
79   }
80 
81   if (shape.size() == 1 && type->isVectorTy())
82     return llvm::ConstantVector::get(nested);
83   return llvm::ConstantArray::get(
84       llvm::ArrayType::get(elementType, shape.front()), nested);
85 }
86 
87 /// Returns the first non-sequential type nested in sequential types.
88 static llvm::Type *getInnermostElementType(llvm::Type *type) {
89   do {
90     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
91       type = arrayTy->getElementType();
92     } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
93       type = vectorTy->getElementType();
94     } else {
95       return type;
96     }
97   } while (1);
98 }
99 
100 /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
101 /// This currently supports integer, floating point, splat and dense element
102 /// attributes and combinations thereof.  In case of error, report it to `loc`
103 /// and return nullptr.
104 llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType,
105                                                    Attribute attr,
106                                                    Location loc) {
107   if (!attr)
108     return llvm::UndefValue::get(llvmType);
109   if (llvmType->isStructTy()) {
110     emitError(loc, "struct types are not supported in constants");
111     return nullptr;
112   }
113   // For integer types, we allow a mismatch in sizes as the index type in
114   // MLIR might have a different size than the index type in the LLVM module.
115   if (auto intAttr = attr.dyn_cast<IntegerAttr>())
116     return llvm::ConstantInt::get(
117         llvmType,
118         intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
119   if (auto floatAttr = attr.dyn_cast<FloatAttr>())
120     return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
121   if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
122     return llvm::ConstantExpr::getBitCast(
123         functionMapping.lookup(funcAttr.getValue()), llvmType);
124   if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
125     llvm::Type *elementType;
126     uint64_t numElements;
127     if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
128       elementType = arrayTy->getElementType();
129       numElements = arrayTy->getNumElements();
130     } else {
131       auto *vectorTy = cast<llvm::FixedVectorType>(llvmType);
132       elementType = vectorTy->getElementType();
133       numElements = vectorTy->getNumElements();
134     }
135     // Splat value is a scalar. Extract it only if the element type is not
136     // another sequence type. The recursion terminates because each step removes
137     // one outer sequential type.
138     bool elementTypeSequential =
139         isa<llvm::ArrayType, llvm::VectorType>(elementType);
140     llvm::Constant *child = getLLVMConstant(
141         elementType,
142         elementTypeSequential ? splatAttr : splatAttr.getSplatValue(), loc);
143     if (!child)
144       return nullptr;
145     if (llvmType->isVectorTy())
146       return llvm::ConstantVector::getSplat(
147           llvm::ElementCount::get(numElements, /*Scalable=*/false), child);
148     if (llvmType->isArrayTy()) {
149       auto *arrayType = llvm::ArrayType::get(elementType, numElements);
150       SmallVector<llvm::Constant *, 8> constants(numElements, child);
151       return llvm::ConstantArray::get(arrayType, constants);
152     }
153   }
154 
155   if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
156     assert(elementsAttr.getType().hasStaticShape());
157     assert(elementsAttr.getNumElements() != 0 &&
158            "unexpected empty elements attribute");
159     assert(!elementsAttr.getType().getShape().empty() &&
160            "unexpected empty elements attribute shape");
161 
162     SmallVector<llvm::Constant *, 8> constants;
163     constants.reserve(elementsAttr.getNumElements());
164     llvm::Type *innermostType = getInnermostElementType(llvmType);
165     for (auto n : elementsAttr.getValues<Attribute>()) {
166       constants.push_back(getLLVMConstant(innermostType, n, loc));
167       if (!constants.back())
168         return nullptr;
169     }
170     ArrayRef<llvm::Constant *> constantsRef = constants;
171     llvm::Constant *result = buildSequentialConstant(
172         constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
173     assert(constantsRef.empty() && "did not consume all elemental constants");
174     return result;
175   }
176 
177   if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
178     return llvm::ConstantDataArray::get(
179         llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(),
180                                                  stringAttr.getValue().size()});
181   }
182   emitError(loc, "unsupported constant value");
183   return nullptr;
184 }
185 
186 /// Convert MLIR integer comparison predicate to LLVM IR comparison predicate.
187 static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) {
188   switch (p) {
189   case LLVM::ICmpPredicate::eq:
190     return llvm::CmpInst::Predicate::ICMP_EQ;
191   case LLVM::ICmpPredicate::ne:
192     return llvm::CmpInst::Predicate::ICMP_NE;
193   case LLVM::ICmpPredicate::slt:
194     return llvm::CmpInst::Predicate::ICMP_SLT;
195   case LLVM::ICmpPredicate::sle:
196     return llvm::CmpInst::Predicate::ICMP_SLE;
197   case LLVM::ICmpPredicate::sgt:
198     return llvm::CmpInst::Predicate::ICMP_SGT;
199   case LLVM::ICmpPredicate::sge:
200     return llvm::CmpInst::Predicate::ICMP_SGE;
201   case LLVM::ICmpPredicate::ult:
202     return llvm::CmpInst::Predicate::ICMP_ULT;
203   case LLVM::ICmpPredicate::ule:
204     return llvm::CmpInst::Predicate::ICMP_ULE;
205   case LLVM::ICmpPredicate::ugt:
206     return llvm::CmpInst::Predicate::ICMP_UGT;
207   case LLVM::ICmpPredicate::uge:
208     return llvm::CmpInst::Predicate::ICMP_UGE;
209   }
210   llvm_unreachable("incorrect comparison predicate");
211 }
212 
213 static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) {
214   switch (p) {
215   case LLVM::FCmpPredicate::_false:
216     return llvm::CmpInst::Predicate::FCMP_FALSE;
217   case LLVM::FCmpPredicate::oeq:
218     return llvm::CmpInst::Predicate::FCMP_OEQ;
219   case LLVM::FCmpPredicate::ogt:
220     return llvm::CmpInst::Predicate::FCMP_OGT;
221   case LLVM::FCmpPredicate::oge:
222     return llvm::CmpInst::Predicate::FCMP_OGE;
223   case LLVM::FCmpPredicate::olt:
224     return llvm::CmpInst::Predicate::FCMP_OLT;
225   case LLVM::FCmpPredicate::ole:
226     return llvm::CmpInst::Predicate::FCMP_OLE;
227   case LLVM::FCmpPredicate::one:
228     return llvm::CmpInst::Predicate::FCMP_ONE;
229   case LLVM::FCmpPredicate::ord:
230     return llvm::CmpInst::Predicate::FCMP_ORD;
231   case LLVM::FCmpPredicate::ueq:
232     return llvm::CmpInst::Predicate::FCMP_UEQ;
233   case LLVM::FCmpPredicate::ugt:
234     return llvm::CmpInst::Predicate::FCMP_UGT;
235   case LLVM::FCmpPredicate::uge:
236     return llvm::CmpInst::Predicate::FCMP_UGE;
237   case LLVM::FCmpPredicate::ult:
238     return llvm::CmpInst::Predicate::FCMP_ULT;
239   case LLVM::FCmpPredicate::ule:
240     return llvm::CmpInst::Predicate::FCMP_ULE;
241   case LLVM::FCmpPredicate::une:
242     return llvm::CmpInst::Predicate::FCMP_UNE;
243   case LLVM::FCmpPredicate::uno:
244     return llvm::CmpInst::Predicate::FCMP_UNO;
245   case LLVM::FCmpPredicate::_true:
246     return llvm::CmpInst::Predicate::FCMP_TRUE;
247   }
248   llvm_unreachable("incorrect comparison predicate");
249 }
250 
251 static llvm::AtomicRMWInst::BinOp getLLVMAtomicBinOp(AtomicBinOp op) {
252   switch (op) {
253   case LLVM::AtomicBinOp::xchg:
254     return llvm::AtomicRMWInst::BinOp::Xchg;
255   case LLVM::AtomicBinOp::add:
256     return llvm::AtomicRMWInst::BinOp::Add;
257   case LLVM::AtomicBinOp::sub:
258     return llvm::AtomicRMWInst::BinOp::Sub;
259   case LLVM::AtomicBinOp::_and:
260     return llvm::AtomicRMWInst::BinOp::And;
261   case LLVM::AtomicBinOp::nand:
262     return llvm::AtomicRMWInst::BinOp::Nand;
263   case LLVM::AtomicBinOp::_or:
264     return llvm::AtomicRMWInst::BinOp::Or;
265   case LLVM::AtomicBinOp::_xor:
266     return llvm::AtomicRMWInst::BinOp::Xor;
267   case LLVM::AtomicBinOp::max:
268     return llvm::AtomicRMWInst::BinOp::Max;
269   case LLVM::AtomicBinOp::min:
270     return llvm::AtomicRMWInst::BinOp::Min;
271   case LLVM::AtomicBinOp::umax:
272     return llvm::AtomicRMWInst::BinOp::UMax;
273   case LLVM::AtomicBinOp::umin:
274     return llvm::AtomicRMWInst::BinOp::UMin;
275   case LLVM::AtomicBinOp::fadd:
276     return llvm::AtomicRMWInst::BinOp::FAdd;
277   case LLVM::AtomicBinOp::fsub:
278     return llvm::AtomicRMWInst::BinOp::FSub;
279   }
280   llvm_unreachable("incorrect atomic binary operator");
281 }
282 
283 static llvm::AtomicOrdering getLLVMAtomicOrdering(AtomicOrdering ordering) {
284   switch (ordering) {
285   case LLVM::AtomicOrdering::not_atomic:
286     return llvm::AtomicOrdering::NotAtomic;
287   case LLVM::AtomicOrdering::unordered:
288     return llvm::AtomicOrdering::Unordered;
289   case LLVM::AtomicOrdering::monotonic:
290     return llvm::AtomicOrdering::Monotonic;
291   case LLVM::AtomicOrdering::acquire:
292     return llvm::AtomicOrdering::Acquire;
293   case LLVM::AtomicOrdering::release:
294     return llvm::AtomicOrdering::Release;
295   case LLVM::AtomicOrdering::acq_rel:
296     return llvm::AtomicOrdering::AcquireRelease;
297   case LLVM::AtomicOrdering::seq_cst:
298     return llvm::AtomicOrdering::SequentiallyConsistent;
299   }
300   llvm_unreachable("incorrect atomic ordering");
301 }
302 
303 ModuleTranslation::ModuleTranslation(Operation *module,
304                                      std::unique_ptr<llvm::Module> llvmModule)
305     : mlirModule(module), llvmModule(std::move(llvmModule)),
306       debugTranslation(
307           std::make_unique<DebugTranslation>(module, *this->llvmModule)),
308       ompDialect(module->getContext()->getLoadedDialect("omp")),
309       typeTranslator(this->llvmModule->getContext()) {
310   assert(satisfiesLLVMModule(mlirModule) &&
311          "mlirModule should honor LLVM's module semantics.");
312 }
313 ModuleTranslation::~ModuleTranslation() {
314   if (ompBuilder)
315     ompBuilder->finalize();
316 }
317 
318 /// Get the SSA value passed to the current block from the terminator operation
319 /// of its predecessor.
320 static Value getPHISourceValue(Block *current, Block *pred,
321                                unsigned numArguments, unsigned index) {
322   Operation &terminator = *pred->getTerminator();
323   if (isa<LLVM::BrOp>(terminator))
324     return terminator.getOperand(index);
325 
326   SuccessorRange successors = terminator.getSuccessors();
327   assert(std::adjacent_find(successors.begin(), successors.end()) ==
328              successors.end() &&
329          "successors with arguments in LLVM branches must be different blocks");
330   (void)successors;
331 
332   // For instructions that branch based on a condition value, we need to take
333   // the operands for the branch that was taken.
334   if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
335     // For conditional branches, we take the operands from either the "true" or
336     // the "false" branch.
337     return condBranchOp.getSuccessor(0) == current
338                ? condBranchOp.trueDestOperands()[index]
339                : condBranchOp.falseDestOperands()[index];
340   } else if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
341     // For switches, we take the operands from either the default case, or from
342     // the case branch that was taken.
343     if (switchOp.defaultDestination() == current)
344       return switchOp.defaultOperands()[index];
345     for (auto i : llvm::enumerate(switchOp.caseDestinations()))
346       if (i.value() == current)
347         return switchOp.getCaseOperands(i.index())[index];
348   }
349 
350   llvm_unreachable("only branch or switch operations can be terminators of a "
351                    "block that has successors");
352 }
353 
354 /// Connect the PHI nodes to the results of preceding blocks.
355 template <typename T>
356 static void connectPHINodes(
357     T &func, const DenseMap<Value, llvm::Value *> &valueMapping,
358     const DenseMap<Block *, llvm::BasicBlock *> &blockMapping,
359     const DenseMap<Operation *, llvm::Instruction *> &branchMapping) {
360   // Skip the first block, it cannot be branched to and its arguments correspond
361   // to the arguments of the LLVM function.
362   for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) {
363     Block *bb = &*it;
364     llvm::BasicBlock *llvmBB = blockMapping.lookup(bb);
365     auto phis = llvmBB->phis();
366     auto numArguments = bb->getNumArguments();
367     assert(numArguments == std::distance(phis.begin(), phis.end()));
368     for (auto &numberedPhiNode : llvm::enumerate(phis)) {
369       auto &phiNode = numberedPhiNode.value();
370       unsigned index = numberedPhiNode.index();
371       for (auto *pred : bb->getPredecessors()) {
372         // Find the LLVM IR block that contains the converted terminator
373         // instruction and use it in the PHI node. Note that this block is not
374         // necessarily the same as blockMapping.lookup(pred), some operations
375         // (in particular, OpenMP operations using OpenMPIRBuilder) may have
376         // split the blocks.
377         llvm::Instruction *terminator =
378             branchMapping.lookup(pred->getTerminator());
379         assert(terminator && "missing the mapping for a terminator");
380         phiNode.addIncoming(valueMapping.lookup(getPHISourceValue(
381                                 bb, pred, numArguments, index)),
382                             terminator->getParent());
383       }
384     }
385   }
386 }
387 
388 /// Sort function blocks topologically.
389 template <typename T>
390 static llvm::SetVector<Block *> topologicalSort(T &f) {
391   // For each block that has not been visited yet (i.e. that has no
392   // predecessors), add it to the list as well as its successors.
393   llvm::SetVector<Block *> blocks;
394   for (Block &b : f) {
395     if (blocks.count(&b) == 0) {
396       llvm::ReversePostOrderTraversal<Block *> traversal(&b);
397       blocks.insert(traversal.begin(), traversal.end());
398     }
399   }
400   assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted");
401 
402   return blocks;
403 }
404 
405 /// Convert the OpenMP parallel Operation to LLVM IR.
406 LogicalResult
407 ModuleTranslation::convertOmpParallel(Operation &opInst,
408                                       llvm::IRBuilder<> &builder) {
409   using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
410   // TODO: support error propagation in OpenMPIRBuilder and use it instead of
411   // relying on captured variables.
412   LogicalResult bodyGenStatus = success();
413 
414   auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP,
415                        llvm::BasicBlock &continuationBlock) {
416     // ParallelOp has only one region associated with it.
417     auto &region = cast<omp::ParallelOp>(opInst).getRegion();
418     convertOmpOpRegions(region, "omp.par.region", valueMapping, blockMapping,
419                         *codeGenIP.getBlock(), continuationBlock, builder,
420                         bodyGenStatus);
421   };
422 
423   // TODO: Perform appropriate actions according to the data-sharing
424   // attribute (shared, private, firstprivate, ...) of variables.
425   // Currently defaults to shared.
426   auto privCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP,
427                     llvm::Value &, llvm::Value &vPtr,
428                     llvm::Value *&replacementValue) -> InsertPointTy {
429     replacementValue = &vPtr;
430 
431     return codeGenIP;
432   };
433 
434   // TODO: Perform finalization actions for variables. This has to be
435   // called for variables which have destructors/finalizers.
436   auto finiCB = [&](InsertPointTy codeGenIP) {};
437 
438   llvm::Value *ifCond = nullptr;
439   if (auto ifExprVar = cast<omp::ParallelOp>(opInst).if_expr_var())
440     ifCond = valueMapping.lookup(ifExprVar);
441   llvm::Value *numThreads = nullptr;
442   if (auto numThreadsVar = cast<omp::ParallelOp>(opInst).num_threads_var())
443     numThreads = valueMapping.lookup(numThreadsVar);
444   llvm::omp::ProcBindKind pbKind = llvm::omp::OMP_PROC_BIND_default;
445   if (auto bind = cast<omp::ParallelOp>(opInst).proc_bind_val())
446     pbKind = llvm::omp::getProcBindKind(bind.getValue());
447   // TODO: Is the Parallel construct cancellable?
448   bool isCancellable = false;
449   // TODO: Determine the actual alloca insertion point, e.g., the function
450   // entry or the alloca insertion point as provided by the body callback
451   // above.
452   llvm::OpenMPIRBuilder::InsertPointTy allocaIP(builder.saveIP());
453   if (failed(bodyGenStatus))
454     return failure();
455   builder.restoreIP(
456       ompBuilder->createParallel(builder, allocaIP, bodyGenCB, privCB, finiCB,
457                                  ifCond, numThreads, pbKind, isCancellable));
458   return success();
459 }
460 
461 void ModuleTranslation::convertOmpOpRegions(
462     Region &region, StringRef blockName,
463     DenseMap<Value, llvm::Value *> &valueMapping,
464     DenseMap<Block *, llvm::BasicBlock *> &blockMapping,
465     llvm::BasicBlock &sourceBlock, llvm::BasicBlock &continuationBlock,
466     llvm::IRBuilder<> &builder, LogicalResult &bodyGenStatus) {
467   llvm::LLVMContext &llvmContext = builder.getContext();
468   for (Block &bb : region) {
469     llvm::BasicBlock *llvmBB = llvm::BasicBlock::Create(
470         llvmContext, blockName, builder.GetInsertBlock()->getParent());
471     blockMapping[&bb] = llvmBB;
472   }
473 
474   llvm::Instruction *sourceTerminator = sourceBlock.getTerminator();
475 
476   // Convert blocks one by one in topological order to ensure
477   // defs are converted before uses.
478   llvm::SetVector<Block *> blocks = topologicalSort(region);
479   for (Block *bb : blocks) {
480     llvm::BasicBlock *llvmBB = blockMapping[bb];
481     // Retarget the branch of the entry block to the entry block of the
482     // converted region (regions are single-entry).
483     if (bb->isEntryBlock()) {
484       assert(sourceTerminator->getNumSuccessors() == 1 &&
485              "provided entry block has multiple successors");
486       assert(sourceTerminator->getSuccessor(0) == &continuationBlock &&
487              "ContinuationBlock is not the successor of the entry block");
488       sourceTerminator->setSuccessor(0, llvmBB);
489     }
490 
491     llvm::IRBuilder<>::InsertPointGuard guard(builder);
492     if (failed(convertBlock(*bb, bb->isEntryBlock(), builder))) {
493       bodyGenStatus = failure();
494       return;
495     }
496 
497     // Special handling for `omp.yield` and `omp.terminator` (we may have more
498     // than one): they return the control to the parent OpenMP dialect operation
499     // so replace them with the branch to the continuation block. We handle this
500     // here to avoid relying inter-function communication through the
501     // ModuleTranslation class to set up the correct insertion point. This is
502     // also consistent with MLIR's idiom of handling special region terminators
503     // in the same code that handles the region-owning operation.
504     if (isa<omp::TerminatorOp, omp::YieldOp>(bb->getTerminator()))
505       builder.CreateBr(&continuationBlock);
506   }
507   // Finally, after all blocks have been traversed and values mapped,
508   // connect the PHI nodes to the results of preceding blocks.
509   connectPHINodes(region, valueMapping, blockMapping, branchMapping);
510 }
511 
512 LogicalResult ModuleTranslation::convertOmpMaster(Operation &opInst,
513                                                   llvm::IRBuilder<> &builder) {
514   using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
515   // TODO: support error propagation in OpenMPIRBuilder and use it instead of
516   // relying on captured variables.
517   LogicalResult bodyGenStatus = success();
518 
519   auto bodyGenCB = [&](InsertPointTy allocaIP, InsertPointTy codeGenIP,
520                        llvm::BasicBlock &continuationBlock) {
521     // MasterOp has only one region associated with it.
522     auto &region = cast<omp::MasterOp>(opInst).getRegion();
523     convertOmpOpRegions(region, "omp.master.region", valueMapping, blockMapping,
524                         *codeGenIP.getBlock(), continuationBlock, builder,
525                         bodyGenStatus);
526   };
527 
528   // TODO: Perform finalization actions for variables. This has to be
529   // called for variables which have destructors/finalizers.
530   auto finiCB = [&](InsertPointTy codeGenIP) {};
531 
532   builder.restoreIP(ompBuilder->createMaster(builder, bodyGenCB, finiCB));
533   return success();
534 }
535 
536 /// Converts an OpenMP workshare loop into LLVM IR using OpenMPIRBuilder.
537 LogicalResult ModuleTranslation::convertOmpWsLoop(Operation &opInst,
538                                                   llvm::IRBuilder<> &builder) {
539   auto loop = cast<omp::WsLoopOp>(opInst);
540   // TODO: this should be in the op verifier instead.
541   if (loop.lowerBound().empty())
542     return failure();
543 
544   if (loop.getNumLoops() != 1)
545     return opInst.emitOpError("collapsed loops not yet supported");
546 
547   if (loop.schedule_val().hasValue() &&
548       omp::symbolizeClauseScheduleKind(loop.schedule_val().getValue()) !=
549           omp::ClauseScheduleKind::Static)
550     return opInst.emitOpError(
551         "only static (default) loop schedule is currently supported");
552 
553   // Find the loop configuration.
554   llvm::Value *lowerBound = valueMapping.lookup(loop.lowerBound()[0]);
555   llvm::Value *upperBound = valueMapping.lookup(loop.upperBound()[0]);
556   llvm::Value *step = valueMapping.lookup(loop.step()[0]);
557   llvm::Type *ivType = step->getType();
558   llvm::Value *chunk = loop.schedule_chunk_var()
559                            ? valueMapping[loop.schedule_chunk_var()]
560                            : llvm::ConstantInt::get(ivType, 1);
561 
562   // Set up the source location value for OpenMP runtime.
563   llvm::DISubprogram *subprogram =
564       builder.GetInsertBlock()->getParent()->getSubprogram();
565   const llvm::DILocation *diLoc =
566       debugTranslation->translateLoc(opInst.getLoc(), subprogram);
567   llvm::OpenMPIRBuilder::LocationDescription ompLoc(builder.saveIP(),
568                                                     llvm::DebugLoc(diLoc));
569 
570   // Generator of the canonical loop body. Produces an SESE region of basic
571   // blocks.
572   // TODO: support error propagation in OpenMPIRBuilder and use it instead of
573   // relying on captured variables.
574   LogicalResult bodyGenStatus = success();
575   auto bodyGen = [&](llvm::OpenMPIRBuilder::InsertPointTy ip, llvm::Value *iv) {
576     llvm::IRBuilder<>::InsertPointGuard guard(builder);
577 
578     // Make sure further conversions know about the induction variable.
579     valueMapping[loop.getRegion().front().getArgument(0)] = iv;
580 
581     llvm::BasicBlock *entryBlock = ip.getBlock();
582     llvm::BasicBlock *exitBlock =
583         entryBlock->splitBasicBlock(ip.getPoint(), "omp.wsloop.exit");
584 
585     // Convert the body of the loop.
586     convertOmpOpRegions(loop.region(), "omp.wsloop.region", valueMapping,
587                         blockMapping, *entryBlock, *exitBlock, builder,
588                         bodyGenStatus);
589   };
590 
591   // Delegate actual loop construction to the OpenMP IRBuilder.
592   // TODO: this currently assumes WsLoop is semantically similar to SCF loop,
593   // i.e. it has a positive step, uses signed integer semantics. Reconsider
594   // this code when WsLoop clearly supports more cases.
595   llvm::BasicBlock *insertBlock = builder.GetInsertBlock();
596   llvm::CanonicalLoopInfo *loopInfo = ompBuilder->createCanonicalLoop(
597       ompLoc, bodyGen, lowerBound, upperBound, step, /*IsSigned=*/true,
598       /*InclusiveStop=*/loop.inclusive());
599   if (failed(bodyGenStatus))
600     return failure();
601 
602   // TODO: get the alloca insertion point from the parallel operation builder.
603   // If we insert the at the top of the current function, they will be passed as
604   // extra arguments into the function the parallel operation builder outlines.
605   // Put them at the start of the current block for now.
606   llvm::OpenMPIRBuilder::InsertPointTy allocaIP(
607       insertBlock, insertBlock->getFirstInsertionPt());
608   loopInfo = ompBuilder->createStaticWorkshareLoop(ompLoc, loopInfo, allocaIP,
609                                                    !loop.nowait(), chunk);
610 
611   // Continue building IR after the loop.
612   builder.restoreIP(loopInfo->getAfterIP());
613   return success();
614 }
615 
616 /// Given an OpenMP MLIR operation, create the corresponding LLVM IR
617 /// (including OpenMP runtime calls).
618 LogicalResult
619 ModuleTranslation::convertOmpOperation(Operation &opInst,
620                                        llvm::IRBuilder<> &builder) {
621   if (!ompBuilder) {
622     ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule);
623     ompBuilder->initialize();
624   }
625   return llvm::TypeSwitch<Operation *, LogicalResult>(&opInst)
626       .Case([&](omp::BarrierOp) {
627         ompBuilder->createBarrier(builder.saveIP(), llvm::omp::OMPD_barrier);
628         return success();
629       })
630       .Case([&](omp::TaskwaitOp) {
631         ompBuilder->createTaskwait(builder.saveIP());
632         return success();
633       })
634       .Case([&](omp::TaskyieldOp) {
635         ompBuilder->createTaskyield(builder.saveIP());
636         return success();
637       })
638       .Case([&](omp::FlushOp) {
639         // No support in Openmp runtime function (__kmpc_flush) to accept
640         // the argument list.
641         // OpenMP standard states the following:
642         //  "An implementation may implement a flush with a list by ignoring
643         //   the list, and treating it the same as a flush without a list."
644         //
645         // The argument list is discarded so that, flush with a list is treated
646         // same as a flush without a list.
647         ompBuilder->createFlush(builder.saveIP());
648         return success();
649       })
650       .Case(
651           [&](omp::ParallelOp) { return convertOmpParallel(opInst, builder); })
652       .Case([&](omp::MasterOp) { return convertOmpMaster(opInst, builder); })
653       .Case([&](omp::WsLoopOp) { return convertOmpWsLoop(opInst, builder); })
654       .Case<omp::YieldOp, omp::TerminatorOp>([](auto op) {
655         // `yield` and `terminator` can be just omitted. The block structure was
656         // created in the function that handles their parent operation.
657         assert(op->getNumOperands() == 0 &&
658                "unexpected OpenMP terminator with operands");
659         return success();
660       })
661       .Default([&](Operation *inst) {
662         return inst->emitError("unsupported OpenMP operation: ")
663                << inst->getName();
664       });
665 }
666 
667 static llvm::FastMathFlags getFastmathFlags(FastmathFlagsInterface &op) {
668   using llvmFMF = llvm::FastMathFlags;
669   using FuncT = void (llvmFMF::*)(bool);
670   const std::pair<FastmathFlags, FuncT> handlers[] = {
671       // clang-format off
672       {FastmathFlags::nnan,     &llvmFMF::setNoNaNs},
673       {FastmathFlags::ninf,     &llvmFMF::setNoInfs},
674       {FastmathFlags::nsz,      &llvmFMF::setNoSignedZeros},
675       {FastmathFlags::arcp,     &llvmFMF::setAllowReciprocal},
676       {FastmathFlags::contract, &llvmFMF::setAllowContract},
677       {FastmathFlags::afn,      &llvmFMF::setApproxFunc},
678       {FastmathFlags::reassoc,  &llvmFMF::setAllowReassoc},
679       {FastmathFlags::fast,     &llvmFMF::setFast},
680       // clang-format on
681   };
682   llvm::FastMathFlags ret;
683   auto fmf = op.fastmathFlags();
684   for (auto it : handlers)
685     if (bitEnumContains(fmf, it.first))
686       (ret.*(it.second))(true);
687   return ret;
688 }
689 
690 /// Given a single MLIR operation, create the corresponding LLVM IR operation
691 /// using the `builder`.  LLVM IR Builder does not have a generic interface so
692 /// this has to be a long chain of `if`s calling different functions with a
693 /// different number of arguments.
694 LogicalResult ModuleTranslation::convertOperation(Operation &opInst,
695                                                   llvm::IRBuilder<> &builder) {
696   auto extractPosition = [](ArrayAttr attr) {
697     SmallVector<unsigned, 4> position;
698     position.reserve(attr.size());
699     for (Attribute v : attr)
700       position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue());
701     return position;
702   };
703 
704   llvm::IRBuilder<>::FastMathFlagGuard fmfGuard(builder);
705   if (auto fmf = dyn_cast<FastmathFlagsInterface>(opInst))
706     builder.setFastMathFlags(getFastmathFlags(fmf));
707 
708 #include "mlir/Dialect/LLVMIR/LLVMConversions.inc"
709 
710   // Emit function calls.  If the "callee" attribute is present, this is a
711   // direct function call and we also need to look up the remapped function
712   // itself.  Otherwise, this is an indirect call and the callee is the first
713   // operand, look it up as a normal value.  Return the llvm::Value representing
714   // the function result, which may be of llvm::VoidTy type.
715   auto convertCall = [this, &builder](Operation &op) -> llvm::Value * {
716     auto operands = lookupValues(op.getOperands());
717     ArrayRef<llvm::Value *> operandsRef(operands);
718     if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) {
719       return builder.CreateCall(functionMapping.lookup(attr.getValue()),
720                                 operandsRef);
721     } else {
722       auto *calleePtrType =
723           cast<llvm::PointerType>(operandsRef.front()->getType());
724       auto *calleeType =
725           cast<llvm::FunctionType>(calleePtrType->getElementType());
726       return builder.CreateCall(calleeType, operandsRef.front(),
727                                 operandsRef.drop_front());
728     }
729   };
730 
731   // Emit calls.  If the called function has a result, remap the corresponding
732   // value.  Note that LLVM IR dialect CallOp has either 0 or 1 result.
733   if (isa<LLVM::CallOp>(opInst)) {
734     llvm::Value *result = convertCall(opInst);
735     if (opInst.getNumResults() != 0) {
736       valueMapping[opInst.getResult(0)] = result;
737       return success();
738     }
739     // Check that LLVM call returns void for 0-result functions.
740     return success(result->getType()->isVoidTy());
741   }
742 
743   if (auto inlineAsmOp = dyn_cast<LLVM::InlineAsmOp>(opInst)) {
744     // TODO: refactor function type creation which usually occurs in std-LLVM
745     // conversion.
746     SmallVector<Type, 8> operandTypes;
747     operandTypes.reserve(inlineAsmOp.operands().size());
748     for (auto t : inlineAsmOp.operands().getTypes())
749       operandTypes.push_back(t);
750 
751     Type resultType;
752     if (inlineAsmOp.getNumResults() == 0) {
753       resultType = LLVM::LLVMVoidType::get(mlirModule->getContext());
754     } else {
755       assert(inlineAsmOp.getNumResults() == 1);
756       resultType = inlineAsmOp.getResultTypes()[0];
757     }
758     auto ft = LLVM::LLVMFunctionType::get(resultType, operandTypes);
759     llvm::InlineAsm *inlineAsmInst =
760         inlineAsmOp.asm_dialect().hasValue()
761             ? llvm::InlineAsm::get(
762                   static_cast<llvm::FunctionType *>(convertType(ft)),
763                   inlineAsmOp.asm_string(), inlineAsmOp.constraints(),
764                   inlineAsmOp.has_side_effects(), inlineAsmOp.is_align_stack(),
765                   convertAsmDialectToLLVM(*inlineAsmOp.asm_dialect()))
766             : llvm::InlineAsm::get(
767                   static_cast<llvm::FunctionType *>(convertType(ft)),
768                   inlineAsmOp.asm_string(), inlineAsmOp.constraints(),
769                   inlineAsmOp.has_side_effects(), inlineAsmOp.is_align_stack());
770     llvm::Value *result =
771         builder.CreateCall(inlineAsmInst, lookupValues(inlineAsmOp.operands()));
772     if (opInst.getNumResults() != 0)
773       valueMapping[opInst.getResult(0)] = result;
774     return success();
775   }
776 
777   if (auto invOp = dyn_cast<LLVM::InvokeOp>(opInst)) {
778     auto operands = lookupValues(opInst.getOperands());
779     ArrayRef<llvm::Value *> operandsRef(operands);
780     if (auto attr = opInst.getAttrOfType<FlatSymbolRefAttr>("callee")) {
781       builder.CreateInvoke(functionMapping.lookup(attr.getValue()),
782                            blockMapping[invOp.getSuccessor(0)],
783                            blockMapping[invOp.getSuccessor(1)], operandsRef);
784     } else {
785       auto *calleePtrType =
786           cast<llvm::PointerType>(operandsRef.front()->getType());
787       auto *calleeType =
788           cast<llvm::FunctionType>(calleePtrType->getElementType());
789       builder.CreateInvoke(
790           calleeType, operandsRef.front(), blockMapping[invOp.getSuccessor(0)],
791           blockMapping[invOp.getSuccessor(1)], operandsRef.drop_front());
792     }
793     return success();
794   }
795 
796   if (auto lpOp = dyn_cast<LLVM::LandingpadOp>(opInst)) {
797     llvm::Type *ty = convertType(lpOp.getType());
798     llvm::LandingPadInst *lpi =
799         builder.CreateLandingPad(ty, lpOp.getNumOperands());
800 
801     // Add clauses
802     for (auto operand : lookupValues(lpOp.getOperands())) {
803       // All operands should be constant - checked by verifier
804       if (auto constOperand = dyn_cast<llvm::Constant>(operand))
805         lpi->addClause(constOperand);
806     }
807     valueMapping[lpOp.getResult()] = lpi;
808     return success();
809   }
810 
811   // Emit branches.  We need to look up the remapped blocks and ignore the block
812   // arguments that were transformed into PHI nodes.
813   if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) {
814     llvm::BranchInst *branch =
815         builder.CreateBr(blockMapping[brOp.getSuccessor()]);
816     branchMapping.try_emplace(&opInst, branch);
817     return success();
818   }
819   if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) {
820     auto weights = condbrOp.branch_weights();
821     llvm::MDNode *branchWeights = nullptr;
822     if (weights) {
823       // Map weight attributes to LLVM metadata.
824       auto trueWeight =
825           weights.getValue().getValue(0).cast<IntegerAttr>().getInt();
826       auto falseWeight =
827           weights.getValue().getValue(1).cast<IntegerAttr>().getInt();
828       branchWeights =
829           llvm::MDBuilder(llvmModule->getContext())
830               .createBranchWeights(static_cast<uint32_t>(trueWeight),
831                                    static_cast<uint32_t>(falseWeight));
832     }
833     llvm::BranchInst *branch = builder.CreateCondBr(
834         valueMapping.lookup(condbrOp.getOperand(0)),
835         blockMapping[condbrOp.getSuccessor(0)],
836         blockMapping[condbrOp.getSuccessor(1)], branchWeights);
837     branchMapping.try_emplace(&opInst, branch);
838     return success();
839   }
840   if (auto switchOp = dyn_cast<LLVM::SwitchOp>(opInst)) {
841     llvm::MDNode *branchWeights = nullptr;
842     if (auto weights = switchOp.branch_weights()) {
843       llvm::SmallVector<uint32_t> weightValues;
844       weightValues.reserve(weights->size());
845       for (llvm::APInt weight : weights->cast<DenseIntElementsAttr>())
846         weightValues.push_back(weight.getLimitedValue());
847       branchWeights = llvm::MDBuilder(llvmModule->getContext())
848                           .createBranchWeights(weightValues);
849     }
850 
851     llvm::SwitchInst *switchInst =
852         builder.CreateSwitch(valueMapping[switchOp.value()],
853                              blockMapping[switchOp.defaultDestination()],
854                              switchOp.caseDestinations().size(), branchWeights);
855 
856     auto *ty =
857         llvm::cast<llvm::IntegerType>(convertType(switchOp.value().getType()));
858     for (auto i :
859          llvm::zip(switchOp.case_values()->cast<DenseIntElementsAttr>(),
860                    switchOp.caseDestinations()))
861       switchInst->addCase(
862           llvm::ConstantInt::get(ty, std::get<0>(i).getLimitedValue()),
863           blockMapping[std::get<1>(i)]);
864 
865     branchMapping.try_emplace(&opInst, switchInst);
866     return success();
867   }
868 
869   // Emit addressof.  We need to look up the global value referenced by the
870   // operation and store it in the MLIR-to-LLVM value mapping.  This does not
871   // emit any LLVM instruction.
872   if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) {
873     LLVM::GlobalOp global = addressOfOp.getGlobal();
874     LLVM::LLVMFuncOp function = addressOfOp.getFunction();
875 
876     // The verifier should not have allowed this.
877     assert((global || function) &&
878            "referencing an undefined global or function");
879 
880     valueMapping[addressOfOp.getResult()] =
881         global ? globalsMapping.lookup(global)
882                : functionMapping.lookup(function.getName());
883     return success();
884   }
885 
886   if (ompDialect && opInst.getDialect() == ompDialect)
887     return convertOmpOperation(opInst, builder);
888 
889   return opInst.emitError("unsupported or non-LLVM operation: ")
890          << opInst.getName();
891 }
892 
893 /// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
894 /// to define values corresponding to the MLIR block arguments.  These nodes
895 /// are not connected to the source basic blocks, which may not exist yet.  Uses
896 /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
897 /// been created for `bb` and included in the block mapping.  Inserts new
898 /// instructions at the end of the block and leaves `builder` in a state
899 /// suitable for further insertion into the end of the block.
900 LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments,
901                                               llvm::IRBuilder<> &builder) {
902   builder.SetInsertPoint(blockMapping[&bb]);
903   auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
904 
905   // Before traversing operations, make block arguments available through
906   // value remapping and PHI nodes, but do not add incoming edges for the PHI
907   // nodes just yet: those values may be defined by this or following blocks.
908   // This step is omitted if "ignoreArguments" is set.  The arguments of the
909   // first block have been already made available through the remapping of
910   // LLVM function arguments.
911   if (!ignoreArguments) {
912     auto predecessors = bb.getPredecessors();
913     unsigned numPredecessors =
914         std::distance(predecessors.begin(), predecessors.end());
915     for (auto arg : bb.getArguments()) {
916       auto wrappedType = arg.getType();
917       if (!isCompatibleType(wrappedType))
918         return emitError(bb.front().getLoc(),
919                          "block argument does not have an LLVM type");
920       llvm::Type *type = convertType(wrappedType);
921       llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
922       valueMapping[arg] = phi;
923     }
924   }
925 
926   // Traverse operations.
927   for (auto &op : bb) {
928     // Set the current debug location within the builder.
929     builder.SetCurrentDebugLocation(
930         debugTranslation->translateLoc(op.getLoc(), subprogram));
931 
932     if (failed(convertOperation(op, builder)))
933       return failure();
934   }
935 
936   return success();
937 }
938 
939 /// Create named global variables that correspond to llvm.mlir.global
940 /// definitions.
941 LogicalResult ModuleTranslation::convertGlobals() {
942   for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
943     llvm::Type *type = convertType(op.getType());
944     llvm::Constant *cst = llvm::UndefValue::get(type);
945     if (op.getValueOrNull()) {
946       // String attributes are treated separately because they cannot appear as
947       // in-function constants and are thus not supported by getLLVMConstant.
948       if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
949         cst = llvm::ConstantDataArray::getString(
950             llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
951         type = cst->getType();
952       } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(),
953                                          op.getLoc()))) {
954         return failure();
955       }
956     } else if (Block *initializer = op.getInitializerBlock()) {
957       llvm::IRBuilder<> builder(llvmModule->getContext());
958       for (auto &op : initializer->without_terminator()) {
959         if (failed(convertOperation(op, builder)) ||
960             !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0))))
961           return emitError(op.getLoc(), "unemittable constant value");
962       }
963       ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
964       cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0)));
965     }
966 
967     auto linkage = convertLinkageToLLVM(op.linkage());
968     bool anyExternalLinkage =
969         ((linkage == llvm::GlobalVariable::ExternalLinkage &&
970           isa<llvm::UndefValue>(cst)) ||
971          linkage == llvm::GlobalVariable::ExternalWeakLinkage);
972     auto addrSpace = op.addr_space();
973     auto *var = new llvm::GlobalVariable(
974         *llvmModule, type, op.constant(), linkage,
975         anyExternalLinkage ? nullptr : cst, op.sym_name(),
976         /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace);
977 
978     globalsMapping.try_emplace(op, var);
979   }
980 
981   return success();
982 }
983 
984 /// Attempts to add an attribute identified by `key`, optionally with the given
985 /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
986 /// attribute has a kind known to LLVM IR, create the attribute of this kind,
987 /// otherwise keep it as a string attribute. Performs additional checks for
988 /// attributes known to have or not have a value in order to avoid assertions
989 /// inside LLVM upon construction.
990 static LogicalResult checkedAddLLVMFnAttribute(Location loc,
991                                                llvm::Function *llvmFunc,
992                                                StringRef key,
993                                                StringRef value = StringRef()) {
994   auto kind = llvm::Attribute::getAttrKindFromName(key);
995   if (kind == llvm::Attribute::None) {
996     llvmFunc->addFnAttr(key, value);
997     return success();
998   }
999 
1000   if (llvm::Attribute::doesAttrKindHaveArgument(kind)) {
1001     if (value.empty())
1002       return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
1003 
1004     int result;
1005     if (!value.getAsInteger(/*Radix=*/0, result))
1006       llvmFunc->addFnAttr(
1007           llvm::Attribute::get(llvmFunc->getContext(), kind, result));
1008     else
1009       llvmFunc->addFnAttr(key, value);
1010     return success();
1011   }
1012 
1013   if (!value.empty())
1014     return emitError(loc) << "LLVM attribute '" << key
1015                           << "' does not expect a value, found '" << value
1016                           << "'";
1017 
1018   llvmFunc->addFnAttr(kind);
1019   return success();
1020 }
1021 
1022 /// Attaches the attributes listed in the given array attribute to `llvmFunc`.
1023 /// Reports error to `loc` if any and returns immediately. Expects `attributes`
1024 /// to be an array attribute containing either string attributes, treated as
1025 /// value-less LLVM attributes, or array attributes containing two string
1026 /// attributes, with the first string being the name of the corresponding LLVM
1027 /// attribute and the second string beings its value. Note that even integer
1028 /// attributes are expected to have their values expressed as strings.
1029 static LogicalResult
1030 forwardPassthroughAttributes(Location loc, Optional<ArrayAttr> attributes,
1031                              llvm::Function *llvmFunc) {
1032   if (!attributes)
1033     return success();
1034 
1035   for (Attribute attr : *attributes) {
1036     if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
1037       if (failed(
1038               checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
1039         return failure();
1040       continue;
1041     }
1042 
1043     auto arrayAttr = attr.dyn_cast<ArrayAttr>();
1044     if (!arrayAttr || arrayAttr.size() != 2)
1045       return emitError(loc)
1046              << "expected 'passthrough' to contain string or array attributes";
1047 
1048     auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>();
1049     auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>();
1050     if (!keyAttr || !valueAttr)
1051       return emitError(loc)
1052              << "expected arrays within 'passthrough' to contain two strings";
1053 
1054     if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
1055                                          valueAttr.getValue())))
1056       return failure();
1057   }
1058   return success();
1059 }
1060 
1061 LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
1062   // Clear the block, branch value mappings, they are only relevant within one
1063   // function.
1064   blockMapping.clear();
1065   valueMapping.clear();
1066   branchMapping.clear();
1067   llvm::Function *llvmFunc = functionMapping.lookup(func.getName());
1068 
1069   // Translate the debug information for this function.
1070   debugTranslation->translate(func, *llvmFunc);
1071 
1072   // Add function arguments to the value remapping table.
1073   // If there was noalias info then we decorate each argument accordingly.
1074   unsigned int argIdx = 0;
1075   for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
1076     llvm::Argument &llvmArg = std::get<1>(kvp);
1077     BlockArgument mlirArg = std::get<0>(kvp);
1078 
1079     if (auto attr = func.getArgAttrOfType<BoolAttr>(
1080             argIdx, LLVMDialect::getNoAliasAttrName())) {
1081       // NB: Attribute already verified to be boolean, so check if we can indeed
1082       // attach the attribute to this argument, based on its type.
1083       auto argTy = mlirArg.getType();
1084       if (!argTy.isa<LLVM::LLVMPointerType>())
1085         return func.emitError(
1086             "llvm.noalias attribute attached to LLVM non-pointer argument");
1087       if (attr.getValue())
1088         llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
1089     }
1090 
1091     if (auto attr = func.getArgAttrOfType<IntegerAttr>(
1092             argIdx, LLVMDialect::getAlignAttrName())) {
1093       // NB: Attribute already verified to be int, so check if we can indeed
1094       // attach the attribute to this argument, based on its type.
1095       auto argTy = mlirArg.getType();
1096       if (!argTy.isa<LLVM::LLVMPointerType>())
1097         return func.emitError(
1098             "llvm.align attribute attached to LLVM non-pointer argument");
1099       llvmArg.addAttrs(
1100           llvm::AttrBuilder().addAlignmentAttr(llvm::Align(attr.getInt())));
1101     }
1102 
1103     if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.sret")) {
1104       auto argTy = mlirArg.getType();
1105       if (!argTy.isa<LLVM::LLVMPointerType>())
1106         return func.emitError(
1107             "llvm.sret attribute attached to LLVM non-pointer argument");
1108       llvmArg.addAttr(llvm::Attribute::AttrKind::StructRet);
1109     }
1110 
1111     if (auto attr = func.getArgAttrOfType<UnitAttr>(argIdx, "llvm.byval")) {
1112       auto argTy = mlirArg.getType();
1113       if (!argTy.isa<LLVM::LLVMPointerType>())
1114         return func.emitError(
1115             "llvm.byval attribute attached to LLVM non-pointer argument");
1116       llvmArg.addAttr(llvm::Attribute::AttrKind::ByVal);
1117     }
1118 
1119     valueMapping[mlirArg] = &llvmArg;
1120     argIdx++;
1121   }
1122 
1123   // Check the personality and set it.
1124   if (func.personality().hasValue()) {
1125     llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
1126     if (llvm::Constant *pfunc =
1127             getLLVMConstant(ty, func.personalityAttr(), func.getLoc()))
1128       llvmFunc->setPersonalityFn(pfunc);
1129   }
1130 
1131   // First, create all blocks so we can jump to them.
1132   llvm::LLVMContext &llvmContext = llvmFunc->getContext();
1133   for (auto &bb : func) {
1134     auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
1135     llvmBB->insertInto(llvmFunc);
1136     blockMapping[&bb] = llvmBB;
1137   }
1138 
1139   // Then, convert blocks one by one in topological order to ensure defs are
1140   // converted before uses.
1141   auto blocks = topologicalSort(func);
1142   for (Block *bb : blocks) {
1143     llvm::IRBuilder<> builder(llvmContext);
1144     if (failed(convertBlock(*bb, bb->isEntryBlock(), builder)))
1145       return failure();
1146   }
1147 
1148   // Finally, after all blocks have been traversed and values mapped, connect
1149   // the PHI nodes to the results of preceding blocks.
1150   connectPHINodes(func, valueMapping, blockMapping, branchMapping);
1151   return success();
1152 }
1153 
1154 LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) {
1155   for (Operation &o : getModuleBody(m).getOperations())
1156     if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp>(&o) && !o.isKnownTerminator())
1157       return o.emitOpError("unsupported module-level operation");
1158   return success();
1159 }
1160 
1161 LogicalResult ModuleTranslation::convertFunctionSignatures() {
1162   // Declare all functions first because there may be function calls that form a
1163   // call graph with cycles, or global initializers that reference functions.
1164   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1165     llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
1166         function.getName(),
1167         cast<llvm::FunctionType>(convertType(function.getType())));
1168     llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
1169     llvmFunc->setLinkage(convertLinkageToLLVM(function.linkage()));
1170     functionMapping[function.getName()] = llvmFunc;
1171 
1172     // Forward the pass-through attributes to LLVM.
1173     if (failed(forwardPassthroughAttributes(function.getLoc(),
1174                                             function.passthrough(), llvmFunc)))
1175       return failure();
1176   }
1177 
1178   return success();
1179 }
1180 
1181 LogicalResult ModuleTranslation::convertFunctions() {
1182   // Convert functions.
1183   for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
1184     // Ignore external functions.
1185     if (function.isExternal())
1186       continue;
1187 
1188     if (failed(convertOneFunction(function)))
1189       return failure();
1190   }
1191 
1192   return success();
1193 }
1194 
1195 llvm::Type *ModuleTranslation::convertType(Type type) {
1196   return typeTranslator.translateType(type);
1197 }
1198 
1199 /// A helper to look up remapped operands in the value remapping table.`
1200 SmallVector<llvm::Value *, 8>
1201 ModuleTranslation::lookupValues(ValueRange values) {
1202   SmallVector<llvm::Value *, 8> remapped;
1203   remapped.reserve(values.size());
1204   for (Value v : values) {
1205     assert(valueMapping.count(v) && "referencing undefined value");
1206     remapped.push_back(valueMapping.lookup(v));
1207   }
1208   return remapped;
1209 }
1210 
1211 std::unique_ptr<llvm::Module> ModuleTranslation::prepareLLVMModule(
1212     Operation *m, llvm::LLVMContext &llvmContext, StringRef name) {
1213   m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
1214   auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
1215   if (auto dataLayoutAttr =
1216           m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName()))
1217     llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue());
1218   if (auto targetTripleAttr =
1219           m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
1220     llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue());
1221 
1222   // Inject declarations for `malloc` and `free` functions that can be used in
1223   // memref allocation/deallocation coming from standard ops lowering.
1224   llvm::IRBuilder<> builder(llvmContext);
1225   llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
1226                                   builder.getInt64Ty());
1227   llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
1228                                   builder.getInt8PtrTy());
1229 
1230   return llvmModule;
1231 }
1232